JP2020120102A - Method for manufacturing r-t-b based sintered magnet - Google Patents

Method for manufacturing r-t-b based sintered magnet Download PDF

Info

Publication number
JP2020120102A
JP2020120102A JP2019176504A JP2019176504A JP2020120102A JP 2020120102 A JP2020120102 A JP 2020120102A JP 2019176504 A JP2019176504 A JP 2019176504A JP 2019176504 A JP2019176504 A JP 2019176504A JP 2020120102 A JP2020120102 A JP 2020120102A
Authority
JP
Japan
Prior art keywords
mass
alloy
sintered magnet
magnet material
rtb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019176504A
Other languages
Japanese (ja)
Inventor
宣介 野澤
Sensuke Nozawa
宣介 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to CN202010076516.XA priority Critical patent/CN111489874A/en
Priority to US16/752,910 priority patent/US11424056B2/en
Publication of JP2020120102A publication Critical patent/JP2020120102A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a method for manufacturing an R-T-B based sintered magnet having high Hwhile decreasing a use amount of heavy rare earth RH.SOLUTION: A method for manufacturing an R-T-B based sintered magnet comprises the steps of: preparing a magnet material; preparing an RL-RH-M based alloy; and diffusion. In the diffusion step, an amount of deposition of the RL-RH-M based alloy to the R-T-B based sintered magnet material is 4 or more and 15 mass% or less, and an amount of RH deposition is 0.1 or more and 0.6 mass% or less. In the magnet material, the content of R is 27 or more and 35 mass% or less to a total amount of the magnet material, and the content of Fe to a total amount of T is 80 mass% or more. In the RL-RH-M based alloy, the content of RL is 60 or more and 97 mass% or less to a total amount of the RL-RH-M based alloy. The content of RH is 1 or more and 8 mass% or less to the total amount of the RL-RH-M based alloy, and the content of M is 2 or more and 39 mass% or less to the total amount of the RL-RH-M based alloy.SELECTED DRAWING: Figure 2

Description

本発明はR−T−B系焼結磁石の製造方法に関する。 The present invention relates to a method for manufacturing an RTB-based sintered magnet.

R−T−B系焼結磁石(Rは希土類元素のうち少なくとも一種であり、Tは主にFeであり、Bは硼素である)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。 The R-T-B system sintered magnet (R is at least one of rare earth elements, T is mainly Fe, and B is boron) is known as the most high-performance magnet among permanent magnets. It is used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home electric appliances.

R−T−B系焼結磁石は、主としてR14B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。主相であるR14B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料であり、R−T−B系焼結磁石の特性の根幹をなしている。 The RTB sintered magnet is mainly composed of a main phase mainly composed of an R 2 T 14 B compound and a grain boundary phase located at a grain boundary portion of the main phase. The R 2 T 14 B compound, which is the main phase, is a ferromagnetic material having a high saturation magnetization and an anisotropic magnetic field, and forms the basis of the characteristics of the RTB sintered magnet.

R−T−B系焼結磁石は、高温で保磁力HcJ(以下、単に「HcJ」という)が低下するため不可逆熱減磁が起こるという問題がある。そのため、特に電気自動車用モータに使用されるR−T−B系焼結磁石では、高温下でも高いHcJを有する、すなわち室温においてより高いHcJを有することが要求されている。 The RTB sintered magnet has a problem that irreversible thermal demagnetization occurs because the coercive force HcJ (hereinafter, simply referred to as " HcJ ") decreases at high temperature. Therefore, in a particularly R-T-B based sintered magnet used in an electric vehicle motor, having a high H cJ even at high temperatures, that is, required to have a higher H cJ at room temperature.

国際公開第2007/102391号International Publication No. 2007/102391 国際公開第2016/133071号International Publication No. 2016/133071

14B型化合物相中の軽希土類元素(主にNd、Pr)を重希土類元素(主にDy、Tb)で置換すると、HcJが向上することが知られている。しかし、HcJが向上する一方、R14B型化合物相の飽和磁化が低下するために残留磁束密度B(以下、単に「B」という)が低下してしまうという問題がある。 It is known that when the light rare earth element (mainly Nd, Pr) in the R 2 T 14 B type compound phase is replaced with a heavy rare earth element (mainly Dy, Tb), H cJ is improved. However, there is a problem that the residual magnetic flux density B r (hereinafter, simply referred to as “B r ”) is reduced because the saturation magnetization of the R 2 T 14 B type compound phase is reduced while the H cJ is improved.

特許文献1には、R−T−B系合金の焼結磁石の表面にDy等の重希土類元素を供給しつつ、重希土類元素を焼結磁石の内部に拡散させることが記載されている。特許文献1に記載の方法は、R−T−B系焼結磁石の表面から内部にDyを拡散させてHcJ向上に効果的な主相結晶粒の外殻部にのみDyを濃化させることにより、Bの低下を抑制しつつ、高いHcJを得ることができる。 Patent Document 1 describes that a heavy rare earth element such as Dy is supplied to the surface of a sintered magnet of an RTB-based alloy and the heavy rare earth element is diffused inside the sintered magnet. In the method described in Patent Document 1, Dy is diffused from the surface of the RTB-based sintered magnet to the inside to concentrate Dy only in the outer shell portion of the main phase crystal grains effective for improving HcJ . it makes while suppressing a decrease in B r, it is possible to obtain a high H cJ.

特許文献2には、R−T−B系焼結体の表面に特定組成のR−Ga−Cu合金を接触させて熱処理を行うことにより、R−T−B系焼結磁石中の粒界相の組成および厚さを制御してHcJを向上させることが記載されている。 In Patent Document 2, an R-Ga-Cu alloy having a specific composition is brought into contact with the surface of the R-T-B system sintered body to perform heat treatment, whereby grain boundaries in the R-T-B system sintered magnet are obtained. Controlling the phase composition and thickness to improve H cJ is described.

しかし、近年特に電気自動車用モータなどにおいて重希土類元素の使用量を低減しつつ、更に高いBと高いHcJを得ることが求められている。 However, while reducing the amount of heavy rare earth elements in recent years, especially in an electric vehicle motors, it is required to obtain a higher B r and a high H cJ.

本開示の様々な実施形態は、重希土類元素の使用量を低減しつつ、高いBと高いHcJを有するR−T−B系焼結磁石の製造方法を提供する。 Various embodiments of the present disclosure, while reducing the amount of heavy rare earth elements, to provide a method of manufacturing a R-T-B based sintered magnet having a high B r and high H cJ.

本開示のR−T−B系焼結磁石の製造方法は、例示的な実施形態において、R−T−B系焼結磁石素材を準備する工程と、RL−RH−M系合金を準備する工程と、前記R−T−B系焼結磁石素材の表面の少なくとも一部に、前記RL−RH−M系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程と、を含み、前記拡散工程における前記R−T−B系焼結磁石素材への前記RL−RH−M系合金の付着量は4mass%以上15mass%以下で、かつ、前記RL−RH−M系合金による前記R−T−B系焼結磁石素材へのRHの付着量は0.1mass%以上0.6mass%以下であり、前記R−T−B系焼結磁石素材において、Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、Rの含有量は、R−T−B系焼結磁石素材全体の27mass%以上35mass%以下であり、TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含み、T全体に対するFeの含有量が80mass%以上であり、前記RL−RH−M系合金において、RLは軽希土類元素のうちの少なくとも1つであり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、RLの含有量は、RL−RH−M系合金全体の60mass%以上97mass%以下であり、RHは、Tb、DyおよびHoからなる群から選択された少なくとも1つであり、RHの含有量は、RL−RH−M系合金全体の1mass%以上8mass%以下であり、Mは、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1つであり、Mの含有量は、RL−RH−M系合金全体の2mass%以上39mass%以下である。 In an exemplary embodiment, a method for manufacturing an RTB-based sintered magnet according to the present disclosure prepares an RTB-based sintered magnet material and an RL-RH-M-based alloy. Step, and at least a part of the RL-RH-M alloy is adhered to at least a part of the surface of the R-T-B system sintered magnet material, and 700°C or more 1100 in a vacuum or an inert gas atmosphere. A diffusion step of heating at a temperature of ℃ or less, the adhesion amount of the RL-RH-M alloy to the RTB-based sintered magnet material in the diffusion step is 4 mass% or more and 15 mass% or less. The amount of RH deposited on the RTB-based sintered magnet material by the RL-RH-M alloy is 0.1 mass% or more and 0.6 mass% or less, and the R-T-B system is In the sintered magnet material, R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, and the content of R is the same as that of the entire RTB-based sintered magnet material. 27 mass% or more and 35 mass% or less, T is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, T always contains Fe, and the content of Fe with respect to the entire T is 80 mass. % Or more, and in the RL-RH-M alloy, RL is at least one of light rare earth elements, and at least contains at least one selected from the group consisting of Nd, Pr, and Ce. The content is 60 mass% or more and 97 mass% or less of the entire RL-RH-M alloy, RH is at least one selected from the group consisting of Tb, Dy and Ho, and the content of RH is RL. -RH-M system alloy whole 1 mass% or more and 8 mass% or less, M is at least one selected from the group consisting of Cu, Ga, Fe, Co, Ni, and Al, the content of M is , 2 mass% or more and 39 mass% or less of the entire RL-RH-M alloy.

ある実施形態は、前記RL−RH−M系合金において、RHの含有量は、RL−RH−M系合金全体の2mass%以上6mass%以下である。 In one embodiment, in the RL-RH-M-based alloy, the content of RH is 2 mass% or more and 6 mass% or less of the entire RL-RH-M-based alloy.

ある実施形態は、前記拡散工程における前記R−T−B系焼結磁石素材への前記RL−RH−M系合金の付着量は5mass%以上10mass%以下である。 In one embodiment, the adhesion amount of the RL-RH-M alloy to the RTB-based sintered magnet material in the diffusion step is 5 mass% or more and 10 mass% or less.

本開示の実施形態によれば、重希土類元素の使用量を低減しつつ、高いBと高いHcJを有するR−T−B系焼結磁石の製造方法を提供することができる。 According to embodiments of the present disclosure, while reducing the amount of heavy rare earth elements, it is possible to provide a manufacturing method of the R-T-B based sintered magnet having a high B r and high H cJ.

R−T−B系焼結磁石の一部を拡大して模試的に示す断面図である。It is sectional drawing which expands a part of RTB type|system|group sintered magnet and shows it as a model. 図1Aの破線矩形領域内を更に拡大して模式的に示す断面図である。It is sectional drawing which expands the inside of the broken-line rectangular area of FIG. 1A, and is shown typically. 本開示によるR−T−B系焼結磁石の製造方法における工程の例を示すフローチャートである。3 is a flowchart showing an example of steps in a method for manufacturing an RTB-based sintered magnet according to the present disclosure.

まず、本開示によるR−T−B系焼結磁石の基本構造について説明をする。R−T−B系焼結磁石は、原料合金の粉末粒子が焼結によって結合した構造を有しており、主としてR14B化合物粒子からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。 First, the basic structure of the RTB based sintered magnet according to the present disclosure will be described. R-T-B based sintered magnet, the powder particles of the raw material alloy has a structure bonded by sintering, and a main phase mainly composed of R 2 T 14 B compound grains, the grain boundary portion of the main phase And a grain boundary phase located at.

図1Aは、R−T−B系焼結磁石の一部を拡大して模試的に示す断面図であり、図1Bは図1Aの破線矩形領域内を更に拡大して模式的に示す断面図である。図1Aには、一例として長さ5μmの矢印が大きさを示す基準の長さとして参考のために記載されている。図1Aおよび図1Bに示されるように、R−T−B系焼結磁石は、主としてR14B化合物からなる主相12と、主相12の粒界部分に位置する粒界相14とから構成されている。また、粒界相14は、図1Bに示されるように、2つのR14B化合物粒子(グレイン)が隣接する二粒子粒界相14aと、3つのR14B化合物粒子が隣接する粒界三重点14bとを含む。典型的な主相結晶粒径は磁石断面の円相当径の平均値で3μm以上10μm以下である。主相12であるR14B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料である。したがって、R−T−B系焼結磁石では、主相12であるR14B化合物の存在比率を高めることによってBを向上させることができる。R14B化合物の存在比率を高めるためには、原料合金中のR量、T量、B量を、R14B化合物の化学量論比(R量:T量:B量=2:14:1)に近づければよい。 FIG. 1A is a cross-sectional view schematically showing a part of the R-T-B system sintered magnet in an enlarged manner, and FIG. 1B is a cross-sectional view schematically showing an enlarged view in a broken-line rectangular region in FIG. 1A. Is. In FIG. 1A, for example, an arrow having a length of 5 μm is shown as a reference length indicating a size for reference. As shown in FIGS. 1A and 1B, the RTB-based sintered magnet includes a main phase 12 mainly composed of an R 2 T 14 B compound and a grain boundary phase 14 located at a grain boundary portion of the main phase 12. It consists of and. In addition, as shown in FIG. 1B, the grain boundary phase 14 includes a two-grain grain boundary phase 14 a in which two R 2 T 14 B compound particles (grains) are adjacent to each other and three R 2 T 14 B compound grains in adjacent to each other. Grain boundary triple point 14b. A typical main phase crystal grain size is 3 μm or more and 10 μm or less in average value of the circle equivalent diameter of the magnet cross section. The R 2 T 14 B compound that is the main phase 12 is a ferromagnetic material having high saturation magnetization and an anisotropic magnetic field. Therefore, in the R-T-B based sintered magnet, it is possible to improve the B r by increasing the existence ratio of R 2 T 14 B compound is the main phase 12. In order to increase the abundance ratio of the R 2 T 14 B compound, the R content, the T content, and the B content in the raw material alloy are set to the stoichiometric ratio of the R 2 T 14 B compound (R content:T content:B content= 2:14:1).

また、主相であるR14B化合物のRの一部をDy、Tb、Hoなどの重希土類元素で置換することによって飽和磁化を下げつつ、主相の異方性磁界を高められることが知られている。特に二粒子粒界相と接する主相外殻は磁化反転の起点となりやすいため、主相外殻に優先的に重希土類元素を置換できる重希土類拡散技術は、飽和磁化の低下を抑制しつつ効率的に高いHcJが得られる。 Further, by substituting a part of R of the main phase R 2 T 14 B compound with a heavy rare earth element such as Dy, Tb or Ho, it is possible to increase the anisotropic magnetic field of the main phase while lowering the saturation magnetization. It has been known. In particular, since the main phase shell that is in contact with the two-grain grain boundary phase is likely to become the starting point of the magnetization reversal, the heavy rare earth diffusion technology that can replace the main phase shell with the heavy rare earth element preferentially suppresses the decrease of the saturation magnetization and is efficient. High H cJ is obtained.

一方、二粒子粒界相14aの磁性を制御することによっても、高いHcJが得られることが知られている。具体的には二粒子粒界相中の磁性元素(Fe、Co、Ni等)の濃度を下げることによって、二粒子粒界相を非磁性に近づけることで、主相同士の磁気的な結合を弱めて磁化反転を抑制することができる。 On the other hand, it is known that high H cJ can also be obtained by controlling the magnetism of the two-particle grain boundary phase 14a. Specifically, by lowering the concentration of magnetic elements (Fe, Co, Ni, etc.) in the two-grain grain boundary phase, the two-grain grain boundary phase becomes closer to non-magnetic, and magnetic coupling between the main phases is achieved. It can be weakened to suppress magnetization reversal.

本開示によるR−T−B系焼結磁石の製造方法では、R−T−B系焼結磁石素材表面から粒界を通じて磁石素材内部へ、RL−RH−M系合金に含有されるRHと共に、RLおよびMを拡散させている。本発明者による検討の結果、RL−RH−M系合金中のRHの含有量を低くした上でR−T−B系焼結磁石素材表面への付着量を比較的多い特定範囲に管理してRH、RL、Mの全てを拡散させると、少ないRHでも拡散による主相外殻の異方性磁界の向上が顕著に起こり、さらに、RLおよびM元素の二粒子粒界相への拡散によって二粒子粒界相における磁性元素濃度の低下が顕著に起こることがわかった。この結果、Bの低下を抑制しつつ、高いHcJを得ることができる。すなわち、本開示は、特定範囲の含有量(1mass%以上8mass%以下)のRHをRLおよびMと共に、特定範囲(RH−RL−M合金のR−T−B系焼結磁石素材表面への付着量が4mass%以上15mass%以下で、かつ、前記RL−RH−M系合金による前記R−T−B系焼結磁石素材へのRHの付着量が0.1mass%以上0.6mass%以下)付着させて磁石素材内部へ拡散させた場合に、高いBと高いHcJが得られることを見出したものである。 In the method for manufacturing an RTB-based sintered magnet according to the present disclosure, the RB contained in the RL-RH-M alloy together with the RH contained in the RL-RH-M alloy from the surface of the RTB-based sintered magnet material to the inside of the magnet material through the grain boundaries. , RL and M are diffused. As a result of the study by the present inventor, the content of RH in the RL-RH-M alloy was lowered and the amount of adhesion to the surface of the RTB-based sintered magnet material was controlled to a relatively large specific range. When RH, RL, and M are diffused all together, the anisotropic magnetic field of the outer shell of the main phase is remarkably improved by diffusion even with a small amount of RH, and further, RL and M elements are diffused into the two-grain grain boundary phase. It was found that the concentration of magnetic elements in the grain boundary phase of two particles remarkably decreased. As a result, while suppressing the decrease in B r, it is possible to obtain a high H cJ. That is, according to the present disclosure, RH having a content within a specific range (1 mass% or more and 8 mass% or less) is combined with RL and M in a specific range (the surface of the RTB-based sintered magnet material of the RH-RL-M alloy). The adhesion amount is 4 mass% or more and 15 mass% or less, and the RH adhesion amount of the RL-RH-M alloy to the RTB-based sintered magnet material is 0.1 mass% or more and 0.6 mass% or less. ) when the diffused deposited allowed by the internal magnet material, in which a high B r and high H cJ was found that the resulting.

本開示によるR−T−B系焼結磁石の製造方法は、図2に示すように、R−T−B系焼結磁石素材を準備する工程S10とRL−RH−M系合金を準備する工程S20とを含む。R−T−B系焼結磁石素材を準備する工程S10とRL−RH−M合金を準備する工程S20との順序は任意であり、それぞれ、異なる場所で製造されたR−T−B系焼結磁石素材およびRL−RH−M合金を用いてもよい。 As shown in FIG. 2, the method for manufacturing an RTB-based sintered magnet according to the present disclosure includes a step S10 of preparing an RTB-based sintered magnet material and an RL-RH-M alloy. And step S20. The order of the step S10 of preparing the RTB-based sintered magnet material and the step S20 of preparing the RL-RH-M alloy is arbitrary, and the RTB-based firing manufactured at different locations respectively. Binder magnet material and RL-RH-M alloy may be used.

本開示によるR−T−B系焼結磁石の製造方法は、図2に示すように、更に、R−T−B系焼結磁石素材表面の少なくとも一部にRL−RH−M系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程S30を含む。前記拡散工程S30における前記R−T−B系焼結磁石素材への前記RL−RH−M系合金の付着量は4mass%以上15mass%以下である。 As shown in FIG. 2, the method for producing an RTB-based sintered magnet according to the present disclosure further includes an RL-RH-M-based alloy on at least a part of the surface of the RTB-based sintered magnet material. It includes a diffusion step S30 in which at least a part of the material is attached and heated at a temperature of 700° C. or higher and 1100° C. or lower in a vacuum or an inert gas atmosphere. The amount of the RL-RH-M alloy deposited on the R-T-B sintered magnet material in the diffusion step S30 is 4 mass% or more and 15 mass% or less.

なお、本開示において、拡散工程前および拡散工程中のR−T−B系焼結磁石を「R−T−B系焼結磁石素材」と称し、拡散工程後のR−T−B系焼結磁石を単に「R−T−B系焼結磁石」と称する。 In the present disclosure, the RTB-based sintered magnet before and during the diffusion step is referred to as an “RTB-based sintered magnet material”, and the RTB-based sintered magnet after the diffusion step is referred to. The binder magnet is simply referred to as "RTB-based sintered magnet".

(R−T−B系焼結磁石素材を準備する工程)
R−T−B系焼結磁石素材において、Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、Rの含有量は、R−T−B系焼結磁石素材全体の27mass%以上35mass%以下である。TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含み、T全体に対するFeの含有量が80mass%以上である。
(Process of preparing an RTB-based sintered magnet material)
In the R-T-B system sintered magnet material, R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, and the content of R is the R-T-B system. It is not less than 27 mass% and not more than 35 mass% of the whole sintered magnet material. T is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, T always contains Fe, and the content of Fe in the whole T is 80 mass% or more.

Rが27mass%未満では焼結過程で液相が十分に生成せず、焼結体を充分に緻密化することが困難になる可能性がある。一方、Rが35masss%を超えると焼結時に粒成長が起こりHcJが低下する可能性がある。Rは28mass%以上33mass%以下であることが好ましい。 When R is less than 27 mass %, a liquid phase is not sufficiently generated in the sintering process, and it may be difficult to sufficiently densify the sintered body. On the other hand, if R exceeds 35 mass%, grain growth may occur during sintering and H cJ may decrease. R is preferably 28 mass% or more and 33 mass% or less.

R−T−B系焼結磁石素材は例えば、以下の組成範囲を有する。
R:27〜35mass%、
B:0.80〜1.20mass%、
Ga:0〜1.0mass%、
X:0〜2mass%(XはCu、Nb、Zrの少なくとも一種)、
T:60mass%以上を含有する。
The RTB-based sintered magnet material has, for example, the following composition range.
R: 27-35 mass%,
B: 0.80 to 1.20 mass%,
Ga: 0 to 1.0 mass%,
X: 0 to 2 mass% (X is at least one of Cu, Nb, and Zr),
T: Contains 60 mass% or more.

好ましくは、R−T−B系焼結磁石素材において、[T]/[B]のmol比が14.0超15.0以下である。より高いHcJを得ることができる。本開示における[T]/[B]とは、Tを構成する各元素(Fe、Co、Al、MnおよびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含み、T全体に対するFeの含有量が80mass%以上)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの(a)とを、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。[T]/[B]のmol比が14.0を超えるという条件は、主相(R14B化合物)形成に使われるT量に対して相対的にB量が少ないことを示している。[T]/[B]のmol比は14.3以上15.0以下であることがさらに好ましい。さらに高いHcJを得ることができる。Bの含有量はR−T−B系焼結体全体の0.9mass%以上1.0mass%未満が好ましい。 Preferably, in the RTB-based sintered magnet material, the molar ratio of [T]/[B] is more than 14.0 and 15.0 or less. Higher H cJ can be obtained. [T]/[B] in the present disclosure is at least one element selected from the group consisting of each element (Fe, Co, Al, Mn, and Si) constituting T, and T always contains Fe, and T The analytical value (mass%) of Fe content with respect to the whole of 80 mass% or more was divided by the atomic weight of each element, and the sum of these values (a) and the analytical value of B (mass) were obtained. %) is the ratio (a/b) to that obtained by dividing the atomic weight of B by (b). The condition that the molar ratio [T]/[B] exceeds 14.0 indicates that the amount of B is relatively small with respect to the amount of T used for forming the main phase (R 2 T 14 B compound). There is. The molar ratio of [T]/[B] is more preferably 14.3 or more and 15.0 or less. Higher H cJ can be obtained. The content of B is preferably 0.9 mass% or more and less than 1.0 mass% of the entire RTB-based sintered body.

R−T−B系焼結磁石素材は、Nd−Fe−B系焼結磁石に代表される一般的なR−T−B系焼結磁石の製造方法を用いて準備することができる。一例を挙げると、ストリップキャスト法等で作製された原料合金を、ジェットミルなどを用いて3μm以上10μm以下に粉砕した後、磁界中で成形し、900℃以上1100℃以下の温度で焼結することにより準備することができる。 The R-T-B system sintered magnet material can be prepared by using a general method for manufacturing a R-T-B system sintered magnet represented by an Nd-Fe-B system sintered magnet. As an example, a raw material alloy produced by a strip casting method or the like is crushed to a size of 3 μm or more and 10 μm or less by using a jet mill or the like, then molded in a magnetic field and sintered at a temperature of 900° C. or more and 1100° C. or less It can be prepared.

(RL−RH−M系合金を準備する工程)
前記RL−RH−M系合金において、RLは軽希土類元素のうちの少なくとも1つであり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、RLの含有量は、RL−RH−M系合金全体の60mass%以上97mass%以下である。軽希土類元素は、La、Ce、Pr、Nd、Pm、Sm、Euなどが挙げられる。RHは、Tb、DyおよびHoからなる群から選択された少なくとも1つであり、RHの含有量は、RL−RH−M系合金全体の1mass%以上8mass%以下である。Mは、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1つであり、Mの含有量は、RL−RH−M系合金全体の2mass%以上39mass%以下である。RL−RH−M系合金の典型例は、TbNdPrCu合金、TbNdCePrCu合金、TbNdGa合金、TbNdPrGaCu合金などである。また、RL―M合金と共にRHのフッ化物、酸化物、酸フッ化物等を準備してもよい。RHのフッ化物、酸化物、酸フッ化物としては、例えば、TbF、DyF、Tb、Dy、TbOF、DyOFが挙げられる。RL−RH−M系合金は、RL、RHおよびMそれぞれの含有量を調整することにより、上述した元素以外の元素(例えばSi、Mn等)を少量(例えば合計で2mass%程度)含有してもよい。
(Step of preparing RL-RH-M alloy)
In the RL-RH-M based alloy, RL is at least one of light rare earth elements, and at least contains at least one selected from the group consisting of Nd, Pr and Ce, and the content of RL is RL. -RH-M system alloy whole 60 mass% or more and 97 mass% or less. Examples of the light rare earth element include La, Ce, Pr, Nd, Pm, Sm and Eu. RH is at least one selected from the group consisting of Tb, Dy and Ho, and the content of RH is 1 mass% or more and 8 mass% or less of the entire RL-RH-M alloy. M is at least one selected from the group consisting of Cu, Ga, Fe, Co, Ni, and Al, and the content of M is 2 mass% or more and 39 mass% or less of the entire RL-RH-M alloy. is there. Typical examples of the RL-RH-M alloy are TbNdPrCu alloy, TbNdCePrCu alloy, TbNdGa alloy, TbNdPrGaCu alloy and the like. Further, RH fluorides, oxides, oxyfluorides and the like may be prepared together with the RL-M alloy. Examples of RH fluorides, oxides, and acid fluorides include TbF 3 , DyF 3 , Tb 2 O 3 , Dy 2 O 3 , Tb 4 OF, and Dy 4 OF. The RL-RH-M based alloy contains a small amount of elements (for example, about 2 mass% in total) other than the above-mentioned elements by adjusting the contents of RL, RH, and M, respectively. Good.

RLが60mass%未満であると、RHおよびMがR−T−B系焼結磁石素材内部に導入されにくくなり、HcJが低下する可能性があり、97mass%を超えるとRL−RH−M系合金の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じる可能性がある。好ましくは、RLの含有量はRL−RH−M系合金全体の70mass%以上95mass%以下である。より高いHcJを得ることができる。 If RL is less than 60 mass%, it becomes difficult for RH and M to be introduced into the R-T-B based sintered magnet material, and H cJ may decrease, and if it exceeds 97 mass%, RL-RH-M. The alloy powder becomes very active during the manufacturing process of the base alloy. As a result, there is a possibility that remarkable oxidation or ignition of the alloy powder may occur. Preferably, the content of RL is 70 mass% or more and 95 mass% or less of the entire RL-RH-M alloy. Higher H cJ can be obtained.

RHが1mass%未満であると、RHによるHcJ向上効果が得られない可能性があり、8mass%を超えるとRLおよびMによるHcJ向上効果が低下する可能性があるため、重希土類元素の使用量を低減しつつ、高いBと高いHcJを有するR−T−B系焼結磁石を得ることができない可能性がある。好ましくは、RHの含有量は、RL−RH−M系合金全体の2mass%以上6mass%以下である。より高いBと高いHcJを得ることができる。 If the RH is less than 1 mass %, the H cJ improving effect by RH may not be obtained, and if it exceeds 8 mass %, the H cJ improving effect by RL and M may be reduced, so that the heavy rare earth element while reducing the amount of use, it may be impossible to obtain a R-T-B based sintered magnet having a high B r and high H cJ. Preferably, the content of RH is 2 mass% or more and 6 mass% or less of the entire RL-RH-M alloy. It is possible to obtain a higher B r and a high H cJ.

Mが2mass%未満であるとRLおよびRHが二粒子粒界相に導入されにくくなり、HcJが十分に向上しない可能性があり、39mass%を超えるとRLおよびRHの含有量が低下しHcJが十分に向上しない可能性がある。好ましくは、Mの含有量は、RL−RH−M系合金全体の3mass%以上28mass%以下である。より高いHcJを得ることができる。また、MはGaを含有した方が好ましく、さらにCuを含有した方が好ましい。より高いHcJを得ることができる。 If M is less than 2 mass%, RL and RH are less likely to be introduced into the two-grain grain boundary phase, and H cJ may not be sufficiently improved, and if it exceeds 39 mass%, the content of RL and RH is lowered and H cJ may not be sufficiently improved. Preferably, the content of M is 3 mass% or more and 28 mass% or less of the entire RL-RH-M alloy. Higher H cJ can be obtained. Further, M preferably contains Ga, and more preferably contains Cu. Higher H cJ can be obtained.

RL−RH−M系合金の作製方法は、特に限定されない。ロール急冷法によって作製してもよいし、鋳造法で作製してもよい。また、これらの合金を粉砕して合金粉末にしてもよい。遠心アトマイズ法、回転電極法、ガスアトマイズ法、プラズマアトマイズ法などの公知のアトマイズ法で作製してもよい。 The method for producing the RL-RH-M alloy is not particularly limited. It may be manufactured by a roll quenching method or a casting method. Further, these alloys may be crushed to form alloy powder. It may be produced by a known atomizing method such as a centrifugal atomizing method, a rotating electrode method, a gas atomizing method, or a plasma atomizing method.

(拡散工程)
前記によって準備したR−T−B系焼結磁石素材の表面の少なくとも一部に、前記によって準備したRL−RH−M系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程を行う。これにより、RL−RH−M合金からRL、RHおよびMを含む液相が生成し、その液相がR−T−B系焼結磁石素材中の粒界を経由して焼結素材表面から内部に拡散導入される。拡散工程における前記R−T−B系焼結磁石素材への前記RL−RH−M系合金の付着量を4mass%以上15mass%以下で、かつ、前記RL−RH−M系合金による前記R−T−B系焼結磁石素材へのRHの付着量を0.1mass%以上0.6mass%以下とする。これにより、極めて高いHcJ向上効果を得ることができる。R−T−B系焼結磁石素材へのRL−RH−M系合金の付着量が4mass%未満であると、磁石素材内部へのRHおよびRLおよびMの導入量が少なすぎて高いHcJを得ることができない可能性があり、15mass%を超えると、RHおよびRLおよびMの導入量が多すぎてBが大幅に低下したり、重希土類元素の使用量が増加し過ぎてしまうだけでなく、磁石内部まで拡散しきれないRL−RH−M系合金が磁石表面に残存し、耐食性や加工性など別の問題が発生する可能性がある。好ましくは、前記R−T−B系焼結磁石素材への前記RL−RH−M系合金の付着量は5mass%以上10mass%以下である。より高いHcJを得ることができる。また、前記RL−RH−M系合金による前記R−T−B系焼結磁石素材へのRHの付着量が0.1mass%未満であると、RHによるHcJ向上効果が得られない可能性があり、0.6mass%を超えると重希土類元素の使用量を低減しつつ、高いHcJを有するR−T−B系焼結磁石を得ることができない。好ましくは、前記RL−RH−M系合金による前記R−T−B系焼結磁石素材へのRHの付着量が0.1mass%以上0.5mass%以下である。
(Diffusion process)
At least a part of the RL-RH-M alloy prepared as described above is attached to at least a part of the surface of the RTB-based sintered magnet material prepared as described above, and the temperature is set to 700 in a vacuum or an inert gas atmosphere. A diffusion process of heating at a temperature of not less than 1°C and not more than 1100°C is performed. As a result, a liquid phase containing RL, RH, and M is generated from the RL-RH-M alloy, and the liquid phase passes from the sintered material surface via the grain boundary in the RTB-based sintered magnet material. It is introduced by diffusion inside. The amount of the RL-RH-M alloy deposited on the R-T-B sintered magnet material in the diffusion step is 4 mass% or more and 15 mass% or less, and the R- by the RL-RH-M alloy is The amount of RH adhering to the TB type sintered magnet material is set to 0.1 mass% or more and 0.6 mass% or less. This makes it possible to obtain an extremely high H cJ improving effect. If the amount of the RL-RH-M based alloy deposited on the R-T-B based sintered magnet material is less than 4 mass%, the amount of RH, RL and M introduced into the magnet material is too small and the H cJ is high . may not be obtained, exceeds 15 mass%, or B r is significantly lower too much introduction amount of RH and RL and M, only the amount of the heavy rare earth element is too increased Not only that, the RL-RH-M-based alloy that cannot be completely diffused into the magnet may remain on the surface of the magnet, causing another problem such as corrosion resistance and workability. Preferably, the amount of the RL-RH-M alloy deposited on the R-T-B sintered magnet material is 5 mass% or more and 10 mass% or less. Higher H cJ can be obtained. Further, if the amount of RH adhered to the RTB-based sintered magnet material by the RL-RH-M alloy is less than 0.1 mass%, the effect of improving HcJ by RH may not be obtained. However, if it exceeds 0.6 mass %, it is impossible to obtain an RTB -based sintered magnet having a high H cJ while reducing the amount of heavy rare earth elements used. Preferably, the amount of RH deposited on the R-T-B based sintered magnet material by the RL-RH-M based alloy is 0.1 mass% or more and 0.5 mass% or less.

ここで、RHの付着量は、R−T−B系焼結磁石素材に付着しているRL−RH−M系合金が含有するRHの量であり、R−T−B系焼結磁石素材の質量を100mass%としたときの質量比率によって規定される。 Here, the adhered amount of RH is the amount of RH contained in the RL-RH-M system alloy adhered to the R-T-B system sintered magnet material, and the R-T-B system sintered magnet material. Is defined by the mass ratio when the mass of 100 mass% is set.

拡散工程における加熱する温度が700℃未満であると、RH、RLおよびMを含む液相量が少なすぎて高いHcJを得ることができない可能性がある。一方、1100℃を超えるとHcJが大幅に低下する可能性がある。好ましくは、拡散工程における加熱する温度は800℃以上1000℃以下である。より高いHcJを得ることができる。また、好ましくは、拡散工程(700℃以上1100℃以下)が実施されたR−T−B系焼結磁石に対し、拡散工程を実施した温度から15℃/分以上の冷却速度で300℃まで冷却した方が好ましい。より高いHcJを得ることができる。 When the heating temperature in the diffusion step is lower than 700° C., the amount of liquid phase containing RH, RL and M may be too small to obtain high H cJ . On the other hand, if it exceeds 1100° C., H cJ may be significantly reduced. Preferably, the heating temperature in the diffusion step is 800° C. or higher and 1000° C. or lower. Higher H cJ can be obtained. In addition, preferably, for the RTB-based sintered magnet that has been subjected to the diffusion step (700° C. or more and 1100° C. or less), from the temperature at which the diffusion step is performed to 300° C. at a cooling rate of 15° C./min or more. It is preferable to cool. Higher H cJ can be obtained.

拡散工程は、R−T−B系焼結磁石素材表面に、任意形状のRL−RH−M合金を配置し、公知の熱処理装置を用いて行うことができる。例えば、R−T−B系焼結磁石素材表面をRL−RH−M合金の粉末層で覆い、拡散工程を行うことができる。例えば、塗布対象の表面に粘着剤を塗布する塗布工程と、粘着剤を塗布した領域にRL−RH−M合金を付着させる工程を行ってもよい。粘着剤としては、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール)、PVP(ポリビニルピロリドン)などが挙げられる。粘着剤が水系の粘着剤の場合、塗布の前にR−T−B系焼結磁石素材を予備的に加熱してもよい。予備加熱の目的は余分な溶媒を除去し粘着力をコントロールすること、及び、均一に粘着剤を付着させることである。加熱温度は60〜200℃が好ましい。揮発性の高い有機溶媒系の粘着剤の場合はこの工程は省略してもよい。また、例えばRL−RH−M合金を分散媒中に分散させたスラリーをR−T−B系焼結磁石素材表面に塗布した後、分散媒を蒸発させRL−RH−M合金とR−T−B系焼結磁石素材とを付着させてもよい。なお、分散媒として、アルコール(エタノール等)、アルデヒドおよびケトンを例示できる。またRHは、RL―M合金と共にRHのフッ化物、酸化物、酸フッ化物等をR−T−B系焼結磁石素材表面に配置することにより導入してもよい。すなわち、RHと共にRLおよびMを同時に拡散させることができればその方法は特に問わない。 The diffusion step can be performed using a known heat treatment device by placing an RL-RH-M alloy having an arbitrary shape on the surface of the RTB-based sintered magnet material. For example, the surface of the R-T-B based sintered magnet material may be covered with a powder layer of the RL-RH-M alloy to perform the diffusion step. For example, you may perform the application process of apply|coating a pressure sensitive adhesive on the surface of a coating object, and the process of making a RL-RH-M alloy adhere to the area|region where the pressure sensitive adhesive was applied. Examples of the adhesive include PVA (polyvinyl alcohol), PVB (polyvinyl butyral), PVP (polyvinylpyrrolidone), and the like. When the pressure-sensitive adhesive is a water-based pressure-sensitive adhesive, the RTB-based sintered magnet material may be preliminarily heated before coating. The purpose of preheating is to remove excess solvent to control the adhesive strength, and to adhere the adhesive evenly. The heating temperature is preferably 60 to 200°C. This step may be omitted in the case of a highly volatile organic solvent-based pressure-sensitive adhesive. In addition, for example, a slurry in which an RL-RH-M alloy is dispersed in a dispersion medium is applied to the surface of an RTB-based sintered magnet material, and then the dispersion medium is evaporated to evaporate the RL-RH-M alloy and R-T. A B-based sintered magnet material may be attached. Examples of the dispersion medium include alcohol (such as ethanol), aldehyde and ketone. Further, RH may be introduced by arranging a fluoride, oxide, oxyfluoride or the like of RH together with the RL-M alloy on the surface of the RTB-based sintered magnet material. That is, the method is not particularly limited as long as RL and M can be diffused simultaneously with RH.

また、RL−RH―M合金の少なくとも一部がR−T−B系焼結磁石素材の少なくとも一部に付着していれば、その配置位置は特に問わないが、好ましくは、RL−RH−M合金は、少なくともR−T−B系焼結磁石素材の配向方向に対して垂直な表面に付着させるように配置する。より効率よくRL、RHおよびMを含む液相を磁石表面から内部に拡散導入させることができる。この場合、R−T−B系焼結磁石素材の配向方向のみにRL−RH−M合金を付着させても、R−T−B系焼結磁石素材の全面にRL−RH−M合金を付着させてもよい。 Further, if at least a part of the RL-RH-M alloy is attached to at least a part of the RTB-based sintered magnet material, the arrangement position thereof is not particularly limited, but preferably RL-RH- The M alloy is arranged so as to adhere to at least the surface perpendicular to the orientation direction of the RTB sintered magnet material. The liquid phase containing RL, RH, and M can be more efficiently diffused and introduced from the magnet surface to the inside. In this case, even if the RL-RH-M alloy is adhered only in the orientation direction of the RTB-based sintered magnet material, the RL-RH-M alloy is applied to the entire surface of the RTB-based sintered magnet material. It may be attached.

(熱処理を実施する工程)
好ましくは、拡散工程が実施されたR−T−B系焼結磁石に対して、真空又は不活性ガス雰囲気中、400℃以上750℃以下で、かつ、前記拡散工程で実施した温度よりも低い温度で熱処理を行う。熱処理を行うことにより、より高いHcJを得ることができる。
(Process of performing heat treatment)
Preferably, with respect to the RTB-based sintered magnet that has been subjected to the diffusion step, the temperature is 400° C. or higher and 750° C. or lower in a vacuum or an inert gas atmosphere, and is lower than the temperature performed in the diffusion step. Heat treatment is performed at a temperature. Higher H cJ can be obtained by performing the heat treatment.

本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

実験例1
[R−T−B系焼結磁石素材(磁石素材)を準備する工程]
表1の符号1−Aに示す磁石素材の組成となるように、各元素を秤量しストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 1
[Step of preparing RTB sintered magnet material (magnet material)]
Each element was weighed and cast by a strip casting method so as to have the composition of the magnet raw material shown by reference numeral 1-A in Table 1, and a flaky raw material alloy having a thickness of 0.2 to 0.4 mm was obtained. The obtained flaky raw material alloy was pulverized with hydrogen and then subjected to a dehydrogenation treatment of heating in vacuum to 550° C. and then cooling to obtain coarsely pulverized powder. Next, after adding zinc stearate as a lubricant to the obtained coarsely pulverized powder in an amount of 0.04 mass% with respect to 100 mass% of the coarsely pulverized powder and mixing them, nitrogen was obtained by using an air flow type pulverizer (jet mill device). Dry pulverization was performed in an air stream to obtain finely pulverized powder (alloy powder) having a particle size D 50 of 4 μm. The particle size D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate as a lubricant was added to the finely pulverized powder in an amount of 0.05 mass% with respect to 100 mass% of the finely pulverized powder, and the mixture was molded in a magnetic field to obtain a molded body. A so-called orthogonal magnetic field molding device (transverse magnetic field molding device) in which the magnetic field applying direction and the pressurizing direction are orthogonal to each other was used as the molding device.

得られた成形体を、真空中で4時間焼結(焼結による緻密化が十分起こる温度を選定)した後急冷し、磁石素材を得た。得られた磁石素材の密度は7.5Mg/m以上であった。得られた磁石素材の成分の結果を表1に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、磁石素材の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.1mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。表1における「[T]/[B]」は、Tを構成する各元素(Fe、Co、Al、Si、Mn)に対し、分析値(mass%)をその元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。以下の全ての表も同様である。なお、表1の各組成および酸素量、炭素量を合計しても100mass%にはならない。これは、前記の通り、各成分によって分析方法が異なるためである。その他の表についても同様である。 The obtained molded body was sintered in a vacuum for 4 hours (selecting a temperature at which sufficient densification by sintering occurs) and then rapidly cooled to obtain a magnet material. The density of the obtained magnet material was 7.5 Mg/m 3 or more. Table 1 shows the results of the components of the obtained magnet material. In addition, each component in Table 1 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, as a result of measuring the oxygen content of the magnet material by the gas melting-infrared absorption method, it was confirmed that all were about 0.1 mass %. Moreover, as a result of measuring C (carbon content) using a gas analyzer by a combustion-infrared absorption method, it was confirmed that it was around 0.1 mass %. “[T]/[B]” in Table 1 is obtained by dividing the analytical value (mass %) for each element (Fe, Co, Al, Si, Mn) constituting T by the atomic weight of the element. It is the ratio (a/b) of the value obtained by summing these values (a) and the value obtained by dividing the B analysis value (mass %) by the atomic weight of B (b). The same applies to all the tables below. In addition, even if each composition, oxygen content, and carbon content of Table 1 are added together, it does not become 100 mass %. This is because the analysis method differs depending on each component as described above. The same applies to the other tables.

Figure 2020120102
Figure 2020120102

[RL−RH−M系合金を準備する工程]
表2の符号1−aに示すRL−RH−M系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られたRL−RH−M系合金の組成を表2に示す。尚、表2における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Process of preparing RL-RH-M alloy]
Each element is weighed and the raw materials thereof are melted so as to have the composition of the RL-RH-M-based alloy shown by reference numeral 1-a in Table 2, and ribbons or flakes are prepared by a single roll ultra-quenching method (melt spinning method). A shaped alloy was obtained. Table 2 shows the composition of the obtained RL-RH-M alloy. In addition, each component in Table 2 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120102
Figure 2020120102

[拡散工程]
表1の符号1−AのR−T−B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体とした。加工後のR−T−B系焼結磁石素材にディッピング法により粘着剤としてPVAをR−T−B系焼結磁石素材の全面に塗布した。次に表3に示す作製条件で粘着剤を塗布したR−T−B系焼結磁石素材全面にRL−RH−M系合金を付着させた。なお、RL−RH−M系合金付着量およびRH付着量は、RL−RH−M系合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き38〜1000μmの数種類の篩を通過させ、粒度の異なるRL−RH−M系合金を用いることにより調整した。そして、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、表3の拡散工程に示す条件で前記RL−RH−M系合金及び前記R−T−B系焼結磁石素材を加熱した後、冷却した。
[Diffusion process]
The R-T-B based sintered magnet material of 1-A in Table 1 was cut and cut into a cube of 7.2 mm x 7.2 mm x 7.2 mm. PVA as an adhesive was applied to the entire surface of the RTB-based sintered magnet material by a dipping method on the processed RTB-based sintered magnet material. Next, the RL-RH-M type alloy was adhered to the entire surface of the R-T-B type sintered magnet material coated with the pressure-sensitive adhesive under the production conditions shown in Table 3. In addition, the RL-RH-M alloy deposition amount and the RH deposition amount are obtained by crushing the RL-RH-M alloy in an argon atmosphere using a mortar and then passing through several kinds of sieves having openings of 38 to 1000 μm. It was adjusted by using RL-RH-M type alloys having different grain sizes. Then, using a vacuum heat treatment furnace, the RL-RH-M alloy and the RTB sintered magnet material were heated under reduced pressure argon controlled to 200 Pa under the conditions shown in the diffusion step of Table 3. Then, it cooled.

[熱処理を実施する工程]
拡散工程の後のR−T−B系焼結磁石に対し、真空熱処理炉を用いて200Paに制御した減圧アルゴン中にて500℃に加熱する熱処理を行った。熱処理後の各サンプルに対し表面研削盤を用いて各サンプルの全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体状のサンプル(R−T−B系焼結磁石)を得た。尚、拡散工程を実施する工程におけるRL−RH−M系合金及びR−T−B系焼結磁石素材の加熱温度、並びに、拡散工程の後の熱処理を実施する工程におけるR−T―B系焼結磁石素材の加熱温度は、それぞれ熱電対により測定した。
[Step of performing heat treatment]
After the diffusion step, the RTB-based sintered magnet was subjected to a heat treatment of heating it to 500° C. in reduced pressure argon controlled to 200 Pa using a vacuum heat treatment furnace. The entire surface of each sample after the heat treatment was cut using a surface grinder to obtain a cubic sample (RTB sintered magnet) of 7.0 mm × 7.0 mm × 7.0 mm. Obtained. The heating temperature of the RL-RH-M alloy and the RTB-based sintered magnet material in the step of performing the diffusion step, and the RTB-type in the step of performing heat treatment after the diffusion step. The heating temperature of the sintered magnet material was measured with a thermocouple.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各サンプルのB及びHcJを測定した。測定結果を表3に示す。表3の通りサンプルNo.1−4〜1−7の本発明例は、いずれも重希土類元素の使用量を低減しつつ、高いBと高いHcJが得られていることがわかる。これに対し、RL−RH−M系合金の付着量が4mass%未満であるサンプルNo.1−1〜1−3は高いHcJが得られなかった。さらに、RL−RH−M系合金の付着量が15mass%超であるサンプルNo.1−9はBrが大幅に低下している。また、サンプルNo.1−8は高いBと高いHcJが得られているが、RH付着量が0.6mass%超であり、HcJ向上効果が低い(No.1−7からHcJがあまり向上しておらず、Bが低下している)。そのため、重希土類元素の使用量を低減しつつ、高いBと高いHcJを有するR−T−B系焼結磁石を得ることができない。
[sample test]
The obtained sample was measured B r and H cJ of each sample by the B-H tracer. The measurement results are shown in Table 3. As shown in Table 3, sample No. The present invention Examples of 1-4~1-7 are all while reducing the amount of heavy rare earth elements, it can be seen that obtain a high B r and high H cJ. On the other hand, the sample No. in which the adhesion amount of the RL-RH-M alloy is less than 4 mass%. No high H cJ was obtained for 1-1 to 1-3. Furthermore, the sample No. in which the adhesion amount of the RL-RH-M alloy is more than 15 mass%. In 1-9, Br is significantly reduced. In addition, the sample No. 1-8 is higher B r and high H cJ are obtained, a RH adhesion amount 0.6 mass% greater, and H cJ from H cJ improvement is low (No. 1-7 is significantly improved No, and Br has fallen). Therefore, while reducing the amount of heavy rare earth elements, it is impossible to obtain a R-T-B based sintered magnet having a high B r and high H cJ.

Figure 2020120102
Figure 2020120102

実験例2
[R−T−B系焼結磁石素材(磁石素材)を準備する工程]
表4の符号2−Aに示す磁石素材の組成となるように、各元素を秤量しストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 2
[Step of preparing RTB sintered magnet material (magnet material)]
Each element was weighed and cast by the strip casting method so as to have the composition of the magnet raw material shown by symbol 2-A in Table 4, and a flaky raw material alloy having a thickness of 0.2 to 0.4 mm was obtained. The obtained flaky raw material alloy was pulverized with hydrogen and then subjected to a dehydrogenation treatment of heating in vacuum to 550° C. and then cooling to obtain coarsely pulverized powder. Next, after adding zinc stearate as a lubricant to the obtained coarsely pulverized powder in an amount of 0.04 mass% with respect to 100 mass% of the coarsely pulverized powder and mixing them, nitrogen was obtained by using an air flow type pulverizer (jet mill device). Dry pulverization was performed in an air stream to obtain finely pulverized powder (alloy powder) having a particle size D 50 of 4 μm. The particle size D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate as a lubricant was added to the finely pulverized powder in an amount of 0.05 mass% with respect to 100 mass% of the finely pulverized powder, and the mixture was molded in a magnetic field to obtain a molded body. A so-called orthogonal magnetic field molding device (transverse magnetic field molding device) in which the magnetic field applying direction and the pressurizing direction are orthogonal to each other was used as the molding device.

得られた成形体を、真空中で4時間焼結(焼結による緻密化が十分起こる温度を選定)した後急冷し、磁石素材を得た。得られた磁石素材の密度は7.5Mg/m以上であった。得られた磁石素材の成分の結果を表1に示す。なお、表4における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、磁石素材の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.1mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。 The obtained molded body was sintered in a vacuum for 4 hours (selecting a temperature at which sufficient densification by sintering occurs) and then rapidly cooled to obtain a magnet material. The density of the obtained magnet material was 7.5 Mg/m 3 or more. Table 1 shows the results of the components of the obtained magnet material. In addition, each component in Table 4 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, as a result of measuring the oxygen content of the magnet material by the gas melting-infrared absorption method, it was confirmed that all were about 0.1 mass %. Moreover, as a result of measuring C (carbon content) using a gas analyzer by a combustion-infrared absorption method, it was confirmed that it was around 0.1 mass %.

Figure 2020120102
Figure 2020120102

[RL−RH−M系合金を準備する工程]
表5の符号2−aから2−gに示すRL−RH−M系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られたRL−RH−M系合金の組成を表5に示す。尚、表5における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Process of preparing RL-RH-M alloy]
Each element is weighed and the raw materials thereof are melted so as to have the composition of the RL-RH-M alloy shown by the symbols 2-a to 2-g in Table 5, and the single roll ultra-quenching method (melt spinning method) is used. A ribbon or flake alloy was obtained by. Table 5 shows the composition of the obtained RL-RH-M alloy. In addition, each component in Table 5 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120102
Figure 2020120102

[拡散工程]
表4の符号2−AのR−T−B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体とした。加工後のR−T−B系焼結磁石素材にディッピング法により粘着剤としてPVAをR−T−B系焼結磁石素材の全面に塗布した。次に表6に示す作製条件で粘着剤を塗布したR−T−B系焼結磁石素材全面にRL−RH−M系合金を付着させた。なお、RL−RH−M系合金付着量およびRH付着量は、RL−RH−M系合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き38〜1000μmの数種類の篩を通過させ、粒度の異なるRL−RH−M系合金を用いることにより調整した。そして、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、表6の拡散工程に示す条件で前記RL−RH−M系合金及び前記R−T−B系焼結磁石素材を加熱した後、冷却した。
[Diffusion process]
The R-T-B based sintered magnet material with the code 2-A in Table 4 was cut and cut into a cube of 7.2 mm x 7.2 mm x 7.2 mm. PVA as an adhesive was applied to the entire surface of the RTB-based sintered magnet material by a dipping method on the processed RTB-based sintered magnet material. Next, the RL-RH-M type alloy was adhered to the entire surface of the R-T-B type sintered magnet material coated with the pressure-sensitive adhesive under the production conditions shown in Table 6. In addition, the RL-RH-M alloy deposition amount and the RH deposition amount are obtained by crushing the RL-RH-M alloy in an argon atmosphere using a mortar and then passing through several kinds of sieves having openings of 38 to 1000 μm. It was adjusted by using RL-RH-M type alloys having different grain sizes. Then, using a vacuum heat treatment furnace, the RL-RH-M alloy and the RTB sintered magnet material were heated under reduced pressure argon controlled to 200 Pa under the conditions shown in the diffusion step of Table 6. Then, it cooled.

[熱処理を実施する工程]
拡散工程の後のR−T−B系焼結磁石に対し、真空熱処理炉を用いて200Paに制御した減圧アルゴン中にて500℃に加熱する熱処理を行った。熱処理後の各サンプルに対し表面研削盤を用いて各サンプルの全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体状のサンプル(R−T−B系焼結磁石)を得た。尚、拡散工程を実施する工程におけるRL−RH−M系合金及びR−T−B系焼結磁石素材の加熱温度、並びに、拡散工程の後の熱処理を実施する工程におけるR−T―B系焼結磁石素材の加熱温度は、それぞれ熱電対により測定した。
[Step of performing heat treatment]
After the diffusion step, the RTB-based sintered magnet was subjected to a heat treatment of heating it to 500° C. in reduced pressure argon controlled to 200 Pa using a vacuum heat treatment furnace. The entire surface of each sample after the heat treatment was cut using a surface grinder to obtain a cubic sample (RTB sintered magnet) of 7.0 mm × 7.0 mm × 7.0 mm. Obtained. The heating temperature of the RL-RH-M alloy and the RTB-based sintered magnet material in the step of performing the diffusion step, and the RTB-type in the step of performing heat treatment after the diffusion step. The heating temperature of the sintered magnet material was measured with a thermocouple.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各サンプルのB及びHcJを測定した。測定結果を表6に示す。表6の通りサンプルNo.2−2〜2−7の本発明例は、いずれも重希土類元素の使用量を低減しつつ、高いBと高いHcJが得られていることがわかる。これに対し、RL−RH−M系合金のRH量が1%未満であるサンプルNo.2−1は高いHcJが得られなかった。また、サンプルNo.2−8は高いBと高いHcJが得られているが、RL−RH−M系合金のRH量が8%超で、且つRH付着量が0.6mass%超であり、HcJ向上効果が低い(No.2−7からHcJがほとんど向上していない)。そのため、重希土類元素の使用量を低減しつつ、高いBと高いHcJを有するR−T−B系焼結磁石を得ることができない。
[sample test]
The obtained sample was measured B r and H cJ of each sample by the B-H tracer. The measurement results are shown in Table 6. As shown in Table 6, sample No. The present invention Examples of 2-2~2-7 are all while reducing the amount of heavy rare earth elements, it can be seen that obtain a high B r and high H cJ. On the other hand, Sample No. in which the RH amount of the RL-RH-M alloy is less than 1%. No high H cJ was obtained for 2-1. In addition, the sample No. 2-8 is higher B r and high H cJ are obtained, the amount RH of RL-RH-M alloy is 8 percent, and RH adhesion amount is 0.6 mass percent, H cJ increased The effect is low (from No. 2-7, H cJ is hardly improved). Therefore, while reducing the amount of heavy rare earth elements, it is impossible to obtain a R-T-B based sintered magnet having a high B r and high H cJ.

Figure 2020120102
Figure 2020120102

実験例3
[R−T−B系焼結磁石素材(磁石素材)を準備する工程]
表7の符号3−Aに示す磁石素材の組成となるように、各元素を秤量しストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 3
[Step of preparing RTB sintered magnet material (magnet material)]
Each element was weighed and cast by the strip casting method so as to have the composition of the magnet material shown by the reference numeral 3-A in Table 7, and a flaky raw material alloy having a thickness of 0.2 to 0.4 mm was obtained. The obtained flaky raw material alloy was pulverized with hydrogen and then subjected to a dehydrogenation treatment of heating in vacuum to 550° C. and then cooling to obtain coarsely pulverized powder. Next, after adding zinc stearate as a lubricant to the obtained coarsely pulverized powder in an amount of 0.04 mass% with respect to 100 mass% of the coarsely pulverized powder and mixing them, nitrogen was obtained by using an air flow type pulverizer (jet mill device). Dry pulverization was performed in an air stream to obtain finely pulverized powder (alloy powder) having a particle size D 50 of 4 μm. The particle size D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate as a lubricant was added to the finely pulverized powder in an amount of 0.05 mass% with respect to 100 mass% of the finely pulverized powder, and the mixture was molded in a magnetic field to obtain a molded body. A so-called orthogonal magnetic field molding device (transverse magnetic field molding device) in which the magnetic field applying direction and the pressurizing direction are orthogonal to each other was used as the molding device.

得られた成形体を、真空中で4時間焼結(焼結による緻密化が十分起こる温度を選定)した後急冷し、磁石素材を得た。得られた磁石素材の密度は7.5Mg/m以上であった。得られた磁石素材の成分の結果を表7に示す。なお、表7における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、磁石素材の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.1mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。 The obtained molded body was sintered in a vacuum for 4 hours (selecting a temperature at which sufficient densification by sintering occurs) and then rapidly cooled to obtain a magnet material. The density of the obtained magnet material was 7.5 Mg/m 3 or more. Table 7 shows the results of the components of the obtained magnetic material. In addition, each component in Table 7 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, as a result of measuring the oxygen content of the magnet material by the gas melting-infrared absorption method, it was confirmed that all were about 0.1 mass %. Moreover, as a result of measuring C (carbon content) using a gas analyzer by a combustion-infrared absorption method, it was confirmed that it was around 0.1 mass %.

Figure 2020120102
Figure 2020120102

[RL−RH−M系合金を準備する工程]
表8の符号3−aに示すRL−RH−M系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られた合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き300μmの篩を通過させ、RL−RH−M系合金を準備した。得られたRL−RH−M系合金の組成を表8に示す。尚、表8における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Process of preparing RL-RH-M alloy]
Each element is weighed and the raw materials thereof are melted so as to have the composition of the RL-RH-M alloy shown by symbol 3-a in Table 8, and ribbons or flakes are formed by a single roll ultra-quenching method (melt spinning method). A shaped alloy was obtained. The obtained alloy was pulverized in an argon atmosphere using a mortar, and then passed through a sieve having an opening of 300 μm to prepare an RL-RH-M alloy. Table 8 shows the composition of the obtained RL-RH-M alloy. In addition, each component in Table 8 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120102
Figure 2020120102

[拡散工程]
表9の符号3−AのR−T−B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体とした。加工後のR−T−B系焼結磁石素材にディッピング法により粘着剤としてPVAをR−T−B系焼結磁石素材の全面に塗布した。次に表9に示す作製条件で粘着剤を塗布したR−T−B系焼結磁石素材全面にRL−RH−M系合金を付着させた。そして、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、表9の拡散工程に示す条件で前記RL−RH−M系合金及び前記R−T−B系焼結磁石素材を加熱した後、冷却した。
[Diffusion process]
The R-T-B based sintered magnet material indicated by the reference numeral 3-A in Table 9 was cut and cut into a cube of 7.2 mm x 7.2 mm x 7.2 mm. PVA as an adhesive was applied to the entire surface of the RTB-based sintered magnet material by a dipping method on the processed RTB-based sintered magnet material. Next, the RL-RH-M type alloy was adhered to the entire surface of the R-T-B type sintered magnet material coated with the adhesive under the production conditions shown in Table 9. Then, using a vacuum heat treatment furnace, the RL-RH-M alloy and the RTB sintered magnet material were heated under reduced pressure argon controlled to 200 Pa under the conditions shown in the diffusion step of Table 9. Then, it cooled.

[熱処理を実施する工程]
拡散工程の後のR−T−B系焼結磁石に対し、真空熱処理炉を用いて200Paに制御した減圧アルゴン中にて500℃に加熱する熱処理を行った。熱処理後の各サンプルに対し表面研削盤を用いて各サンプルの全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体状のサンプル(R−T−B系焼結磁石)を得た。尚、拡散工程を実施する工程におけるRL−RH−M系合金及びR−T−B系焼結磁石素材の加熱温度、並びに、拡散工程の後の熱処理を実施する工程におけるR−T―B系焼結磁石素材の加熱温度は、それぞれ熱電対により測定した。
[Step of performing heat treatment]
After the diffusion step, the RTB-based sintered magnet was subjected to a heat treatment of heating it to 500° C. in reduced pressure argon controlled to 200 Pa using a vacuum heat treatment furnace. The entire surface of each sample after the heat treatment was cut using a surface grinder to obtain a cubic sample (RTB sintered magnet) of 7.0 mm × 7.0 mm × 7.0 mm. Obtained. The heating temperature of the RL-RH-M alloy and the RTB-based sintered magnet material in the step of performing the diffusion step, and the RTB-type in the step of performing heat treatment after the diffusion step. The heating temperature of the sintered magnet material was measured with a thermocouple.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各サンプルのB及びHcJを測定した。測定結果を表9に示す。表9の通りサンプルNo.3−2〜3−8の本発明例は、いずれも重希土類元素の使用量を低減しつつ、高いBと高いHcJが得られていることがわかる。これに対し、拡散工程の処理温度が700℃未満であるサンプルNo.3−1は高いHcJが得られなかった。さらに、拡散工程の処理温度が1100℃超であるサンプルNo.3−9はBおよびHcJ大幅に低下している。
[sample test]
The obtained sample was measured B r and H cJ of each sample by the B-H tracer. The measurement results are shown in Table 9. As shown in Table 9, sample No. The present invention Examples of 3-2~3-8 are all while reducing the amount of heavy rare earth elements, it can be seen that obtain a high B r and high H cJ. On the other hand, the sample No. whose treatment temperature in the diffusion step is less than 700° C. 3-1 could not obtain high HcJ . Further, in the sample No. 1 having a treatment temperature of more than 1100° C. in the diffusion step. 3-9 is reduced B r and H cJ significantly.

Figure 2020120102
Figure 2020120102

実験例4
[R−T−B系焼結磁石素材(磁石素材)を準備する工程]
表10の符号4−A〜4−Dに示す磁石素材の組成となるように、各元素を秤量しストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 4
[Step of preparing RTB sintered magnet material (magnet material)]
Each element was weighed and cast by the strip casting method so as to have the composition of the magnet material shown by the symbols 4-A to 4-D in Table 10, and a flaky raw material alloy having a thickness of 0.2 to 0.4 mm was obtained. It was The obtained flaky raw material alloy was pulverized with hydrogen and then subjected to a dehydrogenation treatment of heating in vacuum to 550° C. and then cooling to obtain coarsely pulverized powder. Next, after adding zinc stearate as a lubricant to the obtained coarsely pulverized powder in an amount of 0.04 mass% with respect to 100 mass% of the coarsely pulverized powder and mixing them, nitrogen was obtained by using an air flow type pulverizer (jet mill device). Dry pulverization was performed in an air stream to obtain finely pulverized powder (alloy powder) having a particle size D 50 of 4 μm. The particle size D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate as a lubricant was added to the finely pulverized powder in an amount of 0.05 mass% with respect to 100 mass% of the finely pulverized powder, and the mixture was molded in a magnetic field to obtain a molded body. A so-called orthogonal magnetic field molding device (transverse magnetic field molding device) in which the magnetic field applying direction and the pressurizing direction are orthogonal to each other was used as the molding device.

得られた成形体を、真空中、1000℃以上1050℃以下(サンプル毎に焼結による緻密化が十分起こる温度を選定)で4時間焼結した後急冷し、磁石素材を得た。得られた磁石素材の密度は7.5Mg/m以上であった。得られた磁石素材の成分の結果を表1に示す。なお、表10における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、磁石素材の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.1mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。 The obtained molded body was sintered in vacuum at a temperature of 1000° C. or higher and 1050° C. or lower (a temperature at which sufficient densification by sintering is sufficiently selected is selected for each sample) for 4 hours and then rapidly cooled to obtain a magnet material. The density of the obtained magnet material was 7.5 Mg/m 3 or more. Table 1 shows the results of the components of the obtained magnet material. In addition, each component in Table 10 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, as a result of measuring the oxygen content of the magnet material by the gas melting-infrared absorption method, it was confirmed that all were about 0.1 mass %. Moreover, as a result of measuring C (carbon content) using a gas analyzer by a combustion-infrared absorption method, it was confirmed that it was around 0.1 mass %.

Figure 2020120102
Figure 2020120102

[RL−RH−M系合金を準備する工程]
表11の符号4−aに示すRL−RH−M系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られた合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き300μmの篩を通過させ、RL−RH−M系合金を準備した。得られたRL−RH−M系合金の組成を表11に示す。尚、表11における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Process of preparing RL-RH-M alloy]
Each element is weighed and the raw materials thereof are melted so as to have the composition of the RL-RH-M alloy shown by the symbol 4-a in Table 11, and ribbons or flakes are prepared by the single-roll ultra-quenching method (melt spinning method). A shaped alloy was obtained. The obtained alloy was crushed in an argon atmosphere using a mortar and then passed through a sieve with a mesh opening of 300 μm to prepare an RL-RH-M alloy. Table 11 shows the composition of the obtained RL-RH-M alloy. In addition, each component in Table 11 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120102
Figure 2020120102

[拡散工程]
表10の符号4−A〜4−DのR−T−B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体とした。加工後のR−T−B系焼結磁石素材にディッピング法により粘着剤としてPVAをR−T−B系焼結磁石素材の全面に塗布した。次に表12に示す作製条件で粘着剤を塗布したR−T−B系焼結磁石素材全面にRL−RH−M系合金を付着させた。そして、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、表12の拡散工程に示す条件で前記RL−RH−M系合金及び前記R−T−B系焼結磁石素材を加熱した後、冷却した。
[Diffusion process]
The RTB-based sintered magnet materials indicated by the symbols 4-A to 4-D in Table 10 were cut and cut into a cube of 7.2 mm×7.2 mm×7.2 mm. PVA as an adhesive was applied to the entire surface of the RTB-based sintered magnet material by a dipping method on the processed RTB-based sintered magnet material. Next, the RL-RH-M alloy was adhered to the entire surface of the R-T-B sintered magnet material coated with the pressure-sensitive adhesive under the manufacturing conditions shown in Table 12. Then, using a vacuum heat treatment furnace, the RL-RH-M alloy and the RTB sintered magnet material were heated under reduced pressure argon controlled to 200 Pa under the conditions shown in the diffusion step of Table 12. Then, it cooled.

[熱処理を実施する工程]
拡散工程の後のR−T−B系焼結磁石に対し、真空熱処理炉を用いて200Paに制御した減圧アルゴン中にて500℃に加熱する熱処理を行った。熱処理後の各サンプルに対し表面研削盤を用いて各サンプルの全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体状のサンプル(R−T−B系焼結磁石)を得た。尚、拡散工程を実施する工程におけるRL−RH−M系合金及びR−T−B系焼結磁石素材の加熱温度、並びに、拡散工程の後の熱処理を実施する工程におけるR−T―B系焼結磁石素材の加熱温度は、それぞれ熱電対により測定した。
[Step of performing heat treatment]
After the diffusion step, the RTB-based sintered magnet was subjected to a heat treatment of heating it to 500° C. in reduced pressure argon controlled to 200 Pa using a vacuum heat treatment furnace. The entire surface of each sample after the heat treatment was cut using a surface grinder to obtain a cubic sample (RTB sintered magnet) of 7.0 mm × 7.0 mm × 7.0 mm. Obtained. The heating temperature of the RL-RH-M alloy and the RTB-based sintered magnet material in the step of performing the diffusion step, and the RTB-type in the step of performing heat treatment after the diffusion step. The heating temperature of the sintered magnet material was measured with a thermocouple.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各サンプルのB及びHcJを測定した。測定結果を表12に示す。表12の通りサンプルNo.4−1〜4−4の本発明例は、いずれも重希土類元素の使用量を低減しつつ、高いBと高いHcJが得られていることがわかる。
[sample test]
The obtained sample was measured B r and H cJ of each sample by the B-H tracer. The measurement results are shown in Table 12. As shown in Table 12, sample No. The present invention Examples of 4-1 to 4-4 are all while reducing the amount of heavy rare earth elements, it can be seen that obtain a high B r and high H cJ.

Figure 2020120102
Figure 2020120102

実施例5
[R−T−B系焼結磁石素材(磁石素材)を準備する工程]
表13の符号5−Aに示す磁石素材の組成となるように、各元素を秤量しストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Example 5
[Step of preparing RTB sintered magnet material (magnet material)]
Each element was weighed and cast by the strip casting method so as to have the composition of the magnet material shown by the symbol 5-A in Table 13, and a flaky raw material alloy having a thickness of 0.2 to 0.4 mm was obtained. The obtained flaky raw material alloy was pulverized with hydrogen and then subjected to a dehydrogenation treatment of heating in vacuum to 550° C. and then cooling to obtain coarsely pulverized powder. Next, after adding zinc stearate as a lubricant to the obtained coarsely pulverized powder in an amount of 0.04 mass% with respect to 100 mass% of the coarsely pulverized powder and mixing them, nitrogen was obtained by using an air flow type pulverizer (jet mill device). Dry pulverization was performed in an air stream to obtain finely pulverized powder (alloy powder) having a particle size D 50 of 4 μm. The particle size D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate as a lubricant was added to the finely pulverized powder in an amount of 0.05 mass% with respect to 100 mass% of the finely pulverized powder, and the mixture was molded in a magnetic field to obtain a molded body. A so-called orthogonal magnetic field molding device (transverse magnetic field molding device) in which the magnetic field applying direction and the pressurizing direction are orthogonal to each other was used as the molding device.

得られた成形体を、真空中、1040℃(焼結による緻密化が十分起こる温度を選定)で4時間焼結した後急冷し、磁石素材を得た。得られた磁石素材の密度は7.5Mg/m以上であった。得られた磁石素材の成分の結果を表13に示す。なお、表13における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、磁石素材の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.1mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。表13における「[T]/[B]」は、Tを構成する各元素(ここではFe、Al、Si、Mn)に対し、分析値(mass%)をその元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。以下の全ての表も同様である。なお、表13の各組成および酸素量、炭素量を合計しても100mass%にはならない。これは、前記の通り、各成分によって分析方法が異なるためである。その他表についても同様である。 The obtained molded body was sintered in vacuum at 1040° C. (a temperature at which sufficient densification by sintering is sufficiently selected) was sintered for 4 hours and then quenched to obtain a magnet material. The density of the obtained magnet material was 7.5 Mg/m 3 or more. Table 13 shows the results of the components of the obtained magnetic material. In addition, each component in Table 13 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, as a result of measuring the oxygen content of the magnet material by the gas melting-infrared absorption method, it was confirmed that all were about 0.1 mass %. Moreover, as a result of measuring C (carbon content) using a gas analyzer by a combustion-infrared absorption method, it was confirmed that it was around 0.1 mass %. “[T]/[B]” in Table 13 is obtained by dividing the analytical value (mass%) for each element (here, Fe, Al, Si, and Mn) constituting T by the atomic weight of the element. It is the ratio (a/b) of the value obtained by summing these values (a) and the value obtained by dividing the B analysis value (mass %) by the atomic weight of B (b). The same applies to all the tables below. In addition, even if each composition, oxygen content, and carbon content of Table 13 are added together, it does not reach 100 mass %. This is because the analysis method differs depending on each component as described above. The same applies to the other tables.

Figure 2020120102
Figure 2020120102

[RL−RH−M系合金を準備する工程]
表14の符号5−a〜5−nに示すRL−RH−M系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られた合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き300μmの篩を通過させ、RL−RH−M系合金を準備した。得られたRL−RH−M系合金の組成を表14に示す。尚、表14における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Process of preparing RL-RH-M alloy]
Each element is weighed and the raw materials thereof are melted so that the composition of the RL-RH-M alloy shown by the symbols 5-a to 5-n in Table 14 is obtained, and the single roll ultra-quenching method (melt spinning method) is performed. A ribbon or flake alloy was obtained by. The obtained alloy was pulverized in an argon atmosphere using a mortar, and then passed through a sieve having an opening of 300 μm to prepare an RL-RH-M alloy. Table 14 shows the composition of the obtained RL-RH-M alloy. In addition, each component in Table 14 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120102
Figure 2020120102

[拡散工程]
表13の符号5−AのR−T−B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体とした。次に、R−T−B系焼結磁石素材にディッピング法により粘着剤としてPVAをR−T−B系焼結磁石素材の全面に塗布した。粘着剤を塗布したR−T−B系焼結磁石素材にRL−RH−M系合金粉末を付着させた。処理容器にRL−RH−M系合金粉末を広げ、粘着剤を塗布したR−T−B系焼結磁石素材の全面に付着させた。次に、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、表15の拡散工程に示す温度で前記RL−RH−M系合金及び前記R−T−B系焼結磁石素材を加熱して拡散工程を実施した後、冷却した。
[Diffusion process]
The R-T-B based sintered magnet material of 5-A in Table 13 was cut and cut into a cube of 7.2 mm×7.2 mm×7.2 mm. Next, PVA as an adhesive was applied to the entire surface of the RTB sintered magnet material by an dipping method on the RTB sintered magnet material. The RL-RH-M alloy powder was adhered to the R-T-B sintered magnet material coated with the adhesive. The RL-RH-M alloy powder was spread in a processing container and attached to the entire surface of the R-T-B sintered magnet material coated with an adhesive. Next, using a vacuum heat treatment furnace, the RL-RH-M-based alloy and the RTB-based sintered magnet material are heated at a temperature shown in the diffusion step of Table 15 in reduced pressure argon controlled to 200 Pa. After carrying out the diffusion process, the sample was cooled.

[熱処理を実施する工程]
拡散工程の後の熱処理を、真空熱処理炉を用いて200Paに制御した減圧アルゴン中にて500℃で拡散工程が実施されたR−T−B系焼結磁石素材に対して実施した後、冷却した。熱処理後の各サンプルに対し表面研削盤を用いて各サンプルを全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体状のサンプル(R−T−B系焼結磁石)を得た。尚、拡散工程を実施する工程におけるRL−RH−M系合金及びR−T−B系焼結磁石素材の加熱温度、並びに、拡散工程の後の熱処理を実施する工程におけるR−T―B系焼結磁石素材の加熱温度は、それぞれ熱電対を取り付けることにより測定した。
[Step of performing heat treatment]
The heat treatment after the diffusion step is performed on the RTB-based sintered magnet material that has been subjected to the diffusion step at 500° C. in reduced pressure argon controlled to 200 Pa using a vacuum heat treatment furnace, and then cooled. did. The surface of each sample after the heat treatment was cut using a surface grinder to obtain a cubic sample (RTB sintered magnet) of 7.0 mm × 7.0 mm × 7.0 mm. Obtained. The heating temperature of the RL-RH-M alloy and the RTB-based sintered magnet material in the step of performing the diffusion step, and the RTB-type in the step of performing heat treatment after the diffusion step. The heating temperature of the sintered magnet material was measured by attaching a thermocouple to each.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各試料のBr及びHcJを測定した。測定結果を表15に示す。また、サンプルの成分を高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した結果を表15に示す。表15の通りサンプルNo.5−1〜5−14の本発明例はいずれも高いBr及び高いHcJが得られていることがわかる。
[sample test]
Br and HcJ of each sample of the obtained sample were measured by a BH tracer. The measurement results are shown in Table 15. Table 15 shows the results of measuring the components of the sample by using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). As shown in Table 15, sample No. It can be seen that in all the invention examples 5-1 to 5-14, high Br and high HcJ were obtained.

Figure 2020120102
Figure 2020120102

本開示によれば、高残留磁束密度、高保磁力のR−T−B系焼結磁石を作製することができる。本開示の焼結磁石は、高温下に晒されるハイブリッド車搭載用モータ等の各種モータや家電製品等に好適である。 According to the present disclosure, an RTB-based sintered magnet having a high residual magnetic flux density and a high coercive force can be manufactured. INDUSTRIAL APPLICABILITY The sintered magnet according to the present disclosure is suitable for various motors such as a motor mounted on a hybrid vehicle exposed to high temperatures, home electric appliances, and the like.

12・・・R14B化合物からなる主相、14・・・粒界相、14a・・・二粒子粒界相、14b・・・粒界三重点 12... Main phase composed of R 2 T 14 B compound, 14... Grain boundary phase, 14a... Two-grain grain boundary phase, 14b... Grain boundary triple point

Claims (3)

R−T−B系焼結磁石素材を準備する工程と、
RL−RH−M系合金を準備する工程と、
前記R−T−B系焼結磁石素材の表面の少なくとも一部に、前記RL−RH−M系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程と、
を含み、
前記拡散工程における前記R−T−B系焼結磁石素材への前記RL−RH−M系合金の付着量は4mass%以上15mass%以下で、かつ、前記RL−RH−M系合金による前記R−T−B系焼結磁石素材へのRHの付着量は0.1mass%以上0.6mass%以下であり、
前記R−T−B系焼結磁石素材において、
Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、Rの含有量は、R−T−B系焼結磁石素材全体の27mass%以上35mass%以下であり、
TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含み、T全体に対するFeの含有量が80mass%以上であり、
前記RL−RH−M系合金において、
RLは軽希土類元素のうちの少なくとも1つであり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、RLの含有量は、RL−RH−M系合金全体の60mass%以上97mass%以下であり、
RHは、Tb、DyおよびHoからなる群から選択された少なくとも1つであり、RHの含有量は、RL−RH−M系合金全体の1mass%以上8mass%以下であり、
Mは、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1つであり、Mの含有量は、RL−RH−M系合金全体の2mass%以上39mass%以下である、
R−T−B系焼結磁石の製造方法。
A step of preparing an RTB-based sintered magnet material,
A step of preparing an RL-RH-M alloy,
At least a portion of the RL-RH-M alloy is attached to at least a portion of the surface of the RTB-based sintered magnet material, and the temperature is 700°C or more and 1100°C or less in a vacuum or an inert gas atmosphere. A diffusion step of heating at temperature,
Including
The amount of the RL-RH-M based alloy deposited on the R-T-B based sintered magnet material in the diffusion step is 4 mass% or more and 15 mass% or less, and the R based on the RL-RH-M based alloy. The amount of RH adhering to the -TB sintered magnet material is 0.1 mass% or more and 0.6 mass% or less,
In the R-T-B system sintered magnet material,
R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, and the content of R is 27 mass% or more and 35 mass% or less of the entire RTB-based sintered magnet material. And
T is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, T always contains Fe, and the content of Fe with respect to the entire T is 80 mass% or more,
In the RL-RH-M type alloy,
RL is at least one of the light rare earth elements and always contains at least one selected from the group consisting of Nd, Pr and Ce, and the content of RL is 60 mass% of the entire RL-RH-M alloy. Is 97 mass% or less,
RH is at least one selected from the group consisting of Tb, Dy and Ho, and the content of RH is 1 mass% or more and 8 mass% or less of the entire RL-RH-M alloy,
M is at least one selected from the group consisting of Cu, Ga, Fe, Co, Ni, and Al, and the content of M is 2 mass% or more and 39 mass% or less of the entire RL-RH-M alloy. is there,
A method for manufacturing an RTB-based sintered magnet.
前記RL−RH−M系合金において、RHの含有量は、RL−RH−M系合金全体の2mass%以上6mass%以下である、請求項1に記載のR−T−B系焼結磁石の製造方法。 In the RL-RH-M system alloy, the content of RH is 2 mass% or more and 6 mass% or less of the entire RL-RH-M system alloy, of the RTB sintered magnet according to claim 1. Production method. 前記拡散工程における前記R−T−B系焼結磁石素材への前記RL−RH−M系合金の付着量は5mass%以上10mass%以下である、請求項1又は2に記載のR−T−B系焼結磁石の製造方法。 The R-T- according to claim 1 or 2, wherein the amount of the RL-RH-M alloy deposited on the R-T-B sintered magnet material in the diffusion step is 5 mass% or more and 10 mass% or less. A method for manufacturing a B-based sintered magnet.
JP2019176504A 2019-01-28 2019-09-27 Method for manufacturing r-t-b based sintered magnet Pending JP2020120102A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010076516.XA CN111489874A (en) 2019-01-28 2020-01-23 Method for producing R-T-B sintered magnet
US16/752,910 US11424056B2 (en) 2019-01-28 2020-01-27 Method for producing sintered R-T-B based magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019012162 2019-01-28
JP2019012162 2019-01-28

Publications (1)

Publication Number Publication Date
JP2020120102A true JP2020120102A (en) 2020-08-06

Family

ID=71891241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019176504A Pending JP2020120102A (en) 2019-01-28 2019-09-27 Method for manufacturing r-t-b based sintered magnet

Country Status (1)

Country Link
JP (1) JP2020120102A (en)

Similar Documents

Publication Publication Date Title
JP6361813B2 (en) Method for producing RTB-based sintered magnet
JP6414653B1 (en) Method for producing RTB-based sintered magnet
JP6414654B1 (en) Method for producing RTB-based sintered magnet
WO2017018291A1 (en) Method for producing r-t-b system sintered magnet
JPWO2018034264A1 (en) R-T-B sintered magnet
JP6380724B1 (en) R-T-B system sintered magnet and manufacturing method thereof
JP6939337B2 (en) Manufacturing method of RTB-based sintered magnet
JP6624455B2 (en) Method for producing RTB based sintered magnet
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP7310499B2 (en) Method for producing RTB based sintered magnet
US11424056B2 (en) Method for producing sintered R-T-B based magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP7059995B2 (en) RTB-based sintered magnet
JP7228096B2 (en) Method for producing RTB based sintered magnet
JP7452159B2 (en) Manufacturing method of RTB based sintered magnet
JP2020120102A (en) Method for manufacturing r-t-b based sintered magnet
JP7447606B2 (en) RTB system sintered magnet
JP6610957B2 (en) Method for producing RTB-based sintered magnet
CN111489888B (en) Method for producing R-T-B sintered magnet
JP2022147793A (en) Production method of r-t-b based sintered magnet
JP7380369B2 (en) Manufacturing method of RTB sintered magnet and alloy for diffusion
JP2022147794A (en) Production method of r-t-b based sintered magnet
JP2022133926A (en) Manufacturing method of r-t-b based sintered magnet
JP2022151483A (en) Manufacturing method of r-t-b system sintered magnet and r-t-b system sintered magnet
JP2023138369A (en) Manufacturing method of r-t-b-based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240507