JP2012234971A - Method for manufacturing r-t-b-based sintered magnet - Google Patents

Method for manufacturing r-t-b-based sintered magnet Download PDF

Info

Publication number
JP2012234971A
JP2012234971A JP2011102642A JP2011102642A JP2012234971A JP 2012234971 A JP2012234971 A JP 2012234971A JP 2011102642 A JP2011102642 A JP 2011102642A JP 2011102642 A JP2011102642 A JP 2011102642A JP 2012234971 A JP2012234971 A JP 2012234971A
Authority
JP
Japan
Prior art keywords
rare earth
sintered magnet
mass
earth element
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011102642A
Other languages
Japanese (ja)
Other versions
JP5874951B2 (en
Inventor
Hideyuki Morimoto
英幸 森本
Toru Seto
亨 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011102642A priority Critical patent/JP5874951B2/en
Publication of JP2012234971A publication Critical patent/JP2012234971A/en
Application granted granted Critical
Publication of JP5874951B2 publication Critical patent/JP5874951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a magnet in which heavy rare earth elements RH are efficiently diffused in the inner part of an R-T-B-based sintered magnet, and which obtains predetermined magnetic characteristics.SOLUTION: The method for manufacturing the R-T-B-based sintered magnet includes the steps of: preparing an R-T-B-based sintered magnet material; preparing a powdery diffusion material formed of an RH-Fe alloy made from a heavy rare earth element RH (RH contains at least one of Dy and Tb) and Fe of 40 mass% or more but 95 mass% or less, and RL metal containing a light rare earth element RL (which contains at least one of Nd, Pr, Ce, and La), and in which a total amount of contained rare earth is 65 mass% or more, the light rare earth element RL is contained 20 mass% or more but 70 mass% or less, and the heavy rare earth element RH is contained 50 mass% or less; and subjecting the R-T-B-based sintered magnet material to RH diffusion treatment at a temperature of 800°C or higher but 1,000°C or lower in a vacuum or an inert gas in a state that the diffusion material exists on the surface of the R-T-B-based sintered magnet material.

Description

本発明は、R14B型化合物を主相として有するR−T−B系焼結磁石(Rは希土類元素、TはFeまたはFeとCo)の製造方法に関する。 The present invention relates to a method for producing an R-T-B-based sintered magnet (R is a rare earth element and T is Fe or Fe and Co) having an R 2 T 14 B type compound as a main phase.

14B型化合物を主相とするR−T−B系焼結磁石は、永久磁石の中で最も高性能な磁石として知られており、ハイブリッド車や家電製品の各種モータに使用されている。 R-T-B based sintered magnets with R 2 T 14 B-type compounds as the main phase are known as the most powerful magnets among permanent magnets, and are used in various motors for hybrid vehicles and home appliances. ing.

R−T−B系焼結磁石は、高温で固有保磁力HcJ(以下、単に「HcJ」と表記する)が低下するため、不可逆熱減磁が起こる。不可逆熱減磁を回避するため、モータ用等に使用する場合、高温下でも高い保磁力を維持することが要求されている。 The RTB -based sintered magnet has irreversible thermal demagnetization because its intrinsic coercive force H cJ (hereinafter simply referred to as “H cJ ”) decreases at high temperatures. In order to avoid irreversible thermal demagnetization, when used for a motor or the like, it is required to maintain a high coercive force even at a high temperature.

R−T−B系焼結磁石は、R14B型化合物相中のRの一部を重希土類元素RH(Dy又はTbの少なくとも一種を含む)で置換すると、保磁力が向上することが知られている。高温で高い保磁力を得るためには、R−T−B系焼結磁石中に重希土類元素RHを多く添加することが有効である。しかし、R−T−B系焼結磁石において、Rとして軽希土類元素RL(NdおよびPrの少なくとも一種を含む)を重希土類元素RHで置換すると、保磁力が向上する一方、残留磁束密度B(以下、単に「B」と表記する)が低下してしまうという問題がある。また、重希土類元素RHは、希少資源であるため、その使用量を削減することが求められている。 When a part of R in the R 2 T 14 B type compound phase is replaced with a heavy rare earth element RH (including at least one of Dy or Tb), the coercive force of the RTB-based sintered magnet is improved. It has been known. In order to obtain a high coercive force at a high temperature, it is effective to add a large amount of heavy rare earth element RH to the RTB-based sintered magnet. However, in the R-T-B based sintered magnet, replacing the light rare earth element RL (including at least one of Nd and Pr) as R with the heavy rare earth element RH improves the coercive force, whereas the residual magnetic flux density B r. (Hereinafter simply referred to as “B r ”) is reduced. Moreover, since the heavy rare earth element RH is a rare resource, it is required to reduce the amount of use thereof.

そこで、近年、Bを低下させないように、より少ない重希土類元素RHによってR−T−B系焼結磁石の保磁力を向上させることが検討されている。 In recent years, so as not to reduce the B r, to improve the coercive force of the R-T-B based sintered magnets have been studied with less heavy rare-earth element RH.

特許文献1は、R−T−B系焼結磁石に、重希土類元素としてDy又はTbを含む重希土類化合物を付着させる第1工程と、重希土類化合物が付着したR−T−B系焼結磁石素材を熱処理する第2工程とを有し、重希土類化合物は、Dyの鉄化合物又はTbの鉄化合物であることを特徴としている。   Patent Document 1 discloses a first step in which a heavy rare earth compound containing Dy or Tb as a heavy rare earth element is attached to an RTB based sintered magnet, and an RTB based sintering in which the heavy rare earth compound is attached. And a second step of heat-treating the magnet material, wherein the heavy rare earth compound is a Dy iron compound or a Tb iron compound.

特許文献1では、R−T−B系焼結磁石に特定の重希土類元素の鉄化合物を付着させて熱処理することにより、R−T−B系焼結磁石の表面から内部への重希土類化合物の拡散が生じるが、この際、重希土類化合物は主にR−T−B系焼結磁石を構成している主相粒子の境界に沿って拡散すると考えられられている。   In Patent Document 1, an iron compound of a specific heavy rare earth element is attached to an RTB-based sintered magnet and subjected to heat treatment, whereby the heavy rare earth compound from the surface to the inside of the RTB-based sintered magnet is obtained. In this case, it is considered that the heavy rare earth compound mainly diffuses along the boundary of the main phase particles constituting the RTB-based sintered magnet.

特許文献1では、Dy又はTb鉄化合物は、フッ素化物に比べ、凝集しやすく、付着量を稼ぐこともできるため、保磁力を向上する効果に特に優れている。   In Patent Document 1, Dy or Tb iron compounds are particularly excellent in the effect of improving the coercive force because they easily aggregate and can increase the amount of adhesion as compared with fluorides.

また、Dy又はTbを含む鉄化合物は、共晶点付近であれば融点が低下するので、RH拡散処理の熱処理温度を低くすることができ、熱処理時の温度バラツキの影響も受け難くなると記載している。   In addition, it is stated that the iron compound containing Dy or Tb has a lower melting point in the vicinity of the eutectic point, so that the heat treatment temperature of the RH diffusion treatment can be lowered, and is less susceptible to temperature variations during the heat treatment. ing.

また、特許文献1では、R−T−B系焼結磁石に付着させる重希土類化合物の平均粒径は100nm〜50μmであることが好ましく、こうすることで、熱処理による重希土類化合物の拡散をより良好に生じさせることが可能であるとしている。   Moreover, in patent document 1, it is preferable that the average particle diameter of the heavy rare earth compound adhering to a R-T-B type | system | group sintered magnet is 100 nm-50 micrometers, and, thereby, can diffuse the heavy rare earth compound by heat processing more. It is said that it can be generated well.

特許文献2には、希土類元素とAl、Si等のM元素又はさらにFe及びCo等を加えた合金粉末をR−T−B系焼結磁石の表面に存在させた状態で熱処理を施す方法が記載されている。特許文献2では、前記合金粉末をR−T−B系焼結磁石の表面に存在させた状態で熱処理することで、前記合金粉末中の希土類元素とM元素をR−T−B系焼結磁石内部に拡散させ、これらを主相粒の界面近傍に濃化させるとしている。   In Patent Document 2, there is a method in which a heat treatment is performed in a state where an alloy powder in which a rare earth element and an M element such as Al or Si or Fe and Co are further added is present on the surface of an RTB-based sintered magnet. Have been described. In Patent Document 2, the alloy powder is heat-treated in the state of being present on the surface of the R-T-B system sintered magnet, whereby the rare earth element and the M element in the alloy powder are R-T-B system sintered. It diffuses inside the magnet and concentrates them near the interface of the main phase grains.

特許文献2では、R−T−B系焼結磁石の表面に、粉砕しやすい希土類を含む金属間化合物相を主体とする合金粉末を塗布して拡散処理を施すことで、生産性に優れるとともに、焼結体内部の主相粒の界面近傍に拡散合金の構成元素を濃化させ、Bの低下を抑制しつつHcJを増大できることを特徴としている。 In patent document 2, it is excellent in productivity by apply | coating the alloy powder which mainly has the intermetallic compound phase containing the rare earth which is easy to grind | pulverize on the surface of a RTB system sintered magnet, and performing a diffusion process. by concentrating constituent elements of the diffusion alloy near the interface of major phase grains of the sintered body portion is characterized by capable of increasing the H cJ while suppressing a decrease in B r.

特許文献2には、前記合金粉末は有機溶媒または水中に分散させてR−T−B系焼結磁石素材の表面に塗布される。粉末の平均粒子径が小さいほど拡散効率が高くなるとされている。   In Patent Document 2, the alloy powder is dispersed in an organic solvent or water and applied to the surface of an RTB-based sintered magnet material. The smaller the average particle size of the powder, the higher the diffusion efficiency.

特開2009−289994号JP 2009-289994 A 特開2008−250179号JP 2008-250179 A

特許文献1の方法では、Dy又はTbを含む重希土類元素と鉄との化合物からなる粉末をスラリー状にしてR−T−B系焼結磁石素材表面に塗布し、熱処理をすることによって、Dy又はTbを含む鉄化合物をそのままR−T−B系焼結磁石素材内部に導入することを目的としていた。拡散を良好にさせるため、重希土類化合物の平均粒径を100nm以上50μmにする必要がある。   In the method of Patent Document 1, Dy or Tb-containing heavy rare earth element and iron compound is formed into a slurry and applied to the surface of the RTB-based sintered magnet material, followed by heat treatment. Alternatively, an object was to introduce an iron compound containing Tb as it is into the R-T-B system sintered magnet material. In order to improve the diffusion, the average particle size of the heavy rare earth compound needs to be 100 nm or more and 50 μm.

また、特許文献2では希土類元素とAl、Si等のM元素又はさらにFe及びCo等を加えた合金を粉末にし、その粉末をR−T−B系焼結磁石素材表面に存在させた状態で熱処理をすることによって、磁石内部に希土類元素とM元素又はさらにFe及びCo等を加えた合金をそのまま導入しており、特許文献1と同じ問題がある。   Further, in Patent Document 2, an alloy obtained by adding rare earth element and M element such as Al or Si or further Fe and Co or the like is used as a powder, and the powder is present on the surface of the RTB-based sintered magnet material. By performing the heat treatment, an alloy in which rare earth elements and M elements or Fe and Co are further added is introduced as it is inside the magnet, and there is the same problem as in Patent Document 1.

また、特許文献1、2いずれでも、RH−Fe合金、希土類元素とM元素との合金が酸化によって、RH拡散処理が不安定になり、安定した磁気特性が得られない。または効率よく拡散されず磁気特性が得られないという問題が発生した。また、RH−Fe合金、希土類元素とM元素との合金の微粉末を作製するための粉砕コストの問題が発生した。   In both Patent Documents 1 and 2, the RH diffusion process becomes unstable due to oxidation of the RH-Fe alloy or the alloy of the rare earth element and the M element, and stable magnetic characteristics cannot be obtained. Alternatively, there is a problem that magnetic properties cannot be obtained without efficient diffusion. Moreover, the problem of the grinding | pulverization cost for producing the fine powder of the alloy of RH-Fe alloy and a rare earth element and M element generate | occur | produced.

本発明は、上記事情に鑑みてなされたものであり、その目的は、Feを多く含んだRH―Fe合金にRL金属を混合した粉末状の拡散材にてRH拡散処理をすることでR−T−B系焼結磁石内部に重希土類元素RHが安定して拡散され、安定した所定の磁気特性を得るようにすることである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to perform RH diffusion treatment with a powdery diffusion material in which RL metal is mixed with an RH-Fe alloy containing a large amount of Fe. The heavy rare earth element RH is stably diffused inside the TB sintered magnet so as to obtain stable predetermined magnetic characteristics.

また、本発明の別の目的は、粉砕コストの低減にあり、RH拡散源であるRH―Fe合金とRL金属とを混合した粉末状の拡散材の粒径が比較的大きなふるい目で63μm以上500μm以下のRH−Fe合金によって重希土類元素RHを効率よく拡散させることである。   Another object of the present invention is to reduce the pulverization cost, and the particle size of the powdery diffusing material in which the RH-Fe alloy, which is an RH diffusion source, and RL metal are mixed is 63 μm or more. The heavy rare earth element RH is efficiently diffused by an RH-Fe alloy of 500 μm or less.

本発明のR−T−B系焼結磁石の製造方法は、
R−T−B系焼結磁石素材(Rは希土類元素、TはFeまたはFeとCoを含む)を準備する工程と、
重希土類元素RH(RHはDyおよびTbの少なくとも一種を含む)と40質量%以上95質量%以下のFeとからなるRH−Fe合金と、
軽希土類元素RL(Nd、Pr、Ce、Laの少なくとも一種を含む)を含むRL金属と、からなり、
総希土類量が65質量%以上、
軽希土類元素RLが20質量%以上70質量%以下、
重希土類元素RHが50質量%以下、
である粉末状の拡散材を準備する工程と、
前記R−T−B系焼結磁石素材に対し、前記拡散材を前記R−T−B系焼結磁石素材の表面に存在させた状態で、800℃以上1000℃以下の温度で真空または不活性ガス中においてRH拡散処理する工程と、からなる。
The manufacturing method of the RTB-based sintered magnet of the present invention is as follows:
Preparing a R-T-B sintered magnet material (R is a rare earth element, T is Fe or Fe and Co);
An RH-Fe alloy comprising heavy rare earth element RH (RH includes at least one of Dy and Tb) and 40 mass% or more and 95 mass% or less of Fe;
An RL metal containing a light rare earth element RL (including at least one of Nd, Pr, Ce, La), and
The total rare earth amount is 65% by mass or more,
Light rare earth element RL is 20 mass% or more and 70 mass% or less,
Heavy rare earth element RH is 50 mass% or less,
A step of preparing a powdery diffusion material,
With respect to the R-T-B system sintered magnet material, the diffusion material is present on the surface of the R-T-B system sintered magnet material, and vacuum or non-reactance is performed at a temperature of 800 ° C. or higher and 1000 ° C. or lower. And an RH diffusion process in the active gas.

好ましい実施形態において、前記拡散材は、粒径がふるい目63μm以上500μm以下である。なお、本発明において、RH拡散処理を行う前を「R−T−B系焼結磁石素材」とし、RH拡散処理後を「R−T−B系焼結磁石」と表記する。   In a preferred embodiment, the diffusing material has a particle size of 63 μm or more and 500 μm or less. In the present invention, the “R-T-B system sintered magnet material” before the RH diffusion treatment is referred to as “R-T-B system sintered magnet” after the RH diffusion treatment.

本発明によれば、RH−Fe合金などの重希土類元素RHの合金の粒度が荒くてもRH拡散処理によりR−T−B系焼結磁石内部に重希土類元素RHを安定し、効率の良いRH拡散処理ができる。また、RH−Fe合金などの重希土類元素RHを拡散する合金を微粉末にする必要がなくなるための粉砕コストが低減される。   According to the present invention, even if the particle size of a heavy rare earth element RH alloy such as an RH-Fe alloy is rough, the heavy rare earth element RH is stabilized in the RTB-based sintered magnet by the RH diffusion treatment, and the efficiency is high. RH diffusion treatment can be performed. In addition, the pulverization cost is reduced because it is not necessary to make an alloy that diffuses the heavy rare earth element RH such as the RH-Fe alloy into a fine powder.

本発明の拡散材のDTA曲線を測定した結果を示す図である。It is a figure which shows the result of having measured the DTA curve of the diffusion material of this invention.

以下、本発明の製造方法の実施形態を説明する。
R−T−B系焼結磁石素材(Rは希土類元素、TはFeまたはFeとCoを含む)を準備する工程と、
重希土類元素RH(RHはDyおよびTbの少なくとも一種を含む)と40質量%以上95質量%以下のFeとからなるRH−Fe合金と、
軽希土類元素RL(Nd、Pr、Ce、Laの少なくとも一種を含む)を含むRL金属と、からなり、
総希土類量が65質量%以上、
軽希土類元素RLが20質量%以上70質量%以下、
重希土類元素RHが50質量%以下、
である粉末状の拡散材を準備する工程と、
前記R−T−B系焼結磁石素材に対し、前記拡散材を前記R−T−B系焼結磁石素材の表面に存在させた状態で、800℃以上1000℃以下の温度で真空または不活性ガス中においてRH拡散処理する工程と、からなる。
Hereinafter, embodiments of the production method of the present invention will be described.
Preparing a R-T-B sintered magnet material (R is a rare earth element, T is Fe or Fe and Co);
An RH-Fe alloy comprising heavy rare earth element RH (RH includes at least one of Dy and Tb) and 40 mass% or more and 95 mass% or less of Fe;
An RL metal containing a light rare earth element RL (including at least one of Nd, Pr, Ce, La), and
The total rare earth amount is 65% by mass or more,
Light rare earth element RL is 20 mass% or more and 70 mass% or less,
Heavy rare earth element RH is 50 mass% or less,
A step of preparing a powdery diffusion material,
With respect to the R-T-B system sintered magnet material, the diffusion material is present on the surface of the R-T-B system sintered magnet material, and vacuum or non-reactance is performed at a temperature of 800 ° C. or higher and 1000 ° C. or lower. And an RH diffusion process in the active gas.

本発明により、RH拡散処理において、R−T−B系焼結磁石素材表面に存在させた拡散材中のRL金属がRH−Fe合金と接触することで液相を生成し、R−T−B系焼結磁石素材の表面に液相をつくる。前記液相を通じて重希土類元素RHがR−T−B系焼結磁石素材内部に効率よく導入される。   According to the present invention, in the RH diffusion treatment, the RL metal in the diffusion material present on the surface of the RTB-based sintered magnet material is brought into contact with the RH-Fe alloy to generate a liquid phase. A liquid phase is formed on the surface of the B-based sintered magnet material. Through the liquid phase, the heavy rare earth element RH is efficiently introduced into the RTB-based sintered magnet material.

また、拡散材中の重希土類元素RHの濃度が高くないので、過剰に重希土類元素RHがR−T−B系焼結磁石素材内部に導入されず、Bの低下がなくHcJを向上させることができる。以下、さらに詳細に説明する。 Also, since no high concentration of the heavy rare-earth element RH in the diffusion material, excessively heavy rare-earth element RH is not introduced into the R-T-B based sintered magnet material, improving the H cJ no decrease in B r Can be made. This will be described in more detail below.

[R−T−B系焼結磁石素材]
まず、本発明では、重希土類元素RHを拡散させる対象とするR−T−B系焼結磁石素材を準備する。このR−T−B系焼結磁石素材は公知のものが使用でき、例えば、以下の組成からなる。
希土類元素R:12原子%以上17原子%以下
B(Bの一部はCで置換されていてもよい):5原子%以上8原子%以下
添加元素M(Al、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種):0原子%以上2原子%以下
T(Feを主とする遷移金属であって、Coを含んでもよい)および不可避不純物:残部
ここで、希土類元素Rは、主として軽希土類元素RL(Nd、Pr)から選択される少なくとも1種の元素であるが、重希土類元素を含有していてもよい。なお、重希土類元素を含有する場合は、DyおよびTbの少なくとも一方を含むことが好ましい。
[R-T-B sintered magnet material]
First, in the present invention, an RTB-based sintered magnet material that is a target for diffusing the heavy rare earth element RH is prepared. As this RTB-based sintered magnet material, a known material can be used, and for example, it has the following composition.
Rare earth element R: 12 atomic% or more and 17 atomic% or less B (a part of B may be substituted with C): 5 atomic% or more and 8 atomic% or less Additive element M (Al, Ti, V, Cr, Mn Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and Bi. At least one selected from the group consisting of: 0 atomic% and 2 atomic% T (transition metal mainly containing Fe and may contain Co) and unavoidable impurities: remainder Here, the rare earth element R is at least one selected from light rare earth elements RL (Nd, Pr) However, it may contain a heavy rare earth element. In addition, when a heavy rare earth element is contained, it is preferable that at least one of Dy and Tb is included.

上記組成のR−T−B系焼結磁石素材は、公知の製造方法によって製造される。   The RTB-based sintered magnet material having the above composition is manufactured by a known manufacturing method.

[拡散材]
本発明の拡散材は、RH−Fe合金およびRL金属からなる粉末であり、
総希土類量が65質量%以上、
軽希土類元素RLが20質量%以上70質量%以下、
重希土類元素RHが50質量%以下、
からなる。
[Diffusion material]
The diffusion material of the present invention is a powder comprising an RH-Fe alloy and an RL metal,
The total rare earth amount is 65% by mass or more,
Light rare earth element RL is 20 mass% or more and 70 mass% or less,
Heavy rare earth element RH is 50 mass% or less,
Consists of.

ここで、拡散材に含まれる総希土類量(TRE)は65質量%以上になるようにする。
総希土類量が65質量%未満の場合、RH拡散工程において、重希土類元素RHとFeからなる高温で安定な化合物をRL金属とRH−Fe合金とが接触して生成された液相をつくることができない。そのため、重希土類元素RHが焼結磁石素材の内部に拡散されずに、その大半または一部がR−T−B系焼結磁石素材の表面に残る。表面に残ったままでは拡散量が不充分なので安定した磁気特性が得られない。
Here, the total rare earth amount (TRE) contained in the diffusion material is set to 65% by mass or more.
When the total rare earth amount is less than 65% by mass, in the RH diffusion step, a liquid phase formed by contacting the RL metal and the RH-Fe alloy with a high temperature stable compound composed of the heavy rare earth elements RH and Fe is formed. I can't. Therefore, the heavy rare earth element RH is not diffused into the sintered magnet material, but most or part of the heavy rare earth element RH remains on the surface of the RTB-based sintered magnet material. If it remains on the surface, the amount of diffusion is insufficient and stable magnetic properties cannot be obtained.

好ましくは、拡散材に含まれる総希土類量(TRE)は65質量%以上80質量%以下になるようにする。   Preferably, the total rare earth amount (TRE) contained in the diffusing material is 65% by mass or more and 80% by mass or less.

また、拡散材中の軽希土類元素RLは20質量%以上70質量%以下含有する。   Further, the light rare earth element RL in the diffusing material is contained in an amount of 20% by mass to 70% by mass.

拡散材中の軽希土類元素RLの含有量が20質量%未満の場合、RH拡散工程において生成する液相が少なく、R−T−B系焼結磁石素材内部に効率よく重希土類元素RHを拡散させることが困難となる。拡散材中の軽希土類元素RLの含有量が70質量%超になると、拡散処理中に生成する液相のRH濃度が小さいため、HcJ向上効果が少なくなる。好ましくは、25質量%以上55質量%以下である。 When the content of the light rare earth element RL in the diffusion material is less than 20% by mass, the liquid phase generated in the RH diffusion process is small, and the heavy rare earth element RH is efficiently diffused inside the R-T-B system sintered magnet material. It becomes difficult to make it. When the content of the light rare earth element RL in the diffusing material exceeds 70% by mass, the RH concentration of the liquid phase generated during the diffusion treatment is small, so that the effect of improving HcJ is reduced. Preferably, it is 25 mass% or more and 55 mass% or less.

また、拡散材中の重希土類元素RHの含有量は、50質量%以下にするのが好ましい。この範囲にあるとき重希土類元素RHによるR−T−B系焼結磁石素材の結晶粒内部への拡散が起こり難く、RH拡散が結晶粒外殻部にとどまるため、Bの低下を最大限抑制した磁石が得られる。好ましくは重希土類元素RHの含有量は15質量%以上45質量%以下である。 Further, the content of the heavy rare earth element RH in the diffusing material is preferably 50% by mass or less. Maximum order, the reduction of the B r of this range hardly occurs diffusion into the crystal grain inside the R-T-B based sintered magnet material due to the heavy rare-earth element RH when in, the RH diffusion remain grain shell portion A suppressed magnet is obtained. Preferably, the content of heavy rare earth element RH is 15% by mass or more and 45% by mass or less.

拡散材中の重希土類元素RHの含有量が50質量%超であると、800℃以上1000℃以下のRH拡散処理においても、R−T−B系焼結磁石素材の結晶粒内部への拡散が進み所望の組織が得られず、HcJが向上する一方でBの低下を招き、重希土類元素RHの無駄使いになる。 When the content of the heavy rare earth element RH in the diffusing material is more than 50% by mass, the diffusion of the RTB-based sintered magnet material into the crystal grains can be achieved even in the RH diffusion treatment of 800 ° C. or more and 1000 ° C. or less not be obtained proceeds desired tissue, cause a decrease in B r while H cJ is improved, the waste of the heavy rare-earth element RH.

本発明の拡散材の実施形態として、拡散材は、RH−Fe合金とRL金属からなる。
RH−Fe合金は、DyまたはTbの少なくともいずれかからなる重希土類元素RHを含み、かつ40質量%以上95質量%以下のFeを含む。
As an embodiment of the diffusing material of the present invention, the diffusing material is composed of an RH-Fe alloy and an RL metal.
The RH-Fe alloy contains a heavy rare earth element RH composed of at least one of Dy and Tb, and contains 40% by mass or more and 95% by mass or less of Fe.

ここで、RH−Fe合金のFeの含有量が40質量%未満であると、Dy相やTb相が生成しやすくなり焼結磁石素材表面に重希土類元素RHが過剰に供給されて、R−T−B系焼結磁石素材の結晶粒内部への拡散が進み、Bの低下を招く恐れがある。
逆に、RH−Fe合金中のFeの含有量が95質量%を超えると重希土類元素RHの含有量が少ないため、拡散できる重希土類元素RHの量が減少するため、効率的に拡散させることができたとしても所望のHcJ向上効果を得ることができない。
Here, when the Fe content of the RH-Fe alloy is less than 40% by mass, the Dy phase and the Tb phase are easily generated, and the surface of the sintered magnet material is excessively supplied with the heavy rare earth element RH. diffusion into the crystal grain inside the T-B based sintered magnet material proceeds, which may cause a decrease in B r.
Conversely, when the Fe content in the RH-Fe alloy exceeds 95% by mass, the content of heavy rare earth element RH decreases because the content of heavy rare earth element RH is small. Even if it is possible, a desired HcJ improvement effect cannot be obtained.

次にRL金属は、Nd、Pr、Ce、Laの少なくとも一種を含む軽希土類元素RLを含んでいる。ここで、軽希土類元素RLは、25質量%未満のFeを含んでもよい。   Next, the RL metal includes a light rare earth element RL including at least one of Nd, Pr, Ce, and La. Here, the light rare earth element RL may contain Fe of less than 25% by mass.

RH−Fe合金とRL金属を作製する方法として、RH−Fe合金は、例えば所定の組成となるように原料合金を溶解炉に投入し、溶解した後、冷却して作製される。例えば、Dy81Fe19(質量%)合金と電解Feとを用いて高周波溶解炉で溶解した後、ロール表面速度が1m/秒以上30m/秒以下の範囲で回転する銅製の水冷ロールに前記溶湯を接触させ急冷凝固合金を形成する方法で製造できる。 As a method for producing the RH-Fe alloy and the RL metal, the RH-Fe alloy is produced by, for example, putting a raw material alloy into a melting furnace so as to have a predetermined composition, melting it, and then cooling it. For example, after melting in a high-frequency melting furnace using a Dy 81 Fe 19 (mass%) alloy and electrolytic Fe, the molten metal is applied to a copper water-cooled roll rotating at a roll surface speed in the range of 1 m / sec to 30 m / sec. To form a rapidly solidified alloy.

好ましくは、RH−Fe合金は、さらにスタンプミル、水素粉砕などで粉砕し、篩より粒度調整する。   Preferably, the RH-Fe alloy is further pulverized by a stamp mill, hydrogen pulverization or the like, and the particle size is adjusted by a sieve.

RL金属についてもRH−Fe合金と同様に所定の組成となるように原料合金を溶解炉に投入し、溶解した後、冷却して作製することができる。RL金属が純金属の場合、RL金属は粉砕が容易でないため、粉砕性を改善する目的で、溶解時に25質量%未満のFeで置換したRL−Fe合金にしてもよい。この場合、RH―Fe合金とRL−Fe合金を混合した拡散材の組成が所定範囲に入るようにする。   Similarly to the RH-Fe alloy, the RL metal can also be produced by putting the raw material alloy into a melting furnace so as to have a predetermined composition and then cooling it. When the RL metal is a pure metal, since the RL metal is not easily pulverized, an RL-Fe alloy substituted with less than 25% by mass of Fe may be used for the purpose of improving the pulverizability. In this case, the composition of the diffusion material in which the RH-Fe alloy and the RL-Fe alloy are mixed is set within a predetermined range.

また、RL金属は、例えば、不活性ガス雰囲気内で溶融したNdメタル、Prメタル、Ceメタル、Laメタルを耐熱容器から滴下・噴霧する方法で粉末状に作製することもできる。   The RL metal can also be produced in a powder form by, for example, dropping and spraying Nd metal, Pr metal, Ce metal, and La metal melted in an inert gas atmosphere from a heat-resistant container.

この他、RH−Fe合金やRL金属は、超鋼などのバイトで切削した切削粉やダイヤモンドなどの砥石で削って粉末状に作製してもよい。   In addition, the RH-Fe alloy and the RL metal may be made into powder by cutting with a cutting powder cut with a cutting tool such as super steel or with a grindstone such as diamond.

RH−Fe合金とRL金属を作製した後、これら2種類の混合粉末からなる拡散材を作製する。   After producing the RH-Fe alloy and the RL metal, a diffusion material composed of these two kinds of mixed powders is produced.

前記RH−Fe合金と前記RL金属とからなる混合粉末を作製する方法としては、作製したRH−Fe合金とRL金属とを混合して、所定の粒径になるまで粉砕する方法と、RH−Fe合金とRL金属の2種類の金属を予め個別に所定の粒径に粉砕した後、混合する方法が適用できる。   As a method for producing a mixed powder composed of the RH-Fe alloy and the RL metal, the produced RH-Fe alloy and RL metal are mixed and pulverized until a predetermined particle size is obtained, and RH- A method of mixing two kinds of metals, that is, an Fe alloy and an RL metal, after individually individually pulverizing them into a predetermined particle diameter can be applied.

予め個別に作製したRH−Fe合金粉末とRL金属の粉末を混合する場合、その混合方法は特に限定するものでないが、ロッキングミキサー、ダブルコーン型ミキサーなどにより不活性雰囲気中で発熱しない程度の回転速度で撹拌することが好ましい。そのようにすることでRH−Fe合金とRL金属とが均一に撹拌される。   When mixing individually prepared RH-Fe alloy powder and RL metal powder, the mixing method is not particularly limited, but the rotation does not generate heat in an inert atmosphere by a rocking mixer, double cone type mixer, etc. It is preferable to stir at a speed. By doing so, the RH-Fe alloy and the RL metal are uniformly stirred.

RH―Fe合金、RL金属の粒径はいずれもふるい目で63μm以上500μm以下であることが好ましい。RH−Fe合金、RL金属を混合してなる拡散材は、ふるい目で63μm以上500μm以下にするため、合金を水素粉砕のみ、スタンプミルのみで粉末に粉砕するのがよい。また、RL金属の混合比率が少ない場合は、さらにこの範囲内でRH−Fe合金の粉末粒子径が小さいことが望ましい。   The particle sizes of the RH-Fe alloy and the RL metal are preferably 63 μm or more and 500 μm or less on the sieve. In order to make the diffusion material formed by mixing the RH-Fe alloy and the RL metal to have a sieve size of 63 μm or more and 500 μm or less, the alloy is preferably pulverized only by hydrogen pulverization or by a stamp mill only. Further, when the mixing ratio of the RL metal is small, it is desirable that the powder particle diameter of the RH-Fe alloy is further small within this range.

拡散材の粒径が500μm超のとき、粉体の比表面積が小さくなるため、RH―Fe合金とRL金属との反応が不均一かつ不足となり、RH−Fe合金中の重希土類元素RHがR−T−B系焼結磁石表面に残存したり、均一にR−T−B系焼結磁石素材内部へ拡散させることが困難となり、HCJ向上効果が小さくなる場合がある。逆に、拡散材の粒径が63μm未満だと、63μm未満の粉末を得るための粉砕に手間がかかってしまう。さらに好ましくは、拡散材の粒径はふるい目で63μm以上250μm以下である。 When the particle size of the diffusing material exceeds 500 μm, the specific surface area of the powder becomes small, so that the reaction between the RH—Fe alloy and the RL metal becomes uneven and insufficient, and the heavy rare earth element RH in the RH—Fe alloy becomes R or remaining in -T-B based sintered magnet surface, uniformly it is difficult to diffuse into the interior R-T-B based sintered magnet material, which may H CJ improving effect becomes small. On the other hand, if the particle size of the diffusing material is less than 63 μm, it takes time to grind to obtain a powder of less than 63 μm. More preferably, the particle size of the diffusing material is not less than 63 μm and not more than 250 μm by sieve.

R−T−B系焼結磁石素材表面へ拡散材を存在させる方法には任意の方法を行ってよい。
任意の方法としては、例えば、粉体供給槽の底部開口内に配置した散粉ローラーと、これに隣接するドクターブレードとの間から定量づつ繰り出される粉末をブラシで飛散落下させる構造やこれに類似した治具を用いた単純な散布方法がある。
Any method may be used as a method for causing the diffusion material to exist on the surface of the RTB-based sintered magnet material.
As an arbitrary method, for example, a structure in which powder that is fed in a fixed amount from a dusting roller disposed in the bottom opening of a powder supply tank and a doctor blade adjacent thereto is scattered and dropped with a brush or the like is similar. There is a simple spraying method using a jig.

好ましくは、拡散材を散布する前に磁石素材にバインダーを塗布するのがよい。バインダーを塗布することでRH拡散を使用とする磁石表面に確実に所定量の重希土類元素RHを導入することができる。   Preferably, a binder is applied to the magnet material before spreading the diffusing material. By applying a binder, a predetermined amount of heavy rare earth element RH can be reliably introduced to the surface of the magnet using RH diffusion.

このバインダーとしては、例えば、増粘剤であるメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロースなどの水溶液に水溶性防錆剤(例えば、特殊カルボン酸を主成分とする扶桑化学工業製の商品名 サビん象SY−12)を添加したものを用いることができる。   As this binder, for example, a water-soluble rust preventive agent (for example, a trade name made by Fuso Chemical Industry, whose main component is a special carboxylic acid) is used in an aqueous solution such as a thickener such as methylcellulose, hydroxypropylcellulose, and hydroxyethylmethylcellulose. What added the elephant SY-12) can be used.

なお、R−T−B系焼結磁石素材に直接散布しなくても、R−T−B系焼結磁石素材を配置する台板に粉末を散布した後、前記粉末に接触するようにR−T−B系焼結磁石素材を配置したり、これらを組み合わせて積層して複数のR−T−B系焼結磁石素材に接触させてもよい。また、R−T−B系焼結磁石素材や台板に粉末を散布した後、すり切り板等で散布量を均一に整えてもよい。   In addition, even if it does not spray directly on the R-T-B system sintered magnet material, after spraying the powder on the base plate on which the R-T-B system sintered magnet material is arranged, the R is brought into contact with the powder. -A T-B type sintered magnet material may be disposed, or a combination thereof may be laminated to be brought into contact with a plurality of R-T-B type sintered magnet materials. Further, after the powder is sprayed on the RTB-based sintered magnet material or the base plate, the spraying amount may be uniformly adjusted with a ground plate or the like.

[RH拡散処理]
前記R−T−B系焼結磁石素材を配置した処理容器にRH拡散処理を行う。RH拡散処理は以下の条件にて行う。
[RH diffusion processing]
An RH diffusion process is performed on the processing vessel in which the RTB-based sintered magnet material is disposed. The RH diffusion process is performed under the following conditions.

[雰囲気]
RH拡散工程時の雰囲気は不活性ガス雰囲気が好ましい。本明細書における「不活性雰囲気」とは、真空、または不活性ガスを含むものとする。また、「不活性ガス」は、例えばアルゴン(Ar)などの希ガスであるが、R−T−B系焼結磁石素材、拡散材との間で化学的に反応しないガスであれば、「不活性ガス」に含まれ得る。不活性ガスの圧力は、大気圧以下であることが好ましい。RH拡散工程時における雰囲気ガスの圧力(処理容器内の雰囲気圧力)は、例えば1Paから大気圧の範囲内に設定され得る。
[atmosphere]
The atmosphere during the RH diffusion step is preferably an inert gas atmosphere. The “inert atmosphere” in this specification includes a vacuum or an inert gas. The “inert gas” is, for example, a rare gas such as argon (Ar), but if it is a gas that does not chemically react with the RTB-based sintered magnet material or the diffusion material, It can be included in “inert gas”. It is preferable that the pressure of an inert gas is below atmospheric pressure. The pressure of the atmospheric gas during the RH diffusion step (atmospheric pressure in the processing container) can be set, for example, within a range of 1 Pa to atmospheric pressure.

[熱処理温度]
RH拡散工程時の熱処理温度は800℃以上1000℃以下とする。この温度範囲は、拡散材中の重希土類元素RHがR−T−B系焼結磁石素材の粒界相を伝って内部へ拡散するのに好ましい温度領域である。
[Heat treatment temperature]
The heat treatment temperature during the RH diffusion step is 800 ° C. or higher and 1000 ° C. or lower. This temperature range is a preferable temperature range in which the heavy rare earth element RH in the diffusion material diffuses inward through the grain boundary phase of the RTB-based sintered magnet material.

熱処理温度が800℃未満では、生成される液相が少ないので、拡散材中のRHが磁石内部に拡散されにくく、所望のHcJ向上効果を得ることができないか、もしくは所望のHcJ向上効果を得るためのRH拡散工程に長時間を要し、好ましくない。また、1000℃を超えるとR−T−B系焼結磁石素材と拡散材が溶着してしまう問題が生じやすくなる。 If the heat treatment temperature is less than 800 ° C., the generated liquid phase is small, so that RH in the diffusing material is difficult to diffuse into the magnet, and a desired H cJ improvement effect cannot be obtained, or a desired H cJ improvement effect. It takes a long time for the RH diffusion step for obtaining the above, which is not preferable. Moreover, when it exceeds 1000 degreeC, it will become easy to produce the problem that a RTB system sintered magnet raw material and a diffusion material will weld.

RH−Fe合金とRL金属からなる拡散材において、RH−Fe合金はDyまたはTbの少なくとも一方からなる重希土類元素RHと40質量%以上95質量%以下のFeとからなり、800℃以上1000℃以下でRH拡散処理を行うと生成される液相が充分に生成され、拡散材中の重希土類元素RHが効率よく磁石内部に供給される。   In the diffusion material composed of RH-Fe alloy and RL metal, the RH-Fe alloy is composed of heavy rare earth element RH composed of at least one of Dy or Tb and Fe of 40 mass% or more and 95 mass% or less. When the RH diffusion treatment is performed below, the liquid phase generated is sufficiently generated, and the heavy rare earth element RH in the diffusion material is efficiently supplied into the magnet.

熱処理の時間は、RH拡散処理工程をする際のR−T−B系焼結磁石素材、拡散材(RH−Fe合金およびRL金属)の投入量の比率、R−T−B系焼結磁石素材の形状、拡散材(RH−Fe合金およびRL金属)の形状、RH拡散処理温度によって、R−T−B系焼結磁石素材に拡散されるべき重希土類元素RHの量(拡散量)を考慮して決められ、例えば10分から72時間である。好ましくは1時間から12時間である。   The heat treatment time is the ratio of the amount of the R-T-B system sintered magnet material, the diffusion material (RH-Fe alloy and RL metal) input when performing the RH diffusion treatment process, the R-T-B system sintered magnet. Depending on the shape of the material, the shape of the diffusion material (RH-Fe alloy and RL metal), and the RH diffusion treatment temperature, the amount of heavy rare earth element RH (diffusion amount) to be diffused into the RTB-based sintered magnet material For example, it is 10 minutes to 72 hours. Preferably it is 1 to 12 hours.

[テンパー処理]
また、必要に応じてさらにテンパー処理(400℃以上700℃以下の熱処理)を行う。RH拡散処理、テンパー処理は、同じ処理室内で行ってもよい。テンパー処理の時間は、例えば10分から72時間である。好ましくは1時間から12時間である。
[Temper processing]
Further, tempering (heat treatment at 400 ° C. or higher and 700 ° C. or lower) is further performed as necessary. The RH diffusion process and the temper process may be performed in the same processing chamber. The tempering time is, for example, 10 minutes to 72 hours. Preferably it is 1 to 12 hours.

ここで、テンパー処理を行う熱処理炉の雰囲気は真空または不活性ガス雰囲気中で、雰囲気ガス圧力は大気圧以下が好ましい。   Here, the atmosphere of the heat treatment furnace for performing the tempering treatment is preferably a vacuum or an inert gas atmosphere, and the atmospheric gas pressure is preferably atmospheric pressure or lower.

[加工]
本発明のR−T−B系焼結磁石には、RH拡散工程後、R−T−B系焼結磁石表面に生成された液相が皮膜状に残る。前記皮膜は磁気特性の発現に寄与しないので、ショットブラストまたは砥石等によりR−T−B系焼結磁石表面から数十μmから数百μm加工する。
さらに、所定の形状、寸法を得るため、一般的な切断、研削等の機械加工を施すことができる。
[processing]
In the RTB-based sintered magnet of the present invention, the liquid phase generated on the surface of the RTB-based sintered magnet remains in the form of a film after the RH diffusion step. Since the film does not contribute to the development of magnetic properties, the surface is processed from several tens to several hundreds of micrometers from the surface of the RTB-based sintered magnet by shot blasting or a grindstone.
Furthermore, in order to obtain a predetermined shape and size, general machining such as cutting and grinding can be performed.

[表面処理]
本発明のR−T−B系焼結磁石には、好ましくは防錆のための表面コーティング処理を施す。例えば、Niめっき、Snめっき、Znめっき、Al蒸着膜、Al系合金蒸着膜、樹脂塗装などを行うことができる。
[surface treatment]
The RTB-based sintered magnet of the present invention is preferably subjected to a surface coating treatment for rust prevention. For example, Ni plating, Sn plating, Zn plating, Al vapor deposition film, Al alloy vapor deposition film, resin coating, etc. can be performed.

以下に、本発明の具体的な内容について実施例をもって説明するが、本発明はこれに限定されるものではない。   Hereinafter, specific contents of the present invention will be described with reference to examples, but the present invention is not limited thereto.

(実施例1)
組成がNd28.2Pr0.7Dy0.20.95Co0.9Al0.1Cu0.1Ga0.1残部Fe(質量%)からなるR−T−B系焼結磁石素材が得られるように原料合金を準備した。
原料合金はストリップキャスト法で作製した鋳片で、これを水素粉砕により大きさの不定形粉末に粗粉砕した後、高圧Nガスによるジェットミル粉砕を行い、粉末の平均粒径がD50で4.9μmの微粉末を作製した。
Example 1
R-T-B system sintering whose composition is Nd 28.2 Pr 0.7 Dy 0.2 B 0.95 Co 0.9 Al 0.1 Cu 0.1 Ga 0.1 balance Fe (mass%) A raw material alloy was prepared so that a magnet material could be obtained.
The raw material alloy is a slab produced by a strip cast method, which is coarsely pulverized into an amorphous powder of a size by hydrogen pulverization, then subjected to jet mill pulverization with high-pressure N 2 gas, and the average particle diameter of the powder is 4 at D50. A fine powder of 9 μm was prepared.

こうして作製した微粉末をプレス装置により成形し、粉末成形体を作製した。具体的には、印加磁界中で粉末粒子を磁界配向した状態で圧縮成形を行った。その後、成形体をプレス装置から抜き出し、真空炉により1040℃で4時間の条件で焼結して、上記の組成を有するR−T−B系焼結磁石素材を得た。この焼結磁石素材を研削加工して、3.3×33×21(単位はmm)のR−T−B系焼結磁石素材を用意した。   The fine powder thus produced was molded by a press apparatus to produce a powder compact. Specifically, compression molding was performed in a state where the powder particles were magnetically oriented in an applied magnetic field. Thereafter, the compact was extracted from the press device and sintered in a vacuum furnace at 1040 ° C. for 4 hours to obtain an RTB-based sintered magnet material having the above composition. The sintered magnet material was ground to prepare 3.3 × 33 × 21 (unit: mm) RTB-based sintered magnet material.

次にRH−Fe拡散材であるが、Dy81Fe19(質量%)合金と電解Feとを用いて高周波溶解炉で溶解した後、ロール表面速度が20m/秒で回転する銅製の水冷ロールに前記溶湯を接触させ急冷凝固合金を作成した。次いで、これをスタンプミルで粉砕し、RH―Fe合金となるDyの含有量が59質量%および80質量%、残部がFeであるRH―Fe合金の粉末を作製した。これら合金粉末の粒径は、いずれもふるい目で63μm以上125μm以下であった。 Next, although it is a RH-Fe diffusion material, after melting in a high-frequency melting furnace using a Dy 81 Fe 19 (mass%) alloy and electrolytic Fe, a copper water-cooled roll rotating at a roll surface speed of 20 m / sec. A rapidly solidified alloy was prepared by contacting the molten metal. Next, this was pulverized by a stamp mill, and RH-Fe alloy powders having a Dy content of 59% by mass and 80% by mass with the balance being Fe were prepared. The particle diameters of these alloy powders were 63 μm or more and 125 μm or less on a sieve screen.

不活性ガス雰囲気内で溶融したNdメタルまたはPrメタル、Laメタル、Ceメタルを耐熱容器から滴下・噴霧する方法でRL金属となる粉末を作製した。これら粉末の粒径は、いずれもふるい目で63μm以上125μm以下であった。   A powder that becomes RL metal was produced by dropping and spraying Nd metal, Pr metal, La metal, or Ce metal melted in an inert gas atmosphere from a heat-resistant container. The particle diameters of these powders were 63 μm or more and 125 μm or less in all sieves.

R−T−B系焼結磁石素材にヒドロキシプロピルセルロース2%、水溶性防錆剤(商品名 サビん象)を1%添加した水溶液を塗布した後、Dy−Fe合金粉末からなるRH―Fe合金とNd、Pr、LaまたはCe粉末からなるRL金属をロッキングミキサーで混合した拡散材を散布し3時間自然乾燥した。使用した拡散材の散布量の合計は表1に記載のとおりであった。表1の散布量はRH拡散処理後、R−T−B系焼結磁石素材に導入されたRHFe合金、RL金属の量を表している。   After applying an aqueous solution containing 2% hydroxypropylcellulose and 1% water-soluble rust preventive (trade name rust) to the RTB-based sintered magnet material, RH-Fe made of Dy-Fe alloy powder A diffusion material prepared by mixing an alloy and RL metal composed of Nd, Pr, La, or Ce powder with a rocking mixer was sprayed and air-dried for 3 hours. The total amount of diffusion material used was as shown in Table 1. The spraying amount in Table 1 represents the amount of RHFe alloy and RL metal introduced into the RTB-based sintered magnet material after the RH diffusion treatment.

次いで、このR−T−B系焼結磁石素材に対し、Ar雰囲気中、900℃で4時間の拡散処理、480℃で2時間のテンパー熱処理を施し、表1に記載の実施例1から実施例7および比較例4、比較例5の磁石を得た。また、実施例4と同じ量のDy量を含んだ組成(Nd28.2Pr0.7Dy0.50.95Co0.9Al0.1Cu0.1Ga0.1残部Fe(質量%)からなるR−T−B系焼結磁石素材に熱処理のみ施したもの(Br:1.44,HcJ:972)を比較例1とした。さらに、RH−Fe合金であるDy―Fe合金を混合せずに同じ熱処理を施したものを比較例2、NdまたはPrからなるRL金属を混合していないものを比較例3とした。今回予め用意したR−T−B系焼結磁石素材に対して、混合粉末である拡散材を散布しないまま熱処理のみ施したものを参考例とした。 Next, the RTB-based sintered magnet material was subjected to a diffusion treatment at 900 ° C. for 4 hours in an Ar atmosphere and a temper heat treatment at 480 ° C. for 2 hours. Magnets of Example 7, Comparative Example 4, and Comparative Example 5 were obtained. Further, the composition containing the same amount of Dy as in Example 4 (Nd 28.2 Pr 0.7 Dy 0.5 B 0.95 Co 0.9 Al 0.1 Cu 0.1 Ga 0.1 balance Fe An RTB-based sintered magnet material made of (mass%) was subjected only to heat treatment (Br: 1.44, HcJ: 972) was set as Comparative Example 1. Furthermore, Dy-, which is an RH-Fe alloy. The same heat treatment without mixing the Fe alloy was made Comparative Example 2, and the one not mixed with the RL metal composed of Nd or Pr was made Comparative Example 3. The RTB-based sintering prepared in advance this time. The magnet material was subjected to only heat treatment without spraying the diffusion material as a mixed powder as a reference example.

表1には、拡散材中の総希土類量(TRE)、Nd、Pr、La、Ceが含まれる量である総軽希土類量(TRL)、DyおよびTbが含まれる量である総重希土類量(TRH)、並びにRH拡散後、3mm×10mm×10mmになるよう焼結磁石表面を百μmから数百μm加工した後、BHトレーサーにより測定した磁気特性(B、HcJ)を示した。なお、参考例として、RH拡散前のR−T−B系焼結磁石素材を3mm×10mm×10mmに加工した後、BHトレーサーにより測定した磁気特性値を記載している。ここで、「ΔB」は参考例のBの値からどれだけ変化しているかを表している。また「ΔHcJ」は参考例のHcJの値からどれだけ変化したかを表している。 Table 1 shows the total amount of rare earths (TRE), the total amount of light rare earths (TRL) that is an amount including Nd, Pr, La, and Ce, and the amount of total heavy rare earths that is an amount that includes Dy and Tb. (TRH) and magnetic properties (B r , H cJ ) measured by a BH tracer after processing the sintered magnet surface from 100 μm to several hundred μm to 3 mm × 10 mm × 10 mm after RH diffusion. As a reference example, the R-T-B system sintered magnet material before RH diffusion is processed into 3 mm × 10 mm × 10 mm, and then the magnetic property values measured by the BH tracer are described. Here, "ΔB r" represents what has changed much from the value of B r of the reference example. “ΔH cJ ” represents how much the value has changed from the value of H cJ in the reference example.

本発明による実施例1から実施例7の磁石は、参考例に対していずれもBの低下なくHcJが向上した磁石が得られた。
実施例1は、比較例3と比べて、拡散材の総量は同じだかRH−Fe合金であるDy−Fe合金の散布量が75%に関わらず、ΔHcJは3倍以上高かった。
RLがLa、Ceであることを除き実施例1と同じである実施例2、3においても比較例3と比べて、拡散材の総量は同じだかRH−Fe合金であるDy−Fe合金の散布量が75%に関わらず、ΔHcJは実施例2が1.7倍、実施例3が約3倍高かった。
実施例4から6は、実施例1から3と比べて、拡散材の総量が少なく、RH−Feの散布量が50%ほどであるにも関わらず、ΔHcJの値はほぼ同じであった。TREが75.4%以上80.2%以下、TRLが40%以上51.7%以下、TRHが28.5%以上35.4%以上であると、拡散材からR−T−B系焼結磁石素材へ導入された重希土類元素RHが効率よくHcJを向上していた。
また、実施例4は、参考例に実施例4に導入したのと同じ量のDyを添加した比較例1と比べて、ΔHcJが約300kA/m高かった。導入された重希土類元素RHが効率よくHcJが向上するよう拡散されていた。
比較例2は、RL金属のみからなる拡散材であるが、ΔHCJをわずかばかり向上ささせていた。
実施例7は、比較例4と比べて、RH−Fe合金の量は同じであるが、RL合金の量が異なる。TRLで20%である実施例7は、TRLが10.5%の比較例4と比べてΔHcJが2倍高かった。
また、Dy−Fe合金中のDy含有量が多い比較例6は、熱処理だけ施した比較例1に対して、ΔBが0.05T低下した。実施例1と比べると、ΔHCJは同じような値であるが、ΔBが0.05T低下した。
Magnet of Example 7 from Example 1 according to the present invention are all reduced without H cJ of B r magnet having improved obtained for reference example.
In Example 1, the total amount of the diffusing material was the same as that in Comparative Example 3, or ΔHcJ was three times higher, regardless of the application amount of Dy-Fe alloy, which is an RH-Fe alloy, of 75%.
In Examples 2 and 3 which are the same as Example 1 except that RL is La and Ce, the total amount of the diffusing material is the same as in Comparative Example 3, or the dispersion of Dy-Fe alloy which is an RH-Fe alloy Regardless of the amount of 75%, ΔH cJ was 1.7 times higher in Example 2 and about 3 times higher in Example 3.
In Examples 4 to 6, compared with Examples 1 to 3, the total amount of the diffusing material was small and the amount of RH-Fe applied was about 50%, but the value of ΔH cJ was almost the same. . When the TRE is 75.4% or more and 80.2% or less, the TRL is 40% or more and 51.7% or less, and the TRH is 28.5% or more and 35.4% or more, the R-T-B system firing is performed from the diffusion material. The heavy rare earth element RH introduced into the magnet material improved HcJ efficiently.
Further, in Example 4, ΔH cJ was about 300 kA / m higher than Comparative Example 1 in which the same amount of Dy introduced in Example 4 was added to the Reference Example. The introduced heavy rare earth element RH was diffused so as to improve HcJ efficiently.
Comparative Example 2 is a diffusion material consisting RL metal alone had allowed to improve the [Delta] H CJ only slightly.
In Example 7, the amount of RH-Fe alloy is the same as that of Comparative Example 4, but the amount of RL alloy is different. In Example 7, which had 20% TRL, ΔH cJ was twice as high as Comparative Example 4 in which TRL was 10.5%.
Further, Dy content is high Comparative Example 6 in Dy-Fe alloy, with respect to Comparative Example 1 was subjected only heat treatment, .DELTA.B r was reduced 0.05 T. Compared with Example 1, [Delta] H CJ Although it is similar values, .DELTA.B r was reduced 0.05 T.

Figure 2012234971
Figure 2012234971

それぞれDyFe、DyFe、DyFe23からなるRH−Fe合金とNdからなるRL金属を3:1の重量比率で混合した本発明の拡散材のDTA曲線を熱分析TG−DTA(リガク製TG8110D)にて測定したところ図1のようになった。図1より本発明の拡散材では、RH−Fe合金がDyFe、DyFe、DyFe23のいずれであってもNdが混合されていることで750℃付近に吸熱、発熱があった。一方、DyFeのみでは750℃付近で吸熱、発熱が確認できなかった。
図1より本発明の拡散材は、RL金属とRH−Feとが反応し、750℃付近で液相を生成していることがわかる。
Thermal analysis TG-DTA (manufactured by Rigaku) is a DTA curve of the diffusion material of the present invention in which an RH-Fe alloy composed of DyFe 2 , DyFe 3 , Dy 6 Fe 23 and RL metal composed of Nd are mixed at a weight ratio of 3: 1. When measured with TG8110D), it was as shown in FIG. From FIG. 1, in the diffusing material of the present invention, even when the RH-Fe alloy was any of DyFe 2 , DyFe 3 , and Dy 6 Fe 23 , there was endotherm and heat generation near 750 ° C. because Nd was mixed. On the other hand, heat absorption and heat generation could not be confirmed at around 750 ° C. with only DyFe 2 .
As can be seen from FIG. 1, in the diffusing material of the present invention, the RL metal and RH-Fe react to generate a liquid phase at around 750 ° C.

(実施例2)
実施例1と同じR−T−B系焼結磁石素材を用意した。
Dy81Fe19(質量%)合金と電解Feとを用いて高周波溶解炉で溶解した後、水冷ロール上に出湯して超急冷薄帯を作成した。次いで、これをスタンプミルで粉砕し、Dy濃度の異なる組成の種々のDy−Fe合金からなるRH−Fe合金を得た。
(Example 2)
The same RTB-based sintered magnet material as in Example 1 was prepared.
After melting in a high-frequency melting furnace using a Dy 81 Fe 19 (mass%) alloy and electrolytic Fe, hot water was poured onto a water-cooled roll to create a super-quenched ribbon. Next, this was pulverized by a stamp mill to obtain RH-Fe alloys composed of various Dy-Fe alloys having different Dy concentrations.

RL金属であるNd粉末とRH―Fe合金である前記種々のDy−Fe粉末とを混合した拡散材を前記焼結磁石素材の表面に散布した後、900℃で4時間の拡散処理を施したものを実施例8から実施例14とした。一方、RL金属であるNd粉末を混合せずに同じ処理を施したものを比較例6から比較例10とした。
ここで、実施例8、10、11、13、14、比較例6〜10で用いたDy−Fe合金粉末からなるRH−Fe合金はふるい目は63μm以上125μm以下であった。
実施例9、12で用いたDy−Fe合金粉末からなるRH−Fe合金はふるい目で63μm以上710μm以下であった。
また、実施例8から11、13、14および比較例6から10で用いたNd粉末からなるRL金属はふるい目で63μm以上125μm以下であった。実施例12で用いたNd粉末からなるRL金属はふるい目で63μm以上500μm以下であった。
A dispersion material in which Nd powder, which is RL metal, and the various Dy-Fe powders, which are RH-Fe alloys, is dispersed on the surface of the sintered magnet material, and then subjected to diffusion treatment at 900 ° C. for 4 hours. These were designated as Examples 8 to 14. On the other hand, Comparative Example 6 to Comparative Example 10 were subjected to the same treatment without mixing the RL metal Nd powder.
Here, the sieves of the RH-Fe alloys made of the Dy-Fe alloy powders used in Examples 8, 10, 11, 13, 14 and Comparative Examples 6 to 10 were 63 µm or more and 125 µm or less.
The RH-Fe alloy composed of the Dy-Fe alloy powder used in Examples 9 and 12 had a sieve mesh of 63 µm or more and 710 µm or less.
Further, the RL metal composed of the Nd powder used in Examples 8 to 11, 13, 14 and Comparative Examples 6 to 10 had a sieve size of 63 μm or more and 125 μm or less. The RL metal composed of Nd powder used in Example 12 had a sieve mesh of 63 μm or more and 500 μm or less.

表2には、混合粉の配合組成である総希土類量(TRE量)、総軽希土類量(TRL)、総重希土類量(TRH)、BHトレーサーにより測定した磁気特性、B、HcJを示した。 Table 2 shows the total rare earth amount (TRE amount), the total light rare earth amount (TRL), the total heavy rare earth amount (TRH), the magnetic properties measured by the BH tracer, B r , and H cJ , which are the composition of the mixed powder. Indicated.

本発明による実施例8、10、11、13、14は、同じの組成かつ同じ散布量のRH−Feを用いているがRL金属を含まない拡散材を用いた比較例6から比較例10と比べて、ΔBの低下がなくΔHcJが向上していることが分かる。
拡散材の粒度が大きい実施例9および12は、焼結磁石素材の表面に拡散材が残っており、その分HcJ値の向上効果が小さくなっていたが、ΔHcJはそれぞれ比較例6、8より3倍高かった。
Examples 8, 10, 11, 13, and 14 according to the present invention use RH-Fe having the same composition and the same application amount, but comparative examples 6 to 10 using a diffusion material that does not contain RL metal. In comparison, it can be seen that ΔB r is not decreased and ΔH cJ is improved.
In Examples 9 and 12 in which the particle size of the diffusing material was large, the diffusing material remained on the surface of the sintered magnet material, and the effect of improving the H cJ value was reduced accordingly, but ΔH cJ was Comparative Example 6, respectively. 3 times higher than 8.

Figure 2012234971
Figure 2012234971

(実施例3)
組成がNd25.6Pr2.8Dy2.00.97Co0.9Al0.2Cu0.1Ga0.1残部Fe(質量%)からなるR−T−B系焼結磁石が得られるように原料合金を準備した。原料合金はストリップキャスト法で作製した鋳片で、これを水素粉砕により不定形粉末に粗粉砕した後、高圧Nガスによるジェットミル粉砕を行い、粉末の平均粒径がD50で4.9μmの微粉末を作製した。
(Example 3)
R-T-B system sintering whose composition consists of Nd 25.6 Pr 2.8 Dy 2.0 B 0.97 Co 0.9 Al 0.2 Cu 0.1 Ga 0.1 balance Fe (mass%) A raw material alloy was prepared so that a magnet was obtained. The raw material alloy is a slab produced by a strip cast method, which is roughly pulverized into an amorphous powder by hydrogen pulverization, and then subjected to jet mill pulverization with high-pressure N 2 gas, and the average particle diameter of the powder is D50 of 4.9 μm. A fine powder was prepared.

こうして作製した微粉末をプレス装置により成形し、粉末成形体を作製した。具体的には、印加磁界中で粉末粒子を磁界配向した状態で圧縮成形を行った。その後、成形体をプレス装置から抜き出し、真空炉により1050℃で4時間の条件で焼結して、上記の組成を有するR−T−B系焼結磁石の焼結磁石素材を得た。この焼結磁石素材を研削加工して、2.3×33×21(mm)の焼結磁石素材を用意した。   The fine powder thus produced was molded by a press apparatus to produce a powder compact. Specifically, compression molding was performed in a state where the powder particles were magnetically oriented in an applied magnetic field. Thereafter, the compact was extracted from the press machine and sintered in a vacuum furnace at 1050 ° C. for 4 hours to obtain a sintered magnet material of an RTB-based sintered magnet having the above composition. The sintered magnet material was ground to prepare a 2.3 × 33 × 21 (mm) sintered magnet material.

TbメタルおよびDyメタルと電解Feとを用いて高周波溶解炉で溶解した後、水冷ロール上に出湯して超急冷薄帯を作成した。次いで、これをスタンプミルで粉砕し、Tb50Fe50(質量%)およびTb25Dy25Fe50(質量%)からなるRH―Fe合金の粉末を作製した。この粉末は、Tb50Fe50はふるい目で63μm以上125μm以下、Tb25Dy25Fe50は63μm以上180μm以下であった。 After melting in a high-frequency melting furnace using Tb metal, Dy metal, and electrolytic Fe, hot water was discharged on a water-cooled roll to form a super-quenched ribbon. Next, this was pulverized by a stamp mill to prepare an RH-Fe alloy powder composed of Tb 50 Fe 50 (mass%) and Tb 25 Dy 25 Fe 50 (mass%). In this powder, Tb 50 Fe 50 had a sieve mesh of 63 μm or more and 125 μm or less, and Tb 25 Dy 25 Fe 50 was 63 μm or more and 180 μm or less.

不活性ガス雰囲気内で溶融したNdメタルおよびPrメタルを用いて実施例1と同様の製法で純Nd粉末およびNd75Pr25(質量%)のRL金属の粉末を作製した。これら粉末の粒径は、いずれもふるい目で63μm以上125μm以下であった。 Pure Nd powder and Nd 75 Pr 25 (mass%) RL metal powder were produced in the same manner as in Example 1 using Nd metal and Pr metal melted in an inert gas atmosphere. The particle diameters of these powders were 63 μm or more and 125 μm or less in all sieves.

前記Tb−Fe合金粉末とNd粉末をミキサーで混合した後、R−T−B系焼結磁石素材に散布したものを実施例15およびNd粉末を混合せずにR−T−B系焼結磁石素材に散布したものを比較例11とした。同様にして、前記Tb−Dy−Fe合金粉末とNd−Pr合金粉末をミキサーで混合した後、焼結磁石素材に散布したものを実施例16とした。   After mixing the Tb-Fe alloy powder and the Nd powder with a mixer, the mixture dispersed on the R-T-B system sintered magnet material is Example 15 and the R-T-B system sintering without mixing the Nd powder. What was spread on the magnet material was set as Comparative Example 11. Similarly, the Tb—Dy—Fe alloy powder and the Nd—Pr alloy powder were mixed with a mixer and then applied to a sintered magnet material as Example 16.

次いで、前記実施例15および前記実施例16のR−T−B系焼結磁石素材に対し、Ar雰囲気中、850℃で6時間のRH拡散処理およびテンパー処理を施した。また、予め用意した焼結磁石素材に対して、混合粉末を散布しないままRH拡散処理と同じ熱処理のみ施したものを比較例12とした。   Next, the RTB-based sintered magnet material of Example 15 and Example 16 was subjected to RH diffusion treatment and temper treatment at 850 ° C. for 6 hours in an Ar atmosphere. Further, Comparative Example 12 was obtained by applying only the same heat treatment as the RH diffusion treatment to the sintered magnet material prepared in advance without spraying the mixed powder.

表3に、使用した各粉末の散布量と混合粉の配合比率である総希土類量(TRE量)、総軽希土類量(TRL)、総重希土類量(TRH)、並びに2mm×7mm×7mmに加工した後、同一条件で作製した試料2枚を重ねてBHトレーサーにより測定した磁気特性、B、HcJを示した。 Table 3 shows the total amount of rare earths (TRE amount), total light rare earth amount (TRL), total heavy rare earth amount (TRH), and 2 mm × 7 mm × 7 mm. After processing, two samples prepared under the same conditions were overlapped, and the magnetic properties, B r and H cJ measured with a BH tracer were shown.

本発明による実施例15および16は、比較例11および比較例12の磁石に比べて、ΔBの低下はなくΔHcJが500kA/m以上大幅に向上した磁石が得られた。比較例11の磁石は、重希土類元素を拡散させずに熱処理だけした磁石(比較例12)より、高いHcJが得られたが、その効果は小さく磁石表面にTb−Fe拡散材が多く残存していた。 Examples 15 and 16 according to the present invention, as compared to the magnet of Comparative Example 11 and Comparative Example 12, .DELTA.B r magnets decrease the [Delta] H cJ not greatly improved over 500 kA / m was obtained. The magnet of Comparative Example 11 had a higher H cJ than the magnet (Comparative Example 12) that was only heat-treated without diffusing heavy rare earth elements, but the effect was small and a large amount of Tb—Fe diffuser remained on the magnet surface. Was.

Figure 2012234971
Figure 2012234971

(実施例4)
RL金属が純Ndの替わりに、Nd80Fe20(質量%)、ふるい目で125μm以下からなるRL金属(TRE=67.4質量%、TRL=32.0質量%、TRH=35.4質量%)を用いたこと以外は、本発明の実施例2の磁石と同様の製法で実施例16の磁石を作製した。この磁石の磁気特性を測定したところ、B=1.44(T)、HCJ=1265(kA/m)であった。この結果から、実施例17は比較例1から比較例5の磁石と比べて、Bの差異が極めて小さく、かつHCJの向上が得られた。
このように、本発明の範囲内であればRL金属の一部をFeに置換しても、その効果が保たれることがわかった。
Example 4
RL metal instead of pure Nd, Nd 80 Fe 20 (mass%), RL metal consisting of 125 μm or less by sieve (TRE = 67.4 mass%, TRL = 32.0 mass%, TRH = 35.4 mass) %) Was used to produce the magnet of Example 16 by the same manufacturing method as that of the magnet of Example 2 of the present invention. When the magnetic properties of this magnet were measured, it was B r = 1.44 (T) and H CJ = 1265 (kA / m). From this result, Example 17 as compared to the magnet of Comparative Example 5 Comparative Example 1, the difference in B r is very small, and the improvement of H CJ was obtained.
Thus, it was found that even if a part of the RL metal is replaced with Fe within the scope of the present invention, the effect is maintained.

Figure 2012234971
Figure 2012234971

Claims (2)

R−T−B系焼結磁石素材(Rは希土類元素、TはFeまたはFeとCoを含む)を準備する工程と、
重希土類元素RH(RHはDyおよびTbの少なくとも一種を含む)と40質量%以上95質量%以下のFeとからなるRH−Fe合金と、
軽希土類元素RL(Nd、Pr、Ce、Laの少なくとも一種を含む)を含むRL金属と、からなり、
総希土類量が65質量%以上、
軽希土類元素RLが20質量%以上70質量%以下、
重希土類元素RHが50質量%以下、
である粉末状の拡散材を準備する工程と、
前記R−T−B系焼結磁石素材に対し、前記拡散材を前記R−T−B系焼結磁石素材の表面に存在させた状態で、800℃以上1000℃以下の温度で真空または不活性ガス中においてRH拡散処理する工程と、
を有するR−T−B系焼結磁石の製造方法。
Preparing a R-T-B sintered magnet material (R is a rare earth element, T is Fe or Fe and Co);
An RH-Fe alloy comprising heavy rare earth element RH (RH includes at least one of Dy and Tb) and 40 mass% or more and 95 mass% or less of Fe;
An RL metal containing a light rare earth element RL (including at least one of Nd, Pr, Ce, La), and
The total rare earth amount is 65% by mass or more,
Light rare earth element RL is 20 mass% or more and 70 mass% or less,
Heavy rare earth element RH is 50 mass% or less,
A step of preparing a powdery diffusion material,
With respect to the R-T-B system sintered magnet material, the diffusion material is present on the surface of the R-T-B system sintered magnet material, and vacuum or non-reactance is performed at a temperature of 800 ° C. or higher and 1000 ° C. or lower. A step of RH diffusion treatment in an active gas;
The manufacturing method of the RTB type | system | group sintered magnet which has this.
前記拡散材は、粒径がふるい目で63μm以上500μm以下である請求項1に記載のR−T−B系焼結磁石の製造方法。   2. The method for producing an RTB-based sintered magnet according to claim 1, wherein the diffusion material has a particle size of 63 μm or more and 500 μm or less.
JP2011102642A 2011-05-02 2011-05-02 Method for producing RTB-based sintered magnet Active JP5874951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011102642A JP5874951B2 (en) 2011-05-02 2011-05-02 Method for producing RTB-based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011102642A JP5874951B2 (en) 2011-05-02 2011-05-02 Method for producing RTB-based sintered magnet

Publications (2)

Publication Number Publication Date
JP2012234971A true JP2012234971A (en) 2012-11-29
JP5874951B2 JP5874951B2 (en) 2016-03-02

Family

ID=47435008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011102642A Active JP5874951B2 (en) 2011-05-02 2011-05-02 Method for producing RTB-based sintered magnet

Country Status (1)

Country Link
JP (1) JP5874951B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105280319A (en) * 2014-07-14 2016-01-27 中国科学院物理研究所 Rare earth iron boron material prepared from industrial pure mixed rare earth, and preparation method and application of rare earth iron boron material
WO2016039352A1 (en) * 2014-09-11 2016-03-17 日立金属株式会社 Production method for r-t-b sintered magnet
WO2016039353A1 (en) * 2014-09-11 2016-03-17 日立金属株式会社 Production method for r-t-b sintered magnet
WO2017018252A1 (en) * 2015-07-29 2017-02-02 日立金属株式会社 Method for producing rare earth sintered magnet
WO2017068946A1 (en) * 2015-10-19 2017-04-27 日立金属株式会社 R-t-b based sintered magnet manufacturing method and r-t-b based sintered magnet
JP2017098456A (en) * 2015-11-26 2017-06-01 国立大学法人大阪大学 Method for manufacturing grain boundary diffusion treatment agent, and method for manufacturing rare earth-iron-boron based magnet
JP2018028123A (en) * 2016-08-17 2018-02-22 日立金属株式会社 Method for producing r-t-b sintered magnet
WO2018062174A1 (en) * 2016-09-29 2018-04-05 日立金属株式会社 Method of producing r-t-b sintered magnet
CN108987016A (en) * 2018-07-13 2018-12-11 杭州电子科技大学 A kind of preparation process of nano-crystal neodymium iron boron magnetic body
CN109478459A (en) * 2016-08-08 2019-03-15 日立金属株式会社 The manufacturing method of R-T-B based sintered magnet
CN111937103A (en) * 2018-03-29 2020-11-13 日立金属株式会社 Method for producing R-T-B sintered magnet
CN113593800A (en) * 2021-07-20 2021-11-02 烟台正海磁性材料股份有限公司 High-performance sintered neodymium-iron-boron magnet and preparation method thereof
JP7310499B2 (en) 2019-01-28 2023-07-19 株式会社プロテリアル Method for producing RTB based sintered magnet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274048A (en) * 1985-09-27 1987-04-04 Sumitomo Special Metals Co Ltd Permanent magnet material and its production
WO2006112403A1 (en) * 2005-04-15 2006-10-26 Hitachi Metals, Ltd. Rare earth sintered magnet and process for producing the same
WO2007088718A1 (en) * 2006-01-31 2007-08-09 Hitachi Metals, Ltd. R-Fe-B RARE-EARTH SINTERED MAGNET AND PROCESS FOR PRODUCING THE SAME
JP2008263179A (en) * 2007-03-16 2008-10-30 Shin Etsu Chem Co Ltd Rare earth permanent magnet and method of manufacturing the same
WO2009107397A1 (en) * 2008-02-28 2009-09-03 日立金属株式会社 Process for producing r-fe-b rare-earth sintered magnet and rare-earth sintered magnet produced by the process
JP2009289994A (en) * 2008-05-29 2009-12-10 Tdk Corp Process for producing magnet
JP2010263172A (en) * 2008-07-04 2010-11-18 Daido Steel Co Ltd Rare earth magnet and manufacturing method of the same
WO2012099186A1 (en) * 2011-01-19 2012-07-26 日立金属株式会社 Method of producing r-t-b sintered magnet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274048A (en) * 1985-09-27 1987-04-04 Sumitomo Special Metals Co Ltd Permanent magnet material and its production
WO2006112403A1 (en) * 2005-04-15 2006-10-26 Hitachi Metals, Ltd. Rare earth sintered magnet and process for producing the same
JPWO2006112403A1 (en) * 2005-04-15 2008-12-11 日立金属株式会社 Rare earth sintered magnet and manufacturing method thereof
WO2007088718A1 (en) * 2006-01-31 2007-08-09 Hitachi Metals, Ltd. R-Fe-B RARE-EARTH SINTERED MAGNET AND PROCESS FOR PRODUCING THE SAME
JPWO2007088718A1 (en) * 2006-01-31 2009-06-25 日立金属株式会社 R-Fe-B rare earth sintered magnet and method for producing the same
JP2008263179A (en) * 2007-03-16 2008-10-30 Shin Etsu Chem Co Ltd Rare earth permanent magnet and method of manufacturing the same
WO2009107397A1 (en) * 2008-02-28 2009-09-03 日立金属株式会社 Process for producing r-fe-b rare-earth sintered magnet and rare-earth sintered magnet produced by the process
JP2009289994A (en) * 2008-05-29 2009-12-10 Tdk Corp Process for producing magnet
JP2010263172A (en) * 2008-07-04 2010-11-18 Daido Steel Co Ltd Rare earth magnet and manufacturing method of the same
WO2012099186A1 (en) * 2011-01-19 2012-07-26 日立金属株式会社 Method of producing r-t-b sintered magnet

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105280319A (en) * 2014-07-14 2016-01-27 中国科学院物理研究所 Rare earth iron boron material prepared from industrial pure mixed rare earth, and preparation method and application of rare earth iron boron material
CN106688065B (en) * 2014-09-11 2019-05-31 日立金属株式会社 The manufacturing method of R-T-B based sintered magnet
WO2016039352A1 (en) * 2014-09-11 2016-03-17 日立金属株式会社 Production method for r-t-b sintered magnet
WO2016039353A1 (en) * 2014-09-11 2016-03-17 日立金属株式会社 Production method for r-t-b sintered magnet
US10510483B2 (en) 2014-09-11 2019-12-17 Hitachi Metals, Ltd. Production method for R-T-B sintered magnet
EP3193346A4 (en) * 2014-09-11 2018-05-23 Hitachi Metals, Ltd. Production method for r-t-b sintered magnet
CN106688065A (en) * 2014-09-11 2017-05-17 日立金属株式会社 Production method for R-T-B sintered magnet
EP3193347A4 (en) * 2014-09-11 2018-05-23 Hitachi Metals, Ltd. Production method for r-t-b sintered magnet
JPWO2016039352A1 (en) * 2014-09-11 2017-06-22 日立金属株式会社 Method for producing RTB-based sintered magnet
JPWO2016039353A1 (en) * 2014-09-11 2017-06-22 日立金属株式会社 Method for producing RTB-based sintered magnet
CN107077964A (en) * 2014-09-11 2017-08-18 日立金属株式会社 The manufacture method of R-T-B based sintered magnets
US10593472B2 (en) 2014-09-11 2020-03-17 Hitachi Metals, Ltd. Production method for R-T-B sintered magnet
JPWO2017018252A1 (en) * 2015-07-29 2018-05-17 日立金属株式会社 Manufacturing method of rare earth sintered magnet
WO2017018252A1 (en) * 2015-07-29 2017-02-02 日立金属株式会社 Method for producing rare earth sintered magnet
WO2017068946A1 (en) * 2015-10-19 2017-04-27 日立金属株式会社 R-t-b based sintered magnet manufacturing method and r-t-b based sintered magnet
JPWO2017068946A1 (en) * 2015-10-19 2018-08-02 日立金属株式会社 Method for producing RTB-based sintered magnet and RTB-based sintered magnet
JP2017098456A (en) * 2015-11-26 2017-06-01 国立大学法人大阪大学 Method for manufacturing grain boundary diffusion treatment agent, and method for manufacturing rare earth-iron-boron based magnet
EP3499530A4 (en) * 2016-08-08 2020-05-06 Hitachi Metals, Ltd. Method of producing r-t-b sintered magnet
CN109478459B (en) * 2016-08-08 2021-03-05 日立金属株式会社 Method for producing R-T-B sintered magnet
US11062844B2 (en) 2016-08-08 2021-07-13 Hitachi Metals, Ltd. Method of producing R-T-B sintered magnet
CN109478459A (en) * 2016-08-08 2019-03-15 日立金属株式会社 The manufacturing method of R-T-B based sintered magnet
JP2019135771A (en) * 2016-08-08 2019-08-15 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
JP2018028123A (en) * 2016-08-17 2018-02-22 日立金属株式会社 Method for producing r-t-b sintered magnet
JPWO2018062174A1 (en) * 2016-09-29 2018-09-27 日立金属株式会社 Method for producing RTB-based sintered magnet
WO2018062174A1 (en) * 2016-09-29 2018-04-05 日立金属株式会社 Method of producing r-t-b sintered magnet
EP3522185A4 (en) * 2016-09-29 2020-06-10 Hitachi Metals, Ltd. Method of producing r-t-b sintered magnet
CN109564819A (en) * 2016-09-29 2019-04-02 日立金属株式会社 The manufacturing method of R-T-B based sintered magnet
US11738390B2 (en) 2016-09-29 2023-08-29 Proterial, Ltd. Method of producing R-T-B sintered magnet
CN111937103A (en) * 2018-03-29 2020-11-13 日立金属株式会社 Method for producing R-T-B sintered magnet
CN108987016A (en) * 2018-07-13 2018-12-11 杭州电子科技大学 A kind of preparation process of nano-crystal neodymium iron boron magnetic body
CN108987016B (en) * 2018-07-13 2021-06-18 杭州电子科技大学 Preparation process of nanocrystalline neodymium-iron-boron magnet
JP7310499B2 (en) 2019-01-28 2023-07-19 株式会社プロテリアル Method for producing RTB based sintered magnet
CN113593800A (en) * 2021-07-20 2021-11-02 烟台正海磁性材料股份有限公司 High-performance sintered neodymium-iron-boron magnet and preparation method thereof

Also Published As

Publication number Publication date
JP5874951B2 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
JP5874951B2 (en) Method for producing RTB-based sintered magnet
US11482377B2 (en) Rare earth permanent magnets and their preparation
JP5510457B2 (en) Method for producing RTB-based sintered magnet
JP5831451B2 (en) Method for producing RTB-based sintered magnet
JP5742776B2 (en) Rare earth permanent magnet and manufacturing method thereof
JP5999106B2 (en) Method for producing RTB-based sintered magnet
JP2017147427A (en) R-iron-boron based sintered magnet and method for manufacturing the same
WO2016039353A1 (en) Production method for r-t-b sintered magnet
JP6037093B1 (en) Method for producing RTB-based sintered magnet
JP2012079726A (en) Production method of alloy for r-t-b-m based sintered magnet and production method of r-t-b-m based sintered magnet
JP5850052B2 (en) RH diffusion source and method for producing RTB-based sintered magnet using the same
JP6939339B2 (en) Manufacturing method of RTB-based sintered magnet
JP7396148B2 (en) Manufacturing method of RTB based sintered magnet
JP6939337B2 (en) Manufacturing method of RTB-based sintered magnet
JP2019062158A (en) Method for manufacturing r-t-b based sintered magnet
JP2019062152A (en) Diffusion source
JP2022077979A (en) Manufacturing method of rare earth sintered magnet
JP7000774B2 (en) Manufacturing method of RTB-based sintered magnet
JP2018164004A (en) Manufacturing method of r-t-b based sintered magnet
JP6922616B2 (en) Diffusion source
JP2021155810A (en) Method of producing r-t-b-based sintered magnet
JP2019062157A (en) Method for manufacturing r-t-b based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160107

R150 Certificate of patent or registration of utility model

Ref document number: 5874951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350