JP7228096B2 - Method for producing RTB based sintered magnet - Google Patents

Method for producing RTB based sintered magnet Download PDF

Info

Publication number
JP7228096B2
JP7228096B2 JP2019054079A JP2019054079A JP7228096B2 JP 7228096 B2 JP7228096 B2 JP 7228096B2 JP 2019054079 A JP2019054079 A JP 2019054079A JP 2019054079 A JP2019054079 A JP 2019054079A JP 7228096 B2 JP7228096 B2 JP 7228096B2
Authority
JP
Japan
Prior art keywords
alloy
less
sintered body
based sintered
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019054079A
Other languages
Japanese (ja)
Other versions
JP2020155657A (en
Inventor
武司 西内
宣介 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PROTERIAL, LTD.
Original Assignee
PROTERIAL, LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PROTERIAL, LTD. filed Critical PROTERIAL, LTD.
Priority to JP2019054079A priority Critical patent/JP7228096B2/en
Publication of JP2020155657A publication Critical patent/JP2020155657A/en
Priority to JP2023010682A priority patent/JP2023052675A/en
Application granted granted Critical
Publication of JP7228096B2 publication Critical patent/JP7228096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、R-T-B系焼結磁石の製造方法に関する。 The present invention relates to a method for producing an RTB based sintered magnet.

R-T-B系焼結磁石(Rは希土類元素のうち少なくとも一種である。Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む。Bは硼素である)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。本明細書において希土類元素とは、スカンジウム(Sc)、イットリウム(Y)、およびランタノイドからなる群から選択された少なくとも1つの元素をいう。ここで、ランタノイドとは、ランタンからルテチウムまでの15の元素の総称である。 RTB based sintered magnets (R is at least one rare earth element, T is at least one transition metal element and always contains Fe, and B is boron) is the most popular among permanent magnets. Known as a high-performance magnet, it is used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances. . As used herein, rare earth elements refer to at least one element selected from the group consisting of scandium (Sc), yttrium (Y), and lanthanides. Here, the lanthanoid is a general term for 15 elements from lanthanum to lutetium.

R-T-B系焼結磁石は主としてR14B化合物からなる主相とこの主相の粒界部分に位置する粒界相(以下、単に「粒界」という場合がある)とから構成されている。R14B化合物は高い磁化を持つ強磁性相でありR-T-B系焼結磁石の特性の根幹をなしている。 An RTB based sintered magnet consists of a main phase consisting mainly of an R 2 T 14 B compound and a grain boundary phase located at the grain boundary portion of this main phase (hereinafter sometimes simply referred to as "grain boundary"). It is configured. The R 2 T 14 B compound is a ferromagnetic phase with high magnetization and forms the basis of the properties of RTB system sintered magnets.

R-T-B系焼結磁石は、高温で保磁力HcJ(以下、単に「保磁力」又は「HcJ」という場合がある)が低下するため不可逆熱減磁が起こるという問題がある。そのため、特に電気自動車用モータに使用されるR-T-B系焼結磁石では、高温下でも高いHcJを有する、すなわち室温においてより高いHcJを有することが要求されている。 RTB based sintered magnets have a problem of irreversible thermal demagnetization due to a decrease in coercive force H cJ (hereinafter sometimes simply referred to as “coercive force” or “H cJ ”) at high temperatures. Therefore, RTB sintered magnets used in motors for electric vehicles in particular are required to have a high H cJ even at high temperatures, that is, to have a higher H cJ at room temperature.

R-T-B系焼結磁石において、R14B化合物中のRに含まれる軽希土類元素(主としてNd及び/又はPr)の一部を重希土類元素(主としてDy及び/又はTb)で置換すると、HcJが向上することが知られている。重希土類元素の置換量の増加に伴いHcJは向上する。 In the RTB sintered magnet, part of the light rare earth elements (mainly Nd and/or Pr) contained in R in the R 2 T 14 B compound are replaced with heavy rare earth elements (mainly Dy and/or Tb). The substitution is known to improve the H cJ . HcJ improves with an increase in the substitution amount of the heavy rare earth element.

しかし、R14B化合物中の軽希土類元素を重希土類元素で置換するとR-T-B系焼結磁石のHcJが向上する一方、残留磁束密度B(以下、単に「B」という場合がある)が低下する。また、重希土類元素、特にDyなどは資源存在量が少ないうえ産出地が限定されているなどの理由から供給が安定しておらず、価格が大きく変動するなどの問題を有している。そのため、近年、ユーザーから重希土類元素をできるだけ使用することなくHcJを向上させることが求められている。 However, when the light rare earth element in the R 2 T 14 B compound is replaced with a heavy rare earth element, the H cJ of the RTB system sintered magnet is improved, while the residual magnetic flux density B r (hereinafter simply “B r ” in some cases) decreases. In addition, heavy rare earth elements, especially Dy, have problems such as unstable supply and large price fluctuations due to the fact that their resources are scarce and their places of production are limited. Therefore, in recent years, there has been a demand from users to improve HcJ without using heavy rare earth elements as much as possible.

特許文献1には、Dyの含有量を低減しつつ保磁力を高めたR-T-B系希土類焼結磁石が開示されている。この焼結磁石の組成は、一般に用いられてきたR-T-B系合金に比べてB量が相対的に少ない特定の範囲に限定され、かつ、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有している。その結果、粒界にR17相が生成され、このR17相から粒界に形成される遷移金属リッチ相(R13M)の体積比率が増加することにより、HcJが向上する。 Patent Document 1 discloses an RTB-based rare earth sintered magnet in which the coercive force is increased while the Dy content is reduced. The composition of this sintered magnet is limited to a specific range in which the amount of B is relatively small compared to the generally used RTB alloy, and is selected from Al, Ga, and Cu. It contains more than one kind of metal element M. As a result, the R 2 T 17 phase is generated at the grain boundary, and the volume ratio of the transition metal-rich phase (R 6 T 13 M) formed at the grain boundary from this R 2 T 17 phase is increased . improves.

国際公開第2013/008756号WO2013/008756

特許文献1に記載されている方法は、重希土類元素の含有量を抑制しつつR-T-B系焼結磁石を高保磁力化できる点で注目に値する。しかし、Bが大幅に低下するという問題があった。また、近年、電気自動車用モータ等の用途において更に高いHcJを有するR-T-B系焼結磁石が求められている。また、R-T-B系焼結磁石は、特に電気自動車用モータ向けなどで需要が今後大きく拡大することが予想されている。そのため、重希土類元素の低減だけでなく、希土類元素使用の多様化もはかる必要がある。具体的な手段として希土類元素の中で存在量が比較的豊富なLa(ほかにCe)などを使用することが挙げられる。 The method described in Patent Document 1 is noteworthy in that it can increase the coercive force of the RTB system sintered magnet while suppressing the content of the heavy rare earth element. However, there is a problem that Br is greatly reduced. In recent years, there has also been a demand for RTB based sintered magnets having a higher HcJ for applications such as motors for electric vehicles. Further, the demand for RTB based sintered magnets is expected to greatly expand in the future, especially for use in motors for electric vehicles. Therefore, it is necessary not only to reduce heavy rare earth elements but also to diversify the use of rare earth elements. As a specific means, it is possible to use La (and Ce) which is relatively abundant among rare earth elements.

本開示の実施形態は、Laを使用し、重希土類元素の含有量を低減しつつ、高いB及び高いHcJを有するR-T-B系焼結磁石の製造方法を提供する。 Embodiments of the present disclosure use La and provide a method for manufacturing RTB based sintered magnets with high B r and high H cJ while reducing the content of heavy rare earth elements.

本開示のR-T-B系焼結磁石の製造方法は、例示的な実施形態において、R1-T1-B系焼結体を準備する工程と、R2-Ga-Cu系合金を準備する工程と、前記R1-T1-B系焼結体の表面の少なくとも一部に、前記R2-Ga-Cu系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、450℃以上500℃以下の温度で熱処理を実施する工程を含み、前記R1-T1-B系焼結体において、R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1-T1-B系焼結体全体の27mass%以上35mass%以下であり、T1はFe又はCo、Al、Mn、Siの少なくとも1つとFeであり、T1全体に対するFeの含有量が80mass%以上であり、Bに対するT1のmol比([T1]/[B])が14.0超15.0以下であり、前記R2-Ga-Cu系合金において、R2は希土類元素のうち少なくとも一種であり、Laを必ず含み、R2の含有量は、R2-Ga-Cu系合金全体の70mol%以上90mol%以下であり、かつ、希土類元素全体に対するLaの比率が、R1-T1―B系焼結体の希土類元素全体に対するLaの比率よりも高く、Gaの含有量は、R2-Ga-Cu系合金全体の5mol%以上20mol%以下であり、Cuの含有量は、R2-Ga-Cu系合金全体の5mol%以上20mol%以下である。 In an exemplary embodiment, the method for producing an RTB based sintered magnet of the present disclosure includes the steps of preparing an R1-T1-B based sintered body and preparing an R2-Ga-Cu based alloy. and at least part of the surface of the R1-T1-B-based sintered body is brought into contact with at least part of the R2-Ga-Cu-based alloy, and in a vacuum or inert gas atmosphere at 450 ° C. or higher and 500 ° C. or lower. In the R1-T1-B based sintered body, R1 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-B based sintered body, T1 is Fe or at least one of Co, Al, Mn, Si and Fe, and the Fe content of the entire T1 is 80 mass% or more. and the molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less, and in the R2-Ga-Cu-based alloy, R2 is at least one rare earth element , La must be included, the content of R2 is 70 mol% or more and 90 mol% or less of the entire R2-Ga-Cu-based alloy, and the ratio of La to the entire rare earth element is the R1-T1-B-based sintered body is higher than the ratio of La to the entire rare earth element, the content of Ga is 5 mol% or more and 20 mol% or less of the entire R2-Ga-Cu alloy, and the content of Cu is the entire R2-Ga-Cu alloy. is 5 mol % or more and 20 mol % or less.

ある実施形態において、前記R2-Ga-Cu系合金中のLaがR2全体の50mol%以上である。 In one embodiment, La in the R2-Ga-Cu alloy is 50 mol% or more of the total R2.

ある実施形態において、前記R2-Ga-Cu系合金中のR2はLaである(不純物は含む)。 In one embodiment, R2 in the R2-Ga-Cu alloy is La (including impurities).

ある実施形態において、前記R2-Ga-Cu系合金におけるR2、Ga,Cuの合計の含有量が80mass%以上である。 In one embodiment, the total content of R2, Ga and Cu in the R2-Ga-Cu alloy is 80 mass% or more.

ある実施形態において、前記R1-T1-B系焼結体を準備する工程は、原料合金を粒径D50が3μm以上10μm以下になるように粉砕した後、磁界中で配向させて焼結を行うことを含む。 In one embodiment, the step of preparing the R1-T1-B-based sintered body includes pulverizing the raw material alloy so that the particle size D50 is 3 μm or more and 10 μm or less, and then sintering by orienting in a magnetic field. Including doing.

本開示の実施形態によると、Laを使用し、重希土類元素の含有量を低減しつつ、高いB及び高いHcJを有するR-T-B系焼結磁石の製造方法を提供することができる。 According to embodiments of the present disclosure, it is possible to provide a method for producing a RTB based sintered magnet having high B r and high H cJ while using La and reducing the content of heavy rare earth elements. can.

本開示によるR-T-B系焼結磁石の製造方法における工程の例を示すフローチャートである。4 is a flow chart showing an example of steps in a method for manufacturing a sintered RTB magnet according to the present disclosure; R-T-B系焼結磁石の主相と粒界相を示す模式図である。1 is a schematic diagram showing a main phase and a grain boundary phase of an RTB based sintered magnet. FIG. 図2Aの破線矩形領域内を更に拡大した模式図である。FIG. 2B is a schematic diagram further enlarging the inside of the broken-line rectangular area of FIG. 2A. 熱処理工程におけるR1-T1-B系焼結体とR2-Ga-Cu系合金との配置形態の例を模式的に示す説明図であるFIG. 4 is an explanatory view schematically showing an example of the arrangement of the R1-T1-B-based sintered body and the R2-Ga-Cu-based alloy in the heat treatment step; No.1-4(本発明例)の焼結体表面近傍の断面を走査電子顕微鏡で観察した写真である。No. 1 is a photograph of a cross section near the surface of a sintered body of 1-4 (Example of the invention) observed with a scanning electron microscope. No.1-4(本発明例)の表面から800μm領域の断面を走査電子顕微鏡で観察した写真である。No. 1 is a photograph of a cross section of 800 μm region from the surface of 1-4 (example of the present invention) observed with a scanning electron microscope. No.1-4(本発明例)の中心部の断面を走査電子顕微鏡で観察した写真である。No. 1 is a photograph of a cross section of the central portion of 1-4 (example of the present invention) observed with a scanning electron microscope. No.1-4(本発明例)の焼結体表面近傍の断面をEDX分析した結果を示す図である。No. FIG. 10 is a diagram showing the result of EDX analysis of the cross section near the surface of the sintered body of 1-4 (example of the present invention). No.1-4(本発明例)の表面から800μm領域の断面をEDX分析した結果を示す図である。No. FIG. 10 is a diagram showing the results of EDX analysis of a cross section of a region of 800 μm from the surface of 1-4 (example of the present invention). No.1-4(本発明例)の中心部の断面をEDX分析した結果を示す図である。No. FIG. 10 is a diagram showing the result of EDX analysis of the cross section of the central portion of 1-4 (example of the present invention).

本開示において、希土類元素を総称して「R」と表記する場合がある。希土類元素Rのうちの特定の元素または元素群を指すとき、例えば「R1」及び「R2」の符号を用いて他の希土類元素から区別する。また、本開示において、Feを含む遷移金属元素の全体を「T」と表記する。遷移金属元素Tのうちの特定の元素または元素群及び主相のFeサイトと容易に置換される遷移金属元素以外の特定の元素または元素群の両方を含むとき、「T1」の符号を用いて他の遷移金属元素から区別する。 In the present disclosure, rare earth elements may be collectively referred to as "R". When referring to a particular element or group of elements among the rare earth elements R, the designations "R1" and "R2", for example, are used to distinguish them from other rare earth elements. In addition, in the present disclosure, all transition metal elements including Fe are denoted as “T”. When both the specific element or element group of the transition metal element T and the specific element or element group other than the transition metal element that easily replaces the Fe site of the main phase are included, the symbol "T1" is used. Distinguished from other transition metal elements.

本開示によるR-T-B系焼結磁石の製造方法は、図1に示すように、R1-T1-B系焼結体を準備する工程S10と、R2-Ga-Cu系合金を準備する工程S20とを含む。R1-T1-B系焼結体を準備する工程S10と、R2-Ga-Cu系合金を準備する工程S20との順序は任意であり、それぞれ、異なる場所で製造されたR1-T1-B系焼結体及びR2-Ga-Cu系合金を用いてもよい。 As shown in FIG. 1, the method for producing an RTB based sintered magnet according to the present disclosure includes step S10 of preparing an R1-T1-B based sintered body, and preparing an R2-Ga-Cu based alloy. and step S20. The order of the step S10 of preparing the R1-T1-B-based sintered body and the step S20 of preparing the R2-Ga-Cu-based alloy is arbitrary, and each R1-T1-B system manufactured at a different place A sintered body and an R2--Ga--Cu alloy may also be used.

本開示において、熱処理前及び熱処理中のR-T-B系焼結磁石をR1-T1-B系焼結体と称し、熱処理後のR1-T1-B系焼結体を単にR-T-B系焼結磁石と称する。 In the present disclosure, RTB system sintered magnets before and during heat treatment are referred to as R1-T1-B system sintered bodies, and R1-T1-B system sintered bodies after heat treatment are simply RT- It is called a B-based sintered magnet.

R1-T1-B系焼結体においては、下記(1)~(3)が成立している。
(1)R1は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1-T1-B系焼結体全体の27mass%以上35mass%以下である。
(2)T1はFe又はCo、Al、Mn、Siの少なくとも1つとFeであり、T1全体に対するFeの含有量が80mass%以上である。
(3)Bに対するT1のmol比([T1]/[B])が14.0超15.0以下である。
In the R1-T1-B system sintered body, the following (1) to (3) are established.
(1) R1 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-B based sintered body.
(2) T1 is Fe or at least one of Co, Al, Mn, and Si and Fe, and the content of Fe with respect to the entire T1 is 80 mass% or more.
(3) The molar ratio of T1 to B ([T1]/[B]) is more than 14.0 and 15.0 or less.

本開示におけるBに対するT1のmol比([T1]/[B])とは、T1を構成する各元素(Fe又はCo、Al、Mn、Siの少なくとも1つとFe)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。 The molar ratio of T1 to B in the present disclosure ([T1] / [B]) is the analysis value (mass%) of each element (Fe or at least one of Co, Al, Mn, Si and Fe) that constitutes T1. is divided by the atomic weight of each element, and the sum of those values (a) and the ratio (a/ b).

Bに対するT1のmol比([T1]/[B])が14.0を超えるということは、Bの含有比率がR14B化合物の化学量論組成比よりも低いことを意味している。言い換えると、R1-T1-B系焼結体において、主相(R14B化合物)の形成に使われるT1の量に対して相対的にB量が少ない。 The fact that the molar ratio of T1 to B ([T1]/[B]) exceeds 14.0 means that the content ratio of B is lower than the stoichiometric composition ratio of the R 2 T 14 B compound. there is In other words, in the R1-T1-B system sintered body, the amount of B is relatively small with respect to the amount of T1 used to form the main phase (R 2 T 14 B compound).

R2-Ga-Cu系合金においては、以下の(4)~(6)が成立している。
(4)R2は希土類元素のうち少なくとも一種であり、Laを必ず含み、R2の含有量は、R2-Ga-Cu系合金全体の70mol%以上90mol%以下であり、かつ、希土類元素全体に対するLaの比率が、R1-T1―B系焼結体の希土類元素全体に対するLaの比率よりも高い。
(5)Gaの含有量は、R2-Ga-Cu系合金全体の5mol%以上20mol%以下である。
(6)Cuの含有量は、R2-Ga-Cu系合金全体の5mol%以上20mol%以下である。
In the R2-Ga-Cu alloy, the following (4) to (6) are established.
(4) R2 is at least one of the rare earth elements and always contains La, the content of R2 is 70 mol% or more and 90 mol% or less of the entire R2-Ga-Cu alloy, and La relative to the entire rare earth element is higher than the ratio of La to the total rare earth elements in the R1-T1-B sintered body.
(5) The content of Ga is 5 mol % or more and 20 mol % or less of the entire R2-Ga-Cu alloy.
(6) The content of Cu is 5 mol % or more and 20 mol % or less of the entire R2-Ga-Cu alloy.

本開示によるR-T-B系焼結磁石の製造方法は、主相(R14B化合物)形成に使われるTの量に対して化学量論比で相対的にB量が少ないR1-T1-B系焼結体の表面の少なくとも一部にR2-Ga-Cu系合金を接触させ、図1に示すように、真空又は不活性ガス雰囲気中、450℃以上500℃以下の温度で熱処理を実施する工程S30を行う。これにより、高いB及び高いHcJを有するR-T-B系焼結磁石を得ることが出来る。 The method for producing an RTB based sintered magnet according to the present disclosure uses R1 - At least part of the surface of the T1-B sintered body is brought into contact with the R2-Ga-Cu alloy, and as shown in FIG. Step S30 of performing heat treatment is performed. As a result, an RTB based sintered magnet having high B r and high H cJ can be obtained.

まず、R-T-B系焼結磁石の基本構造を説明する。 First, the basic structure of the RTB system sintered magnet will be described.

R-T-B系焼結磁石は、原料合金の粉末粒子が焼結によって結合した構造を有しており、主としてR14B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。 RTB sintered magnets have a structure in which raw material alloy powder particles are bonded by sintering . It consists of a grain boundary phase located

図2Aは、R-T-B系焼結磁石の主相と粒界相を示す模式図であり、図2Bは図2Aの破線矩形領域内を更に拡大した模式図である。図2Aには、一例として長さ5μmの矢印が大きさを示す基準の長さとして参考のために記載されている。図2A及び図2Bに示されるように、R-T-B系焼結磁石は、主としてR14B化合物からなる主相12と、主相12の粒界部分に位置する粒界相14とから構成されている。また、粒界相14は、図2Bに示されるように、2つのR14B化合物粒子(グレイン)が隣接する二粒子粒界相14aと、3つ以上のR14B化合物粒子が隣接する粒界三重点14bとを含む。 FIG. 2A is a schematic diagram showing the main phase and grain boundary phase of an RTB based sintered magnet, and FIG. 2B is a schematic diagram further enlarging the broken-line rectangular region of FIG. 2A. In FIG. 2A, as an example, an arrow with a length of 5 μm is shown for reference as a reference length indicating the size. As shown in FIGS. 2A and 2B, the RTB system sintered magnet has a main phase 12 mainly composed of an R 2 T 14 B compound and a grain boundary phase 14 located at the grain boundary portion of the main phase 12. It consists of Further, as shown in FIG. 2B, the grain boundary phase 14 includes a two-particle grain boundary phase 14a in which two R 2 T 14 B compound particles (grains) are adjacent to each other, and three or more R 2 T 14 B compound particles. includes adjacent grain boundary triple points 14b.

主相12であるR14B化合物は高い飽和磁化と異方性磁界を持つ強磁性相である。したがって、R-T-B系焼結磁石では、主相12であるR14B化合物の存在比率を高めることによってBを向上させることができる。R14B化合物の存在比率を高めるためには、原料合金中のR量、T量、B量を、R14B化合物の化学量論比(R量:T量:B量=2:14:1)に近づければよい。R14B化合物を形成するためのB量又はR量が化学量論比を下回ると、一般的には、粒界相14にFe相又はR17相等の強磁性体が生成し、HcJが急激に低下する。しかし、特許文献1に記載されている方法のように、B量をR14B化合物の化学量論比よりも少なくし、且つ、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有させると、R17相から粒界に遷移金属リッチ相(例えばR-T-Ga相)が生成されて高いHcJを得ることできる。しかし、特許文献1に記載されている方法では、Bが大幅に低下してしまう。 The R 2 T 14 B compound, which is the main phase 12, is a ferromagnetic phase with high saturation magnetization and anisotropic magnetic field. Therefore, in an RTB based sintered magnet, B r can be improved by increasing the abundance ratio of the R 2 T 14 B compound that is the main phase 12 . In order to increase the abundance ratio of the R 2 T 14 B compound, the R amount, T amount, and B amount in the raw material alloy are adjusted to the stoichiometric ratio of the R 2 T 14 B compound (R amount: T amount: B amount = 2:14:1). When the amount of B or the amount of R for forming the R 2 T 14 B compound is below the stoichiometric ratio, generally a ferromagnetic material such as an Fe phase or an R 2 T 17 phase is generated in the grain boundary phase 14. , H cJ drops sharply. However, as in the method described in Patent Document 1, the amount of B is less than the stoichiometric ratio of the R 2 T 14 B compound, and one or more selected from Al, Ga, and Cu When the metal element M is included, a transition metal-rich phase (eg, RT-Ga phase) is generated at the grain boundary from the R 2 T 17 phase, and a high H cJ can be obtained. However, in the method described in Patent Document 1, Br is greatly reduced.

本開示のR-T-B系焼結磁石の製造方法は、低B組成である特定の組成を有するR1-T1-B系焼結体の表面の少なくとも一部に、希土類元素の中でも存在量が比較的豊富なLaをR2として含有するR2-Ga-Cu系合金を接触させて熱処理を行うことで、Laを含むR2とGa及びCuを磁石内部に拡散させている。発明者らは検討の結果、R2-Ga-Cu系合金におけるR2の含有量は、希土類元素全体に対するLaの比率が、R1-T1-B系焼結磁石体の希土類元素全体に対するLaの比率よりも高くする。そして、このような比率でR2中にLaを存在させたうえで、非常に狭い特定の温度(450℃以上500℃以下)で熱処理を行うと粒界拡散が促進されて、Gaを含む厚い二粒子粒界を焼結体の内部にまで容易に形成させることができることがわかった。これによりLaを使用し、重希土類元素の含有量を低減しつつ、高いBと高いHcJを得ることができる。また、Laと同じく希土類元素の中で存在量が比較的豊富なCeの場合は、本開示と同様な効果(高いBと高いHcJ)を実現することが困難であることも分かった。すなわち、本開示は、Laを含むR2とGa及びCuを含む合金を非常に狭い特定の温度で熱処理を行い上記特定組成の焼結体へ拡散させることで、高いBと高いHcJを実現できることを見出したものである。 In the method for producing an RTB based sintered magnet of the present disclosure, at least a part of the surface of the R1-T1-B based sintered body having a specific composition that is a low B composition has an abundance of rare earth elements By contacting an R2-Ga-Cu alloy containing La as R2, which is relatively rich in , and performing heat treatment, R2 containing La and Ga and Cu are diffused inside the magnet. As a result of investigation by the inventors, it was found that the content of R2 in the R2-Ga-Cu alloy is such that the ratio of La to the total rare earth elements is higher than the ratio of La to the total rare earth elements of the R1-T1-B sintered magnet body. also be raised. Then, when La is present in R2 in such a ratio and heat treatment is performed at a very narrow specific temperature (450° C. or more and 500° C. or less), grain boundary diffusion is promoted, and a thick double layer containing Ga is formed. It was found that grain boundaries can be easily formed even inside the sintered body. This makes it possible to use La and obtain high Br and high H cJ while reducing the content of heavy rare earth elements. It was also found that in the case of Ce, which is relatively abundant among rare earth elements like La, it is difficult to achieve effects similar to those of the present disclosure (high Br and high H cJ ). That is, the present disclosure realizes high Br and high H cJ by heat-treating an alloy containing R2 containing La and Ga and Cu at a very narrow specific temperature and diffusing it into a sintered body with the above specific composition. I have found what I can do.

(R1-T1-B系焼結体を準備する工程)
まず、R1-T1-B系焼結体(以下、単に「焼結体」という場合がある)を準備する工程における焼結体の組成を説明する。
(Step of preparing R1-T1-B based sintered body)
First, the composition of the sintered body in the step of preparing the R1-T1-B system sintered body (hereinafter sometimes simply referred to as "sintered body") will be described.

R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む。R1-T1-B系焼結体のHcJを向上させるために、一般的に用いられるDy、Tb、Gd、Hoなどの重希土類元素を少量含有してもよい。ただし、本開示による製造方法によれば、重希土類元素を多量に用いずとも十分に高いHcJを得ることができる。そのため、前記重希土類元素の含有量は、R1-T1-B系焼結体の1mass%以下であることが好ましく、0.5mass%以下であることがより好ましく、含有しない(実質的に0mass%)ことがさらに好ましい。 R1 is at least one of rare earth elements and always contains at least one of Nd and Pr. In order to improve the H cJ of the R1-T1-B based sintered body, a small amount of commonly used heavy rare earth elements such as Dy, Tb, Gd and Ho may be contained. However, according to the manufacturing method according to the present disclosure, a sufficiently high H cJ can be obtained without using a large amount of heavy rare earth elements. Therefore, the content of the heavy rare earth element is preferably 1 mass% or less in the R1-T1-B based sintered body, more preferably 0.5 mass% or less, and does not contain (substantially 0 mass% ) is more preferred.

R1の含有量は、R1-T1-B系焼結体全体の27mass%以上35mass%以下である。R1の含有量が27mass%未満では焼結過程で液相が十分に生成せず、R1-T1-B系焼結体を十分に緻密化することが困難になる。一方、R1の含有量が35mass%を超えても本開示の効果を得ることはできるが、R1-T1-B系焼結体の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じることがあるため、35mass%以下が好ましい。R1の含有量は、27.5mass%以上33mass%以下であることがより好ましく、28mass%以上32mass%以下であることがさらに好ましい。 The content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-B based sintered body. If the content of R1 is less than 27 mass%, the liquid phase is not sufficiently formed during the sintering process, making it difficult to sufficiently densify the R1-T1-B based sintered body. On the other hand, even if the R1 content exceeds 35 mass %, the effect of the present disclosure can be obtained, but the alloy powder becomes very active during the manufacturing process of the R1-T1-B based sintered body. As a result, significant oxidation or ignition of the alloy powder may occur, so the content is preferably 35 mass% or less. The content of R1 is more preferably 27.5 mass % or more and 33 mass % or less, and further preferably 28 mass % or more and 32 mass % or less.

T1はFe又はCo、Al、Mn、Siの少なくとも1つとFeであり、T1全体に対するFeの含有量が80mass%以上である。すなわち、T1はFeのみであってもよいし、Co、Al、Mn、Siの少なくとも1つとFeからなってもよい。但し、T1全体に対するFeの含有量は80mass%以上である。Feの含有量が80mass%未満であると、B及びHcJが低下する可能性がある。ここで、「T1全体に対するFeの含有量は80mass%以上」とは、例えばR1-T1-B系焼結体中におけるT1の含有量が70mass%である場合、R1-T1-B系焼結体の56mass%以上がFeであることを言う。好ましくはT1全体に対するFeの含有量は90mass%以上である。より高いBと高いHcJを得ることができるからである。Co、Al、Mn、Siを含有する場合の好ましい含有量は、Coは5.0mass%以下、Alは1.5mass%以下、Mn及びSiはそれぞれ0.2mass%以下である。 T1 is Fe or at least one of Co, Al, Mn, and Si and Fe, and the content of Fe in the entire T1 is 80 mass% or more. That is, T1 may consist of only Fe, or may consist of at least one of Co, Al, Mn and Si and Fe. However, the content of Fe with respect to the entire T1 is 80 mass% or more. If the Fe content is less than 80 mass%, Br and HcJ may decrease. Here, "the content of Fe in the entire T1 is 80 mass% or more" means, for example, when the content of T1 in the R1-T1-B system sintered body is 70 mass%, the R1-T1-B system sintered It means that 56 mass% or more of the body is Fe. Preferably, the content of Fe with respect to the entire T1 is 90 mass% or more. This is because higher Br and higher HcJ can be obtained. When Co, Al, Mn, and Si are contained, the preferable content is 5.0 mass% or less for Co, 1.5 mass% or less for Al, and 0.2 mass% or less for each of Mn and Si.

Bに対するT1のmol比([T1]/[B])は14.0超15.0以下である。 The molar ratio of T1 to B ([T1]/[B]) is more than 14.0 and 15.0 or less.

Bに対するT1のmol比([T1]/[B])が14.0以下であると高いHcJを得ることができない。一方、Bに対するT1のmol比([T1]/[B])が15.0を超えるとBが低下する可能性がある。Bに対するT1のmol比([T1]/[B])は14.3以上15.0以下であることが好ましい。さらに高いBと高いHcJを得ることができる。また、Bの含有量はR1-T1-B系焼結体全体の0.85mass%以上0.95mass%未満が好ましい。 If the molar ratio of T1 to B ([T1]/[B]) is 14.0 or less, a high HcJ cannot be obtained. On the other hand, if the molar ratio of T1 to B ([T1]/[B]) exceeds 15.0, Br may decrease. The molar ratio of T1 to B ([T1]/[B]) is preferably 14.3 or more and 15.0 or less. Higher Br and higher HcJ can be obtained. Also, the content of B is preferably 0.85 mass % or more and less than 0.95 mass % of the entire R1-T1-B based sintered body.

R1-T1-B系焼結体は、上記元素の他にGa、Cu、Ag、Zn、In、Sn、Zr、Nb、Ti、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Cr、H、F、P、S、Cl、O、N、C等を含有してもよい。含有量は、Ga、Cu、Ag、Zn、In、Sn、Zr、Nb、及びTiはそれぞれ0.5mass%以下、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Crはそれぞれ0.2mass%以下、H、F、P、S、Clは500ppm以下、Oは6000ppm以下、Nは1000ppm以下、Cは1500ppm以下が好ましい。これらの元素の合計の含有量は、R1-T1-B系焼結体全体の5mass%以下が好ましい。これらの元素の合計の含有量がR1-T1-B系焼結体全体の5mass%を超えると高いBと高いHcJを得ることができない可能性がある。 In addition to the above elements, the R1-T1-B based sintered body contains Ga, Cu, Ag, Zn, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Cr, H, F, P, S, Cl, O, N, C and the like may be contained. The contents of Ga, Cu, Ag, Zn, In, Sn, Zr, Nb, and Ti are each 0.5 mass% or less, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Each of Sm, Ca, Mg and Cr is preferably 0.2 mass % or less, H, F, P, S and Cl are preferably 500 ppm or less, O is 6000 ppm or less, N is 1000 ppm or less, and C is 1500 ppm or less. The total content of these elements is preferably 5 mass % or less of the entire R1-T1-B based sintered body. If the total content of these elements exceeds 5 mass % of the entire R1-T1-B based sintered body, it may not be possible to obtain high B r and high H cJ .

次にR1-T1-B系焼結体を準備する工程について説明する。R1-T1-B系焼結体を準備する工程は、R-T-B系焼結磁石に代表される一般的な製造方法を用いて準備することができる。R1-T1-B系焼結体は、原料合金を粒径D50(気流分散式レーザー回折法による測定で得られる体積中心値=D50)が3μm以上10μm以下になるように粉砕した後、磁界中で配向させて焼結を行うことが好ましい。一例を挙げると、ストリップキャスト法などで作製された原料合金を、ジェットミル装置などを用いて粒径D50が3μm以上10μm以下になるように粉砕した後、磁界中で成形し、900℃以上1100℃以下の温度で焼結することにより準備することができる。原料合金の粒径D50が3μm未満では粉砕粉を作製するのが非常に困難であり、生産効率が大幅に低下するため好ましくない。一方、粒径D50が10μmを超えると最終的に得られるR1-T1-B系焼結体の結晶粒径が大きくなり過ぎ、高いHcJを得ることが困難となるため好ましくない。粒径D50は好ましくは、3μm以上5μm以下である。 Next, the process of preparing the R1-T1-B system sintered body will be described. The step of preparing the R1-T1-B system sintered body can be prepared using a general manufacturing method typified by RTB system sintered magnets. The R1-T1-B sintered body is obtained by pulverizing the raw material alloy so that the particle size D 50 (the volume center value obtained by the measurement by the air dispersion laser diffraction method = D 50 ) is 3 μm or more and 10 μm or less, It is preferable to sinter by orientation in a magnetic field. To give an example, a raw material alloy produced by a strip casting method or the like is pulverized using a jet mill device or the like so that the particle size D50 is 3 μm or more and 10 μm or less, then molded in a magnetic field, and the temperature is 900 ° C. or higher. It can be prepared by sintering at temperatures below 1100°C. If the particle diameter D50 of the raw material alloy is less than 3 μm, it is extremely difficult to produce pulverized powder, and production efficiency is greatly reduced, which is not preferable. On the other hand, if the grain size D50 exceeds 10 μm, the crystal grain size of the finally obtained R1-T1-B based sintered body becomes too large, making it difficult to obtain a high HcJ , which is not preferable. The particle size D50 is preferably between 3 μm and 5 μm.

R1-T1-B系焼結体は、前記の各条件を満たしていれば、一種類の原料合金(単一原料合金)から作製してもよいし、二種類以上の原料合金を用いてそれらを混合する方法(ブレンド法)によって作製してもよい。また、得られたR1-T1-B系焼結体は、必要に応じて切断や切削など公知の機械加工を行った後、後述する熱処理を実施してもよい。 The R1-T1-B based sintered body may be produced from one type of raw material alloy (single raw material alloy) as long as the above conditions are satisfied, or two or more types of raw material alloys may be used to produce them. may be produced by a method of mixing (blending method). Further, the obtained R1-T1-B based sintered body may be subjected to known machining such as cutting or cutting as necessary, and then subjected to the heat treatment described later.

(R2-Ga-Cu系合金を準備する工程)
まず、R2-Ga-Cu系合金を準備する工程におけるR2-Ga-Cu系合金の組成を説明する。以下に説明する特定の範囲でR2及びGa、Cuを含有することにより、後述する熱処理を実施する工程においてR2-Ga-Cu系合金中のR2及びGa、CuをR1-T1-B系焼結体内部に導入することができる。
(Step of preparing R2-Ga-Cu alloy)
First, the composition of the R2-Ga-Cu alloy in the step of preparing the R2-Ga-Cu alloy will be described. By containing R2, Ga, and Cu in the specific ranges described below, R2, Ga, and Cu in the R2-Ga-Cu alloy are sintered in the R1-T1-B system in the step of performing the heat treatment described later. It can be introduced inside the body.

R2は希土類元素のうち少なくとも一種であり、Laを必ず含み、R2の含有量はR2-Ga-Cu系合金全体の70mol%以上90mol%以下である。R2の含有量が70mol%未満では後述する熱処理で拡散が十分に進行しない可能性がある。一方、R2の含有量が90mol%を超えても本開示の効果を得ることはできるが、R2-Ga-Cu系合金の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じることがあるため、R2の含有量はR2-Ga-Cu系合金全体の90mol%以下が好ましい。R2の含有量は75mol%以上85mol%以下であることがより好ましい。より高いHcJを得ることができるからである。また、上述したように、Ndの供給不足が懸念されている中、希土類元素使用の多様化の観点から前記R2-Ga-Cu系合金中のLaがR2全体の50mol%以上であることが好ましく、さらに好ましくは、前記R2-Ga-Cu系合金中のR2はLaである(不純物は含む)。 R2 is at least one of rare earth elements, always contains La, and the content of R2 is 70 mol % or more and 90 mol % or less of the entire R2-Ga-Cu alloy. If the content of R2 is less than 70 mol %, there is a possibility that diffusion will not proceed sufficiently in the heat treatment described later. On the other hand, even if the content of R2 exceeds 90 mol %, the effect of the present disclosure can be obtained, but the alloy powder becomes very active during the manufacturing process of the R2-Ga-Cu alloy. As a result, the alloy powder may be significantly oxidized or ignited, so the content of R2 is preferably 90 mol % or less of the entire R2-Ga-Cu alloy. More preferably, the content of R2 is 75 mol % or more and 85 mol % or less. This is because a higher HcJ can be obtained. In addition, as described above, while there is concern about the shortage of Nd supply, from the viewpoint of diversifying the use of rare earth elements, La in the R2-Ga-Cu-based alloy is preferably 50 mol% or more of the total R2. More preferably, R2 in the R2-Ga-Cu alloy is La (including impurities).

R2は、希土類元素全体に対するLaの比率が、R1-T1―B系焼結体の希土類元素全体に対するLaの比率よりも高い。これにより粒界拡散が促進され、磁石内部にGaやCuを拡散させることができる。Laの比率がR1-T1―B系焼結体の希土類元素全体に対するLaの比率よりも低いと、粒界拡散が促進されずGaやCuの拡散は焼結体の表面近傍にとどまる可能性がある。そのため、Ga-Cuの磁石表面から内部への導入量が不十分となり、高いBと高いHcJを有するR-T-B系焼結磁石を得ることができない可能性がある。好ましくは、前記R1-T1-B系焼結体中の[La]/[R1]をα、R2-Ga-Cu系合金中の[La]/[R2]をβとしたとき、β/α≧1.5である。 R2 has a higher ratio of La to the total rare earth elements than the ratio of La to the total rare earth elements of the R1-T1-B based sintered body. As a result, grain boundary diffusion is promoted, and Ga and Cu can be diffused inside the magnet. If the ratio of La is lower than the ratio of La to the total rare earth elements in the R1-T1-B sintered body, grain boundary diffusion is not promoted and the diffusion of Ga and Cu may remain near the surface of the sintered body. be. As a result, the amount of Ga—Cu introduced from the surface of the magnet into the inside is insufficient, and there is a possibility that a sintered RTB magnet having a high B r and a high H cJ cannot be obtained. Preferably, when [La]/[R1] in the R1-T1-B system sintered body is α and [La]/[R2] in the R2-Ga-Cu alloy is β, β/α ≧1.5.

Gaは、R2-Ga-Cu系合金全体の5mol%以上20mol%以下である。Gaが5mol%未満では、後述する熱処理を実施する工程においてR2-Ga-Cu系合金中のGaやCuがR1-T1-B系焼結体の内部に導入され難くなり高いHcJを得ることが出来ない。一方、Gaが20mol%超であると、Bが大幅に低下する可能性がある。Gaは5mol%以上20mol%以下であることがより好ましい。より高いBと高いHcJを得ることができるからである。 Ga is 5 mol % or more and 20 mol % or less of the entire R2-Ga-Cu alloy. If Ga is less than 5 mol%, it is difficult for Ga and Cu in the R2-Ga-Cu-based alloy to be introduced into the R1-T1-B-based sintered body in the step of performing the heat treatment described later, and a high H cJ can be obtained. I can't On the other hand, when Ga exceeds 20 mol %, Br may decrease significantly. Ga is more preferably 5 mol % or more and 20 mol % or less. This is because higher Br and higher HcJ can be obtained.

Cuは、R2-Ga-Cu系合金全体の5mol%以上20mol%以下含有する。5mol%未満であると高いHcJを得ることが出来ない可能性があり、Cuが20mol%を超えると、粒界におけるGaの存在比率が低下する可能性があるため、20mol%以下が好ましい。 Cu is contained in an amount of 5 mol % or more and 20 mol % or less of the entire R2--Ga--Cu alloy. If the Cu content is less than 5 mol%, a high HcJ may not be obtained, and if the Cu content exceeds 20 mol%, the existence ratio of Ga at the grain boundary may decrease, so 20 mol% or less is preferable.

R2-Ga-Cu系合金は、上記元素の他にCo、Al、Ag、Zn、Si、In、Sn、Zr、Nb、Ti、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Mn、Cr、H、F、P、S、Cl、O、N、C等を含有してもよい。 In addition to the above elements, the R2-Ga-Cu alloy contains Co, Al, Ag, Zn, Si, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Cr, H, F, P, S, Cl, O, N, C and the like may be contained.

Coは、耐食性の向上のために0.5mass%以上10mass%以下含有してもよい。また、Alは1.0mass%以下、Ag、Zn、Si、In、Sn、Zr、Nb、及びTiはそれぞれ0.5mass%以下、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Mn、Si、Crはそれぞれ0.2mass%以下、H、F、P、S、Clは500ppm以下、Oは6000ppm以下、Nは1000ppm以下、Cは1500ppm以下の含有量が好ましい。但し、これらの元素の合計の含有量が20mass%を超えると、R2-Ga-Cu系合金におけるR2、Ga、Cuの含有量が少なくなり、高いBと高いHcJを得ることが出来ない可能性がある。そのため、R2-Ga-Cu系合金におけるR2、Ga、Cuの合計の含有量は80mass%以上が好ましく、90mass%以上がさらに好ましい。 Co may be contained in an amount of 0.5 mass % or more and 10 mass % or less for improving corrosion resistance. In addition, Al is 1.0 mass% or less, Ag, Zn, Si, In, Sn, Zr, Nb, and Ti are each 0.5 mass% or less, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Si, and Cr are each 0.2 mass% or less, H, F, P, S, and Cl are 500 ppm or less, O is 6,000 ppm or less, N is 1,000 ppm or less, and C is 1,500 ppm or less. content is preferred. However, when the total content of these elements exceeds 20 mass%, the content of R2, Ga, and Cu in the R2-Ga-Cu alloy decreases, and high Br and high H cJ cannot be obtained. there is a possibility. Therefore, the total content of R2, Ga and Cu in the R2-Ga-Cu alloy is preferably 80 mass% or more, more preferably 90 mass% or more.

次にR2-Ga-Cu系合金を準備する工程について説明する。R2-Ga-Cu系合金は、Nd-Fe-B系焼結磁石に代表される一般的な製造方法において採用されている原料合金の作製方法、例えば、金型鋳造法やストリップキャスト法や単ロール超急冷法(メルトスピニング法)やアトマイズ法などを用いて準備することができる。また、R2-Ga-Cu系合金は、前記によって得られた合金をピンミルなどの公知の粉砕手段によって粉砕されたものであってもよい。また、前記によって得られた合金の粉砕性を向上させるために、水素雰囲気中で700℃以下の熱処理を行って水素を含有させてから粉砕を行っても良い。 Next, the process of preparing the R2--Ga--Cu alloy will be described. The R2-Ga-Cu alloy can be produced by a raw material alloy preparation method employed in general manufacturing methods typified by Nd-Fe-B sintered magnets, such as die casting, strip casting and single casting. It can be prepared using a roll ultra-quenching method (melt spinning method), an atomizing method, or the like. Also, the R2-Ga-Cu alloy may be obtained by pulverizing the alloy obtained above by a known pulverizing means such as a pin mill. In order to improve the pulverizability of the alloy obtained as described above, the alloy may be subjected to heat treatment at 700° C. or less in a hydrogen atmosphere to contain hydrogen, and then pulverized.

(熱処理を実施する工程)
前記によって準備したR1-T1-B系焼結体の表面の少なくとも一部に、前記R2-Ga-Cu系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、450℃以上500℃以下の温度で熱処理をする。これにより、R2-Ga-Cu系合金からLaを含むR2及びGa、Cuを含む液相が生成し、その液相がR1-T1-B系焼結体の粒界を経由して焼結体表面から内部に拡散導入され、粒界にR-T-Ga相が生成される。熱処理温度が450℃未満であると、Laを含むR2及びGa,Cuを含む液相量が少なすぎて、高いBと高いHcJを得ることが出来ない可能性がある。一方、500℃を超えると、理由は不明であるが、R1-T1-B系焼結体へのR2-Ga-Cu系合金の拡散が阻害されて高いHcJが得られない可能性がある。熱処理温度は、460℃以上490℃以下が好ましい。より高いBと高いHcJを得ることができるからである。なお、熱処理時間はR1-T1-B系焼結体やR2-Ga-Cu系合金の組成や寸法、熱処理温度などによって適正値を設定するが、5分以上24時間以下が好ましく、10分以上20時間以下がより好ましく、30分以上16時間以下がさらに好ましい。また、熱処理は1回だけ行ってもよく、複数回行ってもよい。また、R2-Ga-Cu系合金は、R1-T1-B系焼結体の重量に対し2mass%以上30mass%以下準備することが好ましい。R2-Ga-Cu系合金がR1-T1-B系焼結体の重量に対し2mass%未満であると高いHcJが得られない可能性がある。一方、30mass%を超えるとBが大幅に低下する可能性がある。
(Step of performing heat treatment)
At least part of the surface of the R1-T1-B-based sintered body prepared above is brought into contact with at least part of the R2-Ga-Cu-based alloy, and in a vacuum or inert gas atmosphere, at 450 ° C. or more and 500 ° C. Heat treatment at the following temperature. As a result, a liquid phase containing R2 containing La and Ga and Cu is generated from the R2-Ga-Cu-based alloy, and the liquid phase passes through the grain boundaries of the R1-T1-B-based sintered body to the sintered body. Diffusion is introduced from the surface to the inside, and an RT-Ga phase is generated at the grain boundary. If the heat treatment temperature is less than 450° C., the amount of liquid phase containing R2 containing La and Ga and Cu may be too small to obtain high Br and high HcJ . On the other hand, if the temperature exceeds 500 ° C., the diffusion of the R2-Ga-Cu alloy into the R1-T1-B sintered body is inhibited for unknown reasons, and a high H cJ may not be obtained. . The heat treatment temperature is preferably 460° C. or higher and 490° C. or lower. This is because higher Br and higher HcJ can be obtained. The heat treatment time is set to an appropriate value depending on the composition and dimensions of the R1-T1-B-based sintered body and R2-Ga-Cu-based alloy, the heat treatment temperature, etc., but is preferably 5 minutes or more and 24 hours or less, and 10 minutes or more. 20 hours or less is more preferable, and 30 minutes or more and 16 hours or less is even more preferable. Further, the heat treatment may be performed only once, or may be performed multiple times. In addition, it is preferable to prepare the R2-Ga-Cu alloy in an amount of 2 mass% or more and 30 mass% or less with respect to the weight of the R1-T1-B sintered body. If the R2-Ga-Cu based alloy is less than 2 mass% with respect to the weight of the R1-T1-B based sintered body, a high H cJ may not be obtained. On the other hand, if it exceeds 30 mass%, Br may decrease significantly.

前記熱処理は、R1-T1-B系焼結体表面に、任意形状のR2-Ga-Cu系合金を配置し、公知の熱処理装置を用いて行うことができる。例えば、R1-T1-B系焼結体表面をR2-Ga-Cu系合金の粉末層で覆い、熱処理を行うことができる。例えば、R2-Ga-Cu系合金を分散媒中に分散させたスラリーをR1-T1-B系焼結体表面に塗布した後、分散媒を蒸発させてR2-Ga-Cu系合金とR1-T1-B系焼結体とを接触させてもよい。また、後述する実験例に示すように、R2-Ga-Cu系合金は、少なくともR1-T1-B系焼結体の配向方向に対して垂直な表面に接触させるように配置することが好ましい。なお、分散媒として、アルコール(エタノール等)、NMP(N-メチルピロリドン)、アルデヒド及びケトンを例示できる。また、熱処理が実施されたR1-T1-B系焼結体に対して切断や切削など公知の機械加工を行ってもよい。 The heat treatment can be performed by placing an R2-Ga-Cu alloy in an arbitrary shape on the surface of the R1-T1-B sintered body and using a known heat treatment apparatus. For example, the surface of the R1-T1-B based sintered body can be covered with a powder layer of R2-Ga-Cu based alloy and heat treated. For example, after applying a slurry in which an R2-Ga-Cu alloy is dispersed in a dispersion medium to the surface of the R1-T1-B sintered body, the dispersion medium is evaporated to obtain the R2-Ga-Cu alloy and the R1- It may be brought into contact with the T1-B system sintered body. Further, as shown in an experimental example to be described later, it is preferable that the R2-Ga-Cu based alloy is arranged so as to contact at least the surface of the R1-T1-B based sintered body perpendicular to the orientation direction. Examples of dispersion media include alcohols (ethanol, etc.), NMP (N-methylpyrrolidone), aldehydes, and ketones. Also, the heat-treated R1-T1-B-based sintered body may be subjected to known machining such as cutting and cutting.

本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be explained in more detail by examples, but the present invention is not limited to them.

実験例1
[R1-T1-B系焼結体の準備]
Ndメタル、Prメタル、フェロボロン合金、電解鉄を用いて(メタルはいずれも純度99%以上)、焼結体がおよそ表1に示す符号1-Aから1-Cの組成となるように配合し、それらの原料を溶解してストリップキャスト法により鋳造し、厚さ0.2~0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粉砕粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粉砕粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 1
[Preparation of R1-T1-B based sintered body]
Using Nd metal, Pr metal, ferroboron alloy, and electrolytic iron (all metals have a purity of 99% or more), the sintered body is blended so that it has a composition of 1-A to 1-C shown in Table 1. , and the raw materials were melted and cast by a strip casting method to obtain raw material alloy flakes having a thickness of 0.2 to 0.4 mm. After hydrogen pulverization of the resulting flaky raw material alloy, a dehydrogenation treatment was performed by heating to 550° C. in vacuum and then cooling to obtain a coarsely pulverized powder. Next, 0.04 mass% of zinc stearate as a lubricant is added to the obtained coarsely pulverized powder with respect to 100 mass% of the coarsely pulverized powder, and mixed. Dry pulverization was carried out in an air stream to obtain a finely pulverized powder (alloy powder) having a pulverized particle diameter D50 of 4 μm. The pulverized particle size D50 is the volume center value (volume-based median diameter) obtained by the laser diffraction method using the air dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 To the finely pulverized powder, 0.05 mass % of zinc stearate was added as a lubricant to 100 mass % of the finely pulverized powder. As the forming apparatus, a so-called orthogonal magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressurizing direction are perpendicular to each other was used.

得られた成形体を、真空中、1000℃以上1040℃以下(サンプル毎に焼結による緻密化が十分起こる温度を選定)で4時間焼結した後急冷し、R1-T1-B系焼結体を得た。得られた焼結体の密度は7.5Mg/m以上であった。得られた焼結体の組成を表1に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。なお、焼結体の酸素量をガス融解-赤外線吸収法で測定した結果、すべて0.4mass%前後であることを確認した。表1における「[T1]/[B]」は、T1を構成する各元素(不可避の不純物を含む、本実験例ではFe、Al、Si、Mn)に対し、分析値(mass%)をその元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。以下の全ての表も同様である。なお、表1の各組成を合計しても100mass%にはならない。これは、前記の通り、各成分によって分析方法が異なるため、さらには、表1に挙げた成分以外の成分(例えばC(カーボン)やN(窒素)など)が存在するためである。その他表についても同様である。 The obtained molded body is sintered in a vacuum at 1000° C. or higher and 1040° C. or lower (a temperature at which sintering causes sufficient densification is selected for each sample) for 4 hours and then quenched to sinter the R1-T1-B system. got a body The density of the obtained sintered body was 7.5 Mg/m 3 or more. Table 1 shows the composition of the obtained sintered body. Each component in Table 1 was measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). As a result of measuring the oxygen content of the sintered bodies by the gas fusion-infrared absorption method, it was confirmed that all of them were around 0.4 mass %. "[T1]/[B]" in Table 1 is an analysis value (mass%) for each element (including unavoidable impurities, Fe, Al, Si, Mn in this experimental example) that constitutes T1. (a) obtained by dividing the atomic weight of the element and summing those values, and (b) obtained by dividing the analytical value (mass%) of B by the atomic weight of B is the ratio (a/b) to The same is true for all tables below. In addition, even if each composition of Table 1 is totaled, it does not become 100 mass%. This is because, as described above, the analysis method differs depending on each component, and furthermore, components other than those listed in Table 1 (for example, C (carbon), N (nitrogen), etc.) are present. The same applies to other tables.

Figure 0007228096000001
Figure 0007228096000001

[R2-Ga-Cu系合金の準備]
Laメタル、Gaメタル、Cuメタルを用いて(メタルはいずれも純度99%以上)、合金がおよそ表2に示す符号1-aの組成になるように配合し、それらの原料を溶解して、単ロール超急冷法(メルトスピニング法)により、リボンまたはフレーク状の合金を得た。得られた合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き425μmの篩を通過させ、R2-Ga-Cu系合金を準備した。得られたR2-Ga-Cu系合金の組成を表2に示す。
[Preparation of R2-Ga-Cu alloy]
Using La metal, Ga metal, and Cu metal (all metals have a purity of 99% or more), the alloy is blended so that it has a composition of code 1-a shown in Table 2, and these raw materials are melted, A ribbon- or flake-shaped alloy was obtained by a single-roll ultra-quenching method (melt spinning method). The obtained alloy was pulverized in an argon atmosphere using a mortar and then passed through a sieve with an opening of 425 μm to prepare an R2-Ga-Cu alloy. Table 2 shows the composition of the obtained R2-Ga-Cu alloy.

Figure 0007228096000002
Figure 0007228096000002

[熱処理]
表1の符号1-Aから1-CのR1-T1-B系焼結体を切断、切削加工し、4.4mm×4.4mm×4.4mm(配向方向)の直方体とした。次に、図3に示すように、ニオブ箔により作製した処理容器3中に、主にR1-T1-B系焼結体1の配向方向(図中の矢印方向)と垂直な面がR2-Si系合金2と接触するように、表2に示す符号1-aのR2-Ga-Cu系合金を、符号1-Aから1-IのR1-T1-B系焼結体のそれぞれの上下に配置した。
[Heat treatment]
The R1-T1-B based sintered bodies of 1-A to 1-C in Table 1 were cut and machined into rectangular parallelepipeds of 4.4 mm×4.4 mm×4.4 mm (orientation direction). Next, as shown in FIG. 3, in a processing container 3 made of niobium foil, the surface perpendicular to the orientation direction (arrow direction in the figure) of the R1-T1-B system sintered body 1 is mainly R2- The R2-Ga-Cu-based alloy indicated by reference numeral 1-a shown in Table 2 is placed above and below each of the R1-T1-B-based sintered bodies indicated by reference numerals 1-A to 1-I so as to be in contact with the Si-based alloy 2. placed in

その後、管状流気炉を用いて、200Paに制御した減圧アルゴン中で、表3に示す熱処理温度及び時間で熱処理を行った後、冷却した。熱処理後の各サンプルの表面近傍に存在するR2-Ga-Cu系合金の濃化部を除去するため、表面研削盤を用いて各サンプルの全面を0.2mmずつ切削加工し、4.0mm×4.0mm×4.0mmの立方体状のサンプル(R-T-B系焼結磁石)を得た。 After that, using a tubular flow furnace, heat treatment was performed at the heat treatment temperature and time shown in Table 3 in reduced pressure argon controlled at 200 Pa, and then cooled. In order to remove the concentrated portion of the R2-Ga-Cu-based alloy present near the surface of each sample after heat treatment, the entire surface of each sample was cut by 0.2 mm using a surface grinder, and 4.0 mm × A cubic sample (RTB sintered magnet) of 4.0 mm×4.0 mm was obtained.

[サンプル評価]
BHトレーサーにより得られたサンプルの残留磁束密度(B)および保磁力(HcJ)を測定した。測定結果を表3に示す。表3の通り、R1-T1-B系焼結体におけるBに対するT1のmol比([T1]/[B])を14.0以上とし、熱処理温度を450℃以上500℃以下に設定したとき、高い特性が得られた。
[Sample evaluation]
The residual magnetic flux density (B r ) and coercive force (H cJ ) of the samples obtained by BH tracer were measured. Table 3 shows the measurement results. As shown in Table 3, when the molar ratio of T1 to B in the R1-T1-B sintered body ([T1] / [B]) is set to 14.0 or more, and the heat treatment temperature is set to 450 ° C. or higher and 500 ° C. or lower , high characteristics were obtained.

Figure 0007228096000003
Figure 0007228096000003

表3に示すサンプルのうち、No.1-4(本発明例)の焼結体表面近傍、表面から800μm領域、および中心部の断面を走査電子顕微鏡(SEM:日本電子製JSM-7800F)にて、加速電圧5kVで反射電子像を取得した。結果を図4A~図4Cに示す。磁石表面近傍から磁石の中央部まで100nm以上の厚い二粒子粒界が形成されていた。 Among the samples shown in Table 3, No. Scanning electron microscope (SEM: JSM-7800F manufactured by JEOL Ltd.) of the sintered body surface vicinity, 800 μm area from the surface, and the cross section of the central part of 1-4 (example of the present invention) is a backscattered electron image at an accelerating voltage of 5 kV. Acquired. The results are shown in Figures 4A-4C. A thick grain boundary of 100 nm or more was formed from the vicinity of the surface of the magnet to the center of the magnet.

さらに、本発明例であるNo.1-4の焼結体について、表面近傍、表面から800μm領域、および中心部の断面をSEM(日本電子製JSM-7800F)付属装置(日本電子製JED-2300 SD30)によるエネルギー分散X線分光分析(EDS)を実施した。分析箇所は、図4A及び図4Bは、1、4、6、7及び8、図4Cでは、1、4、5、7及び8である。EDX分析のプローブ径は1μmとし、観察領域の平均組成は200μm角の分析結果から得た。結果を図5A~図5Cに示す。図5A~図5Cに示すように、主相へのLaの置換はほとんど確認できなかった。また、各観察領域において複数の組成の粒界相が観察されたが、それぞれの相の希土類元素Rに対するLaのモル比は、R-T-B系焼結磁石表面のほうが内部よりも高くなっていた。また、各観察領域において領域では、Rが25mol%以上35mol%以下、Feが55mol%以上65mol%以下の相が確認された。この相はGaおよびCuを含んでいることから、RFe13M(MはGa,Cuなど)相であると推定され、かつ、同一視野内でLa量の異なる2種類以上の組成の相が存在していた。 Furthermore, No. 1, which is an example of the present invention. Regarding the sintered body of 1-4, energy dispersive X-ray spectroscopic analysis of the vicinity of the surface, the 800 μm area from the surface, and the cross section of the central part by SEM (JSM-7800F manufactured by JEOL) accessory device (JED-2300 SD30 manufactured by JEOL) (EDS) was performed. The analysis points are 1, 4, 6, 7 and 8 in FIGS. 4A and 4B, and 1, 4, 5, 7 and 8 in FIG. 4C. The probe diameter for EDX analysis was set to 1 μm, and the average composition of the observation area was obtained from the analysis result of 200 μm square. The results are shown in Figures 5A-5C. As shown in FIGS. 5A to 5C, substitution of La into the main phase could hardly be confirmed. In addition, although grain boundary phases with multiple compositions were observed in each observation region, the molar ratio of La to rare earth element R in each phase was higher on the surface of the RTB system sintered magnet than on the inside. was In addition, in each observation region, a phase containing 25 mol % or more and 35 mol % or less of R and 55 mol % or more and 65 mol % or less of Fe was confirmed. Since this phase contains Ga and Cu, it is presumed to be an R 6 Fe 13 M (M is Ga, Cu, etc.) phase, and two or more composition phases with different La amounts within the same field of view. existed.

実験例2
焼結体がおよそ表4に示す符号2-Aの組成となるように配合する以外は実験例1と同様の方法でR1-T1-B系焼結体を複数個作製した。得られた焼結体の成分分析の結果を表4に示す。
Experimental example 2
A plurality of R1-T1-B sintered bodies were produced in the same manner as in Experimental Example 1, except that the sintered body was mixed so as to have a composition of 2-A shown in Table 4. Table 4 shows the result of component analysis of the obtained sintered body.

Figure 0007228096000004
Figure 0007228096000004

合金組成がおよそ表5に示す符号2-aから2-mとなるように配合する以外は実験例1と同様の方法でR2-Ga-Cu系合金を作製した。 An R2-Ga-Cu alloy was produced in the same manner as in Experimental Example 1, except that the alloy composition was blended so as to correspond to symbols 2-a to 2-m shown in Table 5.

Figure 0007228096000005
Figure 0007228096000005

複数個のR1-T1-B系焼結体を実験例1と同様に加工した後、実験例1と同様に符号2-aから2-mのR2-Ga-Cu系合金と符号2-AのR1-T1-B系焼結体とが接触するよう配置し、実験例1と同様に熱処理および加工を行い、サンプル(R-T-B系焼結磁石)を得た。得られたサンプルを実験例1と同様な方法により測定し、残留磁束密度(B)および保磁力(HcJ)を求めた。その結果を表6に示す。表6の通り、R2-Ga-Cu系合金を特定の範囲に設定することで、高い磁気特性を有するR-T-B系焼結磁石が得られた。 After processing a plurality of R1-T1-B-based sintered bodies in the same manner as in Experimental Example 1, R2-Ga-Cu-based alloys 2-a to 2-m and 2-A in the same manner as in Experimental Example 1 were placed in contact with the R1-T1-B based sintered body, and heat treatment and processing were performed in the same manner as in Experimental Example 1 to obtain a sample (RTB based sintered magnet). The resulting sample was measured in the same manner as in Experimental Example 1 to obtain residual magnetic flux density (B r ) and coercive force (H cJ ). Table 6 shows the results. As shown in Table 6, RTB based sintered magnets having high magnetic properties were obtained by setting the R2-Ga-Cu based alloy within a specific range.

Figure 0007228096000006
Figure 0007228096000006

本発明の実施形態により得られたR-T-B系焼結磁石は、ハードディスクドライブのボイスコイルモータ(VCM)や、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに好適に利用することができる。 The RTB based sintered magnet obtained by the embodiment of the present invention is used in voice coil motors (VCM) of hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, etc. It can be suitably used for various motors and home electric appliances.

1 R1-T1-B系焼結体
2 R2-Ga-Cu系合金
3 処理容器
1 R1-T1-B-based sintered body 2 R2-Ga-Cu-based alloy 3 Processing vessel

Claims (5)

R1-T1-B系焼結体を準備する工程と、
R2-Ga-Cu系合金を準備する工程と、
前記R1-T1-B系焼結体の表面の少なくとも一部に、前記R2-Ga-Cu系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、450℃以上500℃以下の温度で熱処理を実施する工程を含み、
前記R1-T1-B系焼結体において、
R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1-T1-B系焼結体全体の27mass%以上35mass%以下であり、
T1はFe又はCo、Al、Mn、Siの少なくとも1つとFeであり、T1全体に対するFeの含有量が80mass%以上であり、
Bに対するT1のmol比([T1]/[B])が14.0超15.0以下であり、
前記R2-Ga-Cu系合金において、
R2は希土類元素のうち少なくとも一種であり、Laを必ず含み、R2の含有量は、R2-Ga-Cu系合金全体の70mol%以上90mol%以下であり、かつ、希土類元素全体に対するLaの比率が、R1-T1―B系焼結体の希土類元素全体に対するLaの比率よりも高く、
Gaの含有量は、R2-Ga-Cu系合金全体の5mol%以上20mol%以下であり、
Cuの含有量は、R2-Ga-Cu系合金全体の5mol%以上20mol%以下である、R-T-B系焼結磁石の製造方法。
A step of preparing an R1-T1-B based sintered body;
A step of preparing an R2-Ga-Cu alloy;
At least part of the surface of the R1-T1-B-based sintered body is brought into contact with at least part of the R2-Ga-Cu-based alloy, and in a vacuum or inert gas atmosphere, at a temperature of 450 ° C. or higher and 500 ° C. or lower. including the step of performing heat treatment at
In the R1-T1-B based sintered body,
R1 is at least one of rare earth elements and necessarily contains at least one of Nd and Pr, and the content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-B based sintered body,
T1 is Fe or at least one of Co, Al, Mn, and Si and Fe, and the Fe content relative to the entire T1 is 80 mass% or more,
The molar ratio of T1 to B ([T1]/[B]) is more than 14.0 and 15.0 or less,
In the R2-Ga-Cu alloy,
R2 is at least one of the rare earth elements and necessarily contains La, the content of R2 is 70 mol% or more and 90 mol% or less of the entire R2-Ga-Cu alloy, and the ratio of La to the total rare earth elements is , higher than the ratio of La to the total rare earth elements of the R1-T1-B based sintered body,
The content of Ga is 5 mol% or more and 20 mol% or less of the entire R2-Ga-Cu alloy,
A method for producing an RTB system sintered magnet, wherein the Cu content is 5 mol % or more and 20 mol % or less of the entire R2-Ga-Cu system alloy.
前記R2-Ga-Cu系合金中のLaがR2全体の50mol%以上である、請求項1に記載のR-T-B系焼結磁石の製造方法。 2. The method for producing a RTB based sintered magnet according to claim 1, wherein La in said R2-Ga-Cu based alloy is 50 mol % or more of the total R2. 前記R2-Ga-Cu系合金中のR2はLaである(不純物は含む)、請求項1に記載のR-T-B系焼結磁石の製造方法。 2. The method for producing a RTB based sintered magnet according to claim 1, wherein R2 in said R2-Ga-Cu based alloy is La (including impurities). 前記R2-Ga-Cu系合金におけるR2、Ga,Cuの合計の含有量が80mass%以上である、請求項1から3のいずれかに記載のR-T-B系焼結磁石の製造方法。 4. The method for producing a RTB based sintered magnet according to claim 1, wherein the total content of R2, Ga and Cu in said R2-Ga-Cu based alloy is 80 mass % or more. 前記R1-T1-B系焼結体を準備する工程は、原料合金を粒径D50が3μm以上10μm以下になるように粉砕した後、磁界中で配向させて焼結を行うことを含む、請求項1から4のいずれかに記載のR-T-B系焼結磁石の製造方法。 The step of preparing the R1-T1-B-based sintered body includes pulverizing the raw material alloy so that the particle size D50 is 3 μm or more and 10 μm or less, and then sintering by orienting in a magnetic field. A method for producing an RTB based sintered magnet according to any one of claims 1 to 4.
JP2019054079A 2019-03-22 2019-03-22 Method for producing RTB based sintered magnet Active JP7228096B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019054079A JP7228096B2 (en) 2019-03-22 2019-03-22 Method for producing RTB based sintered magnet
JP2023010682A JP2023052675A (en) 2019-03-22 2023-01-27 R-t-b system based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019054079A JP7228096B2 (en) 2019-03-22 2019-03-22 Method for producing RTB based sintered magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023010682A Division JP2023052675A (en) 2019-03-22 2023-01-27 R-t-b system based sintered magnet

Publications (2)

Publication Number Publication Date
JP2020155657A JP2020155657A (en) 2020-09-24
JP7228096B2 true JP7228096B2 (en) 2023-02-24

Family

ID=72559752

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019054079A Active JP7228096B2 (en) 2019-03-22 2019-03-22 Method for producing RTB based sintered magnet
JP2023010682A Pending JP2023052675A (en) 2019-03-22 2023-01-27 R-t-b system based sintered magnet

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023010682A Pending JP2023052675A (en) 2019-03-22 2023-01-27 R-t-b system based sintered magnet

Country Status (1)

Country Link
JP (2) JP7228096B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240028440A (en) * 2021-08-04 2024-03-05 미쓰비시덴키 가부시키가이샤 Rare earth sintered magnet and manufacturing method of rare earth sintered magnet, rotor, and rotating machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263179A (en) 2007-03-16 2008-10-30 Shin Etsu Chem Co Ltd Rare earth permanent magnet and method of manufacturing the same
WO2015020181A1 (en) 2013-08-09 2015-02-12 Tdk株式会社 R-t-b-based sintered magnet and motor
WO2016133071A1 (en) 2015-02-18 2016-08-25 日立金属株式会社 Method for producing r-t-b system sintered magnet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028602A (en) * 2004-07-16 2006-02-02 Aichi Steel Works Ltd Rare-earth anisotropic magnet powder
JP6848735B2 (en) * 2016-07-15 2021-03-24 Tdk株式会社 RTB series rare earth permanent magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263179A (en) 2007-03-16 2008-10-30 Shin Etsu Chem Co Ltd Rare earth permanent magnet and method of manufacturing the same
WO2015020181A1 (en) 2013-08-09 2015-02-12 Tdk株式会社 R-t-b-based sintered magnet and motor
WO2016133071A1 (en) 2015-02-18 2016-08-25 日立金属株式会社 Method for producing r-t-b system sintered magnet

Also Published As

Publication number Publication date
JP2020155657A (en) 2020-09-24
JP2023052675A (en) 2023-04-11

Similar Documents

Publication Publication Date Title
JP6361813B2 (en) Method for producing RTB-based sintered magnet
CN109478452B (en) R-T-B sintered magnet
JP6380652B2 (en) Method for producing RTB-based sintered magnet
JP5561170B2 (en) Method for producing RTB-based sintered magnet
JP6414653B1 (en) Method for producing RTB-based sintered magnet
CN109983553B (en) Method for producing R-T-B sintered magnet
JP6489201B2 (en) Method for producing RTB-based sintered magnet
JP2018093202A (en) R-t-b based permanent magnet
JP6860808B2 (en) Manufacturing method of RTB-based sintered magnet
JP6051922B2 (en) Method for producing RTB-based sintered magnet
WO2018101239A1 (en) R-fe-b sintered magnet and production method therefor
CN109671547B (en) R-T-B sintered magnet and method for producing same
JP5288276B2 (en) Manufacturing method of RTB-based permanent magnet
JP6624455B2 (en) Method for producing RTB based sintered magnet
JP2023052675A (en) R-t-b system based sintered magnet
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP7020224B2 (en) RTB-based sintered magnet and its manufacturing method
JP7059995B2 (en) RTB-based sintered magnet
JP2023045934A (en) Method for manufacturing r-t-b based sintered magnet
JP6610957B2 (en) Method for producing RTB-based sintered magnet
JP7476601B2 (en) Manufacturing method of RTB based sintered magnet
JP7380369B2 (en) Manufacturing method of RTB sintered magnet and alloy for diffusion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230123

R150 Certificate of patent or registration of utility model

Ref document number: 7228096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150