JPWO2008139556A1 - R-T-B sintered magnet - Google Patents

R-T-B sintered magnet Download PDF

Info

Publication number
JPWO2008139556A1
JPWO2008139556A1 JP2007541538A JP2007541538A JPWO2008139556A1 JP WO2008139556 A1 JPWO2008139556 A1 JP WO2008139556A1 JP 2007541538 A JP2007541538 A JP 2007541538A JP 2007541538 A JP2007541538 A JP 2007541538A JP WO2008139556 A1 JPWO2008139556 A1 JP WO2008139556A1
Authority
JP
Japan
Prior art keywords
atomic
less
amount
magnet
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007541538A
Other languages
Japanese (ja)
Other versions
JP4103938B1 (en
Inventor
冨澤 浩之
浩之 冨澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Application granted granted Critical
Publication of JP4103938B1 publication Critical patent/JP4103938B1/en
Publication of JPWO2008139556A1 publication Critical patent/JPWO2008139556A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本願発明のR−T−B系焼結磁石は、希土類元素R:12原子%以上、17原子%以下、硼素B:5.0原子%以上、8.0原子%以下、Al:0.1原子%以上、1.0原子%以下、Mn:0.02原子%以上、0.5原子%未満、遷移金属T:残部の組成を有している。希土類元素Rは、Y(イットリウム)を含む希土類元素から選択された少なくとも1種であって、NdおよびPrの少なくとも一方を含み、遷移元素TはFeを主成分とする。The RTB-based sintered magnet of the present invention has a rare earth element R: 12 atom% or more and 17 atom% or less, boron B: 5.0 atom% or more, 8.0 atom% or less, Al: 0.1 It has the composition of atomic% or more, 1.0 atomic% or less, Mn: 0.02 atomic% or more, less than 0.5 atomic%, transition metal T: balance. The rare earth element R is at least one selected from rare earth elements including Y (yttrium), includes at least one of Nd and Pr, and the transition element T is mainly composed of Fe.

Description

本願発明は、R−T−B(希土類−鉄−硼素)系焼結磁石に関する。   The present invention relates to an RTB (rare earth-iron-boron) based sintered magnet.

R−T−B系焼結磁石は、その優れた磁気特性により、各種モータ、アクチュエータなど、様々な用途に使用され、エレクトロニクス産業においては欠くことのできない材料となっている。また、省エネルギー志向から、ますます用途が拡大している。   The RTB-based sintered magnet is used for various applications such as various motors and actuators due to its excellent magnetic properties, and is an indispensable material in the electronics industry. In addition, applications are expanding more and more because of energy conservation.

近年では、ハイブリッド自動車の駆動/発電用回転機や、エレベーターの巻上機用モータなど、従来以上に高性能が要求される用途が急拡大しており、それに伴い、要求性能もますます厳しくなっている。   In recent years, applications that require higher performance than ever, such as rotating / driving machines for hybrid vehicles and motors for hoisting elevators, have been rapidly expanding, and the required performance has become increasingly severe. ing.

元来、R−T−B系磁石は、強磁性を失う温度であるキュリー点が300℃程度と比較的低く、保磁力の温度変化が大きいため不可逆熱減磁が生じやすいと云う欠点を有しており、この改善のため、希土類種の調整により保磁力を高めたり、特許文献1などに記載されたCo添加によりキュリー点を高めるなどの方策が採られているが、保磁力の温度変化に関してはあまり改善効果がない。   Originally, the R-T-B magnet has a disadvantage that the Curie point, which is a temperature at which ferromagnetism is lost, is relatively low at about 300 ° C., and the temperature change of the coercive force is large, so that irreversible thermal demagnetization is likely to occur. For this improvement, measures such as adjusting the rare earth species to increase the coercive force or increasing the Curie point by adding Co described in Patent Document 1 have been adopted. There is not much improvement effect.

保磁力を高める方法にはいくつかの方法が提案されている。   Several methods have been proposed for increasing the coercive force.

一つは、例えば特許文献2に示された技術で、希土類元素中に、特定比率のDy、Tb等の重希土類元素を含めることである。実用上、DyとTbの2種のみが有効である。この方法は、磁性を担う磁石主相の異方性磁界そのものを高めて、磁石としての保磁力を高めるものである。しかし、DyやTbなどの重希土類元素は、希土類元素の中では希少で高価なため、大量に用いると磁石の価格が高くなる等の問題が生じる。また、用途の急拡大により、重希土類元素の、埋蔵量や産出地域などの資源的制約が問題となっている。   One is to include heavy rare earth elements such as Dy and Tb in a specific ratio in the rare earth elements by the technique disclosed in Patent Document 2, for example. In practice, only two types of Dy and Tb are effective. This method increases the coercive force as a magnet by increasing the anisotropy magnetic field itself of the main phase of the magnet responsible for magnetism. However, since heavy rare earth elements such as Dy and Tb are rare and expensive among rare earth elements, problems arise such as high magnet prices when used in large quantities. Moreover, due to the rapid expansion of applications, resource constraints such as reserves and production areas of heavy rare earth elements have become problems.

次に、例えば特許文献3、4などに示された、Al、Ga、Sn、Cu、Agなどの添加元素により保磁力を高める方法である。これらの元素は、詳細は未だ完全に解明されたわけではないが、主としてR−richと呼ばれる粒界相の、高温域での主相との濡れ性など、物性を変えて、ミクロな組織を変えることで保磁力を高めたり、また保磁力向上のための熱処理条件を緩和する効果が知られているが、例えばAlは、磁石主相にも固溶するので、添加量を増した場合に主相のキュリー点や磁化を低下させる欠点を有する。   Next, for example, a method of increasing the coercive force by using an additive element such as Al, Ga, Sn, Cu, or Ag disclosed in Patent Documents 3 and 4 is provided. The details of these elements have not yet been fully elucidated, but the microscopic structure is changed by changing the physical properties such as the wettability of the grain boundary phase called R-rich with the main phase in the high temperature range. The effect of increasing the coercive force and relaxing the heat treatment conditions for improving the coercive force is known. However, for example, Al dissolves in the main phase of the magnet. It has the disadvantage of reducing the Curie point and magnetization of the phase.

更に、例えば特許文献5などに示されたTi、V、Cr、Zr、Nb、Mo、Hf、W等の添加元素は、焼結時の結晶粒成長を抑制し、結果的に焼結体の金属組織を微細化することで保磁力を高める働きをする。   Furthermore, for example, additive elements such as Ti, V, Cr, Zr, Nb, Mo, Hf, and W shown in Patent Document 5 suppress crystal grain growth during sintering, and as a result, It works to increase the coercive force by refining the metal structure.

これらの手法のうち、重希土類を用いる方法が磁束密度の低下が比較的小さいため、最も有用である。一方で他の方法は、磁石の磁束密度の大きな低下が避けられないため、活用範囲が狭い。実用磁石ではこれらの技術が適宜組み合わされて利用されている。
特開昭59−64733号公報 特開昭60−34005号公報 特開昭59−89401号公報 特開昭64−7503号公報 特開昭62−23960号公報
Among these methods, the method using heavy rare earth is most useful because the decrease in magnetic flux density is relatively small. On the other hand, other methods have a narrow application range because a large decrease in the magnetic flux density of the magnet is inevitable. In practical magnets, these techniques are used in appropriate combination.
JP 59-64733 A Japanese Unexamined Patent Publication No. 60-34005 JP 59-89401 A Japanese Patent Application Laid-Open No. 64-7503 Japanese Patent Laid-Open No. 62-23960

従来の実用磁石は、要求される磁石性能、特に保磁力を実現するため、前記の技術を適宜組み合わせて組成設計されてきた。しかしながら、もう一段の保磁力向上が求められている。   Conventional practical magnets have been designed by combining the above techniques as appropriate in order to achieve the required magnet performance, particularly coercive force. However, there is a need for further improvement in coercive force.

本願発明の目的は、Dy、Tb等の重希土類元素を必ずしも必須としない、磁化の低下を最小限に抑えて効果的に保磁力を向上する手段を確立することにある。   An object of the present invention is to establish means for effectively improving the coercive force while minimizing the decrease in magnetization, which does not necessarily require heavy rare earth elements such as Dy and Tb.

本願発明のR−T−B系焼結磁石は、希土類元素R:12原子%以上、17原子%以下、硼素B:5.0原子%以上、8.0原子%以下、Al:0.1原子%以上、1.0原子%以下、Mn:0.02原子%以上、0.5原子%未満、遷移金属T:残部の組成を有し、希土類元素Rは、Y(イットリウム)を含む希土類元素から選択された少なくとも1種であって、NdおよびPrの少なくとも一方を含み、遷移元素TはFeを主成分とする。   The RTB-based sintered magnet of the present invention has a rare earth element R: 12 atom% or more and 17 atom% or less, boron B: 5.0 atom% or more, 8.0 atom% or less, Al: 0.1 Atomic% or more, 1.0 atomic% or less, Mn: 0.02 atomic% or more, less than 0.5 atomic%, transition metal T: balance of rare earth element R, rare earth element including Y (yttrium) It is at least one selected from elements and includes at least one of Nd and Pr, and the transition element T is mainly composed of Fe.

好ましい実施形態において、希土類元素Rとして、TbおよびDyの少なくとも一方を含む。   In a preferred embodiment, the rare earth element R includes at least one of Tb and Dy.

好ましい実施形態において、遷移金属Tとして、Co:磁石全体の20原子%以下を含有する。   In a preferred embodiment, the transition metal T contains Co: 20 atomic% or less of the entire magnet.

本願発明の他のR−T−B系焼結磁石は、希土類元素R:12原子%以上、17原子%以下、硼素B:5.0原子%以上、8.0原子%以下、Al:0.1原子%以上、1.0原子%以下、Mn:0.02原子%以上、0.5原子%未満、添加元素M:合計で0を超え、5.0原子%以下、遷移金属T:残部の組成を有し、希土類元素Rは、Y(イットリウム)を含む希土類元素から選択された少なくとも1種であって、NdおよびPrの少なくとも一方を含み、添加元素Mは、Ni、Cu、Zn、Ga、Ag、In、Sn、Bi、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、およびWからなる群から選択された少なくとも1種であり、遷移元素Tは、Feを主成分とする。   Other RTB-based sintered magnets of the present invention are: Rare earth element R: 12 atom% or more and 17 atom% or less, Boron B: 5.0 atom% or more, 8.0 atom% or less, Al: 0 .1 atomic% or more, 1.0 atomic% or less, Mn: 0.02 atomic% or more, less than 0.5 atomic%, additive element M: more than 0 in total, 5.0 atomic% or less, transition metal T: The rare earth element R having the remaining composition is at least one selected from rare earth elements including Y (yttrium), and includes at least one of Nd and Pr, and the additive element M is Ni, Cu, Zn , Ga, Ag, In, Sn, Bi, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W, and the transition element T is mainly composed of Fe. Ingredients.

好ましい実施形態において、希土類元素Rとして、TbおよびDyの少なくとも一方を含む。   In a preferred embodiment, the rare earth element R includes at least one of Tb and Dy.

好ましい実施形態において、遷移金属Tとして、Co:20原子%以下を含有する。   In a preferred embodiment, the transition metal T contains Co: 20 atomic% or less.

R−T−B系焼結磁石において、Al添加により保磁力を向上させることができるが、さらにそのT成分の特定量をMnで置換することで、Al添加時の、キュリー点や飽和磁化などの磁気特性の低下を極小に抑えることができる。つまり、MnとAlを極小量添加することにより、磁気特性の低下を極小に抑えつつ保磁力を高めることができる。また同時に、減磁曲線の角形性も改善される。   In R-T-B based sintered magnets, the coercive force can be improved by adding Al, but by replacing the specific amount of the T component with Mn, the Curie point, saturation magnetization, etc. at the time of adding Al It is possible to minimize the deterioration of the magnetic characteristics of the. That is, by adding a minimum amount of Mn and Al, it is possible to increase the coercive force while suppressing a decrease in magnetic characteristics to a minimum. At the same time, the squareness of the demagnetization curve is also improved.

実施例の組成を示す表である。It is a table | surface which shows a composition of an Example. Nd−Dy−Fe−Co−Cu−B焼結磁石において、5種のMn添加量yについて、残留磁化のAl添加量x依存性を示す図である。FIG. 5 is a diagram showing the dependence of residual magnetization on the Al addition amount x for five types of Mn addition amounts y in an Nd—Dy—Fe—Co—Cu—B sintered magnet. Nd−Dy−Fe−Co−Cu−B焼結磁石において、5種のMn添加量yについて、保磁力のAl添加量x依存性を示す図である。In a Nd-Dy-Fe-Co-Cu-B sintered magnet, it is a figure which shows Al addition amount x dependence of coercive force about five types of Mn addition amount y. Nd−Fe−Co−Cu−Ga−B焼結磁石において、4種のAl添加量xについて、残留磁化のMn添加量y依存性を示す図である。In a Nd-Fe-Co-Cu-Ga-B sintered magnet, it is a figure which shows the Mn addition amount y dependence of the residual magnetization about four types of Al addition amount x. Nd−Fe−Co−Cu−Ga−B焼結磁石において、4種のAl添加量xについて、保磁力のMn添加量y依存性を示す図である。In a Nd-Fe-Co-Cu-Ga-B sintered magnet, it is a figure which shows the Mn addition amount y dependence of coercive force about four types of Al addition amount x.

本願発明者の検討により、磁石組成に対するAlの添加に加え、特定量のMnを添加することにより、Al添加によって保磁力を高めつつ、Al添化時の欠点であった磁化とキュリー点の低下を最小限に抑制できることが明らかになった。   According to the study of the present inventor, in addition to the addition of Al to the magnet composition, by adding a specific amount of Mn, the coercive force is increased by the addition of Al, while the magnetization and the Curie point are lowered at the time of Al addition. It has become clear that it can be minimized.

本願発明のR−T−B系焼結磁石は、希土類元素R:12原子%以上、17原子%以下、硼素B:5.0原子%以上、8.0原子%以下、Al:0.1原子%以上、1.0原子%以下、Mn:0.02原子%以上、0.5原子%未満、遷移金属T:残部の組成を有する。   The RTB-based sintered magnet of the present invention has a rare earth element R: 12 atom% or more and 17 atom% or less, boron B: 5.0 atom% or more, 8.0 atom% or less, Al: 0.1 Atom% or more, 1.0 atom% or less, Mn: 0.02 atom% or more, less than 0.5 atom%, transition metal T: balance.

希土類元素Rは、Y(イットリウム)を含む希土類元素から選択された少なくとも1種であって、NdおよびPrの少なくとも一方を含む。また、遷移元素TはFeを主成分とする。また、種々の効果を得るため、Ni、Cu、Zn、Ga、Ag、In、Sn、Bi、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、およびWからなる群から選択された少なくとも1種の添加元素Mを添加しても良い。   The rare earth element R is at least one selected from rare earth elements including Y (yttrium), and includes at least one of Nd and Pr. The transition element T is mainly composed of Fe. Further, in order to obtain various effects, it was selected from the group consisting of Ni, Cu, Zn, Ga, Ag, In, Sn, Bi, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W. At least one additive element M may be added.

従来、Mn添加の影響は、キュリー点、異方性磁界、磁化という、主たる磁気特性の全てを低下させるものと認識されていた。一方、Alは、添加により焼結磁石の保磁力が向上することは知られていたが、同時にキュリー点や飽和磁化が低下するという欠点も有していた。Al添加による保磁力の向上は、主相の異方性磁界が向上するためではなく、粒界相の改質によるものと解釈されているが、一方、Alは、主相にも比較的多く固溶してしまうために前記欠点が生じる。   Conventionally, the effect of Mn addition has been recognized as reducing all of the main magnetic properties of the Curie point, anisotropic magnetic field, and magnetization. On the other hand, Al was known to improve the coercive force of the sintered magnet when added, but at the same time had the disadvantage that the Curie point and saturation magnetization were lowered. The improvement in coercive force due to the addition of Al is interpreted not to improve the anisotropic magnetic field of the main phase but to the modification of the grain boundary phase. On the other hand, Al is also relatively large in the main phase. The above-mentioned disadvantage occurs because it dissolves.

しかしながら、Alの所定量と同時に、所定量のMnを添加すると、Alの主相への固溶量が減少し、Al添加時の磁気特性の低下を抑制できることがわかった。すなわち、Nd2Fe14B相を主とする焼結磁石では、FeをMnで置換すると、Mnは主相に固溶するが、このとき、Alの主相への固溶量を抑制する効果を持つため、結果的に磁気特性の低下を最小限に抑制しつつ保磁力の向上が図れる。なお、Mn添加自体も、保磁力と磁化を低下させるが、極く僅かな添加量で効果が得られるので悪影響は小さい。However, it was found that when a predetermined amount of Mn was added at the same time as the predetermined amount of Al, the solid solution amount of Al in the main phase decreased, and the deterioration of the magnetic properties during the addition of Al could be suppressed. That is, in a sintered magnet mainly composed of the Nd 2 Fe 14 B phase, when Fe is replaced with Mn, Mn is dissolved in the main phase, but at this time, the effect of suppressing the amount of Al dissolved in the main phase. As a result, the coercive force can be improved while minimizing the deterioration of the magnetic characteristics. Mn addition itself also reduces the coercive force and magnetization, but the effect is small since the effect can be obtained with a very small addition amount.

また、Mnを添加することにより、R−T−B系焼結磁石の製造工程において、焼結挙動の改善も果たせることが明らかとなった。すなわち、従来技術に比べて低温または短時間で充分焼結反応が進行するため、磁石の組織がより均質になり、磁石の性能上は減磁曲線の角形性が改善される。   Further, it has been clarified that the addition of Mn can improve the sintering behavior in the manufacturing process of the R-T-B sintered magnet. That is, since the sintering reaction sufficiently proceeds at a low temperature or in a short time as compared with the prior art, the structure of the magnet becomes more uniform, and the squareness of the demagnetization curve is improved in terms of the performance of the magnet.

[組成]
希土類元素の量は、以下に示す所定範囲であれば、多いほど保磁力が高く、同時に残留磁化が小さくなる傾向にある。12原子%未満であると、主相であるR214B化合物の量が少なくなり、代わって、例えばαFeなどの軟磁性相が生成して保磁力が大幅に低下する。一方、17原子%を超えると、主相であるR214B化合物の量が少なくなって磁化が低下すると共に、余剰のRが金属状態で主相粒界に集まるので、水分や酸素との反応が生じやすく、耐食性が著しく低下する恐れがある。従って、Rは、12原子%以上、17原子%以下が好ましい。さらに好ましくは、Rは、12.5原子%以上、15原子%以下である。
[composition]
If the amount of the rare earth element is within the predetermined range shown below, the greater the coercive force, the lower the residual magnetization. If it is less than 12 atomic%, the amount of the main phase R 2 T 14 B compound is reduced, and instead, a soft magnetic phase such as αFe is generated, and the coercive force is greatly reduced. On the other hand, if it exceeds 17 atomic%, the amount of the R 2 T 14 B compound as the main phase decreases and magnetization decreases, and surplus R collects in the main phase grain boundaries in a metallic state. This reaction is likely to occur, and the corrosion resistance may be significantly reduced. Therefore, R is preferably 12 atom% or more and 17 atom% or less. More preferably, R is 12.5 atomic% or more and 15 atomic% or less.

希土類元素Rのうち、特にNdとPrは、高性能磁石を得るためには少なくともどちらか一方は必須である。さらに高い保磁力が必要な場合は、Rの一部としてTbやDyを用いることができる。TbおよびDyの少なくとも一方による合計置換量は、6原子%を超えると、残留磁化が1.1Tを下回り、特に高温環境での用途を考慮した場合、Sm−Co磁石と性能が逆転する。またTbやDyを大量に用いると、磁石の原料費も高額になり、この点でもSm−Co磁石に対する優位性が小さくなることから、工業的に有用なTbおよび/またはDyの量は、6原子%以下である。さらに、Yを含むその他の希土類元素は、磁気特性上は有用ではないが、不可避不純物として含むことはできる。   Among the rare earth elements R, at least one of Nd and Pr is indispensable for obtaining a high-performance magnet. When a higher coercive force is required, Tb or Dy can be used as a part of R. When the total substitution amount by at least one of Tb and Dy exceeds 6 atomic%, the remanent magnetization is less than 1.1 T, and the performance is reversed from that of the Sm-Co magnet particularly when considering use in a high temperature environment. Further, when Tb and Dy are used in large quantities, the raw material cost of the magnet becomes high, and in this respect as well, the advantage over the Sm-Co magnet is reduced. Therefore, the amount of industrially useful Tb and / or Dy is 6 Atomic% or less. Furthermore, other rare earth elements including Y are not useful in terms of magnetic properties, but can be included as inevitable impurities.

硼素は、R−T−B系焼結磁石には必須の元素であり、この量により主相であるR214B化合物の量が決まる。焼結磁石の保磁力を確保しつつ大きな磁化を得るためには、Bの量が重要である。B量は、以下に示す所定範囲の量であれば、多いほど大きな保磁力を得やすくなる。また、B量が少ないときの保磁力は、Bの所定量を境に急激に小さくなるため、工業的にはB量が所定量を下回らないことは特に重要である。残留磁化はB量に応じて多いほど小さくなる。B量が5.0原子%未満であると、主相の量が少なくなると共に主相以外の軟磁性化合物が生成し、磁石の保磁力が低下する。一方、8.0原子%を超えると、主相の量が減少し、磁石の磁化が低下する。従って、Bの量は、5.0原子%以上、8.0原子%以下である。高性能磁石を得るためにさらに好ましい範囲は、5.5原子%以上、8.0原子%以下、さらに好ましい範囲は5.5原子%以上7.0原子%以下である。Boron is an essential element for an R-T-B based sintered magnet, and the amount thereof determines the amount of the R 2 T 14 B compound that is the main phase. In order to obtain a large magnetization while ensuring the coercive force of the sintered magnet, the amount of B is important. If the amount of B is an amount in the predetermined range shown below, it becomes easier to obtain a larger coercive force as it increases. Further, since the coercive force when the amount of B is small rapidly decreases with a predetermined amount of B as a boundary, it is particularly important that the amount of B does not fall below the predetermined amount industrially. The residual magnetization decreases as the amount of B increases. When the amount of B is less than 5.0 atomic%, the amount of the main phase decreases, and a soft magnetic compound other than the main phase is generated, and the coercive force of the magnet decreases. On the other hand, if it exceeds 8.0 atomic%, the amount of the main phase is reduced and the magnetization of the magnet is lowered. Therefore, the amount of B is 5.0 atomic% or more and 8.0 atomic% or less. In order to obtain a high-performance magnet, a more preferable range is 5.5 atomic percent or more and 8.0 atomic percent or less, and a further preferable range is 5.5 atomic percent or more and 7.0 atomic percent or less.

Alは、R−T−B系焼結磁石に添加すると保磁力が向上する一方、磁化は低下し、またキュリー点も低下する。保磁力は小量のAl添加で増加するが、Al添加量を増しても一定以上は向上せず、Al添加量の増加に比例して磁化やキュリー点は低下する。このことから、保磁力向上の原因は、主相の磁気的性質の改善ではなく、粒界の物性改善によってもたらされていることが示唆される。   When Al is added to the RTB-based sintered magnet, the coercive force is improved, while the magnetization is lowered and the Curie point is also lowered. The coercive force increases with the addition of a small amount of Al. However, even if the Al addition amount is increased, the coercive force does not improve beyond a certain level. This suggests that the cause of the improvement in the coercive force is not the improvement of the magnetic properties of the main phase but the improvement of the physical properties of the grain boundaries.

従って、Alは磁石の組織中では主相にも粒界にも存在するが、保磁力向上に寄与するのは粒界相に存在するAlであるといえる。主相に存在するAlは、磁気特性には悪影響をもたらすので、可能な限り減少させるべきであり、そのためには以下に説明するMnの同時添加が有効である。   Therefore, although Al exists in the main phase and the grain boundary in the structure of the magnet, it can be said that it is Al existing in the grain boundary phase that contributes to the improvement of the coercive force. Al present in the main phase adversely affects the magnetic properties and should be reduced as much as possible. For this purpose, simultaneous addition of Mn described below is effective.

Mnを同時添加するという前提のもので、Alの好ましい添加量は、0.1原子%以上、1.0原子%以下である。Alが0.1原子%未満であると、粒界相の物性改善効果が得られず、高い保磁力が得られないため好ましくない。一方、1.0原子%を超えると、更なる保磁力向上効果がない上、Mnを同時添加しても主相へのAlの固溶量が増え、顕著に磁化が低下し、キュリー点が下がるため好ましくない。   On the premise that Mn is added simultaneously, the preferable addition amount of Al is 0.1 atomic% or more and 1.0 atomic% or less. If the Al content is less than 0.1 atomic%, the effect of improving the physical properties of the grain boundary phase cannot be obtained, and a high coercive force cannot be obtained. On the other hand, if it exceeds 1.0 atomic%, there is no further effect of improving the coercive force, and even if Mn is added simultaneously, the amount of Al dissolved in the main phase increases, the magnetization significantly decreases, and the Curie point is reduced. Since it falls, it is not preferable.

Mnは、磁石合金中では殆どが主相に固溶し、主相の磁化、異方性磁界、キュリー点の全てが低下するが、Mnを添加することで、他の添加元素であるAlの主相への固溶量を減少させる働きをする。   Mn is mostly dissolved in the main phase in the magnet alloy, and all of the magnetization, anisotropic magnetic field and Curie point of the main phase are lowered. However, by adding Mn, other additive elements such as Al It works to reduce the amount of solid solution in the main phase.

Mnの量は、0.5原子%を超えると、磁化の低下が顕在化し、また保磁力の低下も顕在化する。このため、Mnの添加量は、0.5原子%未満にすることが好ましく、0.2原子%以下にすることが更に好ましい。一方、Mn添加量が0.02原子%未満では、本願発明の効果は現れないため、Mn添加量は0.02原子%以上であることが好ましい。Mnによる焼結挙動改善の効果を高めるには、Mn添加量を0.05原子%以上にすることが好ましい。   When the amount of Mn exceeds 0.5 atomic%, a decrease in magnetization becomes apparent, and a decrease in coercive force also becomes apparent. For this reason, the amount of Mn added is preferably less than 0.5 atomic%, and more preferably 0.2 atomic% or less. On the other hand, if the Mn addition amount is less than 0.02 atomic%, the effect of the present invention does not appear, so the Mn addition amount is preferably 0.02 atomic% or more. In order to enhance the effect of improving the sintering behavior by Mn, it is preferable that the amount of Mn added is 0.05 atomic% or more.

焼結性改善効果を発揮し得る、コスト面で有用な元素はMnだけであると思われる。この理由は、Mnが有用元素の中で唯一、実質的に主相のみに固溶する元素であるからであると考えられる。従来、焼結性改善のための元素としては、AlやCuが挙げられていたが、これらの元素は、粒界相の物性を改善する効果を発揮するものであり、主相であるR214B相の焼結反応には間接的にしか作用しない。これに対し、Mnは、主相の析出に関与するため、焼結反応に直接作用する。このため、本願発明では、Alによって粒界相の物性改善を、Mnによって主相の焼結性改善を同時に実現できる。したがって、Mnと後述のAlの量を特定範囲に調整することにより、安定的に、効率よく、R−T−B系焼結磁石を製造できる。Mn is considered to be the only cost-effective element that can exhibit the effect of improving the sinterability. The reason for this is considered that Mn is the only useful element and is an element that is substantially dissolved in the main phase only. Conventionally, Al and Cu have been cited as elements for improving the sinterability, but these elements exhibit the effect of improving the physical properties of the grain boundary phase and are the main phase R 2. It only acts indirectly on the T 14 B phase sintering reaction. On the other hand, since Mn is involved in the precipitation of the main phase, it directly acts on the sintering reaction. For this reason, in the present invention, it is possible to simultaneously improve the physical properties of the grain boundary phase with Al and to improve the sinterability of the main phase with Mn. Therefore, by adjusting the amounts of Mn and Al, which will be described later, within a specific range, an RTB-based sintered magnet can be manufactured stably and efficiently.

ところで、AlやMnは、素原料等によって不可避に混入する場合がある。例えば、Alは、フェロボロン合金に不純物として含まれることがあり、また溶解時にるつぼの成分から混入することがある。Mnは鉄原料やフェロボロンから混入することがある。しかし、AlとMnの量を共に特定範囲に制御しなければ本願発明の効果は得られず、本願発明実施にあたっては原料合金の製造工程からAlとMnの量の管理を行わなければならない。   By the way, Al and Mn may be inevitably mixed by raw materials. For example, Al may be contained as an impurity in a ferroboron alloy, and may be mixed from a crucible component during melting. Mn may be mixed from iron raw materials or ferroboron. However, unless both the amounts of Al and Mn are controlled within a specific range, the effect of the present invention cannot be obtained. In implementing the present invention, the amounts of Al and Mn must be managed from the manufacturing process of the raw material alloy.

R−T−B系焼結磁石では、磁気特性、特にキュリー点や、耐食性の改善のために、Feの一部をCoで置換する場合がある。Coを添加すると、その一部は主相のFeを置換してキュリー点を高める。残りのCoは粒界に存在し、例えばNd3Coのような化合物を形成して粒界の化学的安定性を高める。しかし、Coが大量に存在すると、粒界に強磁性かつ軟磁性の化合物が生成し、減磁界に対して容易に逆磁区が発生し、磁壁移動が起こるため、磁石の保磁力を低下させてしまう。In an RTB-based sintered magnet, in order to improve magnetic properties, particularly the Curie point and the corrosion resistance, a part of Fe may be substituted with Co. When Co is added, a part thereof replaces Fe of the main phase and raises the Curie point. The remaining Co is present at the grain boundaries and forms a compound such as Nd 3 Co to enhance the chemical stability of the grain boundaries. However, if a large amount of Co is present, a ferromagnetic and soft magnetic compound is generated at the grain boundary, a reverse magnetic domain is easily generated against the demagnetizing field, and domain wall movement occurs, which reduces the coercive force of the magnet. End up.

遷移金属Tは、Feを基本とする。R214B化合物は、TがFeの時に最も高い磁化が得られるためである。また、他の有用な強磁性の遷移金属であるCoやNiよりも安価である。The transition metal T is based on Fe. This is because the R 2 T 14 B compound provides the highest magnetization when T is Fe. Moreover, it is cheaper than Co and Ni which are other useful ferromagnetic transition metals.

本願発明の実施にあたって、Coの添加を特定範囲とすれば、前記のような悪影響は避けられる。また本願発明の効果を阻害することなく、キュリー点の上昇や耐食性の向上などの効果は得られることから、Coの添加は好ましい。Co添加量は、20原子%を超えると、磁化の低下が大きくなり、また軟磁性相の析出により保磁力が低下するので、Coの添加量の上限は20原子%とするのが好ましい。   In carrying out the present invention, if the addition of Co is within a specific range, the above-described adverse effects can be avoided. In addition, the addition of Co is preferable because effects such as an increase in the Curie point and improvement in corrosion resistance can be obtained without hindering the effects of the present invention. If the Co addition amount exceeds 20 atomic%, the decrease in magnetization increases, and the coercive force decreases due to the precipitation of the soft magnetic phase, so the upper limit of the Co addition amount is preferably 20 atomic%.

添加元素Mは、その作用効果から、Ni、Cu、Zn、Ga、Ag、In、Sn、Biの第1グループと、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wの第2グループに分けられる。前者の第1グループは、Alと異なり殆ど主相には固溶せず、主に粒界に存在し、粒界相と主相との相互作用に寄与する。具体的には、粒界相の融点を低下させて磁石の焼結挙動を改善したり、主相と粒界相の濡れ性を改善して粒界相を主相界面により効果的に回り込ませ、結果として磁石の保磁力を高める働きをする。これらの元素で最も効果的に用いられるのはCuであり、またGaとAgは、高価であるという欠点はあるものの、特性改善の効果は優れている。なお、この中でNiは、多量に添加すると主相にも固溶し、主相の磁化を低下させる欠点を有する。一方後者の第2グループは、微細な高融点の析出物を作るなどの作用により焼結組織を微細にして保磁力を高める働きをする。   The additive element M has the first effect of the first group of Ni, Cu, Zn, Ga, Ag, In, Sn, and Bi, and the first of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W due to its operational effects. Divided into two groups. Unlike the Al, the former first group hardly dissolves in the main phase, exists mainly at the grain boundary, and contributes to the interaction between the grain boundary phase and the main phase. Specifically, the melting point of the grain boundary phase is lowered to improve the sintering behavior of the magnet, or the wettability between the main phase and the grain boundary phase is improved so that the grain boundary phase is effectively wrapped around the main phase interface. As a result, it works to increase the coercive force of the magnet. Of these elements, Cu is most effectively used, and Ga and Ag are excellent in the effect of improving characteristics, although they are disadvantageous in that they are expensive. Of these, Ni, when added in a large amount, dissolves in the main phase and has the disadvantage of lowering the magnetization of the main phase. On the other hand, the latter second group serves to increase the coercive force by making the sintered structure fine by an action such as forming fine precipitates having a high melting point.

Niを除く第1および第2グループの全元素も、強磁性相としての働きは示さないので、添加量が多いと、磁石の磁化は低下する。Niについても、多量添加して粒界に軟磁性の化合物が生じると保磁力が低下する。従って、これら添加元素の最大量は、すべての元素の合計で5原子%以下にする。さらに好ましくは、2原子%以下が良い。なお、第1グループから複数の元素を用いることもできるし、第2グループから複数の元素を用いることもできる。また第1グループの元素と第2グループの元素を組み合わせて用いることもできる。   Since all elements of the first and second groups except for Ni do not function as a ferromagnetic phase, the magnetization of the magnet decreases when the amount added is large. When a large amount of Ni is added to form a soft magnetic compound at the grain boundary, the coercive force is lowered. Therefore, the maximum amount of these additive elements is 5 atomic% or less in total of all the elements. More preferably, 2 atomic% or less is good. A plurality of elements from the first group can be used, and a plurality of elements from the second group can be used. A combination of the first group element and the second group element can also be used.

その他の元素は、本願発明の限定にはないが、本願発明の効果とは無関係であり、その存在を排除するものではない。例えば、水素、炭素、窒素、酸素は、製造工程上不可避であり、本願発明の実施例においても検出されている。これらのうち、炭素や窒素は、Bと一部置換可能である場合もあるが、その場合は磁石の保磁力が低下するなどの磁気特性への顕著な影響が生じる。通常の焼結磁石においては、炭素や窒素は、酸素と同様、希土類元素と反応して何らかの形態の炭化物、窒化物、酸化物を形成し、磁気特性に影響を与えない形で存在しているものと思われる。また、水素や窒素は、主相の格子間に侵入し、キュリー点を向上させる等の効果も期待できるが、多量に添加した場合は保磁力を低下させる。何れも本願発明とは独立の効果である。F、Cl、Mg、Ca等は、希土類金属の精錬過程で混入する恐れがあり、そのまま磁石組成に含まれる可能性がある。P、Sは、Fe原料に含まれている可能性がある。また、Siは、原料ソースであるフェロボロン合金から取り込まれる以外に、磁石用母合金の溶解時にるつぼ成分が混入する可能性もある。   The other elements are not limited to the present invention, but are irrelevant to the effects of the present invention, and do not exclude their presence. For example, hydrogen, carbon, nitrogen, and oxygen are inevitable in the manufacturing process, and are detected in the examples of the present invention. Among these, carbon and nitrogen may be partially substituted with B, but in that case, there is a significant influence on magnetic properties such as a decrease in the coercive force of the magnet. In ordinary sintered magnets, carbon and nitrogen, like oxygen, react with rare earth elements to form some form of carbides, nitrides and oxides, and exist in a form that does not affect magnetic properties. It seems to be. Also, hydrogen and nitrogen can be expected to enter the lattice of the main phase and improve the Curie point. However, when added in a large amount, the coercive force is lowered. Both are independent of the present invention. F, Cl, Mg, Ca and the like may be mixed in the refining process of the rare earth metal and may be included in the magnet composition as it is. P and S may be contained in the Fe raw material. In addition to the incorporation of Si from the ferroboron alloy that is a raw material source, there is a possibility that a crucible component may be mixed when the mother alloy for magnet is melted.

[製造方法]
本願発明は、R−T−B系焼結磁石のあらゆる製造方法で同様の効果が得られ、従って製造方法を限定するものではないが、以下に製造方法の一例を示す。
[Production method]
In the present invention, the same effect can be obtained by any manufacturing method of the RTB-based sintered magnet. Therefore, the manufacturing method is not limited, but an example of the manufacturing method is shown below.

[原料合金]
種々の製法によって製造され、また種々の形態を有する原料合金が利用可能である。原料合金の代表例は、インゴット、ストリップキャスト、アトマイズ粉末、還元拡散法による粉末、また超急冷法による合金リボン等である。これらの原料合金は単独で用いられるだけではなく、異なる種類の原料合金を混合して用いることもできる。さらに、組成の異なる合金を混合して用いる、いわゆる2合金法を採用することもできる。この場合、MnとAlは、両方をどちらか一方の合金に含有させる方法、両方の合金に含有させる方法、また磁石組成に近いほうの合金:主合金にMnを含有させ、添加合金にAlを含有させる方法において、本願発明の効果を発揮しうる。さらに、主合金にAl、添加合金にMnを含ませる方法でも、本願発明の効果の一つである焼結性の改善は達成し得る。
[Raw material alloy]
Raw material alloys produced by various production methods and having various forms can be used. Typical examples of the raw material alloy include ingots, strip casts, atomized powders, powders obtained by a reduction diffusion method, and alloy ribbons obtained by a rapid quenching method. These raw material alloys are not only used alone, but also different kinds of raw material alloys can be mixed and used. Further, a so-called two-alloy method in which alloys having different compositions are used in combination can be employed. In this case, Mn and Al are contained in either alloy, in both alloys, or in the alloy closer to the magnet composition: Mn is contained in the main alloy and Al is added in the added alloy. The effect of the present invention can be exhibited in the method of inclusion. Furthermore, the improvement of sinterability, which is one of the effects of the present invention, can also be achieved by a method in which Al is contained in the main alloy and Mn is contained in the additive alloy.

原料合金の製造にあたっては、純鉄、フェロボロン合金、純B、希土類金属、希土類−鉄合金等を素原料として用いることができ、本願発明の必須元素であるMnやAlを不純物として含むものもある。従って、最終的にMnとAlが特定組成範囲になるよう、MnやAlを不純物として含む素原料を用いることもできるし、MnやAlを別途添加することもできる。一般的に、不純物量の制御だけでは特定組成範囲に制御することは困難なので、不純物として含有されるMnやAlに対し、適量のMnやAlを添加し、併せて特定組成範囲になるようにする。   In the production of the raw material alloy, pure iron, ferroboron alloy, pure B, rare earth metal, rare earth-iron alloy, etc. can be used as raw materials, and some contain Mn and Al, which are essential elements of the present invention, as impurities. . Therefore, a raw material containing Mn and Al as impurities can be used so that Mn and Al finally have a specific composition range, or Mn and Al can be added separately. In general, it is difficult to control to a specific composition range only by controlling the amount of impurities, so an appropriate amount of Mn or Al is added to Mn and Al contained as impurities so that the specific composition range is achieved. To do.

M元素については、純金属で添加することもできるし、例えば鉄との合金の形で添加することもできる。   About M element, it can also add with a pure metal, for example, can also be added with the form of an alloy with iron.

また、母合金に対し、組織改善、元素分布改善、均質化等を目的として、熱処理を行うこともできる。   The master alloy can also be heat-treated for the purpose of improving the structure, improving the element distribution, homogenizing, and the like.

[粉砕]
粉砕工程も、任意の方法が採られる。出発原料の性状によって選択することができるが、例えばストリップキャスト合金を出発原料とする場合、粗粉砕−微粉砕の2段階の工程を経ることが多い。このとき、粗粉砕は、機械的に粉砕する方法や、希土類合金に適する、水素脆化を利用した粉砕方法を採ることができる。水素脆化法とは、合金を容器に水素ガスと共に封じ込め、合金に水素ガスを侵入させ、その際の合金の体積変化に伴う歪を利用して粉砕する方法である。この方法では、粗粉末に多量の水素が含まれた形になるので、必要に応じて粗粉末を加熱することで、余分な水素を放出させることもできる。
[Crushing]
An arbitrary method is also employed for the pulverization step. Although it can be selected depending on the properties of the starting material, for example, when a strip cast alloy is used as the starting material, it often passes through two steps of coarse pulverization and fine pulverization. At this time, the coarse pulverization can be performed by a mechanical pulverization method or a pulverization method using hydrogen embrittlement suitable for rare earth alloys. The hydrogen embrittlement method is a method in which an alloy is sealed together with hydrogen gas in a container, hydrogen gas is allowed to penetrate into the alloy, and pulverization is performed using strain associated with the volume change of the alloy at that time. In this method, since a large amount of hydrogen is contained in the coarse powder, excess hydrogen can be released by heating the coarse powder as necessary.

なお、粗粉砕の後、微粉砕工程の前に、例えばふるいなどを用いて粒度を特定粒度以下に揃えることもできる。   In addition, after coarse pulverization and before the fine pulverization step, the particle size can be made equal to or less than a specific particle size using, for example, a sieve.

微粉砕は、高速気流を用いるジェットミル粉砕が一般的だが、機械的に微粉砕する方法や、分散媒を用いた湿式ボールミル粉砕も利用可能である。また、粉砕に際して、事前に粉砕助剤を加えても良い。特に微粉砕工程の粉砕効率を高めるためには有用である。   For the fine pulverization, jet mill pulverization using a high-speed air flow is generally used. However, a mechanical pulverization method and wet ball mill pulverization using a dispersion medium can also be used. Further, a grinding aid may be added in advance at the time of grinding. This is particularly useful for increasing the pulverization efficiency in the fine pulverization step.

なお、原料合金の取扱、粉砕粉の取扱については、高性能磁石を製造するためには不活性雰囲気で取り扱うことが重要である。不活性雰囲気とは、少なくとも常温での取扱に関しては窒素ガスで充分であるが、例えば300℃以上の熱処理を行うような場合はヘリウムガスまたはアルゴンガスを用いる必要がある。   Regarding the handling of the raw material alloy and the handling of the pulverized powder, it is important to handle in an inert atmosphere in order to produce a high-performance magnet. As the inert atmosphere, nitrogen gas is sufficient for handling at least at room temperature, but helium gas or argon gas needs to be used when heat treatment at 300 ° C. or higher is performed, for example.

粉砕粒度は、磁石の性能と、次の成形工程での取り扱い上の制約とから決めればよいが、通常、気流分散式レーザー回折法によるD50粒径で3−7μmとする。この粒度は、逆に、高速気流式の粉砕方法で得やすい粒度範囲である。なお、微粉粒度を気流分散法で測るのは、微粉末が強磁性体で容易に磁気的に凝集してしまうためである。   The pulverized particle size may be determined from the performance of the magnet and the restrictions on handling in the next molding step, but is usually set to 3-7 μm as the D50 particle size by the air flow dispersion type laser diffraction method. On the contrary, this particle size is a particle size range that can be easily obtained by a high-speed airflow type pulverization method. The reason why the fine particle size is measured by the airflow dispersion method is that the fine powder is ferromagnetic and easily magnetically aggregates.

[成形]
異方性焼結磁石では、磁界中で微粉末を成形し、磁石の磁気異方性を付与する。一般的には、粉砕工程で得られた微粉末を、成形機のダイスホールに充填し、パンチでキャビティを構成しつつ外部から磁界を印加し、そのままパンチで加圧して成形した後取り出す。この工程において、原料の微粉末は、磁界による配向を向上させる目的、また金型潤滑を高める目的で潤滑剤を添加したものでも良い。この潤滑剤は、固体状のものや液体状のものがあり、種々の要因を考慮して選択すればよい。また、ダイスホールへの充填を容易にすることなどを目的に、適宜造粒することもできる。
[Molding]
In an anisotropic sintered magnet, fine powder is formed in a magnetic field to impart magnetic anisotropy of the magnet. In general, the fine powder obtained in the pulverization process is filled in a die hole of a molding machine, a magnetic field is applied from the outside while forming a cavity with a punch, and the mold is taken out after being pressed with a punch as it is. In this step, the raw material fine powder may be added with a lubricant for the purpose of improving the orientation by the magnetic field and for the purpose of enhancing the mold lubrication. This lubricant may be solid or liquid and may be selected in consideration of various factors. Moreover, it can also be appropriately granulated for the purpose of facilitating filling of the die holes.

また、配向のために印加する磁界として、直流電源による静磁界だけでなく、例えばコンデンサ放電によるパルス磁界や、交流磁界も利用できる。   Further, as a magnetic field applied for orientation, not only a static magnetic field by a DC power source but also a pulse magnetic field by a capacitor discharge or an AC magnetic field can be used, for example.

本願発明の組成系では、磁界の強さは通常0.4MA/m以上、より好ましくは0.8MA/m以上を用いる。さらに、成形後、脱磁処理として、逆磁界を印加しても良い。脱磁処理により、その後の成形体の取扱において、残磁がなく、取扱が容易になる効果がある。   In the composition system of the present invention, the strength of the magnetic field is usually 0.4 MA / m or more, more preferably 0.8 MA / m or more. Further, a reverse magnetic field may be applied as a demagnetization treatment after molding. By the demagnetization treatment, there is no residual magnetism in the subsequent handling of the molded body, and there is an effect that the handling becomes easy.

なお、成形時の磁界印加の方向を工夫することで、種々の配向状態の磁石を作ることができる。例えば、円環形状では軸方向の配向の他、径方向のラジアル配向や、磁極を複数持つ極異方配向も可能である。   In addition, the magnet of various orientation states can be made by devising the direction of the magnetic field application at the time of shaping. For example, in the annular shape, in addition to the axial orientation, radial radial orientation and polar anisotropic orientation having a plurality of magnetic poles are possible.

成形方法も、ダイスとパンチによる方法以外に、ゴム型を用いる方法、例えばRIPと呼ばれる方法も適用可能である。   As a molding method, a method using a rubber mold, for example, a method called RIP can be applied in addition to a method using a die and a punch.

さらに、成形と磁界印加を別々に行っても良い。   Furthermore, you may perform shaping | molding and a magnetic field application separately.

[焼結]
焼結工程は、真空、またはアルゴンガス雰囲気で行われる。雰囲気の圧力等は任意に設定できる。例えば、Arガスを導入しつつ減圧する方法や、Arガスで加圧する方法も適用できる。本願発明の磁石の場合、焼結工程以前に原料粉末に含まれるガスが昇温過程で放出されたり、工程途中で添加した潤滑剤、結合剤、保形剤等の蒸発させることを目的として、焼結時の昇温工程は減圧下で行われることもあり、昇温途中で一定時間、一定温度で保持することもある。また、前記潤滑剤、結合剤、保形剤を効率的に放出させるために、昇温過程の特定温度範囲を水素雰囲気とすることもできる。なお、ヘリウムガス雰囲気でも焼結は可能だが、日本ではヘリウムガスが高価であるし、ヘリウムガスの熱伝導の良さのために焼結炉の熱効率が低下する可能性がある。
[Sintering]
The sintering process is performed in a vacuum or an argon gas atmosphere. The pressure of the atmosphere can be arbitrarily set. For example, a method of reducing pressure while introducing Ar gas or a method of pressurizing with Ar gas can be applied. In the case of the magnet of the present invention, the gas contained in the raw material powder is released in the temperature rising process before the sintering process, or for the purpose of evaporating the lubricant, binder, shape retention agent, etc. added during the process, The temperature raising process during sintering may be performed under reduced pressure, and may be held at a constant temperature for a certain time during the temperature raising. In order to efficiently release the lubricant, binder, and shape-retaining agent, the specific temperature range in the temperature raising process can be a hydrogen atmosphere. Although sintering is possible even in a helium gas atmosphere, helium gas is expensive in Japan, and the thermal efficiency of the sintering furnace may decrease due to the good heat conduction of helium gas.

焼結は、通常、1000℃−1100℃で30分−16時間行われる。本願発明の組成範囲では液相焼結となるので、さほど高い温度は必要でない。なお、同じ温度または異なる温度で、複数回に分けて焼結を行うこともできる。温度保持後の冷却については、必ずしも急冷または徐冷が必須でなく、以下の熱処理を含め、適宜条件を組み合わせることができる。   Sintering is usually performed at 1000 ° C. to 1100 ° C. for 30 minutes to 16 hours. Since liquid phase sintering is performed within the composition range of the present invention, a very high temperature is not necessary. In addition, it can also sinter in multiple times at the same temperature or different temperature. For the cooling after holding the temperature, rapid cooling or gradual cooling is not necessarily required, and conditions can be appropriately combined including the following heat treatment.

焼結後は、本願発明の磁石では、比重7.3以上が得られる。より好ましくは7.4以上である。   After sintering, a specific gravity of 7.3 or more is obtained with the magnet of the present invention. More preferably, it is 7.4 or more.

なお、外部から圧力を加えながら加温するホットプレスや、成形体に通電してジュール熱により過熱する通電焼結など、粉末冶金法で用いられるあらゆる焼結手段も適用できる。これらの手法を用いる場合は、焼結温度、時間は前記の限りでない。   Any sintering means used in the powder metallurgy method, such as hot pressing that heats while applying pressure from the outside, and electric sintering that energizes the molded body and overheats by Joule heat, can be applied. When these methods are used, the sintering temperature and time are not limited to the above.

[熱処理]
保磁力を高めることを目的に、焼結終了後、焼結温度以下で熱処理を行うことができる。また、この熱処理を、同じ温度または温度を変えて複数回行っても良い。熱処理の際の冷却条件も、種々の条件を選択できる。
[Heat treatment]
For the purpose of increasing the coercive force, heat treatment can be performed at a sintering temperature or lower after the end of sintering. Further, this heat treatment may be performed a plurality of times at the same temperature or at different temperatures. Various conditions can be selected for the cooling conditions during the heat treatment.

なお、焼結上がりで充分な保磁力が得られている場合は、あえて熱処理を行う必要はない。   If a sufficient coercive force is obtained after sintering, it is not necessary to perform heat treatment.

[加工]
焼結後の磁石は、最終形状に近い状態のこともあるが、一般的には切断、研削、研磨等の機械加工を行い、所定形状に仕上げる。なお、この加工は、焼結後であれば、熱処理の前でも後でも、または複数回の熱処理の中間に行っても良い。
[processing]
Although the sintered magnet may be in a state close to the final shape, it is generally finished into a predetermined shape by machining such as cutting, grinding, and polishing. Note that this processing may be performed after sintering, before or after heat treatment, or in the middle of a plurality of heat treatments.

[表面処理]
本願発明の組成系の焼結磁石は、通常の環境では長期的には錆が発生するため、適宜表面を被覆する処理を行う。例えば、樹脂塗装、金属めっき、蒸着膜などが用いられており、用途、要求性能、コストを勘案して適切な表面処理を選択することができる。勿論使用環境により、表面処理による保護が不要の場合は、表面処理を行わないこともある。
[surface treatment]
Since the sintered magnet of the composition system of the present invention generates rust in the long term in a normal environment, the surface is appropriately coated. For example, resin coating, metal plating, vapor deposition film, and the like are used, and an appropriate surface treatment can be selected in consideration of application, required performance, and cost. Of course, the surface treatment may not be performed if protection by the surface treatment is unnecessary depending on the use environment.

[着磁]
本願発明の磁石は、通常、パルス磁界で着磁する。この工程は、一般的には製品の組立の便から、組立後に行うことが多いが、当然磁石単体で着磁してから製品に組み込むことも可能である。
[Magnetic]
The magnet of the present invention is usually magnetized with a pulsed magnetic field. In general, this process is often performed after assembly because of the convenience of assembling the product, but naturally it is also possible to magnetize the magnet alone and then incorporate it into the product.

着磁の方向は、当然磁界中成形時の配向方向を考慮して決めるべきであり、その方向が一致して初めて高性能磁石が得られるが、用途によっては必ずしも成形時の配向方向と着磁方向を一致させる必要はない。   Naturally, the direction of magnetization should be determined in consideration of the orientation direction during molding in a magnetic field, and a high-performance magnet can be obtained only when the directions match. There is no need to match the directions.

(実施例1)
純度99.5%以上のPr、Nd、純度99.9%以上のTb、Dy、電解鉄、低炭素フェロボロン合金を主として、その他目的元素を純金属またはFeとの合金の形で添加して目的組成の合金を溶解し、ストリップキャスト法で鋳造し、厚さ0.3−0.4mmの板状合金を得た。
Example 1
Pr and Nd with a purity of 99.5% or more, Tb, Dy, electrolytic iron, low carbon ferroboron alloy with a purity of 99.9% or more, and other target elements in the form of alloys with pure metals or Fe The alloy having the composition was melted and cast by a strip casting method to obtain a plate-like alloy having a thickness of 0.3 to 0.4 mm.

この合金を原料として、水素加圧雰囲気で水素脆化させた後、600℃まで真空中で加熱、冷却した後、ふるいにて425μm以下の粒度の合金粗粉を得た。この粗粉に対し、質量比で0.05%のステアリン酸亜鉛を添加、混合した。   Using this alloy as a raw material, hydrogen embrittlement was performed in a hydrogen-pressurized atmosphere, and after heating and cooling to 600 ° C. in a vacuum, a coarse alloy powder having a particle size of 425 μm or less was obtained with a sieve. 0.05% zinc stearate by mass ratio was added to and mixed with the coarse powder.

次いでジェットミル装置を用いて、窒素気流中で乾式粉砕し、粒径D50が4−5μmである微粉砕粉を得た。このとき、特に酸素量1原子%以下を目標とする試料では、粉砕ガス中の酸素濃度を50ppm以下に制御している。なお、この粒径は、気流分散法によるレーザー回折法で得られた値である。   Next, using a jet mill apparatus, dry pulverization was performed in a nitrogen stream to obtain finely pulverized powder having a particle diameter D50 of 4 to 5 μm. At this time, particularly in a sample that targets an oxygen amount of 1 atomic% or less, the oxygen concentration in the pulverized gas is controlled to 50 ppm or less. The particle diameter is a value obtained by a laser diffraction method using an airflow dispersion method.

得られた微粉末を、磁界中で成形して成形体を作製した。このときの磁界はおよそ0.8MA/mの静磁界で、加圧力は196MPaとした。なお、磁界印加方向と加圧方向とは直交している。また、特に酸素量を目標とする試料では、粉砕から焼結炉に入れるまでの雰囲気を可能な限り窒素雰囲気とした。   The obtained fine powder was molded in a magnetic field to produce a molded body. The magnetic field at this time was a static magnetic field of approximately 0.8 MA / m, and the applied pressure was 196 MPa. The magnetic field application direction and the pressing direction are orthogonal to each other. In particular, in the sample with the oxygen amount as a target, the atmosphere from the pulverization to the sintering furnace was set to a nitrogen atmosphere as much as possible.

次に、この成形体を、真空中、1020−1080℃の温度範囲で2時間焼結した。焼結温度は組成により異なるが、何れも焼結後の密度が7.5Mg/m3が得られる範囲で低い温度を選択して焼結を行った。Next, this compact was sintered in a vacuum at a temperature range of 1020-1080 ° C. for 2 hours. Although the sintering temperature differs depending on the composition, in each case, sintering was performed by selecting a low temperature within a range in which the density after sintering was 7.5 Mg / m 3 .

得られた焼結体の組成を分析した結果を、原子%に換算したうえで図1に示す。分析は、ICPを用いた。但し酸素、窒素、炭素は、ガス分析装置での分析結果である。なお、何れの試料も、溶解法による水素分析の結果、水素量は10−30ppmの範囲にあった。磁石特性を以下の表1に示す。   The result of analyzing the composition of the obtained sintered body is shown in FIG. For analysis, ICP was used. However, oxygen, nitrogen, and carbon are the results of analysis by a gas analyzer. In addition, as for the sample, as a result of the hydrogen analysis by the dissolution method, the amount of hydrogen was in the range of 10-30 ppm. The magnet characteristics are shown in Table 1 below.

Figure 2008139556
Figure 2008139556

表以外の元素では、水素の他にSi、Ca、Cr、La、Ce等が検出される場合があるが、Siは主にフェロボロン原料と合金溶解時のるつぼから混入し、Ca、La、Ceは希土類の原料から混入する。またCrは、鉄から混入する可能性があり、これらを完全に0にすることはできない。   In elements other than the table, Si, Ca, Cr, La, Ce, etc. may be detected in addition to hydrogen, but Si is mainly mixed from the ferroboron raw material and the crucible at the time of alloy dissolution, and Ca, La, Ce Is mixed from rare earth materials. Further, Cr may be mixed from iron, and these cannot be completely reduced to zero.

得られた焼結体に対し、Ar雰囲気中にて、種々の温度で1時間の熱処理を行い、冷却した。熱処理は、組成により種々の温度条件で行い、また、温度を変えて最大3回の熱処理を行なったものもある。これらの試料を、機械加工後、B−Hトレーサにより室温での磁気特性Jr、HcJを測定した。また、試料の一部を欠きとって、およそ20−50mgの試料とし、磁界中の熱天秤測定により、キュリー点Tcを求めた。この方法は、熱天秤の外側から、永久磁石による弱い磁界を試料に印加し、試料が強磁性から常磁性に変態することによる磁気的な力の変化を天秤で検出するもので、天秤の指示値を微分して変化率が極大となる温度を求めたものである。なお、各組成の試料で種々の熱処理条件のもののうち、それぞれ室温での保磁力が最も大きい試料を評価対象とした。The obtained sintered body was heat-treated at various temperatures for 1 hour in an Ar atmosphere and cooled. The heat treatment is performed under various temperature conditions depending on the composition, and some heat treatments are performed up to three times at different temperatures. After machining these samples, the magnetic properties J r and H cJ at room temperature were measured with a BH tracer. Further, a part of the sample was omitted to make a sample of about 20-50 mg, and the Curie point Tc was determined by thermobalance measurement in a magnetic field. In this method, a weak magnetic field generated by a permanent magnet is applied to the sample from the outside of the thermobalance, and the change in magnetic force caused by the sample changing from ferromagnetic to paramagnetic is detected by the balance. The temperature at which the rate of change is maximized is obtained by differentiating the value. In addition, the sample with the largest coercive force at room temperature among the samples with various heat treatment conditions among the samples of each composition was evaluated.

試料17−20は、比較例に相当し、No.17、18はMn:<0.02原子%であり、類似組成の実施例に比べ、残留磁化Jrとキュリー点Tcが劣る。No.17では、Mn:<0.02原子%のために、Al添加にも関わらず保磁力HcJが低い。No.19は、Mn、Al両方が過剰の場合で、残留磁化Jr、キュリー点Tc共に低い。No.20はAl:<0.1原子%であり、特に保磁力HcJが低い。Sample 17-20 corresponds to a comparative example. 17 and 18 are Mn: <0.02 atomic%, and the remanent magnetization J r and the Curie point T c are inferior to those of the examples of similar compositions. No. In No. 17, since Mn: <0.02 atomic%, the coercive force H cJ is low despite the addition of Al. No. 19 is a case where both Mn and Al are excessive, and both the remanent magnetization J r and the Curie point T c are low. No. 20 is Al: <0.1 atomic%, and the coercive force H cJ is particularly low.

(実施例2)
Nd13.0Dy0.7Febal.Co2.2Cu0.15.9AlxMny(原子%)組成の磁石において、y=0.01、0.05、0.10、0.40、0.80の場合について、種々のAlの値xについての室温の残留磁化Jrを図2に、室温の保磁力HcJを図3に示した。y=0.01のデータは、比較例として示したものである。このときの酸素量は1.8原子%であり、その他炭素、窒素についてもそれぞれ0.4原子%以下、0.1原子%以下含有し、またSi、Ca、La、Ce等の不可避不純物もそれぞれ0.1原子%以下含んでいる。なお、実施例2の磁石は、実施例1と同様の製造方法によった。
(Example 2)
Nd 13.0 Dy 0.7 Fe bal. Co 2.2 Cu 0.1 B 5.9 Al x Mn y ( atomic%) in the magnet composition, for the case of y = 0.01,0.05,0.10,0.40,0.80 FIG. 2 shows room temperature remanent magnetization J r for various values of Al, and FIG. 3 shows coercivity H cJ at room temperature. The data of y = 0.01 is shown as a comparative example. The amount of oxygen at this time is 1.8 atomic%, and other carbon and nitrogen are also contained at 0.4 atomic% or less and 0.1 atomic% or less, respectively, and inevitable impurities such as Si, Ca, La and Ce are also present. Each contains 0.1 atomic percent or less. In addition, the magnet of Example 2 was based on the manufacturing method similar to Example 1.

図2によれば、y=0.01の場合よりも、y=0.05の場合のほうが、Al添加時の残留磁化Jrの低下が小さく、Mn添加によってAlの主相固溶量が減少した結果と考えられる。また、y=0.80の場合は、Mnの主相固溶量増大のために、残留磁化Jrが大きく低下する。According to FIG. 2, than in the case of y = 0.01, towards the case of y = 0.05 is a small decrease in remanence J r when Al addition, main phase amount of solute Al by Mn addition is This is thought to be a result of the decrease. Further, in the case of y = 0.80, the remanent magnetization Jr greatly decreases due to the increase of the main phase solid solution amount of Mn.

また、図3によれば、Mn添加によりAlがより粒界相に濃化する結果、より少量のAl添加で保磁力HcJが向上することがわかる。一方、y=0.80では、Mnの主相固溶量増大のために、保磁力HcJが大きく低下する。Moreover, according to FIG. 3, as a result of Al concentrating more in a grain boundary phase by Mn addition, it turns out that coercive force HcJ improves with a little Al addition. On the other hand, at y = 0.80, the coercive force H cJ is greatly reduced due to the increase in the main phase solid solution amount of Mn.

(実施例3)
Nd12.8Febal.Co2.2Cu0.1Ga0.055.7AlxMny(原子%)組成の磁石において、x=0.02、0.50、1.00、1.50の場合について、種々のMnの値yについての室温の残留磁化Jrを図4に、室温の保磁力HcJを図5に示した。x=0.02、1.50のデータは、比較例として示したものである。このときの酸素量は1.8原子%であり、その他炭素、窒素についてもそれぞれ0.4原子%以下、0.1原子%以下含有し、またSi、Ca、La、Ce等の不可避不純物もそれぞれ0.1原子%以下含んでいる。なお、実施例3の磁石は、実施例1と同様の製造方法によった。
(Example 3)
Nd 12.8 Fe bal. In magnets Co 2.2 Cu 0.1 Ga 0.05 B 5.7 Al x Mn y ( atomic%) Composition, for the case of x = 0.02,0.50,1.00,1.50, various Mn FIG. 4 shows the room temperature remanent magnetization J r for the value y, and FIG. 5 shows the coercivity H cJ at room temperature. Data with x = 0.02 and 1.50 are shown as comparative examples. The amount of oxygen at this time is 1.8 atomic%, and other carbon and nitrogen are also contained at 0.4 atomic% or less and 0.1 atomic% or less, respectively, and inevitable impurities such as Si, Ca, La and Ce are also present. Each contains 0.1 atomic percent or less. In addition, the magnet of Example 3 was based on the manufacturing method similar to Example 1.

図4によれば、Mnを添加せずにAl:x=0.5原子%添加すると、残留磁化Jrは大きく低下するが、y=0.05とすれば、Alの有無による残留磁化Jrの差異は非常に小さくなる。またx=1.50では、Al自身の主相固溶量が増加するために残留磁化Jrは大きく低下する。According to FIG. 4, when Al: x = 0.5 atomic% is added without adding Mn, the remanent magnetization Jr greatly decreases. However, when y = 0.05, the remanent magnetization J due to the presence or absence of Al. The difference in r is very small. Further, at x = 1.50, the residual magnetization Jr greatly decreases because the main phase solid solution amount of Al itself increases.

一方、図5によれば、Alの添加により、Mn量に関わらず一様に保磁力HcJが向上することがわかる。On the other hand, according to FIG. 5, it can be seen that the addition of Al improves the coercive force H cJ uniformly regardless of the amount of Mn.

(実施例4)
実施例1と同様の方法で、表2に示す組成の焼結磁石を得た。表2の組成は、ICP及びガス分析の結果から、原子%に換算して示した分析値である。表2に示した以外に、水素、炭素、窒素、Si、Ca、La、Ceなどの不可避不純物を含んでいる。
Example 4
In the same manner as in Example 1, sintered magnets having the compositions shown in Table 2 were obtained. The composition of Table 2 is an analysis value converted to atomic% from the results of ICP and gas analysis. In addition to those shown in Table 2, inevitable impurities such as hydrogen, carbon, nitrogen, Si, Ca, La, and Ce are included.

Figure 2008139556
Figure 2008139556

磁石特性を表3に示す。   Table 3 shows the magnet characteristics.

Figure 2008139556
Figure 2008139556

実施例1と同様の手法により、残留磁化Jr、保磁力HcJ、キュリー点Tcを評価し、表中に示した。本実施例は、Al量とMn量を一定にした上で、本願組成範囲のR量、B量、Co量の影響を示しており、何れも良好な磁気特性を示す。Residual magnetization J r , coercive force H cJ , and Curie point T c were evaluated by the same method as in Example 1, and are shown in the table. The present example shows the influence of the R amount, B amount, and Co amount in the composition range of the present application while keeping the Al amount and Mn amount constant, and all show good magnetic properties.

(実施例5)
Nd13.8Febal.Al0.2Mnx6.0(原子%)組成の磁石において、種々のxの値の焼結磁石を作製し、磁気特性を評価した。評価結果を表4に示す。
(Example 5)
For magnets having a composition of Nd 13.8 Fe bal. Al 0.2 Mn x B 6.0 (atomic%), sintered magnets having various values of x were prepared, and magnetic properties were evaluated. The evaluation results are shown in Table 4.

Figure 2008139556
Figure 2008139556

製造方法は実施例1と同様に行い、すべての組成で焼結を1020℃2時間で行った。また、焼結後の熱処理は、560℃−640℃の範囲で行い、磁気特性上最も優れたものを評価対象とした。磁気特性の評価は、指標としてHkを求め、Hk/HcJの値を角形性の指標とした。Hkは、減磁界中で、磁化の値が残留磁化Jrの90%になったときの減磁界の値であり、Hk/HcJの値が1に近いほど角形性が良く、磁石として有用であると判断される。Mn添加量x≧0.02原子%で、明らかに密度ρ、残留磁化Jrの向上が認められる。一方、Mn添加量x>0.5原子%では、残留磁化Jrが顕著に低下し、Mn無添加の場合と同等以下となっている。The manufacturing method was performed in the same manner as in Example 1, and sintering was performed at 1020 ° C. for 2 hours with all the compositions. Moreover, the heat treatment after sintering was performed in a range of 560 ° C. to 640 ° C., and the best magnetic properties were evaluated. In the evaluation of magnetic characteristics, H k was obtained as an index, and the value of H k / H cJ was used as an index of squareness. H k is the value of the demagnetizing field when the magnetization value becomes 90% of the remanent magnetization J r in the demagnetizing field. The closer the value of H k / H cJ is to 1, the better the squareness is. It is judged as useful. In Mn content x ≧ 0.02 atomic%, clearly density [rho, is observed improvement in remanence J r. On the other hand, when the amount of Mn added x> 0.5 atomic%, the remanent magnetization Jr is remarkably lowered and is equal to or less than that in the case of no Mn addition.

なお、ガス分析によれば、焼結磁石に含まれる不可避不純物として、酸素:0.41−0.44質量%、炭素:0.037−0.043質量%、窒素:0.012−0.015質量%、水素:<0.002質量%の範囲で含まれていた。また、ICP分析によれば、Siが最大0.04質量%、Cr、Ce、Ca等が0.01質量%以下検出された。   In addition, according to gas analysis, as an inevitable impurity contained in a sintered magnet, oxygen: 0.41-0.44 mass%, carbon: 0.037-0.043 mass%, nitrogen: 0.012-0. 015% by mass, hydrogen: <0.002% by mass. Further, according to ICP analysis, a maximum of 0.04% by mass of Si and 0.01% by mass or less of Cr, Ce, Ca and the like were detected.

(実施例6)
インゴット法またはストリップキャスト法:SC法にて母合金を作製し、水素脆化法による粗粉砕、気流式粉砕機による微粉砕を経て、粒径:D50=4.1−4.8μmの微粉末を得た。これに内部潤滑剤としてステアリン酸亜鉛0.05質量%を混合し、磁界中で金型成形を行った。このときの磁界強度は1.2MAm-3で、加圧力は196MPaであった。なお、加圧方向と磁界印加方向は直交している。
(Example 6)
Ingot method or strip cast method: Master alloy is produced by SC method, coarsely pulverized by hydrogen embrittlement method, finely pulverized by airflow type pulverizer, fine particle size: D50 = 4.1-4.8 μm Got. This was mixed with 0.05% by mass of zinc stearate as an internal lubricant, and was molded in a magnetic field. The magnetic field strength at this time was 1.2 MAm −3 and the applied pressure was 196 MPa. Note that the pressing direction and the magnetic field application direction are orthogonal to each other.

得られた成形体を、組成ごとに温度条件を設定して真空焼結し、密度7.5Mgm-3以上の焼結体を得た。得られた焼結体に対し、それぞれ種々の温度で熱処理を行い、その後、機械加工により磁石試料とし、閉回路のBHトレーサで磁気特性を測定した。なお、保磁力が1500kAm-1以上の試料については、パルス法:東英工業製TPM型磁力計にて保磁力を再測定した。The obtained molded body was vacuum-sintered by setting temperature conditions for each composition, and a sintered body having a density of 7.5 Mgm −3 or more was obtained. Each of the obtained sintered bodies was heat-treated at various temperatures, and thereafter, a magnetic sample was formed by machining, and the magnetic properties were measured with a closed circuit BH tracer. In addition, about the sample whose coercive force is 1500 kAm < -1 > or more, the coercive force was measured again with the pulse method: TPM type magnetometer by Toei Kogyo.

一部の試料:試料No.58と62は、微粉砕工程以降を実質的に不活性ガスの雰囲気で取り扱ったものである。   Some samples: Sample No. Nos. 58 and 62 are handled in a substantially inert gas atmosphere after the pulverization step.

表5は、焼結磁石の組成:ICP分析値、但しOはガス分析法による分析値を原子%に換算したものを示す。各試料における最高の保磁力が得られた条件での磁気特性を表6に示す。   Table 5 shows the composition of the sintered magnet: ICP analysis value, where O represents the analysis value obtained by gas analysis converted to atomic%. Table 6 shows the magnetic characteristics under the condition that the maximum coercive force was obtained in each sample.

Figure 2008139556
Figure 2008139556

Figure 2008139556
Figure 2008139556

合金製法がインゴット法であるか、ストリップキャスト法であるかを問わず、各添加元素に関して、何れもAlとMnの同時添加により、優れた磁気特性が得られている。   Regardless of whether the alloy manufacturing method is an ingot method or a strip cast method, excellent magnetic properties are obtained by simultaneously adding Al and Mn for each additive element.

なお、記載以外の不純物は、炭素:0.031−0.085質量%、窒素0.013−0.034質量%、水素:<0.003質量%、Si:<0.04質量%、La、Ce、Caがそれぞれ<0.01質量%検出された。   Impurities other than those described are carbon: 0.031-0.085% by mass, nitrogen 0.013-0.034% by mass, hydrogen: <0.003% by mass, Si: <0.04% by mass, La , Ce and Ca were each detected <0.01% by mass.

本願発明による焼結磁石は、高性能な焼結磁石が使用される各種の用途に広く利用され得る。   The sintered magnet according to the present invention can be widely used in various applications where a high-performance sintered magnet is used.

Claims (6)

希土類元素R:12原子%以上、17原子%以下、
硼素B:5.0原子%以上、8.0原子%以下、
Al:0.1原子%以上、1.0原子%以下、
Mn:0.02原子%以上、0.5原子%未満、
遷移金属T:残部
の組成を有し、
希土類元素Rは、Y(イットリウム)を含む希土類元素から選択された少なくとも1種であって、NdおよびPrの少なくとも一方を含み、
遷移元素TはFeを主成分とする、R−T−B系焼結磁石。
Rare earth element R: 12 atomic% or more, 17 atomic% or less,
Boron B: 5.0 atomic% or more, 8.0 atomic% or less,
Al: 0.1 atomic% or more, 1.0 atomic% or less,
Mn: 0.02 atomic% or more, less than 0.5 atomic%,
Transition metal T: having the balance composition,
The rare earth element R is at least one selected from rare earth elements including Y (yttrium), and includes at least one of Nd and Pr.
The transition element T is an RTB-based sintered magnet whose main component is Fe.
希土類元素Rとして、TbおよびDyの少なくとも一方を含む、請求項1に記載のR−T−B系焼結磁石。   The RTB-based sintered magnet according to claim 1, wherein the rare earth element R includes at least one of Tb and Dy. 遷移金属Tとして、Co:磁石全体の20原子%以下を含有する、請求項1に記載のR−T−B系焼結磁石。   The RTB-based sintered magnet according to claim 1, wherein the transition metal T contains Co: 20 atomic% or less of the entire magnet. 希土類元素R:12原子%以上、17原子%以下、
硼素B:5.0原子%以上、8.0原子%以下、
Al:0.1原子%以上、1.0原子%以下、
Mn:0.02原子%以上、0.5原子%未満、
添加元素M:合計で0を超え、5.0原子%以下、
遷移金属T:残部
の組成を有し、
希土類元素Rは、Y(イットリウム)を含む希土類元素から選択された少なくとも1種であって、NdおよびPrの少なくとも一方を含み、
添加元素Mは、Ni、Cu、Zn、Ga、Ag、In、Sn、Bi、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、およびWからなる群から選択された少なくとも1種であり、
遷移元素Tは、Feを主成分とする、R−T−B系焼結磁石。
Rare earth element R: 12 atomic% or more, 17 atomic% or less,
Boron B: 5.0 atomic% or more, 8.0 atomic% or less,
Al: 0.1 atomic% or more, 1.0 atomic% or less,
Mn: 0.02 atomic% or more, less than 0.5 atomic%,
Additive element M: more than 0 in total, 5.0 atomic% or less,
Transition metal T: having the balance composition,
The rare earth element R is at least one selected from rare earth elements including Y (yttrium), and includes at least one of Nd and Pr.
The additive element M is at least one selected from the group consisting of Ni, Cu, Zn, Ga, Ag, In, Sn, Bi, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W. Yes,
The transition element T is an RTB-based sintered magnet whose main component is Fe.
希土類元素Rとして、TbおよびDyの少なくとも一方を含む請求項4に記載のR−T−M−B系焼結磁石。   The RTMB-based sintered magnet according to claim 4, wherein the rare earth element R includes at least one of Tb and Dy. 遷移金属Tとして、Co:20原子%以下を含有する、請求項5に記載のR−T−M−B系焼結磁石。   6. The RTMB-based sintered magnet according to claim 5, wherein the transition metal T contains Co: 20 atomic% or less.
JP2007541538A 2007-05-02 2007-05-02 R-T-B sintered magnet Active JP4103938B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/059373 WO2008139556A1 (en) 2007-05-02 2007-05-02 R-t-b sintered magnet

Publications (2)

Publication Number Publication Date
JP4103938B1 JP4103938B1 (en) 2008-06-18
JPWO2008139556A1 true JPWO2008139556A1 (en) 2010-07-29

Family

ID=39608108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007541538A Active JP4103938B1 (en) 2007-05-02 2007-05-02 R-T-B sintered magnet

Country Status (6)

Country Link
US (2) US20080271821A1 (en)
EP (1) EP2077567B1 (en)
JP (1) JP4103938B1 (en)
KR (1) KR101378089B1 (en)
CN (1) CN101657863B (en)
WO (1) WO2008139556A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7451131B2 (en) * 2003-12-08 2008-11-11 Iac Search & Media, Inc. Methods and systems for providing a response to a query
EP2302646B1 (en) * 2008-06-13 2018-10-31 Hitachi Metals, Ltd. R-t-cu-mn-b type sintered magnet
CN102361998B (en) * 2009-03-31 2013-07-17 日立金属株式会社 Alloy for sintered R-T-B-M magnet and method for producing same
JP5501836B2 (en) * 2010-03-31 2014-05-28 日東電工株式会社 R-Fe-B permanent magnet
EP2503570B1 (en) * 2010-03-31 2015-01-21 Nitto Denko Corporation Manufacturing method for permanent magnet
US9663843B2 (en) * 2010-12-02 2017-05-30 The University Of Birmingham Magnet recycling
JP6037128B2 (en) * 2013-03-13 2016-11-30 戸田工業株式会社 R-T-B rare earth magnet powder, method for producing R-T-B rare earth magnet powder, and bonded magnet
BR112015031725A2 (en) 2013-06-17 2017-07-25 Urban Mining Tech Company Llc method for manufacturing a recycled nd-fe-b permanent magnet
DE112015001405B4 (en) * 2014-03-26 2018-07-26 Hitachi Metals, Ltd. A method of manufacturing an R-T-B based sintered magnet
JP6380750B2 (en) * 2014-04-15 2018-08-29 Tdk株式会社 Permanent magnet and variable magnetic flux motor
US9336932B1 (en) 2014-08-15 2016-05-10 Urban Mining Company Grain boundary engineering
CN106158213A (en) * 2014-12-11 2016-11-23 张乔木 A kind of high-coercivity neodymium-iron-boronpermanent-magnet permanent-magnet material and preparation method thereof
JP6672753B2 (en) * 2015-03-13 2020-03-25 Tdk株式会社 RTB based rare earth sintered magnet and alloy for RTB based rare earth sintered magnet
DE102016104384A1 (en) 2015-03-13 2016-09-15 Showa Denko K.K. R-T-B-rare earth-based sintered magnet and R-T-B-rare earth-based sintered magnet alloy
CN105321651A (en) * 2015-10-16 2016-02-10 宁波鑫丰磁业有限公司 halbach array permanent magnet axial ring formed in one time
CN105304263A (en) * 2015-10-16 2016-02-03 宁波鑫丰磁业有限公司 One-step molding halbach array permanent magnet radial ring
US10672546B2 (en) * 2016-02-26 2020-06-02 Tdk Corporation R-T-B based permanent magnet
WO2017173188A1 (en) * 2016-03-30 2017-10-05 Advanced Magnet Lab, Inc. Dual-rotor synchronous electrical machines
JP2020161788A (en) * 2019-03-19 2020-10-01 日立金属株式会社 R-t-b based sintered magnet
JP2020161692A (en) * 2019-03-27 2020-10-01 Tdk株式会社 R-t-b based permanent magnet
JP7408921B2 (en) * 2019-03-27 2024-01-09 Tdk株式会社 RTB series permanent magnet
CN110571007B (en) * 2019-09-03 2021-06-11 厦门钨业股份有限公司 Rare earth permanent magnet material, raw material composition, preparation method, application and motor
CN115083714A (en) 2022-07-06 2022-09-20 烟台正海磁性材料股份有限公司 High-coercivity Nd-Fe-B sintered magnet and preparation method and application thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964733A (en) 1982-09-27 1984-04-12 Sumitomo Special Metals Co Ltd Permanent magnet
CA1316375C (en) * 1982-08-21 1993-04-20 Masato Sagawa Magnetic materials and permanent magnets
US4792368A (en) * 1982-08-21 1988-12-20 Sumitomo Special Metals Co., Ltd. Magnetic materials and permanent magnets
JPS5989401A (en) 1982-11-15 1984-05-23 Sumitomo Special Metals Co Ltd Permanent magnet
US4840684A (en) * 1983-05-06 1989-06-20 Sumitomo Special Metals Co, Ltd. Isotropic permanent magnets and process for producing same
JPS6034005A (en) * 1983-08-04 1985-02-21 Sumitomo Special Metals Co Ltd Permanent magnet
JPH066777B2 (en) 1985-07-24 1994-01-26 住友特殊金属株式会社 High-performance permanent magnet material
DE3750661T2 (en) 1986-07-23 1995-04-06 Hitachi Metals Ltd Permanent magnet with good thermal stability.
US4983232A (en) * 1987-01-06 1991-01-08 Hitachi Metals, Ltd. Anisotropic magnetic powder and magnet thereof and method of producing same
US5015307A (en) * 1987-10-08 1991-05-14 Kawasaki Steel Corporation Corrosion resistant rare earth metal magnet
US5266128A (en) 1989-06-13 1993-11-30 Sps Technologies, Inc. Magnetic materials and process for producing the same
US5227247A (en) * 1989-06-13 1993-07-13 Sps Technologies, Inc. Magnetic materials
US5336337A (en) * 1991-02-05 1994-08-09 Kabushiki Kaisha Toshiba Magnetrostrictive materials and methods of making such materials
US7014718B2 (en) * 2001-09-03 2006-03-21 Showa Denko K.K. Rare earth magnet alloy ingot, manufacturing method for the same, R-T-B type magnet alloy ingot, R-T-B type magnet, R-T-B type bonded magnet, R-T-B type exchange spring magnet alloy ingot, R-T-B type exchange spring magnet, and R-T-B type exchange spring bonded magnet
JP4389427B2 (en) * 2002-02-05 2009-12-24 日立金属株式会社 Sintered magnet using alloy powder for rare earth-iron-boron magnet
TWI364765B (en) * 2005-03-23 2012-05-21 Shinetsu Chemical Co Rare earth permanent magnet
TWI413136B (en) 2005-03-23 2013-10-21 Shinetsu Chemical Co Rare earth permanent magnet
JP4702549B2 (en) * 2005-03-23 2011-06-15 信越化学工業株式会社 Rare earth permanent magnet

Also Published As

Publication number Publication date
WO2008139556A1 (en) 2008-11-20
US7740715B2 (en) 2010-06-22
EP2077567A1 (en) 2009-07-08
CN101657863B (en) 2012-11-07
US20080271821A1 (en) 2008-11-06
CN101657863A (en) 2010-02-24
KR20100016576A (en) 2010-02-12
EP2077567B1 (en) 2012-08-08
EP2077567A4 (en) 2009-07-22
JP4103938B1 (en) 2008-06-18
US20100003160A1 (en) 2010-01-07
KR101378089B1 (en) 2014-03-27

Similar Documents

Publication Publication Date Title
JP4103938B1 (en) R-T-B sintered magnet
JP4103937B1 (en) R-T-B sintered magnet
JP5120710B2 (en) RL-RH-T-Mn-B sintered magnet
JP6274216B2 (en) R-T-B system sintered magnet and motor
CN107871582B (en) R-Fe-B sintered magnet
JP6330813B2 (en) R-T-B system sintered magnet and motor
JP4831253B2 (en) R-T-Cu-Mn-B sintered magnet
US20130068992A1 (en) Method for producing rare earth permanent magnets, and rare earth permanent magnets
US9972435B2 (en) Method for manufacturing R-T-B based sintered magnet
JP6142794B2 (en) Rare earth magnets
JP6476640B2 (en) R-T-B sintered magnet
JP2016152246A (en) Rare earth based permanent magnet
JP2016154219A (en) Rare earth based permanent magnet
JP6221233B2 (en) R-T-B system sintered magnet and manufacturing method thereof
WO2005015580A1 (en) R-t-b sintered magnet and rare earth alloy
JP2014216338A (en) R-T-B sintered magnet
CN106024235B (en) R-T-B sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP6256140B2 (en) R-T-B sintered magnet
JP7021577B2 (en) Manufacturing method of RTB-based sintered magnet
JP7476601B2 (en) Manufacturing method of RTB based sintered magnet
US20240212896A1 (en) R-t-b based permanent magnet
JP2024092719A (en) R-T-B permanent magnet

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Ref document number: 4103938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350