JP2023046258A - Method for manufacturing r-t-b based sintered magnet - Google Patents

Method for manufacturing r-t-b based sintered magnet Download PDF

Info

Publication number
JP2023046258A
JP2023046258A JP2022126714A JP2022126714A JP2023046258A JP 2023046258 A JP2023046258 A JP 2023046258A JP 2022126714 A JP2022126714 A JP 2022126714A JP 2022126714 A JP2022126714 A JP 2022126714A JP 2023046258 A JP2023046258 A JP 2023046258A
Authority
JP
Japan
Prior art keywords
sintered magnet
alloy
rtb
based sintered
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022126714A
Other languages
Japanese (ja)
Inventor
徹 江口
Toru Eguchi
太 國吉
Futoshi Kuniyoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Proterial Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proterial Ltd filed Critical Proterial Ltd
Priority to CN202211156101.9A priority Critical patent/CN115881414A/en
Publication of JP2023046258A publication Critical patent/JP2023046258A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide a method for manufacturing an R-T-B based sintered magnet that has high Br and high HcJ while using La as a diffusion source.SOLUTION: A method for manufacturing an R-T-B based sintered magnet according to the present disclosure includes: a step of preparing an R-T-B based sintered magnet material; a step of preparing an R1-M based alloy; and a diffusion step of heating the R-T-B based sintered magnet material and the R1-M based alloy at a temperature equal to or higher than 700°C and equal to or lower than 1,100°C in vacuum or an inert gas atmosphere and diffusing R1 and M into the R-T-B based sintered magnet material. A content of R1 in the R1-M based alloy is equal to or more than 70 mass% and equal to or less than 95 mass% of the whole R1-M based alloy, a content ratio of La in R1 is equal to or more than 5% and less than 50%, and a content of M is equal to or more than 5 mass% and equal to or less than 30 mass% of the whole R1-M based alloy.SELECTED DRAWING: Figure 2

Description

本発明はR-T-B系焼結磁石の製造方法に関する。 The present invention relates to a method for producing an RTB based sintered magnet.

R-T-B系焼結磁石(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、必ずFeを含む、Bはホウ素である)は、RFe14B型結晶構造を有する化合物の主相と、この主相の粒界部分に位置する粒界相および微量添加元素や不純物の影響により生成する化合物相とから構成されている。R-T-B系焼結磁石は、高い残留磁束密度B(以下、単に「B」と記載する場合がある)と、高い保磁力HcJ(以下、単に「HcJ」と記載する場合がある)を示し、永久磁石の中で最も高性能な磁石として知られている。 RTB based sintered magnet (R is a rare earth element, always contains at least one selected from the group consisting of Nd, Pr and Ce, and T consists of Fe, Co, Al, Mn and Si at least one selected from the group and necessarily containing Fe, B is boron) is located in the main phase of the compound having the R 2 Fe 14 B-type crystal structure and the grain boundary portion of this main phase It is composed of a grain boundary phase and a compound phase generated by the influence of trace elements and impurities. The RTB sintered magnet has a high residual magnetic flux density B r (hereinafter sometimes simply referred to as “B r ”) and a high coercive force H cJ (hereinafter simply referred to as “H cJ ”). It is known as the magnet with the highest performance among permanent magnets.

このため、R-T-B系焼結磁石は、電気自動車(EV、HV、PHV)等の自動車分野、風力発電等の再生可能エネルギー分野、家電分野、産業分野等のさまざまなモーターに使用されている。R-T-B系焼結磁石は、これらモーターの小型・軽量化、高効率・省エネルギー化(エネルギー効率の改善)に欠かせない材料である。また、R-T-B系焼結磁石は、電気自動車用の駆動モーターに使用されており、内燃機関エンジン自動車から電気自動車へ代替されることで、二酸化炭素等の温室効果ガスの削減(燃料・排ガスの削減)による地球温暖化防止にも寄与している。このように、R-T-B系焼結磁石は、クリーンエネルギー社会の実現に大きく貢献している。 For this reason, RTB sintered magnets are used in various motors in the automobile field such as electric vehicles (EV, HV, PHV), renewable energy fields such as wind power generation, home appliances, and industrial fields. ing. RTB based sintered magnets are essential materials for making these motors smaller, lighter, and more efficient and energy saving (improving energy efficiency). RTB sintered magnets are also used in drive motors for electric vehicles.・It also contributes to the prevention of global warming by reducing exhaust gas. In this way, RTB based sintered magnets are greatly contributing to the realization of a clean energy society.

R-T-B系焼結磁石において、R14B化合物中のRに含まれる軽希土類元素RL(例えば、NdやPr)の一部を重希土類元素RH(RHは、TbおよびDyの少なくとも一方)で置換すると、HcJが向上することが知られている。RHの置換量の増加に伴い、HcJは向上する。しかし、R14B化合物中のRLをRHで置換すると、R-T-B系焼結磁石のHcJが向上する一方、残留磁束密度Bが低下する。また重希土類元素は資源リスクの高い原料であることから、その使用量を削減し、または使用せずにHcJを向上させることが求められている。 In the RTB system sintered magnet, part of the light rare earth element RL (for example, Nd and Pr) contained in R in the R 2 T 14 B compound is replaced with the heavy rare earth element RH (RH is Tb and Dy). at least one) is known to improve HcJ . The HcJ improves as the amount of RH substitution increases. However, when RH is substituted for RL in the R 2 T 14 B compound, the H cJ of the RTB system sintered magnet is improved, but the residual magnetic flux density B r is lowered. In addition, since heavy rare earth elements are raw materials with high resource risk, it is required to reduce their usage or improve HcJ without using them.

特許文献1には、特定組成のR-T-B系焼結磁石素材表面の少なくとも一部に、R2-Ga合金の少なくとも一部を接触させた状態で熱処理することで、RH、PrおよびGaを拡散させることが記載されている。これにより、RHの含有量を低減しつつ、高いBと高いHcJを得ることができる。 In Patent Document 1, RH, Pr and Ga are removed by heat-treating in a state in which at least part of an R2-Ga alloy is in contact with at least part of the surface of an RTB based sintered magnet material having a specific composition. It is described to diffuse the As a result, high Br and high HcJ can be obtained while reducing the RH content.

国際公開第2018/143230号WO2018/143230

特許文献1に記載されている方法は、重希土類元素の含有量を抑制しつつ高いBと高いHcJを得るR-T-B系焼結磁石が得られる点で注目に値する。しかし、近年、R-T-B系焼結磁石は、特に電気自動車用モーター向けなどで需要が今後大きく拡大することが予想されている。そのため、重希土類元素の含有量だけでなく、それ以外でも資源の有効活用、低コスト化の観点からは、重希土類元素の使用に偏らず、他の希土類元素も含めてバランスよく希土類元素を利用する必要がある。具体的な手段として希土類元素の中で存在量が比較的豊富なLa(ほかにCe)などを使用することが挙げられる。特にR-T-B系焼結磁石における主要な元素である、NdやPrの代わりにLaなどを使用することは有効である。しかし、NdやPrの代わりにLaなどを用いると磁気特性が大幅に低下することが知られている。 The method described in Patent Document 1 is noteworthy in that it provides an RTB based sintered magnet with high B r and high H cJ while suppressing the content of heavy rare earth elements. However, in recent years, it is expected that the demand for RTB based sintered magnets, especially for use in motors for electric vehicles, will greatly expand in the future. Therefore, not only the content of heavy rare earth elements but also other rare earth elements are used in a well-balanced manner, including other rare earth elements, rather than overlying the use of heavy rare earth elements, from the viewpoint of effective utilization of resources and cost reduction. There is a need to. As a specific means, it is possible to use La (and Ce) which is relatively abundant among rare earth elements. In particular, it is effective to use La instead of Nd and Pr, which are major elements in RTB sintered magnets. However, it is known that the use of La or the like in place of Nd or Pr significantly degrades the magnetic properties.

本開示の実施形態は、拡散源にLaを使用しつつ、高いB及び高いHcJが維持されたR-T-B系焼結磁石の製造方法を提供する。 Embodiments of the present disclosure provide a method for producing a RTB based sintered magnet that maintains high B r and high H cJ while using La as a diffusion source.

本開示のR-T-B系焼結磁石の製造方法は、例示的な実施形態において、R-T-B系焼結磁石素材(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、必ずFeを含む)を準備する工程と、R1-M系合金(R1はRHとRLからなり、RHはTbおよびDyの少なくとも一方であり、RLは、RH以外の希土類元素であり、NdおよびPrの少なくとも一方と、Laを必ず含み、MはAl、Cu、Zn、Ga、Fe、Co、Niからなる群から選択された少なくとも1つを必ず含む)を準備する工程と、前記R-T-B系焼結磁石素材と前記R1-M系合金を真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱し、R1およびMをR-T-B系焼結磁石素材内部に拡散させる拡散工程と、を含み、前記R1-M系合金における、R1の含有量はR1-M系合金全体の70mass%以上95mass%以下であり、R1中のLaの含有割合は5%以上50%未満であり、Mの含有量はR1-M系合金全体の5mass%以上30mass%以下である。 In an exemplary embodiment of the method for producing an RTB based sintered magnet of the present disclosure, an RTB based sintered magnet material (R is a rare earth element, the group consisting of Nd, Pr and Ce and T is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, and necessarily includes Fe); system alloy (R1 consists of RH and RL, RH is at least one of Tb and Dy, RL is a rare earth element other than RH, at least one of Nd and Pr and La, M is Al, at least one selected from the group consisting of Cu, Zn, Ga, Fe, Co, and Ni); a diffusion step of heating at a temperature of 700° C. or more and 1100° C. or less in a vacuum or inert gas atmosphere to diffuse R1 and M into the RTB system sintered magnet material, In the alloy, the content of R1 is 70 mass% or more and 95 mass% or less of the entire R1-M system alloy, the content of La in R1 is 5% or more and less than 50%, and the content of M is R1-M system It is 5 mass% or more and 30 mass% or less of the entire alloy.

ある実施形態において、前記R1-M系合金における、R1中のLaの含有割合は5%以上15%以下である。 In one embodiment, the content of La in R1 in the R1-M alloy is 5% or more and 15% or less.

ある実施形態において、前記R1-M系合金における、R1中のRHの含有割合は5%以上20%以下であり、R1中のNdおよびPrの少なくとも一方の合計含有割合は25%以上%90%以下である。 In one embodiment, in the R1-M alloy, the content of RH in R1 is 5% or more and 20% or less, and the total content of at least one of Nd and Pr in R1 is 25% or more and 90%. It is below.

ある実施形態において、前記R1-M系合金のMは、CuおよびGaの少なくとも一方を必ず含み、前記M中のCuおよびGaの合計含有割合は80%以上である。 In one embodiment, M in the R1-M alloy must contain at least one of Cu and Ga, and the total content of Cu and Ga in M is 80% or more.

ある実施形態において、前記R1-M系合金のR1は、Prを必ず含み、前記R1中のPrの含有割合は25%以上90%以下である。 In one embodiment, R1 of the R1-M alloy must contain Pr, and the content of Pr in R1 is 25% or more and 90% or less.

本開示の実施形態によると、拡散源にLaを使用しつつ、高いB及び高いHcJが維持されたR-T-B系焼結磁石の製造方法を提供することができる。 According to the embodiments of the present disclosure, it is possible to provide a method for manufacturing an RTB based sintered magnet in which high B r and high H cJ are maintained while using La as a diffusion source.

R-T-B系焼結磁石の一部を拡大して模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an enlarged part of an RTB based sintered magnet. 図1Aの破線矩形領域内を更に拡大して模式的に示す断面図である。FIG. 1B is a schematic cross-sectional view further enlarging the inside of the dashed-line rectangular area of FIG. 1A; 本開示によるR-T-B系焼結磁石の製造方法における工程の例を示すフローチャートである。4 is a flow chart showing an example of steps in a method for manufacturing a sintered RTB magnet according to the present disclosure;

まず、本開示によるR-T-B系焼結磁石の基本構造について説明をする。R-T-B系焼結磁石は、原料合金の粉末粒子が焼結によって結合した構造を有しており、主としてR14B化合物粒子からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。 First, the basic structure of the RTB based sintered magnet according to the present disclosure will be described. RTB sintered magnets have a structure in which raw material alloy powder particles are bonded by sintering. It consists of a grain boundary phase located at

図1Aは、R-T-B系焼結磁石の一部を拡大して模式的に示す断面図であり、図1Bは図1Aの破線矩形領域内を更に拡大して模式的に示す断面図である。図1Aには、一例として長さ5μmの矢印が大きさを示す基準の長さとして参考のために記載されている。図1Aおよび図1Bに示されるように、R-T-B系焼結磁石は、主としてR14B化合物からなる主相12と、主相12の粒界部分に位置する粒界相14とから構成されている。また、粒界相14は、図1Bに示されるように、2つのR14B化合物粒子(グレイン)が隣接する二粒子粒界相14aと、3つのR14B化合物粒子が隣接する粒界三重点14bとを含む。典型的な主相結晶粒径は磁石断面の円相当径の平均値で2.5μm以上10μm以下である。主相12であるR14B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料である。したがって、R-T-B系焼結磁石では、主相12であるR14B化合物の存在比率を高めることによってBを向上させることができる。R14B化合物の存在比率を高めるためには、原料合金中のR量、T量、B量を、R14B化合物の化学量論比(R量:T量:B量=2:14:1)に近づければよい。 FIG. 1A is a schematic cross-sectional view enlarging a part of the RTB based sintered magnet, and FIG. 1B is a cross-sectional view schematically showing a further enlarged broken-line rectangular area in FIG. 1A. is. In FIG. 1A, as an example, an arrow with a length of 5 μm is shown for reference as a reference length indicating the size. As shown in FIGS. 1A and 1B, the RTB system sintered magnet has a main phase 12 mainly composed of an R 2 T 14 B compound and a grain boundary phase 14 located at the grain boundary portion of the main phase 12. It consists of In addition, as shown in FIG. 1B, the grain boundary phase 14 includes a two-particle grain boundary phase 14a in which two R 2 T 14 B compound particles (grains) are adjacent, and a two-particle grain boundary phase 14a in which three R 2 T 14 B compound particles are adjacent. and the grain boundary triple point 14b. A typical main phase crystal grain size is 2.5 μm or more and 10 μm or less as the average value of the circle equivalent diameter of the cross section of the magnet. The R 2 T 14 B compound, which is the main phase 12, is a ferromagnetic material with high saturation magnetization and anisotropic magnetic field. Therefore, in an RTB based sintered magnet, B r can be improved by increasing the abundance ratio of the R 2 T 14 B compound that is the main phase 12 . In order to increase the abundance ratio of the R 2 T 14 B compound, the R amount, T amount, and B amount in the raw material alloy are adjusted to the stoichiometric ratio of the R 2 T 14 B compound (R amount: T amount: B amount = 2:14:1).

また、主相であるR14B化合物のRの一部をDy、Tb、Hoなどの重希土類元素で置換することによって飽和磁化を下げつつ、主相の異方性磁界を高められることが知られている。特に二粒子粒界相と接する主相外殻は磁化反転の起点となりやすいため、主相外殻に優先的に重希土類元素を置換できる重希土類拡散技術は、飽和磁化の低下を抑制しつつ効率的に高いHcJが得られる。 In addition, by substituting a portion of R in the main phase R 2 T 14 B compound with a heavy rare earth element such as Dy, Tb, or Ho, the anisotropic magnetic field of the main phase can be increased while reducing the saturation magnetization. It has been known. In particular, the outer shell of the main phase, which is in contact with the grain boundary phase, is likely to become the starting point of magnetization reversal. A relatively high HcJ is obtained.

本開示によるR-T-B系焼結磁石の製造方法では、R-T-B系焼結磁石素材表面から粒界を通じて磁石素材内部へ、R1-M系合金に含有されるR1とMを拡散させている。
本発明者らは、R1-M系合金とR-T-B系焼結磁石表面に熱処理し拡散させる方法について詳細に検討した。その結果、R1-M系合金のR1にRHを含有させた上で、R1とMを拡散させると、R1におけるRLとして、NdやPrの代わりにLaを特定の範囲で含有させても、Laを入れたことによる磁気特性の低下を抑制することができることを見出した。後述する実施例に示すように、これは、LaではなくCeを使用した場合には、このような効果を得ることが出来ない。また、さらに好ましい形態として、R1-M系合金におけるLaを狭い特定の範囲にすることにより、ほとんど磁気特性が低下しないことを見出した。このように、NdやPrの代わりにLaを含有させても、磁気特性の低下が抑制される、または、ほとんど磁気特性が低下しない理由は、拡散工程で磁石内部に入ったLaはNdやPrに比べR14B化合物内に含有されにくく、主に粒界相側に存在するためR14B化合物の磁気特性に大きな影響を与えないためと考えられる。これにより、拡散源にLaを使用しつつ、高いB及び高いHcJを有するR-T-B系焼結磁石を得ることが可能となる。
In the manufacturing method of the RTB system sintered magnet according to the present disclosure, R1 and M contained in the R1-M system alloy are introduced from the surface of the RTB system sintered magnet material into the magnet material through the grain boundary. I am spreading it.
The present inventors have studied in detail the method of heat-treating and diffusing the surfaces of R1-M alloy and RTB-based sintered magnets. As a result, when RH is contained in R1 of the R1-M alloy and then R1 and M are diffused, even if La is contained in a specific range instead of Nd or Pr as RL in R1, La It was found that the deterioration of the magnetic properties due to the addition of was able to be suppressed. As shown in the examples below, this effect cannot be obtained when Ce is used instead of La. Further, as a more preferable embodiment, the inventors have found that the magnetic properties are hardly degraded by setting La in the R1-M alloy to a specific narrow range. In this way, even if La is contained instead of Nd or Pr, the deterioration of the magnetic properties is suppressed, or the magnetic properties hardly deteriorate. It is thought that this is because it is less likely to be contained in the R 2 T 14 B compound compared to , and is present mainly on the grain boundary phase side, so that it does not significantly affect the magnetic properties of the R 2 T 14 B compound. This makes it possible to obtain an RTB based sintered magnet having high B r and high H cJ while using La as a diffusion source.

本開示によるR-T-B系焼結磁石の製造方法は、図2に示すように、R-T-B系焼結磁石素材を準備する工程S10とR1-M系合金を準備する工程S20とを含む。R-T-B系焼結磁石素材を準備する工程S10とR1-M系合金を準備する工程S20との順序は任意である。
本開示によるR-T-B系焼結磁石の製造方法は、図2に示すように、更に、R-T-B系焼結磁石素材と前記R1-M系合金を真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱し、R1およびMをR-T-B系焼結磁石素材内部に拡散させる拡散工程S30を含む。
As shown in FIG. 2, the method for manufacturing an RTB based sintered magnet according to the present disclosure includes step S10 of preparing an RTB based sintered magnet material and step S20 of preparing an R1-M based alloy. including. The order of the step S10 of preparing the RTB based sintered magnet material and the step S20 of preparing the R1-M based alloy is arbitrary.
As shown in FIG. 2, the method for producing an RTB based sintered magnet according to the present disclosure further comprises the step of placing the RTB based sintered magnet material and the R1-M based alloy in a vacuum or inert gas atmosphere. Medium includes a diffusion step S30 of heating at a temperature of 700° C. or more and 1100° C. or less to diffuse R1 and M inside the RTB based sintered magnet material.

なお、本開示において、拡散工程前および拡散工程中のR-T-B系焼結磁石を「R-T-B系焼結磁石素材」と称し、拡散工程後のR-T-B系焼結磁石を単に「R-T-B系焼結磁石」と称する。 In the present disclosure, the RTB system sintered magnet before and during the diffusion process is referred to as "RTB system sintered magnet material", and the RTB system sintered magnet after the diffusion process. A magnet is simply called an "RTB system sintered magnet".

(R-T-B系焼結磁石素材を準備する工程)
R-T-B系焼結磁石素材において、Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、Rの含有量は、例えば、R-T-B系焼結磁石素材全体の27mass%以上35mass%以下である。TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含み、T全体に対するFeの含有量が80mass%以上である。
Rが27mass%未満では焼結過程で液相が十分に生成せず、焼結体を充分に緻密化することが困難になる可能性がある。一方、Rが35mass%を超えると焼結時に粒成長が起こり、HcJが低下する可能性がある。より高いBを得るためには、Rは28mass%以上33mass%以下であることが好ましい。
(Step of preparing RTB based sintered magnet material)
In the RTB based sintered magnet material, R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, and the content of R is, for example, RT- It is 27 mass % or more and 35 mass % or less of the entire B-based sintered magnet material. T is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, T always contains Fe, and the content of Fe relative to the entire T is 80 mass% or more.
If R is less than 27% by mass, the liquid phase is not sufficiently formed in the sintering process, and it may become difficult to sufficiently densify the sintered body. On the other hand, if R exceeds 35 mass%, grain growth may occur during sintering and HcJ may decrease. In order to obtain a higher Br , R is preferably 28 mass% or more and 33 mass% or less.

R-T-B系焼結磁石素材は例えば、以下の組成範囲を有する。
R:27~35mass%、
B:0.80~1.20mass%、
Ga:0~1.0mass%、
X:0~2mass%(XはCu、Nb、Alの少なくとも一種)、
T:60mass%以上を含有する。
The RTB based sintered magnet material has, for example, the following composition range.
R: 27 to 35 mass%,
B: 0.80 to 1.20 mass%,
Ga: 0 to 1.0 mass%,
X: 0 to 2 mass% (X is at least one of Cu, Nb and Al),
T: 60 mass% or more.

好ましくは、R-T-B系焼結磁石素材において、Bに対するTのmol比[T]/[B]が14.0超15.0以下である。より高いHcJを得ることができる。本開示における[T]/[B]とは、Tを構成する各元素(Fe、Co、Al、MnおよびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含み、T全体に対するFeの含有量が80mass%以上)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの[T]と、Bの分析値(mass%)をBの原子量で除したもの[B]との比である。mol比[T]/[B]が14.0を超えるという条件は、主相(R14B化合物)形成に使われるT量に対して相対的にB量が少ないことを示している。mol比[T]/[B]は14.3以上15.0以下であることがさらに好ましい。さらに高いHcJを得ることができる。Bの含有量はR-T-B系焼結体全体の0.9mass%以上1.0mass%未満が好ましい。 Preferably, in the RTB based sintered magnet material, the molar ratio [T]/[B] of T to B is more than 14.0 and 15.0 or less. A higher HcJ can be obtained. [T] / [B] in the present disclosure is each element constituting T (at least one selected from the group consisting of Fe, Co, Al, Mn and Si, T always contains Fe, T Fe content in the whole is 80 mass% or more) analysis value (mass%) was divided by the atomic weight of each element, and the sum of those values [T] and the analysis value of B (mass% ) divided by the atomic weight of B to [B]. The condition that the mol ratio [T]/[B] exceeds 14.0 indicates that the amount of B is relatively small with respect to the amount of T used to form the main phase (R 2 T 14 B compound). . More preferably, the molar ratio [T]/[B] is 14.3 or more and 15.0 or less. Even higher HcJ can be obtained. The content of B is preferably 0.9 mass% or more and less than 1.0 mass% of the entire RTB-based sintered body.

R-T-B系焼結磁石素材は、Nd-Fe-B系焼結磁石に代表される一般的なR-T-B系焼結磁石の製造方法を用いて準備することができる。一例を挙げると、ストリップキャスト法等で作製された原料合金を、ジェットミルなどを用いて粒径D50が2.0μm以上4.5μm以下に粉砕した後、磁界中で成形し、900℃以上1100℃以下の温度で焼結することにより焼結体を作製して準備することができる。粒径D50が2.0μm以上4.5μm以下に粉砕することにより、高いBと高いHcJを得ることができる。好ましくは、粒径D50は、2.5μm以上3.5μm以下である。生産性の悪化を抑制した上で貴重なRHを削減しつつ、より高いBと高いHcJを得ることができる。なお、粒径D50は、気流分散法によるレーザー回折法で得られる粒度分布において、小径側からの積算粒度分布(体積基準)が50%になる粒径である。また、粒径D50は、例えば、Sympatec社製の粒度分布計測装置「HELOS&RODOS」を用いて、分散圧:4bar、測定レンジ:R2、計測モード:HRLDの条件にて測定することができる。また、R-T-B系焼結磁石素材を準備する工程は、拡散工程に供せるR-T-B系焼結磁石素材を得る工程であり、拡散工程に先だって自ら作製する態様の他、別途作製されたR-T-B系焼結磁石素材を入手する態様も含む。 The RTB based sintered magnet material can be prepared using a general method for manufacturing RTB based sintered magnets typified by Nd—Fe—B based sintered magnets. To give an example, a raw material alloy produced by a strip casting method or the like is pulverized using a jet mill or the like to a particle size D50 of 2.0 μm or more and 4.5 μm or less, and then molded in a magnetic field and heated to 900 ° C. or more. A sintered body can be prepared by sintering at a temperature of 1100° C. or less. High Br and high HcJ can be obtained by pulverizing to a particle size D50 of 2.0 μm or more and 4.5 μm or less. Preferably, the particle size D50 is between 2.5 μm and 3.5 μm. Higher Br and higher HcJ can be obtained while suppressing deterioration of productivity and reducing valuable RH. The particle size D50 is the particle size at which the cumulative particle size distribution (volume basis) from the small diameter side is 50% in the particle size distribution obtained by the laser diffraction method based on the air dispersion method. Further, the particle size D50 can be measured, for example, using a particle size distribution measuring device "HELOS &RODOS" manufactured by Sympatec under the conditions of dispersion pressure: 4 bar, measurement range: R2, and measurement mode: HRLD. The step of preparing the RTB based sintered magnet material is a step of obtaining the RTB based sintered magnet material to be subjected to the diffusion process. It also includes a mode in which a separately manufactured RTB based sintered magnet material is obtained.

(R1-M系合金を準備する工程)
前記R1-M系合金において、R1はRHとRLからなり、RHはTbおよびDyの少なくとも一方であり、RLは、RH以外の希土類元素であり、NdおよびPrの少なくとも一方と、Laを必ず含み、MはAl、Cu、Zn、Ga、Fe、Co、Niからなる群から選択された少なくとも1つを必ず含む。R1の含有量はR1-M合金全体の70mass%以上95mass%以下である。これにより高い磁気特性を得ることが出来る。また、R1中のLaの含有割合は5%以上50%未満である。ここで、本開示における「R1中のLaの含有割合」とは、R1中の質量%(mass%)対比でLaの割合を算出した値である。上述したようにR1-M系合金のR1にRHを含有させた上で、R1とMを拡散させると、RLとして、NdやPrの代わりにLaをR1中に5%以上50%未満含有させても磁気特性の低下が抑制されるため、高いB及び高いHcJを有するR-T-B系焼結磁石を得ることができる。より高いHcJを有するR-T-B系焼結磁石を得るには、5%以上35%以下が好ましい。さらに最も好ましくは、R1中のLaの含有割合は5%以上15%以下である。この範囲であれば、Laを添加してもほとんど磁気特性が低下しない。また、より高いB及び高いHcJを有するR-T-B系焼結磁石を得るためには、R1中のRHの含有割合は5%以上20%以下が好ましく、R1中のNdおよびPrの少なくとも一方の合計含有割合は25%以上%90%以下が好ましい。また、さらに高いHcJを有するR-T-B系焼結磁石を得るためには、前記R1-M系合金のR1は、Prを必ず含み、前記R1中のPrの含有割合は25%以上90%以下であることが好ましい。また、より確実に、高いB及び高いHcJを有するR-T-B系焼結磁石を得るためにはR1中は、RH、PrおよびLaの合計含有割合が50%以上であることがさらに好ましい。
(Step of preparing R1-M alloy)
In the R1-M alloy, R1 consists of RH and RL, RH is at least one of Tb and Dy, RL is a rare earth element other than RH, and always contains at least one of Nd and Pr and La. , M necessarily include at least one selected from the group consisting of Al, Cu, Zn, Ga, Fe, Co, and Ni. The content of R1 is 70 mass% or more and 95 mass% or less of the entire R1-M alloy. This makes it possible to obtain high magnetic properties. Moreover, the content ratio of La in R1 is 5% or more and less than 50%. Here, the "content ratio of La in R1" in the present disclosure is a value obtained by calculating the ratio of La relative to mass% (mass%) in R1. After RH is contained in R1 of the R1-M alloy as described above, when R1 and M are diffused, 5% or more and less than 50% of La is contained in R1 instead of Nd or Pr as RL. Since the deterioration of the magnetic properties is suppressed even when the content is reduced, it is possible to obtain an RTB based sintered magnet having high B r and high H cJ . In order to obtain an RTB based sintered magnet having a higher HcJ , the content is preferably 5% or more and 35% or less. Most preferably, the content of La in R1 is 5% or more and 15% or less. Within this range, even if La is added, the magnetic properties hardly deteriorate. In order to obtain a RTB based sintered magnet having higher B r and higher H cJ , the content of RH in R1 is preferably 5% or more and 20% or less. The total content of at least one of is preferably 25% or more and 90% or less. In addition, in order to obtain an RTB sintered magnet having a higher HcJ , R1 of the R1-M alloy must contain Pr, and the content of Pr in R1 must be 25% or more. It is preferably 90% or less. In order to more reliably obtain a RTB based sintered magnet having high Br and high HcJ , the total content of RH, Pr and La in R1 should be 50% or more. More preferred.

また、Mは、Al、Cu、Zn、Ga、Fe、Co、Niからなる群から選択された少なくとも1つである。Mの含有量はR1-M合金全体の5mass%以上30mass%以下である。好ましくは、Mの含有量は、R1-M系合金全体の7mass%以上15mass%以下である。より高いHcJを得ることができる。また、MはCuおよびGaの少なくとも一方を含有した方が好ましく、CuおよびGaの両方を含有した方がさらに好ましい。前記M中のCuおよびGaの合計含有割合は80%以上が好ましい。CuおよびGaを含有することで、より高いHcJを得ることができる。
R1-M系合金の典型例は、TbNdPrLaCu合金、TbNdLaGa合金、TbPrLaGa合金などである。上記元素の他にMn、O、C、N等の不可避不純物等の元素を少量含有してもよい。
Also, M is at least one selected from the group consisting of Al, Cu, Zn, Ga, Fe, Co, and Ni. The content of M is 5 mass% or more and 30 mass% or less of the entire R1-M alloy. Preferably, the content of M is 7 mass% or more and 15 mass% or less of the entire R1-M alloy. A higher HcJ can be obtained. Moreover, M preferably contains at least one of Cu and Ga, and more preferably contains both Cu and Ga. The total content of Cu and Ga in M is preferably 80% or more. A higher HcJ can be obtained by containing Cu and Ga.
Typical examples of R1-M alloys are TbNdPrLaCu alloys, TbNdLaGa alloys, TbPrLaGa alloys, and the like. In addition to the above elements, a small amount of elements such as unavoidable impurities such as Mn, O, C, and N may be contained.

R1-M系合金の作製方法は、特に限定されない。ロール急冷法によって作製してもよいし、鋳造法で作製してもよい。また、これらの合金を粉砕して合金粉末にしてもよい。遠心アトマイズ法、回転電極法、ガスアトマイズ法、プラズマアトマイズ法などの公知のアトマイズ法で作製してもよい。また、R1-M系合金を準備する工程は、拡散工程に供せるR1-M系合金を得る工程であり、拡散工程に先だって自ら作製する態様の他、別途作製されたR1-M系合金を入手する態様も含む。 The method for producing the R1-M alloy is not particularly limited. It may be produced by a roll quenching method or may be produced by a casting method. Alternatively, these alloys may be pulverized into alloy powder. It may be produced by a known atomization method such as a centrifugal atomization method, a rotating electrode method, a gas atomization method, or a plasma atomization method. In addition, the step of preparing the R1-M alloy is a step of obtaining the R1-M alloy to be subjected to the diffusion step. It also includes a mode of obtaining.

(拡散工程)
前述の方法によって準備した前記R-T-B系焼結磁石素材と前記R1-M系合金を真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱し、R1およびMをR-T-B系焼結磁石素材内部に拡散させる拡散工程を行う。これにより、R1-M系合金からR1およびMを含む液相が生成し、その液相がR-T-B系焼結磁石素材中の粒界を経由して焼結素材表面から内部に拡散導入される。
(Diffusion process)
The RTB based sintered magnet material and the R1-M based alloy prepared by the method described above are heated in a vacuum or inert gas atmosphere at a temperature of 700° C. or higher and 1100° C. or lower to convert R1 and M into R - Perform a diffusion step of diffusing into the inside of the TB based sintered magnet material. As a result, a liquid phase containing R1 and M is generated from the R1-M alloy, and the liquid phase diffuses from the surface of the sintered material to the interior via the grain boundaries in the RTB sintered magnet material. be introduced.

拡散工程における加熱する温度が700℃未満であると、R1およびMを含む液相量が少なすぎて高いHcJを得ることができない可能性がある。一方、1100℃を超えるとHcJが大幅に低下する可能性がある。好ましくは、拡散工程における加熱する温度は800℃以上1000℃以下である。より高いHcJを得ることができる。また、好ましくは、拡散工程(700℃以上1100℃以下)が実施されたR-T-B系焼結磁石に対し、拡散工程を実施した温度から15℃/分以上の冷却速度で300℃まで冷却した方が好ましい。より高いHcJを得ることができる。 If the heating temperature in the diffusion step is less than 700°C, the amount of the liquid phase containing R1 and M may be too small to obtain a high HcJ . On the other hand, if the temperature exceeds 1100°C, the HcJ may drop significantly. Preferably, the heating temperature in the diffusion step is 800° C. or higher and 1000° C. or lower. A higher HcJ can be obtained. Further, preferably, the RTB sintered magnet subjected to the diffusion step (700° C. or higher and 1100° C. or lower) is cooled from the temperature at which the diffusion step is performed to 300° C. at a cooling rate of 15° C./min or higher. Cooling is preferred. A higher HcJ can be obtained.

拡散処理工程は、R-T-B系焼結磁石素材表面に、任意形状のR1-M系合金を配置し、公知の熱処理装置を用いて行ってもよい。例えば、R-T-B系焼結磁石素材表面をR1-M合金の粉末層で覆い、熱処理を行うことができる。例えば、R1-M系合金を分散媒中に分散させたスラリーをR-T-B系焼結磁石素材表面に塗布した後、分散媒を蒸発させR1-M系合金とR-T-B系焼結磁石素材とを接触させてもよい。この場合、拡散工程におけるR-T-B系焼結磁石素材へのR1-M系合金の付着量は1mass%以上6mass%以下が好ましく、さらに好ましくは、R-T-B系焼結磁石素材へのR1-M系合金の付着量は1.5mass%以上3mass%以下である。より高いHcJを得ることができる。なお、分散媒として、アルコール(エタノール等)、アルデヒドおよびケトンを例示できる。また、重希土類元素RHは、R1-M合金からだけでなく、R1-M系合金と共に重希土類元素RHのフッ化物、酸化物、酸フッ化物等をR-T-B系焼結磁石表面に配置することにより重希土類元素RHを導入してもよい。すなわち、重希土類元素RHと共に軽希土類元素RLおよびMを同時に拡散させることができればその方法は特に問わない。重希土類元素RHのフッ化物、酸化物、酸フッ化物としては、例えば、TbF 、DyF 、Tb 、Dy 、TbOF、DyOFが挙げられる。 The diffusion treatment step may be carried out by placing an arbitrary shaped R1-M alloy on the surface of the RTB sintered magnet material and using a known heat treatment apparatus. For example, the surface of an RTB based sintered magnet material can be covered with an R1-M alloy powder layer and heat treated. For example, after a slurry in which an R1-M alloy is dispersed in a dispersion medium is applied to the surface of an RTB sintered magnet material, the dispersion medium is evaporated to obtain an R1-M alloy and an RTB system. It may be brought into contact with the sintered magnet material. In this case, the amount of the R1-M alloy attached to the RTB sintered magnet material in the diffusion step is preferably 1 mass% or more and 6 mass% or less, and more preferably, the RTB sintered magnet material. The adhesion amount of the R1-M alloy to is 1.5 mass% or more and 3 mass% or less. A higher HcJ can be obtained. Examples of dispersion media include alcohols (ethanol, etc.), aldehydes, and ketones. In addition, the heavy rare earth element RH is obtained not only from the R1-M alloy, but also from the R1-M alloy and the fluoride, oxide, acid fluoride, etc. of the heavy rare earth element RH on the surface of the RTB system sintered magnet. The heavy rare earth element RH may be introduced by arranging. That is, any method can be used as long as the heavy rare earth element RH and the light rare earth elements RL and M can be diffused simultaneously. Examples of fluorides, oxides, and acid fluorides of the heavy rare earth element RH include TbF 3 , DyF 3 , Tb 2 O 3 , Dy 2 O 3 , Tb 4 OF, and Dy 4 OF.

(熱処理を実施する工程)
好ましくは、拡散工程が実施されたR-T-B系焼結磁石に対して、真空又は不活性ガス雰囲気中、400℃以上750℃以下で、かつ、前記拡散工程で実施した温度よりも低い温度で熱処理を行う。熱処理を行うことにより、より高いHcJを得ることができる。
(Step of performing heat treatment)
Preferably, the RTB sintered magnet subjected to the diffusion step is heated in a vacuum or inert gas atmosphere at a temperature of 400° C. or higher and 750° C. or lower and lower than the temperature of the diffusion step. heat treatment at high temperature. Higher HcJ can be obtained by heat treatment.

本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be explained in more detail by examples, but the present invention is not limited to them.

実施例1
[R-T-B系焼結磁石素材を準備する工程]
表1に示すR-T-B系焼結磁石素材の組成になるように各元素を秤量し、ストリップキャスト法により原料合金を作製した。得られた各合金を水素粉砕法により粗粉砕し粗粉砕粉を得た。次に、前記粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉100質量部%に対して0.035質量部%添加し混合した。潤滑剤を含有した粗粉砕粉をジェットミルにより微粉砕を行った。粉砕により粒径D50:3.5μmの微粉末を得た。D50は、Sympatec社製の粒度分布計測装置「HELOS&RODOS」を用いて、分散圧:4bar、測定レンジ:R2、計測モード:HRLDの条件にて測定した。
Example 1
[Step of preparing RTB sintered magnet material]
Each element was weighed so as to obtain the composition of the RTB based sintered magnet material shown in Table 1, and a raw material alloy was produced by strip casting. Each of the obtained alloys was coarsely pulverized by a hydrogen pulverization method to obtain a coarsely pulverized powder. Next, 0.035 parts by mass of zinc stearate as a lubricant was added to the coarsely pulverized powder and mixed with 100 parts by mass of the coarse powder. Coarsely pulverized powder containing a lubricant was finely pulverized by a jet mill. A fine powder having a particle size D 50 of 3.5 μm was obtained by pulverization. D50 was measured using a Sympatec particle size distribution analyzer "HELOS&RODOS" under conditions of dispersion pressure: 4 bar, measurement range: R2, and measurement mode: HRLD.

得られたれた微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後に磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。得られた成形体を、真空中で4時間焼結(焼結による緻密化が十分起こる温度を選定)した後、急冷し、R-T-B系焼結磁石素材を得た。得られたR-T-B系焼結磁石素材の密度は7.5Mg/m以上であった。 0.05% by mass of zinc stearate as a lubricant was added to 100% by mass of the finely pulverized powder, mixed, and compacted in a magnetic field to obtain a compact. As the forming apparatus, a so-called orthogonal magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressurizing direction are perpendicular to each other was used. The compact thus obtained was sintered in vacuum for 4 hours (a temperature at which sintering causes sufficient densification was selected) and then rapidly cooled to obtain an RTB based sintered magnet material. The density of the obtained RTB based sintered magnet material was 7.5 Mg/m 3 or more.

得られたR-T-B系焼結磁石素材の成分を求めるために、Nd、Pr、Fe、Co、Al、Ga、Cu、Zr、Bの含有量を高周波誘導結合プラズマ発光分光分析法(ICP-OES)により測定した。なお、R-T-B系焼結磁石素材の酸素量はガス融解―赤外線吸収法、窒素量はガス融解―熱伝導法、炭素量は焼結―赤外線吸収法、によるガス分析装置を使用して測定した。なお、R-T-B系焼結磁石素材の成分は合計で100mass%にならない場合がある。これは、上述したように測定方法が異なるためと、不可避的不純物で他の元素を含有する場合があるからである。なお、TREは、Nd、Prの合計値である。 In order to determine the components of the obtained RTB based sintered magnet material, the contents of Nd, Pr, Fe, Co, Al, Ga, Cu, Zr, and B were analyzed by high frequency inductively coupled plasma atomic emission spectrometry ( ICP-OES). The oxygen content of the RTB sintered magnet material was measured using a gas fusion-infrared absorption method, the nitrogen content was measured by a gas fusion-heat conduction method, and the carbon content was measured by a sintering-infrared absorption method using a gas analyzer. measured by In some cases, the total composition of the RTB based sintered magnet material does not reach 100 mass%. This is because the measurement method is different as described above and because other elements may be contained as unavoidable impurities. Note that TRE is the total value of Nd and Pr.

Figure 2023046258000002
Figure 2023046258000002

[R1-M系合金を準備する工程]
表2のNo.1-A~1-Hに示すようなR1-M系合金の組成になるように、各元素を秤量し、それらの原料を溶解して、単ロール超急冷法によりリボンまたはフレーク状の合金を得た。得られたR1-M系合金の組成を表2に示す。なお、表2における各成分は、高周波誘導結合プラズマ発光分光分析法を使用して測定した。R1中のLaの含有割合(mass%)も表2に示す。
[Step of preparing R1-M alloy]
No. in Table 2. Each element is weighed so that the composition of the R1-M alloy is as shown in 1-A to 1-H, the raw materials are melted, and a ribbon or flake-shaped alloy is formed by a single roll ultra-quenching method. Obtained. Table 2 shows the composition of the obtained R1-M alloy. Each component in Table 2 was measured using high frequency inductively coupled plasma atomic emission spectrometry. Table 2 also shows the content ratio (mass%) of La in R1.

Figure 2023046258000003
Figure 2023046258000003

[拡散工程]
表1のNo.1~3のR-T-B系焼結磁石素材を切断、切削加工し,7.2mm角の立方体にした。加工後のR-T-B系磁石素材にディッピング法により粘着剤としてPVAをR-T-B系磁石素材の全面に塗布した。次に表3に示す作製条件で粘着剤を塗布したR-T-B系焼結磁石素材の全面にR1-M系合金を付着させた。なお、R1-M系合金付着量は、乳鉢を用いてR1-M系合金をアルゴン雰囲気中で粉砕した後、目開き45~1000μmの数種類の篩を通過させ、粒度の異なるR1-M系合金を用いることにより調整した。付着量は2mass%前後とした。そして、真空熱処理炉を用いて、100Paに制御した減圧アルゴン雰囲気中で、表3の拡散工程に示す条件でR1-M系合金およびR-T-B系焼結磁石素材を加熱した後、冷却した。
[Diffusion process]
No. in Table 1. 1 to 3 RTB based sintered magnet materials were cut and machined into 7.2 mm square cubes. After processing, PVA as an adhesive was applied to the entire surface of the RTB magnet material by a dipping method. Next, under the manufacturing conditions shown in Table 3, the R1-M alloy was adhered to the entire surface of the RTB sintered magnet material coated with the adhesive. The amount of the R1-M alloy deposited was determined by pulverizing the R1-M alloy in an argon atmosphere using a mortar and passing it through several types of sieves with an opening of 45 to 1000 μm. was adjusted by using The adhesion amount was around 2 mass %. Then, using a vacuum heat treatment furnace, in a reduced pressure argon atmosphere controlled at 100 Pa, the R1-M alloy and RTB sintered magnet materials were heated under the conditions shown in the diffusion process in Table 3, and then cooled. bottom.

[熱処理を実施する工程]
前記拡散工程で加熱したR-T-B系焼結磁石素材に対し、真空熱処理炉を用いて100Paに制御した減圧アルゴン中にて500℃の加熱する熱処理を行った。熱処理後の各サンプルに対し表面研削盤を用いて、全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体形状のサンプル(R-T-B系焼結磁石)を得た。なお、拡散工程におけるR1-M系合金およびR-T-B系焼結磁石素材の加熱温度、ならびに、拡散工程後の熱処理を実施する工程におけるR-T-B系焼結磁石の加熱温度は、それぞれ熱電対を用いて測定した。
[Step of performing heat treatment]
The RTB based sintered magnet material heated in the diffusion step was subjected to heat treatment at 500° C. in reduced pressure argon controlled at 100 Pa using a vacuum heat treatment furnace. Using a surface grinder, the entire surface of each sample after heat treatment was cut to obtain a cubic sample (RTB sintered magnet) of 7.0 mm × 7.0 mm × 7.0 mm. . The heating temperature of the R1-M alloy and RTB sintered magnet material in the diffusion process, and the heating temperature of the RTB sintered magnet in the process of performing heat treatment after the diffusion process are , respectively, were measured using thermocouples.

Figure 2023046258000004
Figure 2023046258000004

[サンプル評価]
得られたサンプルを、B-Hトレーサによって残留磁束密度Bおよび保磁力HcJを測定した。結果を表3に示す。表3に示す様に、R1-M系合金にCeを添加した比較例(試料No.1-12~1-13は、LaやCeを添加しないR1-M系合金を用いた試料No.1-11(基準3)に比べてCe添加量が多くなるにつれて大きくHcJが低下した。これに対し、Laを添加した本発明例(No.1-2~1-5、No.1-7~1-10)は、LaやCeを添加しないR1-M系合金を用いた試料No.1-1(基準1)、No.1-6(基準2)に対して、本発明例のNo.1-2、1-3、1-7、1-8ではBの低下はなく、HcJの低下量も基準特性の4%未満であり、Laを添加してもほとんど磁気特性は低下していない。また、本発明例のNo.1-4、1-5、1-9、1-10とCeを添加した比較例(No.1-12~1-13)と比べると、CeよりもLaの方が添加量を多くしても磁気特性の低下が大きく抑制されている。
[Sample evaluation]
The residual magnetic flux density B r and coercive force H cJ of the obtained sample were measured by a BH tracer. Table 3 shows the results. As shown in Table 3, comparative examples in which Ce was added to the R1-M alloy (Samples No. 1-12 to 1-13 are sample No. 1 using the R1-M alloy to which La and Ce are not added. -11 (Criterion 3), the H cJ decreased greatly as the amount of Ce added increased.In contrast, the present invention examples (No. 1-10) are samples No. 1-1 (reference 1) and No. 1-6 (reference 2) using R1-M alloys to which La and Ce are not added, and No. of the example of the present invention In 1-2, 1-3, 1-7, and 1-8, there was no decrease in Br , and the amount of decrease in HcJ was less than 4% of the standard characteristics, and the addition of La hardly decreased the magnetic characteristics. In addition, when comparing Nos. 1-4, 1-5, 1-9 and 1-10 of the present invention with comparative examples (Nos. 1-12 to 1-13) in which Ce was added, Ce Even if the addition amount of La is larger than that of La, the deterioration of the magnetic properties is greatly suppressed.

実施例2
[R-T-B系焼結磁石素材を準備する工程]
組成が異なる以外は、実施例1における[R―T―B系焼結磁石素材を準備する工程]と同様な方法でR―T―B系焼結磁石素材を準備した。なお,作製した焼結磁石の組成を表4に示す。
Example 2
[Step of preparing RTB sintered magnet material]
An R—T—B based sintered magnet material was prepared in the same manner as in [Step of preparing R—T—B based sintered magnet material] in Example 1, except that the composition was different. Table 4 shows the composition of the produced sintered magnet.

Figure 2023046258000005
Figure 2023046258000005

[R1-M系合金を準備する工程]
表5のNo.2-A~2-Dに示すようなR1-M系合金の組成になるように、各元素を秤量し、それらの原料を溶解して、単ロール超急冷法によりリボンまたはフレーク状の合金を得た。得られたR1-M系合金の組成を表5に示す。なお、表5における各成分は、高周波誘導結合プラズマ発光分光分析法を使用して測定した。
[Step of preparing R1-M alloy]
No. in Table 5. Each element is weighed so as to obtain the composition of the R1-M alloy as shown in 2-A to 2-D, the raw materials are melted, and a ribbon or flake-shaped alloy is formed by a single roll super quenching method. Obtained. Table 5 shows the composition of the obtained R1-M alloy. Each component in Table 5 was measured using high frequency inductively coupled plasma atomic emission spectrometry.

Figure 2023046258000006
Figure 2023046258000006

[拡散工程]
表4のNo.4のR-T-B系焼結磁石素材を切断、切削加工し,7.2mm角の立方体にした。加工後のR-T-B系磁石素材にディッピング法により粘着剤としてPVAをR-T-B系磁石素材の全面に塗布した。次に表6に示す作製条件で粘着剤を塗布したR-T-B系焼結磁石素材の全面にR1-M系合金を付着させた。なお、R1-M系合金付着量は、乳鉢を用いてR1-M系合金をアルゴン雰囲気中で粉砕した後、目開き45~1000μmの数種類の篩を通過させ、粒度の異なるR1-M系合金を用いることにより調整した。付着量は2mass%前後とした。そして、真空熱処理炉を用いて、100Paに制御した減圧アルゴン雰囲気中で、表6の拡散工程に示す条件でR1-M系合金およびR-T-B系焼結磁石素材を加熱した後、冷却した。
[Diffusion process]
The RTB based sintered magnet material of No. 4 in Table 4 was cut and machined into a 7.2 mm square cube. After processing, PVA as an adhesive was applied to the entire surface of the RTB magnet material by a dipping method. Next, under the manufacturing conditions shown in Table 6, the R1-M alloy was adhered to the entire surface of the RTB sintered magnet material coated with the adhesive. The amount of the R1-M alloy deposited was determined by pulverizing the R1-M alloy in an argon atmosphere using a mortar and passing it through several types of sieves with an opening of 45 to 1000 μm. was adjusted by using The adhesion amount was around 2 mass %. Then, using a vacuum heat treatment furnace, in a reduced pressure argon atmosphere controlled at 100 Pa, the R1-M alloy and RTB sintered magnet materials were heated under the conditions shown in the diffusion process in Table 6, and then cooled. bottom.

[熱処理を実施する工程]
前記拡散工程で加熱したR-T-B系焼結磁石素材に対し、真空熱処理炉を用いて100Paに制御した減圧アルゴン中にて500℃の加熱する熱処理を行った。熱処理後の各サンプルに対し表面研削盤を用いて、全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体形状のサンプル(R-T-B系焼結磁石)を得た。なお、拡散工程におけるR1-M系合金およびR-T-B系焼結磁石素材の加熱温度、ならびに、拡散工程後の熱処理を実施する工程におけるR-T-B系焼結磁石の加熱温度は、それぞれ熱電対を用いて測定した。
[Step of performing heat treatment]
The RTB based sintered magnet material heated in the diffusion step was subjected to heat treatment at 500° C. in reduced pressure argon controlled at 100 Pa using a vacuum heat treatment furnace. Using a surface grinder, the entire surface of each sample after heat treatment was cut to obtain a cubic sample (RTB sintered magnet) of 7.0 mm × 7.0 mm × 7.0 mm. . The heating temperature of the R1-M alloy and RTB sintered magnet material in the diffusion process, and the heating temperature of the RTB sintered magnet in the process of performing heat treatment after the diffusion process are , respectively, were measured using thermocouples.

Figure 2023046258000007
Figure 2023046258000007

[サンプル評価]
得られたサンプルを、B-Hトレーサによって残留磁束密度Bおよび保磁力HcJを測定した。結果を表6に示す。表6に示すように、LaならびにGaが含有されていないR1―M系合金を用いた試料No.2-1(基準)に対して、本発明例は(No.2-2,2-3)Brの低下はなく、HcJの低下量も基準特性の4%未満であり、ほとんど磁気特性は低下していない。一方,R1中のLa含有濃度が過剰なR1―M系合金を用いた比較例(試料No.2-4)では,Brの低下はないが,HcJが大きく低下した。
[Sample evaluation]
The residual magnetic flux density B r and coercive force H cJ of the obtained sample were measured by a BH tracer. Table 6 shows the results. As shown in Table 6, sample no. Compared to 2-1 (reference), the present invention examples (No. 2-2, 2-3) have no decrease in Br , and the amount of decrease in H cJ is less than 4% of the reference characteristics. has not declined. On the other hand, in a comparative example (Sample No. 2-4) using an R1-M alloy with an excessive La concentration in R1, Br did not decrease, but HcJ decreased significantly.

実施例3
R-T-B系焼結磁石素材を準備する工程]
表7に示すR-T-B系焼結磁石素材の組成になるように各元素を秤量し、ストリップキャスト法により原料合金を作製した。得られた各合金を水素粉砕法により粗粉砕し粗粉砕粉を得た。次に、前記粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉100mass%に対して0.035mass%添加し混合した。潤滑剤を含有した粗粉砕粉をジェットミルにより微粉砕を行った。粉砕により粒径D50:3.0μmの微粉末を得た。D50は、Sympatec社製の粒度分布計測装置「HELOS&RODOS」を用いて、分散圧:4bar、測定レンジ:R2、計測モード:HRLDの条件にて測定した。
Example 3
Step of preparing RTB based sintered magnet material]
Each element was weighed so as to obtain the composition of the RTB based sintered magnet material shown in Table 7, and a raw material alloy was produced by strip casting. Each of the obtained alloys was coarsely pulverized by a hydrogen pulverization method to obtain a coarsely pulverized powder. Next, 0.035% by mass of zinc stearate as a lubricant was added to the coarsely pulverized powder with respect to 100% by mass of the coarsely pulverized powder and mixed. Coarsely pulverized powder containing a lubricant was finely pulverized by a jet mill. A fine powder having a particle size D 50 of 3.0 μm was obtained by pulverization. D50 was measured using a Sympatec particle size distribution analyzer "HELOS&RODOS" under conditions of dispersion pressure: 4 bar, measurement range: R2, and measurement mode: HRLD.

得られたれた微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後に磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。得られた成形体を、真空中で4時間焼結(焼結による緻密化が十分起こる温度を選定)した後、急冷し、R-T-B系焼結磁石素材を得た。得られたR-T-B系焼結磁石素材の密度は7.5Mg/m以上であった。 0.05% by mass of zinc stearate as a lubricant was added to 100% by mass of the finely pulverized powder, mixed, and compacted in a magnetic field to obtain a compact. As the forming apparatus, a so-called orthogonal magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressurizing direction are perpendicular to each other was used. The compact thus obtained was sintered in vacuum for 4 hours (a temperature at which sintering causes sufficient densification was selected) and then rapidly cooled to obtain an RTB based sintered magnet material. The density of the obtained RTB based sintered magnet material was 7.5 Mg/m 3 or more.

得られたR-T-B系焼結磁石素材の成分を求めるために、Nd、Pr、Fe、Dy、Tb、Co、Al、Ga、Cu、Zr、Bの含有量を高周波誘導結合プラズマ発光分光分析法(ICP-OES)により測定した。なお、R-T-B系焼結磁石素材の酸素量はガス融解―赤外線吸収法、窒素量はガス融解―熱伝導法、炭素量は焼結―赤外線吸収法、によるガス分析装置を使用して測定した。なお、R-T-B系焼結磁石素材の成分は合計で100mass%にならない場合がある。これは、上述したように測定方法が異なるためと、不可避的不純物で他の元素を含有する場合があるからである。なお、TREは、Nd、Pr、Dyの合計値である。 In order to determine the components of the obtained RTB based sintered magnet material, the contents of Nd, Pr, Fe, Dy, Tb, Co, Al, Ga, Cu, Zr, and B were measured by high-frequency inductively coupled plasma emission. Measured by spectrophotometry (ICP-OES). The oxygen content of the RTB sintered magnet material was measured using a gas fusion-infrared absorption method, the nitrogen content was measured by a gas fusion-heat conduction method, and the carbon content was measured by a sintering-infrared absorption method using a gas analyzer. measured by In some cases, the total composition of the RTB based sintered magnet material does not reach 100 mass%. This is because the measurement method is different as described above and because other elements may be contained as unavoidable impurities. Note that TRE is the sum of Nd, Pr, and Dy.

Figure 2023046258000008
Figure 2023046258000008

[R1-M系合金を準備する工程]
表8のNo.3-A~3-Dに示すようなR1-M系合金の組成になるように、各元素を秤量し、それらの原料を溶解して、単ロール超急冷法によりリボンまたはフレーク状の合金を得た。得られたR1-M系合金の組成を表8に示す。なお、表8における各成分は、高周波誘導結合プラズマ発光分光分析法を使用して測定した。
[Step of preparing R1-M alloy]
No. in Table 8. Each element is weighed so as to obtain the composition of the R1-M alloy as shown in 3-A to 3-D, the raw materials are melted, and the ribbon or flake-shaped alloy is produced by the single roll super quenching method. Obtained. Table 8 shows the compositions of the obtained R1-M alloys. Each component in Table 8 was measured using high frequency inductively coupled plasma atomic emission spectrometry.

Figure 2023046258000009
Figure 2023046258000009

[拡散工程]
表7のNo.5のR-T-B系焼結磁石素材を切断、切削加工し,7.2mm角の立方体にした。加工後のR-T-B系磁石素材にディッピング法により粘着剤としてPVAをR-T-B系磁石素材の全面に塗布した。次に表9に示す作製条件で粘着剤を塗布したR-T-B系焼結磁石素材の全面にR1-M系合金を付着させた。なお、R1-M系合金付着量は、乳鉢を用いてR1-M系合金をアルゴン雰囲気中で粉砕した後、目開き45~1000μmの数種類の篩を通過させ、粒度の異なるR1-M系合金を用いることにより調整した。付着量は2mass%前後とした。そして、真空熱処理炉を用いて、100Paに制御した減圧アルゴン雰囲気中で、表9の拡散工程に示す条件でR1-M系合金およびR-T-B系焼結磁石素材を加熱した後、冷却した。
[Diffusion process]
The RTB based sintered magnet material of No. 5 in Table 7 was cut and machined into a 7.2 mm square cube. After processing, PVA as an adhesive was applied to the entire surface of the RTB magnet material by a dipping method. Next, under the manufacturing conditions shown in Table 9, the R1-M alloy was adhered to the entire surface of the RTB sintered magnet material coated with the adhesive. The amount of the R1-M alloy deposited was determined by pulverizing the R1-M alloy in an argon atmosphere using a mortar and passing it through several types of sieves with an opening of 45 to 1000 μm. was adjusted by using The adhesion amount was around 2 mass %. Then, using a vacuum heat treatment furnace, in a reduced pressure argon atmosphere controlled at 100 Pa, the R1-M alloy and RTB sintered magnet materials were heated under the conditions shown in the diffusion process in Table 9, and then cooled. bottom.

[熱処理を実施する工程]
前記拡散工程で加熱したR-T-B系焼結磁石素材に対し、真空熱処理炉を用いて100Paに制御した減圧アルゴン中にて500℃の加熱する熱処理を行った。熱処理後の各サンプルに対し表面研削盤を用いて、全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体形状のサンプル(R-T-B系焼結磁石)を得た。なお、拡散工程におけるR1-M系合金およびR-T-B系焼結磁石素材の加熱温度、ならびに、拡散工程後の熱処理を実施する工程におけるR-T-B系焼結磁石の加熱温度は、それぞれ熱電対を用いて測定した。
[Step of performing heat treatment]
The RTB based sintered magnet material heated in the diffusion step was subjected to heat treatment at 500° C. in reduced pressure argon controlled at 100 Pa using a vacuum heat treatment furnace. Using a surface grinder, the entire surface of each sample after heat treatment was cut to obtain a cubic sample (RTB sintered magnet) of 7.0 mm × 7.0 mm × 7.0 mm. . The heating temperature of the R1-M alloy and RTB sintered magnet material in the diffusion process, and the heating temperature of the RTB sintered magnet in the process of performing heat treatment after the diffusion process are , respectively, were measured using thermocouples.

Figure 2023046258000010
Figure 2023046258000010

[サンプル評価]
得られたサンプルを、B-Hトレーサによって残留磁束密度Bおよび保磁力HcJを測定した。結果を表9に示す。表9に示すように、Laが含有されていないR1―M系合金を用いた試料No.3-1(基準)に対して、本発明例は(No.3-2,3-3)Brの低下はなく、HcJの低下量も基準特性の4%未満であり、ほとんど磁気特性は低下していない。一方,R1中のLa含有濃度が過剰なR1―M系合金を用いた比較例(試料No.3-4)では,Brの低下はないが,HcJが大きく低下した。
[Sample evaluation]
The residual magnetic flux density B r and coercive force H cJ of the obtained sample were measured by a BH tracer. Table 9 shows the results. As shown in Table 9, sample no. Compared to 3-1 (reference), the present invention examples (No. 3-2, 3-3) have no decrease in Br , and the amount of decrease in H cJ is less than 4% of the reference characteristics, almost magnetic characteristics has not declined. On the other hand, in a comparative example (Sample No. 3-4) using an R1-M alloy with an excessive La concentration in R1, Br did not decrease, but HcJ decreased significantly.

実施例4
[R-T-B系焼結磁石素材を準備する工程]
実施例3と同様な方法でR―T―B系焼結磁石素材を準備した。なお、作製した焼結磁石の組成は表7と同じである。
Example 4
[Step of preparing RTB sintered magnet material]
An RTB based sintered magnet material was prepared in the same manner as in Example 3. The composition of the produced sintered magnet is the same as in Table 7.

[R1-M系合金を準備する工程]
表10のNo.4-A~4-Dに示すようなR1-M系合金の組成になるように、各元素を秤量し、それらの原料を溶解して、単ロール超急冷法によりリボンまたはフレーク状の合金を得た。得られたR1-M系合金の組成を表10に示す。なお、表10における各成分は、高周波誘導結合プラズマ発光分光分析法を使用して測定した。
[Step of preparing R1-M alloy]
No. in Table 10 Each element is weighed so that the composition of the R1-M alloy is as shown in 4-A to 4-D, the raw materials are melted, and a ribbon or flake-shaped alloy is formed by a single roll super quenching method. Obtained. Table 10 shows the composition of the obtained R1-M alloy. Each component in Table 10 was measured using high frequency inductively coupled plasma atomic emission spectrometry.

Figure 2023046258000011
Figure 2023046258000011

[拡散工程]
表7のNo.5のR-T-B系焼結磁石素材を切断、切削加工し、7.2mm角の立方体にした。加工後のR-T-B系磁石素材にディッピング法により粘着剤としてPVAをR-T-B系磁石素材の全面に塗布した。次に表11に示す作製条件で粘着剤を塗布したR-T-B系焼結磁石素材の全面にR1-M系合金を付着させた。なお、R1-M系合金付着量は、乳鉢を用いてR1-M系合金をアルゴン雰囲気中で粉砕した後、目開き45~1000μmの数種類の篩を通過させ、粒度の異なるR1-M系合金を用いることにより調整した。付着量は2mass%前後とした。そして、真空熱処理炉を用いて、100Paに制御した減圧アルゴン雰囲気中で、表11の拡散工程に示す条件でR1-M系合金およびR-T-B系焼結磁石素材を加熱した後、冷却した。
[Diffusion process]
The RTB based sintered magnet material of No. 5 in Table 7 was cut and machined into a 7.2 mm square cube. After processing, PVA as an adhesive was applied to the entire surface of the RTB magnet material by a dipping method. Next, under the manufacturing conditions shown in Table 11, the R1-M alloy was adhered to the entire surface of the RTB sintered magnet material coated with the adhesive. The amount of the R1-M alloy deposited was determined by pulverizing the R1-M alloy in an argon atmosphere using a mortar and passing it through several types of sieves with an opening of 45 to 1000 μm. was adjusted by using The adhesion amount was around 2 mass %. Then, using a vacuum heat treatment furnace, in a reduced pressure argon atmosphere controlled at 100 Pa, the R1-M alloy and RTB sintered magnet materials were heated under the conditions shown in the diffusion process in Table 11, and then cooled. bottom.

[熱処理を実施する工程]
前記拡散工程で加熱したR-T-B系焼結磁石素材に対し、真空熱処理炉を用いて100Paに制御した減圧アルゴン中にて500℃の加熱する熱処理を行った。熱処理後の各サンプルに対し表面研削盤を用いて、全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体形状のサンプル(R-T-B系焼結磁石)を得た。なお、拡散工程におけるR1-M系合金およびR-T-B系焼結磁石素材の加熱温度、ならびに、拡散工程後の熱処理を実施する工程におけるR-T-B系焼結磁石の加熱温度は、それぞれ熱電対を用いて測定した。
[Step of performing heat treatment]
The RTB based sintered magnet material heated in the diffusion step was subjected to heat treatment at 500° C. in reduced pressure argon controlled at 100 Pa using a vacuum heat treatment furnace. Using a surface grinder, the entire surface of each sample after heat treatment was cut to obtain a cubic sample (RTB sintered magnet) of 7.0 mm × 7.0 mm × 7.0 mm. . The heating temperature of the R1-M alloy and RTB sintered magnet material in the diffusion process, and the heating temperature of the RTB sintered magnet in the process of performing heat treatment after the diffusion process are , respectively, were measured using thermocouples.

[サンプル評価]
得られたサンプルを、B-Hトレーサによって残留磁束密度Bおよび保磁力HcJを室温,150℃、180℃条件下で測定した。磁気測定の結果を表11に,BrおよびHcJの各温度係数を算出した結果を表12にそれぞれ示す。
[Sample evaluation]
The residual magnetic flux density B r and the coercive force H cJ of the obtained sample were measured under room temperature, 150° C. and 180° C. conditions using a BH tracer. Table 11 shows the magnetic measurement results, and Table 12 shows the calculated temperature coefficients of Br and HcJ .

Figure 2023046258000012
Figure 2023046258000012

Figure 2023046258000013
Figure 2023046258000013

表11に示すように、Laが含有されていないR1―M系合金を用いた試料No.4-1(基準)に対して、本発明例(No.4-2,4-3)ではBrの低下はなく、HcJの低下量も基準の4%未満であり、ほとんど磁気特性は低下していない。一方、R1中のLa含有濃度が過剰なR1―M系合金を用いた比較例(試料No.4-4)では、Brの低下はないがHcJが大きく低下した。また、Ceを添加したR1-M系合金を拡散処理した試料No.4-5、4-6については基準(試料No.4-1)に対してHcJが4%以上低下していた。また、表11ならびに表12に示すように、150℃および180℃温度下での磁気特性では,基準(試料No.4-1)に対して本実施例の試料No.4-2、4-3ではBrおよびHcJともに大きな磁気特性の低下はない。Brの温度係数αおよびHcJの温度係数βは4-2は基準よりすぐれおり、4-3は基準値と同程度であった。一方
、R1―M中La濃度が過剰な試料No.4-4では温度係数α・βは基準よりも高い値を示しているが,150℃および180℃においてHcJの値が大きく低下していた。また,Ceを添加したR1-M系合金を用いた試料No.4-5、4-6では150℃,180℃でのHcJが大きく低下しているとともに、温度係数α・βも低下していた。
As shown in Table 11, sample No. using R1-M alloy containing no La. Compared to 4-1 (reference), the present invention examples (No. 4-2 and 4-3) show no decrease in Br , and the amount of decrease in H cJ is less than 4% of the reference. not decreased. On the other hand, in a comparative example (Sample No. 4-4) using an R1-M alloy with an excessive La concentration in R1, Br did not decrease, but HcJ greatly decreased. Also, sample No. 1 was obtained by diffusion-treating an R1-M alloy to which Ce was added. As for 4-5 and 4-6, H cJ decreased by 4% or more compared to the standard (Sample No. 4-1). Further, as shown in Tables 11 and 12, the magnetic properties at temperatures of 150° C. and 180° C. show that sample No. 4-1 of this example is superior to the standard (sample No. 4-1). In 4-2 and 4-3, there is no significant decrease in magnetic properties for both B r and H cJ . The temperature coefficient α of B r and the temperature coefficient β of H cJ were superior to the standard in 4-2 and comparable to the standard in 4-3. On the other hand, sample No. with excessive La concentration in R1-M. In 4-4, the temperature coefficients α and β showed higher values than the standard, but the values of HcJ were greatly reduced at 150°C and 180°C. In addition, in samples No. 4-5 and 4-6 using the R1-M alloy with Ce added, H cJ at 150 ° C. and 180 ° C. decreased significantly, and the temperature coefficients α and β also decreased. was

Claims (5)

R-T-B系焼結磁石素材(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、必ずFeを含む)を準備する工程と、
R1-M系合金(R1はRHとRLからなり、RHはTbおよびDyの少なくとも一方であり、RLは、RH以外の希土類元素であり、NdおよびPrの少なくとも一方と、Laを必ず含み、MはAl、Cu、Zn、Ga、Fe、Co、Niからなる群から選択された少なくとも1つを必ず含む)を準備する工程と、
前記R-T-B系焼結磁石素材と前記R1-M系合金を真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱し、R1およびMをR-T-B系焼結磁石素材内部に拡散させる拡散工程と、を含み、
前記R1-M系合金における、R1の含有量はR1-M系合金全体の70mass%以上95mass%以下であり、R1中のLaの含有割合は5%以上50%未満であり、Mの含有量はR1-M系合金全体の5mass%以上30mass%以下である、
R-T-B系焼結磁石の製造方法。
RTB based sintered magnet material (R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, T is Fe, Co, Al, Mn and Si at least one selected from the group consisting of and necessarily containing Fe);
R1-M alloy (R1 consists of RH and RL, RH is at least one of Tb and Dy, RL is a rare earth element other than RH, and always contains at least one of Nd and Pr and La, M necessarily includes at least one selected from the group consisting of Al, Cu, Zn, Ga, Fe, Co, Ni);
The RTB sintered magnet material and the R1-M alloy are heated in a vacuum or inert gas atmosphere at a temperature of 700° C. or more and 1100° C. or less, and R1 and M are RTB sintered. a diffusion step of diffusing into the magnet material,
In the R1-M alloy, the content of R1 is 70 mass% or more and 95 mass% or less of the entire R1-M alloy, the content of La in R1 is 5% or more and less than 50%, and the content of M is 5 mass% or more and 30 mass% or less of the entire R1-M alloy,
A method for producing an RTB-based sintered magnet.
前記R1-M系合金における、R1中のLaの含有割合は5%以上15%以下である、
請求項1に記載のR-T-B系焼結磁石の製造方法。
The content of La in R1 in the R1-M alloy is 5% or more and 15% or less,
The method for producing an RTB based sintered magnet according to claim 1.
前記R1-M系合金における、R1中のRHの含有割合は5%以上20%以下であり、R1中のNdおよびPrの少なくとも一方の合計含有割合は25%以上%90%以下である、請求項1に記載のR-T-B系焼結磁石の製造方法。 In the R1-M alloy, the content of RH in R1 is 5% or more and 20% or less, and the total content of at least one of Nd and Pr in R1 is 25% or more and 90% or less. Item 1. A method for producing an RTB based sintered magnet according to item 1. 前記R1-M系合金のMは、CuおよびGaの少なくとも一方を必ず含み、前記M中のCuおよびGaの合計含有割合は80%以上である、請求項1または2に記載のR-T-B系焼結磁石の製造方法。 M of the R1-M alloy must contain at least one of Cu and Ga, and the total content of Cu and Ga in M is 80% or more, RT- according to claim 1 or 2 A method for producing a B-based sintered magnet. 前記R1-M系合金のR1は、Prを必ず含み、前記R1中のPrの含有割合は25%以上90%以下である、請求項1から3のいずれか一項に記載のR-T-B系焼結磁石の製造方法。 R1 of the R1-M alloy must contain Pr, and the content of Pr in R1 is 25% or more and 90% or less, RT- according to any one of claims 1 to 3 A method for producing a B-based sintered magnet.
JP2022126714A 2021-09-22 2022-08-08 Method for manufacturing r-t-b based sintered magnet Pending JP2023046258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211156101.9A CN115881414A (en) 2021-09-22 2022-09-22 Method for producing R-T-B sintered magnet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021154555 2021-09-22
JP2021154555 2021-09-22
JP2022043000 2022-03-17
JP2022043000 2022-03-17

Publications (1)

Publication Number Publication Date
JP2023046258A true JP2023046258A (en) 2023-04-03

Family

ID=85776594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022126714A Pending JP2023046258A (en) 2021-09-22 2022-08-08 Method for manufacturing r-t-b based sintered magnet

Country Status (1)

Country Link
JP (1) JP2023046258A (en)

Similar Documents

Publication Publication Date Title
JP6361813B2 (en) Method for producing RTB-based sintered magnet
JP6414653B1 (en) Method for producing RTB-based sintered magnet
WO2018034264A1 (en) R-t-b sintered magnet
JP6414654B1 (en) Method for producing RTB-based sintered magnet
WO2017018291A1 (en) Method for producing r-t-b system sintered magnet
CN109671547B (en) R-T-B sintered magnet and method for producing same
JP6624455B2 (en) Method for producing RTB based sintered magnet
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP2023052675A (en) R-t-b system based sintered magnet
JP2023045934A (en) Method for manufacturing r-t-b based sintered magnet
JP7310499B2 (en) Method for producing RTB based sintered magnet
JP7059995B2 (en) RTB-based sintered magnet
JP2023046258A (en) Method for manufacturing r-t-b based sintered magnet
CN111489874A (en) Method for producing R-T-B sintered magnet
JP2023138369A (en) Manufacturing method of r-t-b-based sintered magnet
JP7452159B2 (en) Manufacturing method of RTB based sintered magnet
JP2020107888A (en) Method for manufacturing r-t-b based sintered magnet
JP6610957B2 (en) Method for producing RTB-based sintered magnet
CN115881414A (en) Method for producing R-T-B sintered magnet
JP7380369B2 (en) Manufacturing method of RTB sintered magnet and alloy for diffusion
JP7447606B2 (en) RTB system sintered magnet
CN111489888B (en) Method for producing R-T-B sintered magnet
JP7476601B2 (en) Manufacturing method of RTB based sintered magnet
JP2022147793A (en) Production method of r-t-b based sintered magnet
JP2023139581A (en) Manufacturing method of r-t-b sintered magnet and composition determination method