JP7452159B2 - Manufacturing method of RTB based sintered magnet - Google Patents
Manufacturing method of RTB based sintered magnet Download PDFInfo
- Publication number
- JP7452159B2 JP7452159B2 JP2020053406A JP2020053406A JP7452159B2 JP 7452159 B2 JP7452159 B2 JP 7452159B2 JP 2020053406 A JP2020053406 A JP 2020053406A JP 2020053406 A JP2020053406 A JP 2020053406A JP 7452159 B2 JP7452159 B2 JP 7452159B2
- Authority
- JP
- Japan
- Prior art keywords
- rtb
- sintered magnet
- mass
- alloy
- based sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000000956 alloy Substances 0.000 claims description 93
- 229910045601 alloy Inorganic materials 0.000 claims description 93
- 239000000463 material Substances 0.000 claims description 78
- 238000000034 method Methods 0.000 claims description 39
- 238000009792 diffusion process Methods 0.000 claims description 37
- 239000002245 particle Substances 0.000 claims description 29
- 238000010438 heat treatment Methods 0.000 claims description 28
- 239000000843 powder Substances 0.000 claims description 26
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 19
- 229910052742 iron Inorganic materials 0.000 claims description 10
- 229910052779 Neodymium Inorganic materials 0.000 claims description 8
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 229910052684 Cerium Inorganic materials 0.000 claims description 5
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 5
- 229910052771 Terbium Inorganic materials 0.000 claims description 5
- 239000012298 atmosphere Substances 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910052689 Holmium Inorganic materials 0.000 claims description 3
- 239000012071 phase Substances 0.000 description 31
- 230000005291 magnetic effect Effects 0.000 description 18
- 150000001875 compounds Chemical class 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 230000007423 decrease Effects 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000000314 lubricant Substances 0.000 description 7
- 230000005415 magnetization Effects 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 238000005245 sintering Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- 239000012300 argon atmosphere Substances 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000001636 atomic emission spectroscopy Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009690 centrifugal atomisation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0293—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
本発明はR-T-B系焼結磁石の製造方法に関する。 The present invention relates to a method for manufacturing an RTB sintered magnet.
R-T-B系焼結磁石(Rは希土類元素のうち少なくとも一種であり、Tは主にFeであり、Bは硼素である)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。 RTB system sintered magnets (R is at least one rare earth element, T is mainly Fe, and B is boron) are known as the highest performance permanent magnets. They are used in various motors such as voice coil motors (VCMs) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances.
R-T-B系焼結磁石は、主としてR2T14B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。主相であるR2T14B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料であり、R-T-B系焼結磁石の特性の根幹をなしている。 The RTB-based sintered magnet is composed of a main phase mainly composed of an R 2 T 14 B compound and a grain boundary phase located at the grain boundaries of this main phase. The R 2 T 14 B compound, which is the main phase, is a ferromagnetic material with high saturation magnetization and anisotropic magnetic field, and is the basis of the characteristics of RTB-based sintered magnets.
R-T-B系焼結磁石は、高温で保磁力HcJ(以下、単に「HcJ」という)が低下するため不可逆熱減磁が起こるという問題がある。そのため、特に電気自動車用モータに使用されるR-T-B系焼結磁石では、高温下でも高いHcJを有する、すなわち室温においてより高いHcJを有することが要求されている。 RTB-based sintered magnets have a problem in that irreversible thermal demagnetization occurs because the coercive force H cJ (hereinafter simply referred to as "H cJ ") decreases at high temperatures. Therefore, RTB-based sintered magnets used particularly in electric vehicle motors are required to have high H cJ even at high temperatures, that is, to have higher H cJ at room temperature.
R2T14B型化合物相中の軽希土類元素(主にNd、Pr)を重希土類元素(主にDy、Tb)で置換すると、HcJが向上することが知られている。しかし、HcJが向上する一方、R2T14B型化合物相の飽和磁化が低下するために残留磁束密度Br(以下、単に「Br」という)が低下してしまうという問題がある。 It is known that H cJ is improved when light rare earth elements (mainly Nd and Pr) in the R 2 T 14 B-type compound phase are replaced with heavy rare earth elements (mainly Dy and Tb). However, while H cJ is improved, there is a problem in that the saturation magnetization of the R 2 T 14 B-type compound phase is reduced, so that the residual magnetic flux density B r (hereinafter simply referred to as "B r ") is reduced.
特許文献1には、R-T-B系合金の焼結磁石の表面にDy等の重希土類元素を供給しつつ、重希土類元素RHを焼結磁石の内部に拡散させることが記載されている。特許文献1に記載の方法は、R-T-B系焼結磁石の表面から内部にDyを拡散させてHcJ向上に効果的な主相結晶粒の外殻部にのみDyを濃化させることにより、RHの使用量を低減し、さらにBrの低下を抑制しつつ、高いHcJを得ることができる。 Patent Document 1 describes that while supplying a heavy rare earth element such as Dy to the surface of a sintered magnet made of an RTB alloy, the heavy rare earth element RH is diffused into the inside of the sintered magnet. . The method described in Patent Document 1 diffuses Dy from the surface of the RTB-based sintered magnet into the interior, and concentrates Dy only in the outer shell of the main phase crystal grains, which is effective for improving H cJ . By doing so, it is possible to obtain a high H cJ while reducing the amount of RH used and further suppressing a decrease in B r .
特許文献2には、R-T-B系焼結体の表面に特定組成のR-Ga-Cu合金を接触させて熱処理を行うことにより、R-T-B系焼結磁石中の粒界相の組成および厚さを制御してHcJを向上させることが記載されている。
Patent Document 2 discloses that the grain boundaries in the RTB sintered magnet are Controlling phase composition and thickness to improve H cJ has been described.
しかし、近年特に電気自動車用モータなどにおいて高価な重希土類元素の使用量を低減しつつ、更に高いBrと高いHcJを得ることが求められている。 However, in recent years, there has been a demand for obtaining higher Br and higher H cJ while reducing the amount of expensive heavy rare earth elements used, particularly in motors for electric vehicles.
本開示の様々な実施形態は、重希土類元素の使用量を低減しつつ、高いBrと高いHcJを有するR-T-B系焼結磁石の製造方法を提供する。 Various embodiments of the present disclosure provide methods for manufacturing RTB-based sintered magnets with high B r and high H cJ while reducing the usage of heavy rare earth elements.
本開示のR-T-B系焼結磁石の製造方法は、例示的な実施形態において、粒径D50が2.0μm~3.5μmの微粉末から焼結体を作製してR-T-B系焼結磁石素材(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含む。)を準備する工程と、RL-RH-M系合金(RLは軽希土類元素のうちの少なくとも1つであり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、RHは、Tb、DyおよびHoからなる群から選択された少なくとも1つであり、Mは、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1つである)を準備する工程と、前記R-T-B系焼結磁石素材の表面の少なくとも一部に、前記RL-RH-M系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程と、を含み、前記R-T-B系焼結磁石素材において、Rの含有量は、R-T-B系焼結磁石素材全体の27mass%以上35mass%以下であり、T全体に対するFeの含有量が80mass%以上であり、前記RL-RH-M系合金において、RLの含有量は、RL-RH-M系合金全体の57mass%以上82mass%以下であり、RHの含有量は、RL-RH-M系合金全体の13mass%以上23mass%以下であり、Mの含有量は、RL-RH-M系合金全体の5mass%以上20mass%以下であり、前記拡散工程における前記R-T-B系焼結磁石素材への前記RL-RH-M系合金の付着量は1mass%以上2.5mass%以下である。 In an exemplary embodiment, the method for producing an RTB-based sintered magnet of the present disclosure includes producing a sintered body from fine powder having a particle size D50 of 2.0 μm to 3.5 μm, and - B-based sintered magnet material (R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr, and Ce, and T is selected from the group consisting of Fe, Co, Al, Mn, and Si) a step of preparing an RL-RH-M alloy (RL is at least one of the light rare earth elements, T always includes Fe, and T always includes Fe); RH is at least one selected from the group consisting of Tb, Dy and Ho, and M is Cu, Ga, Fe, Co, Ni, and Al. and at least a portion of the RL-RH-M alloy on at least a portion of the surface of the RTB sintered magnet material. In the RTB-based sintered magnet material, the content of R is - The content of RL is 27 mass% or more and 35 mass% or less of the entire T-B series sintered magnet material, the content of Fe is 80 mass% or more with respect to the whole T, and the content of RL in the RL-RH-M alloy is: The content of RH is 57 mass% to 82 mass% of the entire RL-RH-M alloy, the content of RH is 13 mass% to 23 mass% of the entire RL-RH-M alloy, and the content of M is RL- 2. The amount of the RL-RH-M alloy attached to the RTB sintered magnet material in the diffusion step is 1 mass% or more and 2. It is 5 mass% or less.
ある実施形態において、前記拡散工程における前記R-T-B系焼結磁石素材への前記RL-RH-M系合金の付着量は1.5mass%以上2.5mass%以下である。 In one embodiment, the amount of the RL-RH-M alloy attached to the RTB sintered magnet material in the diffusion step is 1.5 mass% or more and 2.5 mass% or less.
本開示の実施形態によれば、重希土類元素の使用量を低減しつつ、高いBrと高いHcJを有するR-T-B系焼結磁石の製造方法を提供することができる。 According to embodiments of the present disclosure, it is possible to provide a method for manufacturing an RTB-based sintered magnet having high Br and high H cJ while reducing the amount of heavy rare earth elements used.
まず、本開示によるR-T-B系焼結磁石の基本構造について説明をする。R-T-B系焼結磁石は、原料合金の粉末粒子が焼結によって結合した構造を有しており、主としてR2T14B化合物粒子からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。 First, the basic structure of the RTB-based sintered magnet according to the present disclosure will be explained. RTB-based sintered magnets have a structure in which powder particles of a raw material alloy are bonded together by sintering, and consist of a main phase consisting mainly of R 2 T 14 B compound particles and a grain boundary portion of this main phase. It consists of a grain boundary phase located at
図1Aは、R-T-B系焼結磁石の一部を拡大して模式的に示す断面図であり、図1Bは図1Aの破線矩形領域内を更に拡大して模式的に示す断面図である。図1Aには、一例として長さ5μmの矢印が大きさを示す基準の長さとして参考のために記載されている。図1Aおよび図1Bに示されるように、R-T-B系焼結磁石は、主としてR2T14B化合物からなる主相12と、主相12の粒界部分に位置する粒界相14とから構成されている。また、粒界相14は、図1Bに示されるように、2つのR2T14B化合物粒子(グレイン)が隣接する二粒子粒界相14aと、3つのR2T14B化合物粒子が隣接する粒界三重点14bとを含む。典型的な主相結晶粒径は磁石断面の円相当径の平均値で3μm以上10μm以下である。主相12であるR2T14B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料である。したがって、R-T-B系焼結磁石では、主相12であるR2T14B化合物の存在比率を高めることによってBrを向上させることができる。R2T14B化合物の存在比率を高めるためには、原料合金中のR量、T量、B量を、R2T14B化合物の化学量論比(R量:T量:B量=2:14:1)に近づければよい。
また、主相であるR2T14B化合物のRの一部をDy、Tb、Hoなどの重希土類元素で置換することによって飽和磁化を下げつつ、主相の異方性磁界を高められることが知られている。特に二粒子粒界相と接する主相外殻は磁化反転の起点となりやすいため、主相外殻に優先的に重希土類元素を置換できる重希土類拡散技術は、飽和磁化の低下を抑制しつつ効率的に高いHcJが得られる。
一方、二粒子粒界相14aの磁性を制御することによっても、高いHcJが得られることが知られている。具体的には二粒子粒界相中の磁性元素(Fe、Co、Ni等)の濃度を下げることによって、二粒子粒界相を非磁性に近づけることで、主相同士の磁気的な結合を弱めて磁化反転を抑制することができる。
FIG. 1A is an enlarged schematic cross-sectional view of a part of the RTB-based sintered magnet, and FIG. 1B is a further enlarged schematic cross-sectional view of the rectangular area indicated by the broken line in FIG. 1A. It is. In FIG. 1A, as an example, an arrow having a length of 5 μm is shown as a standard length indicating the size for reference. As shown in FIGS. 1A and 1B, the RTB-based sintered magnet has a
In addition, by substituting a part of R in the R 2 T 14 B compound, which is the main phase, with a heavy rare earth element such as Dy, Tb, or Ho, the anisotropic magnetic field of the main phase can be increased while lowering the saturation magnetization. It has been known. In particular, the main phase outer shell in contact with the two-grain grain boundary phase is likely to become the starting point of magnetization reversal, so heavy rare earth diffusion technology that can preferentially replace heavy rare earth elements in the main phase outer shell is efficient while suppressing the drop in saturation magnetization. A relatively high H cJ can be obtained.
On the other hand, it is known that high H cJ can also be obtained by controlling the magnetism of the two-
本開示によるR-T-B系焼結磁石の製造方法では、R-T-B系焼結磁石素材表面から粒界を通じて磁石素材内部へ、RL-RH-M系合金に含有されるRHと共に、RLおよびMを拡散させている。本発明者らによる検討の結果、粒径D50が2.0μm~3.5μmの範囲にある微粉末の焼結体を作製して準備したR-T-B系焼結磁石素材に対して、RL-RH-M系合金の付着量及びRH濃度を狭い特定の範囲にして拡散処理を行うことで高価なRHを削減しつつ、高いBrと高いHcJを得ることができることを見出した。 In the method for manufacturing an RTB-based sintered magnet according to the present disclosure, from the surface of the RTB-based sintered magnet material through the grain boundaries to the inside of the magnet material, together with RH contained in the RL-RH-M-based alloy. , RL and M are spread. As a result of studies by the present inventors, it was found that for RTB-based sintered magnet materials prepared by producing fine powder sintered bodies with a particle size D50 in the range of 2.0 μm to 3.5 μm, It was discovered that high B r and high H cJ can be obtained while reducing expensive RH by performing diffusion treatment with the amount of RL-RH-M alloy deposited and the RH concentration in a narrow specific range. .
本開示によるR-T-B系焼結磁石の製造方法は、図2に示すように、R-T-B系焼結磁石素材を準備する工程S10とRL-RH-M系合金を準備する工程S20とを含む。R-T-B系焼結磁石素材を準備する工程S10とRL-RH-M合金を準備する工程S20との順序は任意である。
本開示によるR-T-B系焼結磁石の製造方法は、図2に示すように、更に、R-T-B系焼結磁石素材表面の少なくとも一部にRL-RH-M系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程S30を含む。前記拡散工程S30における前記R-T-B系焼結磁石素材への前記RL-RH-M系合金の付着量は1mass%以上2.5mass%以下である。
As shown in FIG. 2, the method for manufacturing an RTB-based sintered magnet according to the present disclosure includes step S10 of preparing an RTB-based sintered magnet material and preparing an RL-RH-M-based alloy. and step S20. The order of step S10 of preparing the RTB-based sintered magnet material and step S20 of preparing the RL-RH-M alloy is arbitrary.
As shown in FIG. 2, the method for manufacturing an RTB-based sintered magnet according to the present disclosure further includes the addition of an RL-RH-M-based alloy on at least a portion of the surface of the RTB-based sintered magnet material. It includes a diffusion step S30 in which at least a portion is attached and heated at a temperature of 700° C. or more and 1100° C. or less in a vacuum or an inert gas atmosphere. The amount of the RL-RH-M alloy attached to the RTB sintered magnet material in the diffusion step S30 is 1 mass% or more and 2.5 mass% or less.
なお、本開示において、拡散工程前および拡散工程中のR-T-B系焼結磁石を「R-T-B系焼結磁石素材」と称し、拡散工程後のR-T-B系焼結磁石を単に「R-T-B系焼結磁石」と称する。 In this disclosure, the RTB-based sintered magnet before and during the diffusion process is referred to as "RTB-based sintered magnet material," and the RTB-based sintered magnet after the diffusion process is referred to as "RTB-based sintered magnet material." The sintered magnet is simply referred to as an "RTB sintered magnet."
(R-T-B系焼結磁石素材を準備する工程)
R-T-B系焼結磁石素材において、Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、Rの含有量は、R-T-B系焼結磁石素材全体の27mass%以上35mass%以下である。TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含み、T全体に対するFeの含有量が80mass%以上である。
Rが27mass%未満では焼結過程で液相が十分に生成せず、焼結体を充分に緻密化することが困難になる可能性がある。一方、Rが35mass%を超えると焼結時に粒成長が起こり、HcJが低下する可能性がある。Rは28mass%以上33mass%以下であることが好ましい。
(Process of preparing RTB-based sintered magnet material)
In the RTB system sintered magnet material, R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr, and Ce, and the content of R is the same as that of the RTB system. It is 27 mass% or more and 35 mass% or less of the entire sintered magnet material. T is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, T always contains Fe, and the content of Fe with respect to the entire T is 80 mass% or more.
If R is less than 27 mass%, a liquid phase will not be sufficiently generated during the sintering process, and it may be difficult to sufficiently densify the sintered body. On the other hand, if R exceeds 35 mass%, grain growth may occur during sintering and H cJ may decrease. It is preferable that R is 28 mass% or more and 33 mass% or less.
R-T-B系焼結磁石素材は例えば、以下の組成範囲を有する。
R:27~35mass%、
B:0.80~1.20mass%、
Ga:0~1.0mass%、
X:0~2mass%(XはCu、Nb、Zrの少なくとも一種)、
T:60mass%以上を含有する。
For example, the RTB-based sintered magnet material has the following composition range.
R: 27-35 mass%,
B: 0.80 to 1.20 mass%,
Ga: 0 to 1.0 mass%,
X: 0 to 2 mass% (X is at least one of Cu, Nb, and Zr),
T: Contains 60 mass% or more.
好ましくは、R-T-B系焼結磁石素材において、Bに対するTのmol比[T]/[B]が14.0超15.0以下である。より高いHcJを得ることができる。本開示における[T]/[B]とは、Tを構成する各元素(Fe、Co、Al、MnおよびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含み、T全体に対するFeの含有量が80mass%以上)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの[T]と、Bの分析値(mass%)をBの原子量で除したもの[B]との比である。mol比[T]/[B]が14.0を超えるという条件は、主相(R2T14B化合物)形成に使われるT量に対して相対的にB量が少ないことを示している。mol比[T]/[B]は14.3以上15.0以下であることがさらに好ましい。さらに高いHcJを得ることができる。Bの含有量はR-T-B系焼結体全体の0.9mass%以上1.0mass%未満が好ましい。 Preferably, in the RTB-based sintered magnet material, the molar ratio of T to B [T]/[B] is more than 14.0 and less than or equal to 15.0. Higher H cJ can be obtained. [T]/[B] in the present disclosure refers to each element constituting T (at least one selected from the group consisting of Fe, Co, Al, Mn, and Si; T always includes Fe; Calculate the analytical value (mass%) of the total Fe content (80 mass% or more) divided by the atomic weight of each element, and the sum of these values [T] and the analytical value of B (mass% ) divided by the atomic weight of B [B]. The condition that the molar ratio [T]/[B] exceeds 14.0 indicates that the amount of B is small relative to the amount of T used to form the main phase (R 2 T 14 B compound). . It is more preferable that the molar ratio [T]/[B] is 14.3 or more and 15.0 or less. Even higher H cJ can be obtained. The content of B is preferably 0.9 mass% or more and less than 1.0 mass% of the entire RTB-based sintered body.
R-T-B系焼結磁石素材は、Nd-Fe-B系焼結磁石に代表される一般的なR-T-B系焼結磁石の製造方法を用いて準備することができる。一例を挙げると、ストリップキャスト法等で作製された原料合金を、ジェットミルなどを用いて粒径D50が2.0μm以上3.5μm以下に粉砕した後、磁界中で成形し、900℃以上1100℃以下の温度で焼結することにより焼結体を作製して準備することができる。粒径D50が2.0μm未満であると、生産性が大幅に悪化する可能性があり、3.5μmを超えると、本開示の拡散工程を行っても所望の効果を得ることができない可能性がある。これは、粉末の粒径が焼結体の結晶粒径に反映され、それが拡散にも影響するからだと考えられる。好ましくは、粒径D50は、2.5μm以上3.3μm以下である。生産性の悪化を抑制した上で貴重なRHを削減しつつ、より高いBrと高いHcJを得ることができる。なお、前記D50は、気流分散法によるレーザー回折法で得られる粒度分布において、小径側からの積算粒度分布(体積基準)が50%になる粒径である。また、D50は、例えば、Sympatec社製の粒度分布計測装置「HELOS&RODOS」を用いて、分散圧:4bar、測定レンジ:R2、計測モード:HRLDの条件にて測定することができる。 The RTB-based sintered magnet material can be prepared using a common manufacturing method for RTB-based sintered magnets, typified by Nd-Fe-B-based sintered magnets. For example, a raw material alloy produced by a strip casting method or the like is pulverized using a jet mill or the like to a particle size D50 of 2.0 μm or more and 3.5 μm or less, and then molded in a magnetic field at a temperature of 900°C or more. A sintered body can be prepared by sintering at a temperature of 1100° C. or lower. If the particle size D50 is less than 2.0 μm, productivity may deteriorate significantly, and if it exceeds 3.5 μm, the desired effect may not be obtained even if the diffusion process of the present disclosure is performed. There is sex. This is thought to be because the particle size of the powder is reflected in the crystal grain size of the sintered body, which also affects diffusion. Preferably, the particle size D 50 is 2.5 μm or more and 3.3 μm or less. Higher Br and higher H cJ can be obtained while suppressing deterioration in productivity and reducing valuable RH. The above D50 is a particle size at which the cumulative particle size distribution (volume basis) from the small diameter side is 50% in the particle size distribution obtained by laser diffraction using an air flow dispersion method. Further, D50 can be measured, for example, using a particle size distribution measuring device "HELOS &RODOS" manufactured by Sympatec under the conditions of dispersion pressure: 4 bar, measurement range: R2, and measurement mode: HRLD.
(RL-RH-M系合金を準備する工程)
前記RL-RH-M系合金において、RLは軽希土類元素のうちの少なくとも1つであり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、RLの含有量は、RL-RH-M系合金全体の57mass%以上82mass%以下である。軽希土類元素は、La、Ce、Pr、Nd、Pm、Sm、Euなどが挙げられる。RHは、Tb、DyおよびHoからなる群から選択された少なくとも1つであり、RHの含有量は、RL-RH-M系合金全体の13mass%以上23mass%以下である。Mは、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1つであり、Mの含有量は、RL-RH-M系合金全体の5mass%以上20mass%以下である。RL-RH-M系合金の典型例は、TbNdPrCu合金、TbNdCePrCu合金、TbNdGa合金、TbNdPrGaCu合金などである。
(Step of preparing RL-RH-M alloy)
In the RL-RH-M alloy, RL is at least one light rare earth element, and always includes at least one selected from the group consisting of Nd, Pr, and Ce, and the content of RL is It is 57 mass% or more and 82 mass% or less of the entire -RH-M alloy. Examples of light rare earth elements include La, Ce, Pr, Nd, Pm, Sm, and Eu. RH is at least one selected from the group consisting of Tb, Dy, and Ho, and the content of RH is 13 mass% or more and 23 mass% or less of the entire RL-RH-M alloy. M is at least one selected from the group consisting of Cu, Ga, Fe, Co, Ni, and Al, and the content of M is 5 mass% or more and 20 mass% or less of the entire RL-RH-M alloy. be. Typical examples of RL-RH-M alloys include TbNdPrCu alloy, TbNdCePrCu alloy, TbNdGa alloy, and TbNdPrGaCu alloy.
RLが57mass%未満であると、RHおよびMがR-T-B系焼結磁石素材内部に導入されにくくなり、HcJが低下する可能性があり、82mass%を超えるとRL-RH-M系合金の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じる可能性がある。好ましくは、RLの含有量はRL-RH-M系合金全体の70mass%以上80mass%以下である。より高いHcJを得ることができる。 If RL is less than 57 mass%, RH and M will be difficult to introduce into the RTB sintered magnet material, and H cJ may decrease; if RL exceeds 82 mass%, RL-RH-M During the manufacturing process of alloy-based alloys, the alloy powder becomes very active. As a result, significant oxidation or ignition of the alloy powder may occur. Preferably, the content of RL is 70 mass% or more and 80 mass% or less of the entire RL-RH-M alloy. Higher H cJ can be obtained.
RHが13mass%未満であると、RHによる高いHcJ向上効果が得られない可能性があり、23mass%を超えるとRLおよびMによるHcJ向上効果が低下する可能性があるため、重希土類元素の使用量を低減しつつ、高いBrと高いHcJを有するR-T-B系焼結磁石を得ることができない可能性がある。好ましくは、RHの含有量は、RL-RH-M系合金全体の13mass%以上20mass%以下である。より高いBrと高いHcJを得ることができる。 If RH is less than 13 mass%, a high H cJ improving effect by RH may not be obtained, and if it exceeds 23 mass%, the H cJ improving effect by RL and M may be reduced. It may not be possible to obtain an RTB-based sintered magnet having high B r and high H cJ while reducing the amount used. Preferably, the content of RH is 13 mass% or more and 20 mass% or less of the entire RL-RH-M alloy. Higher B r and higher H cJ can be obtained.
Mが5mass%未満であるとRLおよびRHが二粒子粒界相に導入されにくくなり、HcJが十分に向上しない可能性があり、20mass%を超えるとRLおよびRHの含有量が低下しHcJが十分に向上しない可能性がある。好ましくは、Mの含有量は、RL-RH-M系合金全体の7mass%以上15mass%以下である。より高いHcJを得ることができる。また、MはGaを含有した方が好ましく、さらにCuを含有した方が好ましく、より高いHcJを得ることができる。 If M is less than 5 mass%, it will be difficult for RL and RH to be introduced into the two-grain boundary phase, and H cJ may not be sufficiently improved. If M is more than 20 mass%, the content of RL and RH will decrease and H cJ may not be improved sufficiently. Preferably, the content of M is 7 mass% or more and 15 mass% or less of the entire RL-RH-M alloy. Higher H cJ can be obtained. Furthermore, M preferably contains Ga, and further preferably contains Cu, and higher H cJ can be obtained.
RL-RH-M系合金の作製方法は、特に限定されない。ロール急冷法によって作製してもよいし、鋳造法で作製してもよい。また、これらの合金を粉砕して合金粉末にしてもよい。遠心アトマイズ法、回転電極法、ガスアトマイズ法、プラズマアトマイズ法などの公知のアトマイズ法で作製してもよい。 The method for producing the RL-RH-M alloy is not particularly limited. It may be produced by a roll quenching method or by a casting method. Alternatively, these alloys may be ground into alloy powder. It may be produced by a known atomization method such as a centrifugal atomization method, a rotating electrode method, a gas atomization method, or a plasma atomization method.
(拡散工程)
前記によって準備したR-T-B系焼結磁石素材の表面の少なくとも一部に、準備したRL-RH-M系合金の少なくとも一部を付着させ、真空(非酸化性雰囲気)又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程を行う。これにより、RL-RH-M合金からRL、RHおよびMを含む液相が生成し、その液相がR-T-B系焼結磁石素材中の粒界を経由して焼結素材表面から内部に拡散導入される。拡散工程におけるR-T-B系焼結磁石素材へのRL-RH-M系合金の付着量を1mass%以上2.5mass%以下にする。これにより、高いHcJ向上効果を得ることができる。R-T-B系焼結磁石素材へのRL-RH-M系合金の付着量が1mass%未満であると、磁石素材内部へのRHおよびRLおよびMの導入量が少なすぎて高いHcJを得ることができない可能性があり、2.5mass%を超えると、Brが低下する可能性がある。好ましくは、R-T-B系焼結磁石素材へのRL-RH-M系合金の付着量は1.5mass%以上2.2mass%以下である。より高いHcJを得ることができる。また、RL-RH-M系合金によるR-T-B系焼結磁石素材へのRHの付着量を0.1mass%以上0.4mass%以下が好ましい。この範囲にすることにより、より確実に重希土類元素の使用量を低減しつつ、高いHcJを有するR-T-B系焼結磁石を得ることができる。なお、RHの付着量は、R-T-B系焼結磁石素材に付着しているRHの量であり、RL-RH-M系合金におけるRH濃度とRL-RH-M系合金のR-T-B系焼結磁石素材の付着量から算出することができる。RH付着量は、R-T-B系焼結磁石素材の質量を100mass%としたときの質量比率によって規定される。
(diffusion process)
At least a portion of the prepared RL-RH-M alloy is attached to at least a portion of the surface of the RTB sintered magnet material prepared as described above, and the mixture is heated in vacuum (non-oxidizing atmosphere) or inert gas. A diffusion step of heating is performed in an atmosphere at a temperature of 700° C. or more and 1100° C. or less. As a result, a liquid phase containing RL, RH, and M is generated from the RL-RH-M alloy, and the liquid phase passes from the surface of the sintered material via the grain boundaries in the R-T-B sintered magnet material. It is diffused and introduced into the interior. The amount of RL-RH-M alloy attached to the RTB sintered magnet material in the diffusion process is set to 1 mass% or more and 2.5 mass% or less. Thereby, a high H cJ improvement effect can be obtained. If the amount of RL-RH-M alloy attached to the RTB sintered magnet material is less than 1 mass%, the amount of RH, RL, and M introduced into the inside of the magnet material is too small, resulting in high H cJ . Br may not be obtained, and if it exceeds 2.5 mass%, Br may decrease. Preferably, the amount of the RL-RH-M alloy attached to the RTB sintered magnet material is 1.5 mass% or more and 2.2 mass% or less. Higher H cJ can be obtained. Further, it is preferable that the amount of RH attached to the RTB sintered magnet material made of the RL-RH-M alloy is 0.1 mass% or more and 0.4 mass% or less. By setting it within this range, it is possible to obtain an RTB based sintered magnet having a high H cJ while more reliably reducing the amount of heavy rare earth elements used. Note that the amount of RH attached is the amount of RH attached to the RTB series sintered magnet material, and it is the RH concentration in the RL-RH-M series alloy and the R- of the RL-RH-M series alloy. It can be calculated from the amount of adhered TB-based sintered magnet material. The RH adhesion amount is defined by the mass ratio when the mass of the RTB-based sintered magnet material is 100 mass%.
拡散工程における加熱する温度が700℃未満であると、RH、RLおよびMを含む液相量が少なすぎて高いHcJを得ることができない可能性がある。一方、1100℃を超えるとHcJが大幅に低下する可能性がある。好ましくは、拡散工程における加熱する温度は800℃以上1000℃以下である。より高いHcJを得ることができる。また、好ましくは、拡散工程(700℃以上1100℃以下)が実施されたR-T-B系焼結磁石に対し、拡散工程を実施した温度から15℃/分以上の冷却速度で300℃まで冷却した方が好ましい。より高いHcJを得ることができる。 If the heating temperature in the diffusion step is less than 700° C., the amount of liquid phase containing RH, RL, and M may be too small to obtain high H cJ . On the other hand, if the temperature exceeds 1100°C, H cJ may decrease significantly. Preferably, the heating temperature in the diffusion step is 800°C or more and 1000°C or less. Higher H cJ can be obtained. Preferably, the RTB sintered magnet that has been subjected to a diffusion process (700°C or more and 1100°C or less) is cooled from the temperature at which the diffusion process is performed to 300°C at a cooling rate of 15°C/min or more. Cooling is preferable. Higher H cJ can be obtained.
拡散工程は、R-T-B系焼結磁石素材表面に、任意形状のRL-RH-M合金を配置し、公知の熱処理装置を用いて行うことができる。例えば、R-T-B系焼結磁石素材表面をRL-RH-M合金の粉末層で覆い、拡散工程を行うことができる。例えば、塗布対象の表面に粘着剤を塗布する塗布工程と、粘着剤を塗布した領域にRL-RH-M合金を付着させる工程を行ってもよい。粘着剤としては、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール)、PVP(ポリビニルピロリドン)などが挙げられる。粘着剤が水系の粘着剤の場合、塗布の前にR-T-B系焼結磁石素材を予備的に加熱してもよい。予備加熱の目的は余分な溶媒を除去し粘着力をコントロールすること、及び、均一に粘着剤を付着させることである。加熱温度は60~200℃が好ましい。揮発性の高い有機溶媒系の粘着剤の場合はこの工程は省略してもよい。また、例えばRL-RH-M合金を分散媒中に分散させたスラリーをR-T-B系焼結磁石素材表面に塗布した後、分散媒を蒸発させRL-RH-M合金とR-T-B系焼結磁石素材とを付着させてもよい。なお、分散媒として、アルコール(エタノール等)、アルデヒドおよびケトンを例示できる。ま
また、RL-RH―M合金の少なくとも一部がR-T-B系焼結磁石素材の少なくとも一部に付着していれば、その配置位置は特に問わないが、好ましくは、RL-RH-M合金は、少なくともR-T-B系焼結磁石素材の配向方向に対して垂直な表面に付着させるように配置する。より効率よくRL、RHおよびMを含む液相を磁石表面から内部に拡散導入させることができる。この場合、R-T-B系焼結磁石素材の配向方向のみにRL-RH-M合金を付着させても、R-T-B系焼結磁石素材の全面にRL-RH-M合金を付着させてもよい。
The diffusion step can be performed by placing an RL-RH-M alloy in an arbitrary shape on the surface of the RTB-based sintered magnet material and using a known heat treatment device. For example, the surface of the RTB-based sintered magnet material can be covered with a powder layer of RL-RH-M alloy, and then the diffusion process can be performed. For example, a coating step of applying the adhesive to the surface to be coated and a step of attaching the RL-RH-M alloy to the area coated with the adhesive may be performed. Examples of the adhesive include PVA (polyvinyl alcohol), PVB (polyvinyl butyral), and PVP (polyvinylpyrrolidone). If the adhesive is a water-based adhesive, the RTB sintered magnet material may be preliminarily heated before application. The purpose of preheating is to remove excess solvent, control adhesive strength, and uniformly adhere the adhesive. The heating temperature is preferably 60 to 200°C. In the case of a highly volatile organic solvent-based adhesive, this step may be omitted. In addition, for example, after applying a slurry in which the RL-RH-M alloy is dispersed in a dispersion medium to the surface of the RTB sintered magnet material, the dispersion medium is evaporated to form the RL-RH-M alloy and the RTB-based sintered magnet material. -B-based sintered magnet material may be attached. In addition, alcohol (ethanol etc.), an aldehyde, and a ketone can be illustrated as a dispersion medium. In addition, as long as at least a part of the RL-RH-M alloy is attached to at least a part of the RTB-based sintered magnet material, its placement position is not particularly limited; however, it is preferable that the RL-RH-M alloy -M alloy is arranged so as to be attached to at least a surface perpendicular to the orientation direction of the RTB based sintered magnet material. The liquid phase containing RL, RH and M can be more efficiently diffused into the magnet from the surface thereof. In this case, even if the RL-RH-M alloy is attached only in the orientation direction of the RTB-based sintered magnet material, the RL-RH-M alloy can be applied to the entire surface of the RTB-based sintered magnet material. It may also be attached.
(熱処理を実施する工程)
好ましくは、拡散工程が実施されたR-T-B系焼結磁石に対して、真空又は不活性ガス雰囲気中、400℃以上750℃以下で、かつ、前記拡散工程で実施した温度よりも低い温度で熱処理を行う。熱処理を行うことにより、より高いHcJを得ることができる。
(Step of performing heat treatment)
Preferably, the RTB-based sintered magnet subjected to the diffusion step is heated at a temperature of 400° C. or more and 750° C. or less and lower than the temperature at which the diffusion step was performed in a vacuum or an inert gas atmosphere. Perform heat treatment at temperature. By performing heat treatment, higher H cJ can be obtained.
本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.
実験例1
[R-T-B系焼結磁石素材を準備する工程]
表1のNo1に示すR-T-B系焼結磁石素材の組成になるように各元素を秤量し、ストリップキャスト法により原料合金を作製した。得られた各合金を水素粉砕法により粗粉砕し粗粉砕粉を得た。次に、前記粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉100mass%に対して0.035mass%添加し混合した。潤滑剤を含有した粗粉砕粉を以下に説明するA及びBの条件で、それぞれジェットミルにより微粉砕を行った。
条件Aは、粉砕により粒径D50:4.2μm、粒径D99:12.5μmの微粉末を得た。尚、前記D50およびD99は、それぞれ、気流分散法によるレーザー回折法で得られる粒度分布において、小径側からの積算粒度分布(体積基準)が50%になる粒径および小粒径側からの積算粒度分布(体積基準)が99%となる粒径である。また、D50およびD99は、Sympatec社製の粒度分布計測装置「HELOS&RODOS」を用いて、分散圧:4bar、測定レンジ:R2、計測モード:HRLDの条件にて測定した。
条件Bは、粒径D50:3.3μm、粒径D99:8.5μmになるように微粉砕を行った。
Experimental example 1
[Process of preparing R-T-B sintered magnet material]
Each element was weighed so as to have the composition of the RTB sintered magnet material shown in No. 1 in Table 1, and a raw material alloy was produced by a strip casting method. Each of the obtained alloys was coarsely pulverized by a hydrogen pulverization method to obtain coarsely pulverized powder. Next, 0.035 mass % of zinc stearate was added as a lubricant to the coarsely pulverized powder based on 100 mass % of the coarse powder and mixed. The coarsely pulverized powder containing a lubricant was pulverized using a jet mill under conditions A and B described below.
Under condition A, fine powder having a particle size D 50 of 4.2 μm and a particle size D 99 of 12.5 μm was obtained by pulverization. In addition, D 50 and D 99 are the particle size at which the integrated particle size distribution (volume basis) from the small diameter side is 50% in the particle size distribution obtained by laser diffraction method using air flow dispersion method, and the particle size from the small particle size side, respectively. This is the particle size at which the integrated particle size distribution (volume basis) is 99%. Further, D50 and D99 were measured using a particle size distribution measuring device "HELOS&RODOS" manufactured by Sympatec under the conditions of dispersion pressure: 4 bar, measurement range: R2, and measurement mode: HRLD.
Condition B was to perform fine pulverization so that the particle size D 50 was 3.3 μm and the particle size D 99 was 8.5 μm.
得られた条件AおよびBそれぞれの微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後に磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。得られた成形体を、真空中で4時間焼結(焼結による緻密化が十分起こる温度を選定)した後、急冷しR-T-B系焼結磁石素材を得た。得られたR-T-B系焼結磁石素材の密度は7.5Mg/m3以上であった。
条件AおよびBから得られたR-T-B系焼結磁石素材の成分を求めるために、Nd、Pr、Fe、Co、Al、Si、Ga、Cu、Zr、Bの含有量を高周波誘導結合プラズマ発光分光分析法(ICP-OES)により測定した。なお、R-T-B系焼結磁石素材の酸素量はガス融解―赤外線吸収法、窒素量はガス融解―熱伝導法、炭素量は焼結―赤外線吸収法、によるガス分析装置を使用して測定した。条件Aおよび条件Bともに同じ組成であった。分析した結果を表1に示す。なお、R-T-B系焼結磁石素材の成分は合計で100mass%にならない場合がある。これは、上述したように測定方法が異なるためと、不可避的不純物で他の元素を含有する場合があるからである。
To each of the obtained finely pulverized powders under conditions A and B, zinc stearate was added as a lubricant in an amount of 0.05 mass% based on 100 mass% of the finely pulverized powders, and after mixing, the mixture was molded in a magnetic field to obtain a molded body. The forming apparatus used was a so-called right-angle magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressing direction were perpendicular to each other. The obtained molded body was sintered in vacuum for 4 hours (a temperature was selected to ensure sufficient densification due to sintering), and then rapidly cooled to obtain an RTB-based sintered magnet material. The density of the obtained RTB-based sintered magnet material was 7.5 Mg/m 3 or more.
In order to determine the components of the RTB-based sintered magnet material obtained under conditions A and B, the contents of Nd, Pr, Fe, Co, Al, Si, Ga, Cu, Zr, and B were determined by high-frequency induction. Measured by coupled plasma optical emission spectroscopy (ICP-OES). In addition, the oxygen content of the RTB sintered magnet material was measured using a gas analyzer using the gas melting-infrared absorption method, the nitrogen content using the gas melting-thermal conduction method, and the carbon content using the sintering-infrared absorption method. It was measured using Both Condition A and Condition B had the same composition. The results of the analysis are shown in Table 1. Note that the total components of the RTB-based sintered magnet material may not be 100 mass%. This is because the measurement methods are different as described above, and because other elements may be contained as unavoidable impurities.
[RL-RH-M系合金を準備する工程]
表2のNo1-A、1-Bに示すRL-RH-M系合金の組成になるように、各元素を秤量し、それらの原料を溶解して、単ロール超急冷法によりリボンまたはフレーク状の合金を得た。得られたRL-RH-M系合金の組成を表2に示す。なお、表2における各成分は、高周波誘導結合プラズマ発光分光分析法を使用して測定した。
[Process of preparing RL-RH-M alloy]
Each element is weighed and the raw materials are melted so as to have the composition of the RL-RH-M alloy shown in Nos. 1-A and 1-B in Table 2. An alloy of Table 2 shows the composition of the obtained RL-RH-M alloy. In addition, each component in Table 2 was measured using high frequency inductively coupled plasma emission spectrometry.
[拡散工程]
表1の符号1のR-T-B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体にした。加工後のR-T-B系磁石素材にディッピング法により粘着剤としてPVAをR-T-B系磁石素材の全面に塗布した。次に表3に示す作製条件で粘着剤を塗布したR-T-B系焼結磁石素材の全面にRL-RH-M系合金を付着させた。なお、RL-RH-M系合金付着量は、乳鉢を用いてRL-RH-M系合金をアルゴン雰囲気中で粉砕した後、目開き45~1000μmの数種類の篩を通過させ、粒度の異なるRL-RH-M系合金を用いることにより調整した。そして、真空熱処理炉を用いて、100Paに制御した減圧アルゴン雰囲気中で、表3の拡散工程に示す条件でRL-RH-M系合金およびR-T-B系焼結磁石素材を加熱した後、冷却した。
[Diffusion process]
The RTB-based sintered magnet material with reference numeral 1 in Table 1 was cut and machined into a cube of 7.2 mm x 7.2 mm x 7.2 mm. After processing, PVA was applied as an adhesive over the entire surface of the RTB magnet material using a dipping method. Next, an RL-RH-M alloy was deposited on the entire surface of the RTB sintered magnet material coated with an adhesive under the manufacturing conditions shown in Table 3. The amount of RL-RH-M alloy deposited was determined by crushing the RL-RH-M alloy in a mortar in an argon atmosphere and then passing it through several types of sieves with openings of 45 to 1000 μm. Adjustment was made by using a -RH-M alloy. Then, using a vacuum heat treatment furnace, the RL-RH-M alloy and RTB-based sintered magnet material were heated under the conditions shown in the diffusion process in Table 3 in a reduced-pressure argon atmosphere controlled at 100 Pa. , cooled.
[熱処理を実施する工程]
前記拡散工程で加熱したR-T-B系焼結磁石素材に対し、真空熱処理炉を用いて100Paに制御した減圧アルゴン中にて500℃の加熱する熱処理を行った。熱処理後の各サンプルに対し表面研削盤を用いて、全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体形状のサンプル(R-T-B系焼結磁石)を得た。なお、拡散工程におけるRL-RH-M系合金およびR-T-B系焼結磁石素材の加熱温度、ならびに、拡散工程後の熱処理を実施する工程におけるR-T-B系焼結磁石の加熱温度は、それぞれ熱電対を用いて測定した。
[Process of heat treatment]
The RTB-based sintered magnet material heated in the diffusion step was heat-treated at 500° C. in a vacuum heat treatment furnace controlled at 100 Pa in reduced pressure argon. The entire surface of each sample after heat treatment was cut using a surface grinder to obtain a 7.0 mm x 7.0 mm x 7.0 mm cube-shaped sample (RTB-based sintered magnet). . In addition, the heating temperature of the RL-RH-M alloy and the RTB-based sintered magnet material in the diffusion process, and the heating temperature of the RTB-based sintered magnet in the process of performing heat treatment after the diffusion process. The temperature was measured using a thermocouple.
[サンプル評価]
得られたサンプルを、B-Hトレーサによって残留磁束密度Brおよび保磁力HcJを測定した。また、R-T-B系焼結磁石素材のHcJと拡散工程および熱処理工程後のR-T-B系焼結磁石のHcJとの差(△HcJ)を求めた。結果を表3に示す。なお、実験例において、R-T-B系焼結磁石素材へのRL-RH-M系合金の付着量が2.5mass%以下で、かつ、得られたR-T-B系焼結磁石の磁気特性がBr:1.35T以上、HcJ:1925kA/m以上を本発明例として評価した。表3の通り、前記条件Bで微粉砕した微粉砕粉から得たR-T-B系焼結磁石素材を使用し、表2の符号1-A、1-Bに示す組成のRL-RH-M系合金を用いた本発明例のサンプルNo.1-4~1-6は、高いBrと高いHcJを得ることができ、さらに△HcJも高いことがわかる。これに対し、前記条件Aで粉砕した微粉砕粉から得たR-T-B系焼結磁石素材を使用し、表2の符号1-A、1-Bに示す組成のRL-RH-M系合金を用いたサンプルNo.1-1~1-3では、本発明例と比べHcJが低く、拡散工程および熱処理工程による効果を示す△HcJも低い。
[Sample evaluation]
The residual magnetic flux density B r and coercive force H cJ of the obtained sample were measured using a BH tracer. In addition, the difference (ΔH cJ ) between the H cJ of the RTB sintered magnet material and the H cJ of the RTB sintered magnet after the diffusion process and the heat treatment process was determined. The results are shown in Table 3. In addition, in the experimental example, the amount of adhesion of the RL-RH-M alloy to the RTB-based sintered magnet material was 2.5 mass% or less, and the obtained RTB-based sintered magnet The magnetic properties of B r : 1.35 T or more and H cJ : 1925 kA/m or more were evaluated as examples of the present invention. As shown in Table 3, using the RTB-based sintered magnet material obtained from the finely pulverized powder under the above condition B, the RL-RH with the composition shown in the numbers 1-A and 1-B in Table 2 was used. - Sample No. of the present invention example using M-based alloy. It can be seen that samples 1-4 to 1-6 can obtain high B r and high H cJ , and also have high ΔH cJ . On the other hand, using the RTB-based sintered magnet material obtained from the finely pulverized powder crushed under the above condition A, RL-RH-M with the composition shown in codes 1-A and 1-B in Table 2 was used. Sample No. using alloy based on In Examples 1-1 to 1-3, H cJ is lower than that of the examples of the present invention, and ΔH cJ , which indicates the effect of the diffusion process and heat treatment process, is also low.
実験例2
[R-T-B系焼結磁石素材を準備する工程]
表4の符号2に示すR-T-B系焼結磁石素材の組成になるように各元素を秤量し、ストリップキャスト法により原料合金を作製した。得られた各合金を水素粉砕法により粗粉砕し粗粉砕粉を得た。次に、前記粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉100mass%に対して0.035mass%添加、混合して潤滑剤含有微粉砕粉を得た。得られた潤滑剤含有粗粉砕粉をジェットミル装置を用いて粉砕し、粒径D50が3.3μm、D99:8.5μmの微粉砕粉を得た。
得られた微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後に磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。
得られた成形体を、真空中で4時間焼結(焼結による緻密化が十分起こる温度を選定)した後、急冷し焼結磁石素材を得た。得られたR-T-B系焼結磁石素材の密度は7.5Mg/m3以上であった。
得られたR-T-B系焼結磁石素材の結果を表4に示す。なお表4における各成分は、実験例1と同様の方法で測定した。
Experimental example 2
[Process of preparing R-T-B sintered magnet material]
Each element was weighed so as to have the composition of the RTB-based sintered magnet material shown in numeral 2 in Table 4, and a raw material alloy was produced by a strip casting method. Each of the obtained alloys was coarsely pulverized by a hydrogen pulverization method to obtain coarsely pulverized powder. Next, 0.035 mass % of zinc stearate as a lubricant was added to the coarsely pulverized powder based on 100 mass % of the coarse powder and mixed to obtain a lubricant-containing finely pulverized powder. The obtained lubricant-containing coarsely pulverized powder was pulverized using a jet mill to obtain finely pulverized powder having a particle size D 50 of 3.3 μm and a D 99 of 8.5 μm.
To the obtained finely pulverized powder, zinc stearate was added as a lubricant in an amount of 0.05 mass% based on 100 mass% of the finely pulverized powder, and the mixture was mixed and then molded in a magnetic field to obtain a molded body. The forming apparatus used was a so-called right-angle magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressing direction were perpendicular to each other.
The obtained molded body was sintered in a vacuum for 4 hours (a temperature was selected to ensure sufficient densification due to sintering), and then rapidly cooled to obtain a sintered magnet material. The density of the obtained RTB-based sintered magnet material was 7.5 Mg/m 3 or more.
Table 4 shows the results of the obtained RTB-based sintered magnet material. Note that each component in Table 4 was measured in the same manner as in Experimental Example 1.
[RL-RH-M系合金を準備する工程]
表5の符号2-A、2-B、2-Cに示すRL-RH-M系合金の組成になるように、各元素を秤量し、それらの原料を溶解して、単ロール超急冷法によりリボンまたはフレーク状の合金を得た。得られたRL-RH-M系合金の組成を表5に示す。なお、表5における各成分は、高周波誘導結合プラズマ発光分光分析法を用いて測定した。
[Process of preparing RL-RH-M alloy]
Each element is weighed and the raw materials are melted to obtain the composition of the RL-RH-M alloy shown in 2-A, 2-B, and 2-C in Table 5, and then the single-roll ultra-quenching method is used. A ribbon or flake-like alloy was obtained. Table 5 shows the composition of the obtained RL-RH-M alloy. In addition, each component in Table 5 was measured using high frequency inductively coupled plasma emission spectrometry.
[拡散工程]
表4の符号2のR-T-B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体にした。加工後のR-T-B系磁石素材にディッピング法により粘着剤としてPVAをR-T-B系磁石素材の全面に塗布した。次に表6に示す作製条件で粘着剤を塗布したR-T-B系焼結磁石素材の全面に前記RL-RH-M系合金を付着させた。なお、前記RL-RH-M系合金付着量は、乳鉢を用いて前記RL-RH-M系合金をアルゴン雰囲気中で粉砕した後、目開き45~1000μmの数種類の篩を通過させ、粒度の異なるRL-RH-M系合金を用いることにより調整した。そして。真空熱処理炉を用いて、100Paに制御した減圧アルゴン雰囲気中で、表6の拡散工程に示す条件で前記RL-RH-M系合金およびR-T-B系焼結磁石素材を加熱した後、冷却した。
[Diffusion process]
The RTB-based sintered magnet material numbered 2 in Table 4 was cut and machined into a cube of 7.2 mm x 7.2 mm x 7.2 mm. After processing, PVA was applied as an adhesive over the entire surface of the RTB magnet material using a dipping method. Next, the RL-RH-M alloy was adhered to the entire surface of the RTB sintered magnet material coated with an adhesive under the manufacturing conditions shown in Table 6. The amount of the RL-RH-M alloy deposited is determined by crushing the RL-RH-M alloy in an argon atmosphere using a mortar, passing it through several types of sieves with openings of 45 to 1000 μm, and determining the particle size. Adjustments were made by using different RL-RH-M alloys. and. After heating the RL-RH-M alloy and RTB-based sintered magnet material under the conditions shown in the diffusion process in Table 6 in a reduced-pressure argon atmosphere controlled to 100 Pa using a vacuum heat treatment furnace, Cooled.
[熱処理を実施する工程]
拡散工程の後のR-T-B系焼結磁石素材に対し、真空熱処理炉を用いて100Paに制御した減圧アルゴン中にて490℃の加熱する熱処理を行った。熱処理後の各サンプルに対し表面研削盤を用いて、全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体形状のサンプル(R-T-B系焼結磁石)を得た。なお、拡散工程を実施する工程にけるRL-RH-M系合金およびR-T-B系焼結磁石素材の加熱温度、ならびに、拡散工程後の熱処理を実施する工程におけるR-T-B系焼結磁石の加熱温度は、それぞれ熱電対を用いて測定した。なお、拡散工程におけるRL-RH-M系合金およびR-T-B系焼結磁石素材の加熱温度は、実験例1と同様に900℃×10Hで全て行った。
[Process of heat treatment]
After the diffusion step, the RTB-based sintered magnet material was heat-treated at 490° C. in a vacuum heat treatment furnace controlled to 100 Pa in reduced pressure argon. The entire surface of each sample after heat treatment was cut using a surface grinder to obtain a 7.0 mm x 7.0 mm x 7.0 mm cube-shaped sample (RTB-based sintered magnet). . In addition, the heating temperature of the RL-RH-M alloy and the RTB-based sintered magnet material in the process of performing the diffusion process, and the heating temperature of the RTB-based alloy in the process of performing the heat treatment after the diffusion process. The heating temperature of each sintered magnet was measured using a thermocouple. The heating temperature of the RL-RH-M alloy and the RTB sintered magnet material in the diffusion step was 900° C. x 10 hours, as in Experimental Example 1.
[サンプル評価]
表6に示す通り、サンプルNo.2-1~2-4では、RL-RH-M系合金付着量が1.6mass%未満の範囲でBrとHcJの比較をした。RL-RH-M系合金のRH量が13mass%未満のサンプルNo.2-1では高いBrが得られているが、高いHcJは得られていない。一方、本発明例であるサンプルNo.2-2~2-4では高いBrと高いHcJがともに得られている。
As shown in Table 6, sample no. In 2-1 to 2-4, B r and H cJ were compared in a range where the amount of RL-RH-M alloy deposited was less than 1.6 mass%. Sample No. in which the RH amount of the RL-RH-M alloy is less than 13 mass%. In 2-1, a high B r was obtained, but a high H cJ was not obtained. On the other hand, sample No. which is an example of the present invention. In samples 2-2 to 2-4, both high B r and high H cJ were obtained.
Claims (2)
RL-RH-M系合金(RLは軽希土類元素のうちの少なくとも1つであり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、RHは、Tb、DyおよびHoからなる群から選択された少なくとも1つであり、Mは、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1つである)を準備する工程と、
前記R-T-B系焼結磁石素材の表面の少なくとも一部に、前記RL-RH-M系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程と、
を含み、
前記R-T-B系焼結磁石素材において、Rの含有量は、R-T-B系焼結磁石素材全体の27mass%以上35mass%以下であり、T全体に対するFeの含有量が80mass%以上であり、
前記RL-RH-M系合金において、RLの含有量は、RL-RH-M系合金全体の70mass%以上82mass%以下であり、RHの含有量は、RL-RH-M系合金全体の13mass%以上23mass%以下であり、Mの含有量は、RL-RH-M系合金全体の5mass%以上9.9mass%以下であり、
前記拡散工程における前記R-T-B系焼結磁石素材への前記RL-RH-M系合金の付着量は1mass%以上2.5mass%以下である、
R-T-B系焼結磁石の製造方法。 A sintered body is produced from a fine powder with a particle size D50 of 2.0 μm to 3.5 μm, and an RTB-based sintered magnet material (R is a rare earth element selected from the group consisting of Nd, Pr, and Ce) is produced. and T is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, and T always contains Fe.
RL-RH-M alloy (RL is at least one light rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, RH is selected from Tb, Dy and Ho) and M is at least one selected from the group consisting of Cu, Ga, Fe, Co, Ni, and Al.
At least a portion of the RL-RH-M alloy is adhered to at least a portion of the surface of the RTB-based sintered magnet material, and heated at a temperature of 700° C. or more and 1100° C. or less in a vacuum or an inert gas atmosphere. a diffusion process of heating at a temperature;
including;
In the RTB-based sintered magnet material, the R content is 27 mass% or more and 35 mass% or less of the entire RTB-based sintered magnet material, and the Fe content is 80 mass% with respect to the entire T. That's all,
In the RL-RH-M alloy, the RL content is 70 mass% or more and 82 mass% or less of the entire RL-RH-M alloy, and the RH content is 13 mass% or more and 23 mass% or less, and the M content is 5 mass% or more and 9.9 mass% or less of the entire RL-RH-M alloy,
The amount of the RL-RH-M alloy attached to the RTB sintered magnet material in the diffusion step is 1 mass% or more and 2.5 mass% or less,
A method for manufacturing an RTB-based sintered magnet.
R- according to claim 1, wherein the amount of the RL-RH-M alloy attached to the RTB sintered magnet material in the diffusion step is 1.5 mass% or more and 2.5 mass% or less. A method for manufacturing a TB-based sintered magnet.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020053406A JP7452159B2 (en) | 2020-03-24 | 2020-03-24 | Manufacturing method of RTB based sintered magnet |
CN202110306791.0A CN113451029A (en) | 2020-03-24 | 2021-03-23 | Method for producing R-T-B sintered magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020053406A JP7452159B2 (en) | 2020-03-24 | 2020-03-24 | Manufacturing method of RTB based sintered magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021153146A JP2021153146A (en) | 2021-09-30 |
JP7452159B2 true JP7452159B2 (en) | 2024-03-19 |
Family
ID=77809163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020053406A Active JP7452159B2 (en) | 2020-03-24 | 2020-03-24 | Manufacturing method of RTB based sintered magnet |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7452159B2 (en) |
CN (1) | CN113451029A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011101043A (en) | 2011-01-20 | 2011-05-19 | Hitachi Metals Ltd | R-fe-b based rare earth sintered magnet, and method of manufacturing the same |
WO2013054845A1 (en) | 2011-10-13 | 2013-04-18 | Tdk株式会社 | Thin r-t-b alloy, r-t-b based sintered magnet, and production method for same |
WO2018034264A1 (en) | 2016-08-17 | 2018-02-22 | 日立金属株式会社 | R-t-b sintered magnet |
JP2018142640A (en) | 2017-02-28 | 2018-09-13 | 日立金属株式会社 | Method for manufacturing r-t-b based sintered magnet |
-
2020
- 2020-03-24 JP JP2020053406A patent/JP7452159B2/en active Active
-
2021
- 2021-03-23 CN CN202110306791.0A patent/CN113451029A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011101043A (en) | 2011-01-20 | 2011-05-19 | Hitachi Metals Ltd | R-fe-b based rare earth sintered magnet, and method of manufacturing the same |
WO2013054845A1 (en) | 2011-10-13 | 2013-04-18 | Tdk株式会社 | Thin r-t-b alloy, r-t-b based sintered magnet, and production method for same |
WO2018034264A1 (en) | 2016-08-17 | 2018-02-22 | 日立金属株式会社 | R-t-b sintered magnet |
JP2018142640A (en) | 2017-02-28 | 2018-09-13 | 日立金属株式会社 | Method for manufacturing r-t-b based sintered magnet |
Also Published As
Publication number | Publication date |
---|---|
CN113451029A (en) | 2021-09-28 |
JP2021153146A (en) | 2021-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018034264A1 (en) | R-t-b sintered magnet | |
JP6414653B1 (en) | Method for producing RTB-based sintered magnet | |
JP6414654B1 (en) | Method for producing RTB-based sintered magnet | |
WO2016133071A1 (en) | Method for producing r-t-b system sintered magnet | |
US10672545B2 (en) | R-T-B based permanent magnet | |
US10672544B2 (en) | R-T-B based permanent magnet | |
JP6939337B2 (en) | Manufacturing method of RTB-based sintered magnet | |
JP7310499B2 (en) | Method for producing RTB based sintered magnet | |
JP2018029108A (en) | Method of manufacturing r-t-b based sintered magnet | |
JP7059995B2 (en) | RTB-based sintered magnet | |
JP7537536B2 (en) | RTB based sintered magnet | |
JP6508447B1 (en) | Method of manufacturing RTB based sintered magnet | |
JP2019075426A (en) | R-t-b based sintered magnet and manufacturing method thereof | |
US11424056B2 (en) | Method for producing sintered R-T-B based magnet | |
JP7452159B2 (en) | Manufacturing method of RTB based sintered magnet | |
JP6610957B2 (en) | Method for producing RTB-based sintered magnet | |
JP2022151483A (en) | Manufacturing method of r-t-b system sintered magnet and r-t-b system sintered magnet | |
JP7447606B2 (en) | RTB system sintered magnet | |
JP2020107888A (en) | Method for manufacturing r-t-b based sintered magnet | |
CN111489888B (en) | Method for producing R-T-B sintered magnet | |
JP7380369B2 (en) | Manufacturing method of RTB sintered magnet and alloy for diffusion | |
JP2022147793A (en) | Production method of r-t-b based sintered magnet | |
JP2020120102A (en) | Method for manufacturing r-t-b based sintered magnet | |
JP7567558B2 (en) | Manufacturing method of RTB based sintered magnet | |
JP2023138369A (en) | Manufacturing method of r-t-b-based sintered magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7452159 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |