JP2020120101A - Method for manufacturing r-t-b based sintered magnet - Google Patents

Method for manufacturing r-t-b based sintered magnet Download PDF

Info

Publication number
JP2020120101A
JP2020120101A JP2019176503A JP2019176503A JP2020120101A JP 2020120101 A JP2020120101 A JP 2020120101A JP 2019176503 A JP2019176503 A JP 2019176503A JP 2019176503 A JP2019176503 A JP 2019176503A JP 2020120101 A JP2020120101 A JP 2020120101A
Authority
JP
Japan
Prior art keywords
alloy
mass
sintered magnet
magnet material
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019176503A
Other languages
Japanese (ja)
Other versions
JP7310499B2 (en
Inventor
宣介 野澤
Sensuke Nozawa
宣介 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to CN202010076504.7A priority Critical patent/CN111489888B/en
Publication of JP2020120101A publication Critical patent/JP2020120101A/en
Application granted granted Critical
Publication of JP7310499B2 publication Critical patent/JP7310499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide a method for manufacturing an R-T-B based sintered magnet having high Band high H, which can decrease a use amount of RH.SOLUTION: The manufacturing method comprises the steps of: preparing a magnet material; preparing an RL1-RH-M1 based alloy; preparing an RL2-M2 based alloy; first diffusion; and second diffusion. In the first diffusion step, the amount of deposition of the RL1-RH-M1 based alloy is 4 or more and 15 mass% or less. In the second diffusion step, the amount of deposition of the RL2-M2 based alloy is 1 or more and 15 mass% or less. In the magnet material, the content of R is 27 or more and 35 mass% or less; and the molar ratio of [T]/[B] is over 14.0 up to 15.0. In the RL1-RH-M1 based alloy, the content of RL1 is 60 or more and 97 mass% or less, the content of RH is 1 or more and 8 mass% or less, and the content of M1 is 2 or more and 39 mass% or less. In the RL2-M2 based alloy, the content of RL2 is 60 or more and 97 mass% or less, and the content of M2 is 3 or more and 40 mass% or less.SELECTED DRAWING: Figure 2

Description

本発明はR−T−B系焼結磁石の製造方法に関する。 The present invention relates to a method for manufacturing an RTB-based sintered magnet.

R−T−B系焼結磁石(Rは希土類元素のうち少なくとも一種であり、Tは主にFeであり、Bは硼素である)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。 The R-T-B system sintered magnet (R is at least one of rare earth elements, T is mainly Fe, and B is boron) is known as the most high-performance magnet among permanent magnets. It is used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home electric appliances.

R−T−B系焼結磁石は、主としてR14B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。主相であるR14B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料であり、R−T−B系焼結磁石の特性の根幹をなしている。 The RTB sintered magnet is mainly composed of a main phase mainly composed of an R 2 T 14 B compound and a grain boundary phase located at a grain boundary portion of the main phase. The R 2 T 14 B compound, which is the main phase, is a ferromagnetic material having a high saturation magnetization and an anisotropic magnetic field, and forms the basis of the characteristics of the RTB sintered magnet.

R−T−B系焼結磁石は、高温で保磁力HcJ(以下、単に「HcJ」という)が低下するため不可逆熱減磁が起こるという問題がある。そのため、特に電気自動車用モータに使用されるR−T−B系焼結磁石では、高温下でも高いHcJを有する、すなわち室温においてより高いHcJを有することが要求されている。 The RTB sintered magnet has a problem that irreversible thermal demagnetization occurs because the coercive force HcJ (hereinafter, simply referred to as " HcJ ") decreases at high temperature. Therefore, in a particularly R-T-B based sintered magnet used in an electric vehicle motor, having a high H cJ even at high temperatures, that is, required to have a higher H cJ at room temperature.

国際公開第2007/102391号International Publication No. 2007/102391 国際公開第2016/133071号International Publication No. 2016/133071

14B型化合物相中の軽希土類元素(主にNd、Pr)を重希土類元素(主にDy、Tb)で置換すると、HcJが向上することが知られている。しかし、HcJが向上する一方、R14B型化合物相の飽和磁化が低下するために残留磁束密度B(以下、単に「B」という)が低下してしまうという問題がある。 It is known that when the light rare earth element (mainly Nd, Pr) in the R 2 T 14 B type compound phase is replaced with a heavy rare earth element (mainly Dy, Tb), H cJ is improved. However, there is a problem that the residual magnetic flux density B r (hereinafter, simply referred to as “B r ”) is reduced because the saturation magnetization of the R 2 T 14 B type compound phase is reduced while the H cJ is improved.

特許文献1には、R−T−B系合金の焼結磁石の表面にDy等の重希土類元素を供給しつつ、重希土類元素を焼結磁石の内部に拡散させることが記載されている。特許文献1に記載の方法は、R−T−B系焼結磁石の表面から内部にDyを拡散させてHcJ向上に効果的な主相結晶粒の外殻部にのみDyを濃化させることにより、Bの低下を抑制しつつ、高いHcJを得ることができる。 Patent Document 1 describes that a heavy rare earth element such as Dy is supplied to the surface of a sintered magnet of an RTB-based alloy and the heavy rare earth element is diffused inside the sintered magnet. In the method described in Patent Document 1, Dy is diffused from the surface of the RTB-based sintered magnet to the inside to concentrate Dy only in the outer shell portion of the main phase crystal grains effective for improving HcJ . it makes while suppressing a decrease in B r, it is possible to obtain a high H cJ.

特許文献2には、R−T−B系焼結体の表面に特定組成のR−Ga−Cu合金を接触させて熱処理を行うことにより、R−T−B系焼結磁石中の粒界相の組成および厚さを制御してHcJを向上させることが記載されている。 In Patent Document 2, an R-Ga-Cu alloy having a specific composition is brought into contact with the surface of the R-T-B system sintered body to perform heat treatment, whereby grain boundaries in the R-T-B system sintered magnet are obtained. Controlling the phase composition and thickness to improve H cJ is described.

しかし、近年特に電気自動車用モータなどにおいて重希土類元素の使用量を低減しつつ、更に高いHcJを得ることが求められている。 However, in recent years, it has been required to obtain higher H cJ while reducing the amount of heavy rare earth elements used, especially in motors for electric vehicles.

本開示の様々な実施形態は、重希土類元素の使用量を低減しつつ、高いBと高いHcJを有するR−T−B系焼結磁石の製造方法を提供する。 Various embodiments of the present disclosure, while reducing the amount of heavy rare earth elements, to provide a method of manufacturing a R-T-B based sintered magnet having a high B r and high H cJ.

本開示のR−T−B系焼結磁石の製造方法は、例示的な実施形態において、R−T−B系焼結磁石素材を準備する工程と、RL1−RH−M1系合金を準備する工程と、RL2−M2系合金を準備する工程と、前記R−T−B系焼結磁石素材の表面の少なくとも一部に、前記RL1−RH−M1系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する第一拡散工程と、前記第一拡散工程が実施されたR−T−B系焼結磁石素材の表面の少なくとも一部に、前記RL2−M2系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、400℃以上600℃以下の温度で加熱する第二拡散工程と、を含み、前記第一拡散工程における前記R−T−B系焼結磁石素材への前記RL1−RH−M1系合金の付着量は4mass%以上15mass%以下で、かつ、前記RL1−RH−M1系合金による前記R−T−B系焼結磁石素材へのRHの付着量は0.1mass%以上0.6mass%以下であり、前記第二拡散工程における前記第一拡散工程が実施されたR−T−B系焼結磁石素材への前記RL2−M2系合金の付着量は1mass%以上15mass%以下であり、前記R−T−B系焼結磁石素材において、Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、Rの含有量は、R−T−B系焼結磁石素材全体の27mass%以上35mass%以下であり、TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含み、T全体に対するFeの含有量が80mass%以上であり、[T]/[B]のmol比が14.0超15.0以下であり、前記RL1−RH−M1系合金において、RL1は軽希土類元素のうちの少なくとも1つであり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、RL1の含有量は、RL1−RH−M1系合金全体の60mass%以上97mass%以下であり、RHは、Tb、DyおよびHoからなる群から選択された少なくとも1つであり、RHの含有量は、RL1−RH−M1系合金全体の1mass%以上8mass%以下であり、M1は、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1つであり、M1の含有量は、RL1−RH−M1系合金全体の2mass%以上39mass%以下であり、前記RL2−M2系合金において、RL2は軽希土類元素のうちの少なくとも1つであり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、RL2の含有量は、RL2−M2系合金全体の60mass%以上97mass%以下であり、M2は、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1つであり、M2の含有量は、RL2−M2系合金全体の3mass%以上40mass%以下である。 In an exemplary embodiment, a method for manufacturing an RTB-based sintered magnet according to the present disclosure includes a step of preparing an RTB-based sintered magnet material and an RL1-RH-M1 alloy. A step, a step of preparing an RL2-M2 system alloy, at least a part of the RL1-RH-M1 system alloy is attached to at least a part of the surface of the RTB system sintered magnet material, and a vacuum is applied. Alternatively, in an inert gas atmosphere, a first diffusion step of heating at a temperature of 700° C. or higher and 1100° C. or lower, and at least a part of the surface of the RTB-based sintered magnet material on which the first diffusion step is performed. A second diffusion step in which at least a part of the RL2-M2 alloy is attached and heated at a temperature of 400° C. or more and 600° C. or less in a vacuum or an inert gas atmosphere, The amount of the RL1-RH-M1 system alloy adhered to the R-T-B system sintered magnet material is 4 mass% or more and 15 mass% or less, and the R-T-B system composed of the RL1-RH-M1 system alloy. The amount of RH adhering to the sintered magnet material is 0.1 mass% or more and 0.6 mass% or less, and to the RTB-based sintered magnet material in which the first diffusion step in the second diffusion step is performed. The amount of the RL2-M2 alloy deposited is 1 mass% or more and 15 mass% or less, and in the RTB-based sintered magnet material, R is a rare earth element and is selected from the group consisting of Nd, Pr and Ce. The content of R is always 27 mass% or more and 35 mass% or less of the entire RTB-based sintered magnet material, and T is composed of Fe, Co, Al, Mn, and Si. It is at least one selected from the group, T always contains Fe, the content of Fe with respect to the entire T is 80 mass% or more, and the molar ratio of [T]/[B] is more than 14.0 and 15.0. In the RL1-RH-M1 based alloy, RL1 is at least one of light rare earth elements, and at least one selected from the group consisting of Nd, Pr and Ce is necessarily included, and RL1 is contained. The amount is 60 mass% or more and 97 mass% or less of the entire RL1-RH-M1 alloy, RH is at least one selected from the group consisting of Tb, Dy and Ho, and the content of RH is RL1- It is 1 mass% or more and 8 mass% or less of the entire RH-M1 alloy, M1 is at least one selected from the group consisting of Cu, Ga, Fe, Co, Ni, and Al, and the content of M1 is: RL1-RH-M1 series alloy It is 2 mass% or more and 39 mass% or less of the whole, and in the RL2-M2 alloy, RL2 is at least one of light rare earth elements, and at least one selected from the group consisting of Nd, Pr and Ce is indispensable. The content of RL2 is 60 mass% or more and 97 mass% or less of the entire RL2-M2 alloy, and M2 is at least one selected from the group consisting of Cu, Ga, Fe, Co, Ni, and Al. The content of M2 is 3 mass% or more and 40 mass% or less of the entire RL2-M2 alloy.

ある実施形態は、前記RL1−RH−M1系合金において、RHの含有量は、RL1−RH−M1系合金全体の2mass%以上6mass%以下である。 In one embodiment, in the RL1-RH-M1 series alloy, the RH content is 2 mass% or more and 6 mass% or less of the entire RL1-RH-M1 series alloy.

ある実施形態は、前記第一拡散工程における前記R−T−B系焼結磁石素材への前記RL1−RH−M1系合金の付着量は5mass%以上10massmass%以下である。 In one embodiment, the amount of the RL1-RH-M1 based alloy deposited on the R-T-B based sintered magnet material in the first diffusion step is 5 mass% or more and 10 mass% or less.

ある実施形態は、前記第二拡散工程における前記R−T−B系焼結磁石素材への前記RL2−M2系合金の付着量は2mass%以上10mass%以下である。 In one embodiment, the amount of the RL2-M2 based alloy deposited on the RTB based sintered magnet material in the second diffusion step is 2 mass% or more and 10 mass% or less.

本開示の実施形態によれば、重希土類元素の使用量を低減しつつ、高いBと高いHcJを有するR−T−B系焼結磁石の製造方法を提供することができる。 According to embodiments of the present disclosure, while reducing the amount of heavy rare earth elements, it is possible to provide a manufacturing method of the R-T-B based sintered magnet having a high B r and high H cJ.

R−T−B系焼結磁石の一部を拡大して模試的に示す断面図である。It is sectional drawing which expands a part of RTB type|system|group sintered magnet and shows it as a model. 図1Aの破線矩形領域内を更に拡大して模式的に示す断面図である。It is sectional drawing which expands the inside of the broken-line rectangular area of FIG. 1A, and is shown typically. 本開示によるR−T−B系焼結磁石の製造方法における工程の例を示すフローチャートである。3 is a flowchart showing an example of steps in a method for manufacturing an RTB-based sintered magnet according to the present disclosure.

まず、本開示によるR−T−B系焼結磁石の基本構造について説明をする。R−T−B系焼結磁石は、原料合金の粉末粒子が焼結によって結合した構造を有しており、主としてR14B化合物粒子からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。 First, the basic structure of the RTB based sintered magnet according to the present disclosure will be described. R-T-B based sintered magnet, the powder particles of the raw material alloy has a structure bonded by sintering, and a main phase mainly composed of R 2 T 14 B compound grains, the grain boundary portion of the main phase And a grain boundary phase located at.

図1Aは、R−T−B系焼結磁石の一部を拡大して模試的に示す断面図であり、図1Bは図1Aの破線矩形領域内を更に拡大して模式的に示す断面図である。図1Aには、一例として長さ5μmの矢印が大きさを示す基準の長さとして参考のために記載されている。図1Aおよび図1Bに示されるように、R−T−B系焼結磁石は、主としてR14B化合物からなる主相12と、主相12の粒界部分に位置する粒界相14とから構成されている。また、粒界相14は、図1Bに示されるように、2つのR14B化合物粒子(グレイン)が隣接する二粒子粒界相14aと、3つのR14B化合物粒子が隣接する粒界三重点14bとを含む。典型的な主相結晶粒径は磁石断面の円相当径の平均値で3μm以上10μm以下である。主相12であるR14B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料である。したがって、R−T−B系焼結磁石では、主相12であるR14B化合物の存在比率を高めることによってBを向上させることができる。R14B化合物の存在比率を高めるためには、原料合金中のR量、T量、B量を、R14B化合物の化学量論比(R量:T量:B量=2:14:1)に近づければよい。 FIG. 1A is a cross-sectional view schematically showing a part of the R-T-B system sintered magnet in an enlarged manner, and FIG. 1B is a cross-sectional view schematically showing an enlarged view in a broken-line rectangular region in FIG. 1A. Is. In FIG. 1A, for example, an arrow having a length of 5 μm is shown as a reference length indicating a size for reference. As shown in FIGS. 1A and 1B, the RTB-based sintered magnet includes a main phase 12 mainly composed of an R 2 T 14 B compound and a grain boundary phase 14 located at a grain boundary portion of the main phase 12. It consists of and. In addition, as shown in FIG. 1B, the grain boundary phase 14 includes a two-grain grain boundary phase 14 a in which two R 2 T 14 B compound particles (grains) are adjacent to each other and three R 2 T 14 B compound grains in adjacent to each other. Grain boundary triple point 14b. A typical main phase crystal grain size is 3 μm or more and 10 μm or less in average value of the circle equivalent diameter of the magnet cross section. The R 2 T 14 B compound that is the main phase 12 is a ferromagnetic material having high saturation magnetization and an anisotropic magnetic field. Therefore, in the R-T-B based sintered magnet, it is possible to improve the B r by increasing the existence ratio of R 2 T 14 B compound is the main phase 12. In order to increase the abundance ratio of the R 2 T 14 B compound, the R content, the T content, and the B content in the raw material alloy are set to the stoichiometric ratio of the R 2 T 14 B compound (R content:T content:B content= 2:14:1).

また、主相であるR14B化合物のRの一部をDy、Tb、Hoなどの重希土類元素で置換することによって飽和磁化を下げつつ、主相の異方性磁界を高められることが知られている。特に二粒子粒界相と接する主相外殻は磁化反転の起点となりやすいため、主相外殻に優先的に重希土類元素を置換できる重希土類拡散技術は、飽和磁化の低下を抑制しつつ効率的に高いHcJが得られる。 Further, by substituting a part of R of the main phase R 2 T 14 B compound with a heavy rare earth element such as Dy, Tb or Ho, it is possible to increase the anisotropic magnetic field of the main phase while lowering the saturation magnetization. It has been known. In particular, since the main phase shell that is in contact with the two-grain grain boundary phase is likely to become the starting point of the magnetization reversal, the heavy rare earth diffusion technology that can replace the main phase shell with the heavy rare earth element preferentially suppresses the decrease of the saturation magnetization and is efficient. High H cJ is obtained.

一方、二粒子粒界相14aの磁性を制御することによっても、高いHcJが得られることが知られている。具体的には二粒子粒界相中の磁性元素(Fe、Co、Ni等)の濃度を下げることによって、二粒子粒界相を非磁性に近づけることで、主相同士の磁気的な結合を弱めて磁化反転を抑制することができる。 On the other hand, it is known that high H cJ can also be obtained by controlling the magnetism of the two-particle grain boundary phase 14a. Specifically, by lowering the concentration of magnetic elements (Fe, Co, Ni, etc.) in the two-grain grain boundary phase, the two-grain grain boundary phase becomes closer to non-magnetic, and magnetic coupling between the main phases is achieved. It can be weakened to suppress magnetization reversal.

本開示によるR−T−B系焼結磁石の製造方法では、まず、特定組成のR−T−B系焼結磁石素材とRL1−RH−M1系合金とを付着させて熱処理を実施することで、RL1−RH−M1系合金からRL1、RHおよびM1を磁石素材内部へ拡散させる(第一拡散工程)。次に、前記第一拡散工程が実施されたR−T−B系焼結磁石素材とRL2−M2系合金とを付着させて熱処理を実施することで、RL2−M2系合金からRL2およびM2を更に磁石素材内部へ拡散させる(第二拡散工程)。本発明者による検討の結果、第一拡散工程において、RHの含有量を低くした上でR−T−B系焼結磁石素材表面への付着量を比較的多い特定範囲に管理してRH、RL1、M1の全てをR−T−B系焼結磁石素材に拡散させると、少ないRHでも拡散による主相外殻の異方性磁界の向上が顕著に起こり、さらに、RL1およびM1元素の二粒子粒界相への拡散によって二粒子粒界相における磁性元素濃度の低下が顕著に起こることがわかった。これにより、Bの低下を抑制しつつ、高いHcJを得ることができる。そして、さらに検討した結果、このようにして、RHとともにRL1およびM1を第一拡散工程により拡散させた後に、今度はRHではなくRL2およびM2を第一拡散工程とは異なる特定の温度で拡散させる第二拡散工程を行うことより、さらに高いHcJが得られることが分かった。そして、この第二拡散工程による効果は、本開示の特定組成のR−T−B系焼結磁石素材に対して行った時に得られることも分かった。 In the method for manufacturing an RTB-based sintered magnet according to the present disclosure, first, an RTB-based sintered magnet material having a specific composition and an RL1-RH-M1 alloy are attached and heat treatment is performed. Then, RL1, RH, and M1 are diffused from the RL1-RH-M1 alloy into the inside of the magnet material (first diffusion step). Next, the RTB-based sintered magnet material on which the first diffusion step has been performed and the RL2-M2 alloy are adhered to each other and subjected to heat treatment, thereby removing RL2 and M2 from the RL2-M2 alloy. Further, it is diffused inside the magnet material (second diffusion step). As a result of the study by the present inventor, in the first diffusion step, the content of RH was lowered, and then the adhesion amount on the surface of the RTB-based sintered magnet material was controlled to a relatively large specific range, RH, When all of RL1 and M1 are diffused in the RTB-based sintered magnet material, the anisotropic magnetic field of the outer shell of the main phase is remarkably improved due to diffusion even with a small amount of RH. It was found that the concentration of the magnetic element in the two-grain grain boundary phase remarkably decreases due to the diffusion into the grain boundary phase. Thus, while suppressing a decrease in B r, it is possible to obtain a high H cJ. Then, as a result of further examination, after diffusing RL1 and M1 together with RH in the first diffusion step in this way, this time, instead of RH, RL2 and M2 are diffused at a specific temperature different from the first diffusion step. It was found that higher H cJ can be obtained by performing the second diffusion step. And it turned out that the effect by this 2nd diffusion process is acquired when it applies to the RTB system sintered magnet raw material of a specific composition of this indication.

本開示によるR−T−B系焼結磁石の製造方法は、図2に示すように、R−T−B系焼結磁石素材を準備する工程S10とRL1−RH−M1系合金を準備する工程S20およびRL2−M2系合金を準備する工程S21を含む。R−T−B系焼結磁石素材を準備する工程S10とRL1−RH−M1合金を準備する工程S20およびRL2−M2系合金を準備する工程S21の順序は任意であり、それぞれ、異なる場所で製造されたR−T−B系焼結磁石素材、RL1−RH−M1系合金およびRL2−M2合金を用いてもよい。本開示によるR−T−B系焼結磁石の製造方法は、図2に示すように、更に、R−T−B系焼結磁石素材表面の少なくとも一部にRL1−RH−M1系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する第一拡散工程S30と第一拡散工程が実施されたR−T−B系焼結磁石素材の表面の少なくとも一部に、前記RL2−M2系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、400℃以上600℃以下の温度で加熱する第二拡散工程S31を含む。 As shown in FIG. 2, the method for manufacturing an RTB-based sintered magnet according to the present disclosure includes a step S10 of preparing an RTB-based sintered magnet material and an RL1-RH-M1 based alloy. It includes a step S20 and a step S21 of preparing an RL2-M2 alloy. The order of the step S10 of preparing the RTB-based sintered magnet material, the step S20 of preparing the RL1-RH-M1 alloy, and the step S21 of preparing the RL2-M2 alloy is arbitrary and at different places. You may use the manufactured RTB type|system|group sintered magnet raw material, RL1-RH-M1 type|system|group alloy, and RL2-M2 alloy. As shown in FIG. 2, the method for manufacturing an RTB-based sintered magnet according to the present disclosure further includes an RL1-RH-M1-based alloy on at least a part of the surface of the RTB-based sintered magnet material. A first diffusion step S30 in which at least a part is attached and heated at a temperature of 700° C. or more and 1100° C. or less in a vacuum or an inert gas atmosphere, and an RTB-based sintered magnet material on which the first diffusion step is performed A second diffusion step S31 in which at least a part of the RL2-M2 alloy is attached to at least a part of the surface of and the heating is performed at a temperature of 400° C. or more and 600° C. or less in a vacuum or an inert gas atmosphere.

なお、本開示において、第二拡散工程前および第二拡散工程中のR−T−B系焼結磁石を「R−T−B系焼結磁石素材」と称し、第二拡散工程後のR−T−B系焼結磁石を単に「R−T−B系焼結磁石」と称する。 In the present disclosure, the R-T-B system sintered magnet before the second diffusion process and during the second diffusion process is referred to as "R-T-B system sintered magnet material", and R after the second diffusion process. The -T-B system sintered magnet is simply referred to as "R-T-B system sintered magnet".

(R−T−B系焼結磁石素材を準備する工程)
R−T−B系焼結磁石素材において、Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、Rの含有量は、R−T−B系焼結磁石素材全体の27mass%以上35mass%以下である。TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含み、T全体に対するFeの含有量が80mass%以上であり、[T]/[B]のmol比が14.0超15.0以下である。
(Process of preparing an RTB-based sintered magnet material)
In the R-T-B system sintered magnet material, R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, and the content of R is the R-T-B system. It is not less than 27 mass% and not more than 35 mass% of the whole sintered magnet material. T is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, T always contains Fe, and the content of Fe with respect to the entire T is 80 mass% or more, [T]/ The molar ratio of [B] is more than 14.0 and 15.0 or less.

Rが27mass%未満では焼結過程で液相が十分に生成せず、焼結体を充分に緻密化することが困難になる可能性がある。一方、Rが35masss%を超えると焼結時に粒成長が起こりHcJが低下する可能性がある。Rは28mass%以上33mass%以下であることが好ましい。 When R is less than 27 mass %, a liquid phase is not sufficiently generated in the sintering process, and it may be difficult to sufficiently densify the sintered body. On the other hand, if R exceeds 35 mass%, grain growth may occur during sintering and H cJ may decrease. R is preferably 28 mass% or more and 33 mass% or less.

本開示における[T]/[B]とは、Tを構成する各元素(Fe、Co、Al、MnおよびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含み、T全体に対するFeの含有量が80mass%以上)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの(a)とを、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。[T]/[B]のmol比が14.0を超えるという条件は、Bの含有量がR14B化合物の化学量論組成比よりも少ない、すなわち、主相(R14B化合物)形成に使われるT量に対して相対的にB量が少ないことを示している。[T]/[B]のmol比が14.0以下であると第二拡散工程をおこなっても高いHcJ向上効果を得ることができない。一方、[T]/[B]のmol比が15.0を超えるとBが低下する可能性がある。[T]/[B]のmol比は14.3以上15.0以下であることが好ましい。さらに高いBと高いHcJを得ることができる。Bの含有量はR−T−B系焼結体全体の0.9mass%以上1.0mass%未満が好ましい。 [T]/[B] in the present disclosure is at least one element selected from the group consisting of each element (Fe, Co, Al, Mn, and Si) constituting T, and T always contains Fe, and T The analytical value (mass%) of Fe content with respect to the whole of 80 mass% or more was divided by the atomic weight of each element, and the sum of these values (a) and the analytical value of B (mass) were obtained. %) is the ratio (a/b) to that obtained by dividing the atomic weight of B by (b). The condition that the molar ratio [T]/[B] exceeds 14.0 is that the content of B is smaller than the stoichiometric composition ratio of the R 2 T 14 B compound, that is, the main phase (R 2 T 14 It is shown that the amount of B is relatively small with respect to the amount of T used for forming the (B compound). When the [T]/[B] mol ratio is 14.0 or less, a high H cJ improving effect cannot be obtained even if the second diffusion step is performed. On the other hand, if the [T]/[B] mol ratio exceeds 15.0, Br may decrease. The molar ratio [T]/[B] is preferably 14.3 or more and 15.0 or less. It is possible to obtain a higher B r and a high H cJ. The content of B is preferably 0.9 mass% or more and less than 1.0 mass% of the entire RTB-based sintered body.

R−T−B系焼結磁石素材は例えば、以下の組成範囲を有する。
R:27〜35mass%、
B:0.80〜1.00mass%、
Ga:0〜1.0mass%、
X:0〜2mass%(XはCu、Nb、Zrの少なくとも一種)、
T:60mass%以上、
[T]/[B]のmol比が14.0超15.0以下である。
The RTB-based sintered magnet material has, for example, the following composition range.
R: 27-35 mass%,
B: 0.80 to 1.00 mass%,
Ga: 0 to 1.0 mass%,
X: 0 to 2 mass% (X is at least one of Cu, Nb, and Zr),
T: 60 mass% or more,
The molar ratio [T]/[B] is more than 14.0 and 15.0 or less.

R−T−B系焼結磁石素材は、Nd−Fe−B系焼結磁石に代表される一般的なR−T−B系焼結磁石の製造方法を用いて準備することができる。一例を挙げると、ストリップキャスト法等で作製された原料合金を、ジェットミルなどを用いて3μm以上10μm以下に粉砕した後、磁界中で成形し、900℃以上1100℃以下の温度で焼結することにより準備することができる。 The R-T-B system sintered magnet material can be prepared by using a general method for manufacturing a R-T-B system sintered magnet represented by an Nd-Fe-B system sintered magnet. As an example, a raw material alloy produced by a strip casting method or the like is crushed to a size of 3 μm or more and 10 μm or less by using a jet mill or the like, then molded in a magnetic field and sintered at a temperature of 900° C. or more and 1100° C. or less It can be prepared.

(RL1−RH−M1系合金を準備する工程)
RL1−RH−M1系合金において、RL1は軽希土類元素のうちの少なくとも1つであり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、RL1の含有量は、RL1−RH−M1系合金全体の60mass%以上97mass%以下である。軽希土類元素は、La、Ce、Pr、Nd、Pm、Sm、Euなどが挙げられる。RHは、Tb、DyおよびHoからなる群から選択された少なくとも1つであり、RHの含有量は、RL1−RH−M1系合金全体の1mass%以上8mass%以下である。M1は、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1つであり、M1の含有量は、RL1−RH−M1系合金全体の2mass%以上39mass%以下である。RL1−RH−M1系合金の典型例は、TbNdPrCu合金、TbNdCePrCu合金、TbNdGa合金、TbNdPrGaCu合金などである。また、RL1―M1合金と共にRHのフッ化物、酸化物、酸フッ化物等を準備してもよい。RHのフッ化物、酸化物、酸フッ化物としては、例えば、TbF、DyF、Tb、Dy、TbOF、DyOFが挙げられる。
(Process of preparing RL1-RH-M1 series alloy)
In the RL1-RH-M1 based alloy, RL1 is at least one of the light rare earth elements, and always contains at least one selected from the group consisting of Nd, Pr and Ce, and the content of RL1 is RL1-. It is 60 mass% or more and 97 mass% or less of the entire RH-M1 alloy. Examples of the light rare earth element include La, Ce, Pr, Nd, Pm, Sm and Eu. RH is at least one selected from the group consisting of Tb, Dy, and Ho, and the content of RH is 1 mass% or more and 8 mass% or less of the entire RL1-RH-M1 alloy. M1 is at least one selected from the group consisting of Cu, Ga, Fe, Co, Ni, and Al, and the content of M1 is 2 mass% or more and 39 mass% or less of the entire RL1-RH-M1 alloy. is there. Typical examples of the RL1-RH-M1 alloy are TbNdPrCu alloy, TbNdCePrCu alloy, TbNdGa alloy, TbNdPrGaCu alloy and the like. Further, RH fluorides, oxides, oxyfluorides and the like may be prepared together with the RL1-M1 alloy. Examples of RH fluorides, oxides, and acid fluorides include TbF 3 , DyF 3 , Tb 2 O 3 , Dy 2 O 3 , Tb 4 OF, and Dy 4 OF.

RL1−RH−M1系合金は、RL1、RHおよびM1それぞれの含有量を調整することにより、上述した元素以外の元素(例えばSi、Mn等)を少量(例えば合計で2mass%程度)含有してもよい。 The RL1-RH-M1 alloy contains a small amount (for example, about 2 mass% in total) of an element other than the above-mentioned elements (for example, about 2 mass% in total) by adjusting the contents of RL1, RH, and M1. Good.

RL1が60mass%未満であると、RHおよびM1がR−T−B系焼結磁石素材内部に導入されにくくなり、HcJが低下する可能性があり、97mass%を超えるとRL1−RH−M1系合金の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じる可能性がある。好ましくは、RL1の含有量はRL1−RH−M1系合金全体の70mass%以上95mass%以下である。より高いHcJを得ることができる。 When RL1 is less than 60 mass%, RH and M1 are less likely to be introduced into the R-T-B based sintered magnet material, and H cJ may decrease, and when more than 97 mass%, RL1-RH-M1. The alloy powder becomes very active during the manufacturing process of the base alloy. As a result, there is a possibility that remarkable oxidation or ignition of the alloy powder may occur. Preferably, the content of RL1 is 70 mass% or more and 95 mass% or less of the entire RL1-RH-M1 alloy. Higher H cJ can be obtained.

RHが1mass%未満であると、RHによるHcJ向上効果が得られない可能性があり、8mass%を超えるとRL1およびM1によるHcJ向上効果が低下する可能性があるため、重希土類元素の使用量を低減しつつ、高いBと高いHcJを有するR−T−B系焼結磁石を得ることができない可能性がある。好ましくは、RHの含有量は、RL1−RH−M1系合金全体の2mass%以上6mass%以下である。より高いBと高いHcJを得ることができる。 When RH is less than 1 mass %, the H cJ improving effect by RH may not be obtained, and when it exceeds 8 mass %, the H cJ improving effect by RL1 and M1 may be reduced, so that the heavy rare earth element while reducing the amount of use, it may be impossible to obtain a R-T-B based sintered magnet having a high B r and high H cJ. Preferably, the content of RH is 2 mass% or more and 6 mass% or less of the entire RL1-RH-M1 based alloy. It is possible to obtain a higher B r and a high H cJ.

M1が2mass%未満であるとRL1およびRHが二粒子粒界相に導入されにくくなり、HcJが十分に向上しない可能性があり、39mass%を超えるとRL1およびRHの含有量が低下しHcJが十分に向上しない可能性がある。好ましくは、Mの含有量は、RL1−RH−M1系合金全体の3mass%以上28mass%以下である。より高いHcJを得ることができる。また、M1はGaを含有した方が好ましく、さらにCuを含有した方が好ましい。より高いHcJを得ることができる。 If M1 is less than 2 mass%, RL1 and RH are less likely to be introduced into the two-grain grain boundary phase, and H cJ may not be sufficiently improved, and if it exceeds 39 mass%, the content of RL1 and RH is reduced and H cJ may not be sufficiently improved. Preferably, the content of M is 3 mass% or more and 28 mass% or less of the entire RL1-RH-M1 based alloy. Higher H cJ can be obtained. Further, M1 preferably contains Ga, and further preferably contains Cu. Higher H cJ can be obtained.

RL1−RH−M1系合金の作製方法は、特に限定されない。ロール急冷法によって作製してもよいし、鋳造法で作製してもよい。また、これらの合金を粉砕して合金粉末にしてもよい。遠心アトマイズ法、回転電極法、ガスアトマイズ法、プラズマアトマイズ法などの公知のアトマイズ法で作製してもよい。 The method for producing the RL1-RH-M1 alloy is not particularly limited. It may be manufactured by a roll quenching method or a casting method. Further, these alloys may be crushed to form alloy powder. It may be produced by a known atomizing method such as a centrifugal atomizing method, a rotating electrode method, a gas atomizing method, or a plasma atomizing method.

(RL2−M2系合金を準備する工程)
RL2−M2系合金において、RL2は軽希土類元素のうちの少なくとも1つであり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、RL2の含有量は、RL2−M2系合金全体の60mass%以上97mass%以下であり、M2は、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1つであり、M2の含有量は、RL2−M2系合金全体の3mass%以上40mass%以下である。RL2−M2系合金の典型例は、NdPrCu合金、NdCePrCu合金、NdGa合金、NdPrGaCu合金などである。
(Process of preparing RL2-M2 alloy)
In the RL2-M2 series alloy, RL2 is at least one of the light rare earth elements and always contains at least one selected from the group consisting of Nd, Pr and Ce, and the content of RL2 is RL2-M2 series. It is 60 mass% or more and 97 mass% or less of the entire alloy, M2 is at least one selected from the group consisting of Cu, Ga, Fe, Co, Ni, and Al, and the content of M2 is RL2-M2 system. It is 3 mass% or more and 40 mass% or less of the entire alloy. Typical examples of the RL2-M2 alloy are NdPrCu alloy, NdCePrCu alloy, NdGa alloy, NdPrGaCu alloy and the like.

RL2−M2系合金は、RL2およびM2それぞれの含有量を調整することにより、上述した元素以外の元素(例えばSi、Mn等)を少量(例えば合計で2mass%程度)含有してもよい。 The RL2-M2 alloy may contain a small amount of elements (for example, about 2 mass% in total) other than the above-described elements by adjusting the contents of RL2 and M2.

RL2が60mass%未満であると、M1がR−T−B系焼結磁石素材内部に導入されにくくなり、HcJが低下する可能性があり、97mass%を超えるとRL2―M2系合金の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じる可能性がある。好ましくは、RL2の含有量はRL2−M2系合金全体の70mass%以上95mass%以下である。より高いHcJを得ることができる。 When RL2 is less than 60 mass%, it becomes difficult for M1 to be introduced into the R-T-B based sintered magnet material, and HcJ may decrease. When it exceeds 97 mass%, production of RL2-M2 alloy The alloy powder during the process becomes very active. As a result, there is a possibility that remarkable oxidation or ignition of the alloy powder may occur. Preferably, the content of RL2 is 70 mass% or more and 95 mass% or less of the entire RL2-M2 alloy. Higher H cJ can be obtained.

M2が3mass%未満であるとRL2が二粒子粒界相に導入されにくくなり、HcJが十分に向上しない可能性があり、40mass%を超えるとRL2の含有量が低下しHcJが十分に向上しない可能性がある。好ましくは、M2の含有量は、RL2−M2系合金全体の3mass%以上28mass%以下である。より高いHcJを得ることができる。また、M2はGaを含有した方が好ましく、さらにCuを含有した方が好ましい。より高いHcJを得ることができる。 If M2 is less than 3 mass%, RL2 becomes difficult to be introduced into the two-grain grain boundary phase, and H cJ may not be sufficiently improved, and if it exceeds 40 mass%, the content of RL2 is decreased and H cJ is sufficiently reduced. It may not improve. Preferably, the content of M2 is 3 mass% or more and 28 mass% or less of the entire RL2-M2 alloy. Higher H cJ can be obtained. Further, M2 preferably contains Ga, and more preferably contains Cu. Higher H cJ can be obtained.

RL2−M2系合金の作製方法は、特に限定されない。ロール急冷法によって作製してもよいし、鋳造法で作製してもよい。また、これらの合金を粉砕して合金粉末にしてもよい。遠心アトマイズ法、回転電極法、ガスアトマイズ法、プラズマアトマイズ法などの公知のアトマイズ法で作製してもよい。 The method for producing the RL2-M2 alloy is not particularly limited. It may be manufactured by a roll quenching method or a casting method. Further, these alloys may be crushed to form alloy powder. It may be produced by a known atomizing method such as a centrifugal atomizing method, a rotating electrode method, a gas atomizing method, or a plasma atomizing method.

(第一拡散工程)
前記によって準備したR−T−B系焼結磁石素材の表面の少なくとも一部に、前記によって準備したRL1−RH−M1系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する第一拡散工程を行う。これにより、RL1−RH−M1合金からRL1、RHおよびM1を含む液相が生成し、その液相がR−T−B系焼結磁石素材中の粒界を経由して焼結素材表面から内部に拡散導入される。第一拡散工程における前記R−T−B系焼結磁石素材への前記RL1−RH−M1系合金の付着量を4mass%以上15mass%以下で、かつ、前記RL1−RH−M1系合金による前記R−T−B系焼結磁石素材へのRHの付着量を0.1mass%以上0.6mass%以下とする。これにより、極めて高いHcJ向上効果を得ることができる。R−T−B系焼結磁石素材へのRL1−RH−M1系合金の付着量が4mass%未満であると、磁石素材内部へのRHおよびRL1およびM1の導入量が少なすぎて高いHcJを得ることができない可能性があり、15mass%を超えると、RHおよびRL1およびM1の導入量が多すぎてBが大幅に低下したり、重希土類元素の使用量が増加し過ぎてしまうだけでなく、磁石内部まで拡散しきれないRL1−RH−M1系合金が磁石表面に残存し、耐食性や加工性など別の問題が発生する可能性がある。好ましくは、前記R−T−B系焼結磁石素材への前記RL1−RH−M1系合金の付着量は5mass%以上10mass%以下である。より高いHcJを得ることができる。また、前記RL1−RH−M1系合金による前記R−T−B系焼結磁石素材へのRHの付着量が0.1mass%未満であると、RHによるHcJ向上効果が得られない可能性があり、0.6mass%を超えると重希土類元素の使用量を低減しつつ、高いHcJを有するR−T−B系焼結磁石を得ることができない。好ましくは、前記RL1−RH−M1系合金による前記R−T−B系焼結磁石素材へのRHの付着量が0.1mass%以上0.5mass%以下である。 ここで、RHの付着量は、R−T−B系焼結磁石素材に付着しているRL1−RH−M1系合金が含有するRHの量であり、R−T−B系焼結磁石素材の質量を100mass%としたときの質量比率によって規定される。
(First diffusion step)
At least a part of the RL1-RH-M1 system alloy prepared as described above is attached to at least a part of the surface of the R-T-B system sintered magnet material prepared as described above, and the temperature is set to 700 in a vacuum or an inert gas atmosphere. The first diffusion step of heating at a temperature of not less than 1°C and not more than 1100°C is performed. As a result, a liquid phase containing RL1, RH, and M1 is generated from the RL1-RH-M1 alloy, and the liquid phase passes from the surface of the sintered material via the grain boundary in the RTB-based sintered magnet material. It is introduced by diffusion inside. The adhesion amount of the RL1-RH-M1 system alloy to the R-T-B system sintered magnet material in the first diffusion step is 4 mass% or more and 15 mass% or less, and the RL1-RH-M1 system alloy is used. The amount of RH adhering to the RTB-based sintered magnet material is set to 0.1 mass% or more and 0.6 mass% or less. This makes it possible to obtain an extremely high H cJ improving effect. If the amount of the RL1-RH-M1 system alloy deposited on the R-T-B system sintered magnet material is less than 4 mass %, the amount of RH and RL1 and M1 introduced into the magnet material is too small and the high H cJ may not be obtained, it exceeds 15 mass%, or decreased B r is much too large, the amount of introduced RH and RL1 and M1, only the amount of the heavy rare earth element is too increased Not only that, the RL1-RH-M1 based alloy that cannot be completely diffused into the magnet may remain on the surface of the magnet, causing another problem such as corrosion resistance and workability. Preferably, the amount of the RL1-RH-M1 based alloy deposited on the R-T-B based sintered magnet material is 5 mass% or more and 10 mass% or less. Higher H cJ can be obtained. Further, if the amount of RH adhering to the R-T-B based sintered magnet material by the RL1-RH-M1 based alloy is less than 0.1 mass%, the effect of improving HcJ by RH may not be obtained. However, if it exceeds 0.6 mass %, it is impossible to obtain an RTB -based sintered magnet having a high H cJ while reducing the amount of heavy rare earth elements used. Preferably, the amount of RH deposited on the R-T-B based sintered magnet material by the RL1-RH-M1 based alloy is 0.1 mass% or more and 0.5 mass% or less. Here, the attached amount of RH is the amount of RH contained in the RL1-RH-M1 system alloy attached to the R-T-B system sintered magnet material, and the R-T-B system sintered magnet material. Is defined by the mass ratio when the mass of 100 mass% is set.

第一拡散工程における加熱する温度が700℃未満であると、RH、RL1およびM1を含む液相量が少なすぎて高いHcJを得ることができない可能性がある。一方、1100℃を超えるとHcJが大幅に低下する可能性がある。好ましくは、拡散工程における加熱する温度は800℃以上1000℃以下である。より高いHcJを得ることができる。また、好ましくは、第一拡散工程(700℃以上1100℃以下)が実施されたR−T−B系焼結磁石に対し、第一拡散工程を実施した温度から15℃/分以上の冷却速度で300℃まで冷却した方が好ましい。より高いHcJを得ることができる。 If the heating temperature in the first diffusion step is lower than 700°C, the amount of liquid phase containing RH, RL1 and M1 may be too small to obtain high H cJ . On the other hand, if it exceeds 1100° C., H cJ may be significantly reduced. Preferably, the heating temperature in the diffusion step is 800° C. or higher and 1000° C. or lower. Higher H cJ can be obtained. Further, preferably, for the RTB-based sintered magnet that has undergone the first diffusion step (700° C. or more and 1100° C. or less), a cooling rate of 15° C./min or more from the temperature at which the first diffusion step is performed. It is preferable to cool to 300°C. Higher H cJ can be obtained.

第一拡散工程は、R−T−B系焼結磁石素材表面に、任意形状のRL1−RH−M1合金を配置し、公知の熱処理装置を用いて行うことができる。例えば、R−T−B系焼結磁石素材表面をRL1−RH−M1合金の粉末層で覆い、第一拡散工程を行うことができる。例えば、塗布対象の表面に粘着剤を塗布する塗布工程と、粘着剤を塗布した領域にRL1−RH−M1合金を付着させる工程を行ってもよい。粘着剤としては、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール)、PVP(ポリビニルピロリドン)などが挙げられる。粘着剤が水系の粘着剤の場合、塗布の前にR−T−B系焼結磁石素材を予備的に加熱してもよい。予備加熱の目的は余分な溶媒を除去し粘着力をコントロールすること、及び、均一に粘着剤を付着させることである。加熱温度は60〜200℃が好ましい。揮発性の高い有機溶媒系の粘着剤の場合はこの工程は省略してもよい。また例えば、RL1−RH−M1合金を分散媒中に分散させたスラリーをR−T−B系焼結磁石素材表面に塗布した後、分散媒を蒸発させRL1−RH−M1合金とR−T−B系焼結磁石素材とを付着させてもよい。なお、分散媒として、アルコール(エタノール等)、アルデヒドおよびケトンを例示できる。またRHは、RL1―M1合金と共にRHのフッ化物、酸化物、酸フッ化物等をR−T−B系焼結磁石素材表面に配置することにより導入してもよい。すなわち、RHと共にRL1およびM1を同時に拡散させることができればその方法は特に問わない。 The first diffusion step can be performed using a known heat treatment apparatus by placing the RL1-RH-M1 alloy having an arbitrary shape on the surface of the RTB-based sintered magnet material. For example, the surface of the R-T-B based sintered magnet material may be covered with a powder layer of the RL1-RH-M1 alloy, and the first diffusion step may be performed. For example, you may perform the application process of apply|coating a pressure sensitive adhesive to the surface of a coating object, and the process of making RL1-RH-M1 alloy adhere to the area|region where the pressure sensitive adhesive was applied. Examples of the adhesive include PVA (polyvinyl alcohol), PVB (polyvinyl butyral), PVP (polyvinylpyrrolidone), and the like. When the pressure-sensitive adhesive is a water-based pressure-sensitive adhesive, the RTB-based sintered magnet material may be preliminarily heated before coating. The purpose of preheating is to remove excess solvent to control the adhesive strength, and to adhere the adhesive evenly. The heating temperature is preferably 60 to 200°C. This step may be omitted in the case of a highly volatile organic solvent-based pressure-sensitive adhesive. Further, for example, after applying a slurry in which an RL1-RH-M1 alloy is dispersed in a dispersion medium to the surface of an RTB-based sintered magnet material, the dispersion medium is evaporated to evaporate the RL1-RH-M1 alloy and RT. A B-based sintered magnet material may be attached. Examples of the dispersion medium include alcohol (such as ethanol), aldehyde and ketone. Further, RH may be introduced by arranging RH fluoride, oxide, oxyfluoride or the like together with the RL1-M1 alloy on the surface of the RTB-based sintered magnet material. That is, the method is not particularly limited as long as RL1 and M1 can be diffused simultaneously with RH.

またRL1−RH―M1合金の少なくとも一部がR−T−B系焼結磁石素材の少なくとも一部に付着していれば、その配置位置は特に問わないが、好ましくは、RL1−RH−M1合金は、少なくともR−T−B系焼結磁石素材の配向方向に対して垂直な表面に付着させるように配置する。より効率よくRL1、RHおよびM1を含む液相を磁石表面から内部に拡散導入させることができる。この場合、R−T−B系焼結磁石素材の配向方向のみにRL1−RH−M1合金を付着させても、R−T−B系焼結磁石素材の全面にRL1−RH−M1合金を付着させてもよい。 Further, if at least a part of the RL1-RH-M1 alloy is attached to at least a part of the RTB-based sintered magnet material, the arrangement position thereof is not particularly limited, but preferably RL1-RH-M1. The alloy is arranged so as to adhere to at least the surface perpendicular to the orientation direction of the RTB-based sintered magnet material. The liquid phase containing RL1, RH and M1 can be more efficiently diffused and introduced from the magnet surface to the inside. In this case, even if the RL1-RH-M1 alloy is adhered only in the orientation direction of the RTB-based sintered magnet material, the RL1-RH-M1 alloy is applied to the entire surface of the RTB-based sintered magnet material. It may be attached.

(第二拡散工程)
前記第一拡散工程が実施されたR−T−B系焼結磁石素材の表面の少なくとも一部に、前記RL2−M2系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、400℃以上600℃以下の温度で加熱する第二拡散工程を行う。これにより、RL2−M2合金からRL2およびM2を含む液相が生成し、その液相がR−T−B系焼結磁石素材中の粒界を経由して焼結素材表面から内部に拡散導入される。第二拡散工程における前記R−T−B系焼結磁石素材への前記RL2−M2系合金の付着量を1mass%以上15mass%以下とする。これにより、極めて高いHcJが得られる。付着量が1mass%未満であると、磁石素材内部へのRL2およびM2の導入量が少なすぎて高いHcJを得ることができない可能性がある。一方、付着量が15mass%を超えるとRL2およびM2の導入量が多すぎてBが大幅に低下したり、磁石内部まで拡散しきれないRL2−M2系合金が磁石表面に残存し、耐食性や加工性など別の問題が発生する可能性がある。好ましくは、前記R−T−B系焼結磁石素材への前記RL2−M2系合金の付着量は2mass%以上10mass%以下である。より高いHcJを得ることができる。また、R−T−B系焼結磁石素材が上述した範囲(Rの含有量は、R−T−B系焼結磁石素材全体の27mass%以上35mass%以下であり、[T]/[B]のmol比が14.0超15.0以下)でないと、第一拡散工程が実施されたR−T−B系焼結磁石素材に対し第二拡散工程をしても高いBと高いHcJを得ることができない。
(Second diffusion step)
At least a part of the RL2-M2 system alloy is attached to at least a part of the surface of the R-T-B system sintered magnet material on which the first diffusion process is performed, and the temperature is set to 400 in a vacuum or an inert gas atmosphere. The second diffusion step of heating at a temperature of ℃ to 600 ℃ is performed. As a result, a liquid phase containing RL2 and M2 is generated from the RL2-M2 alloy, and the liquid phase is diffused and introduced from the surface of the sintered material to the inside via the grain boundary in the RTB-based sintered magnet material. To be done. The amount of the RL2-M2 alloy deposited on the R-T-B sintered magnet material in the second diffusion step is 1 mass% or more and 15 mass% or less. This gives a very high H cJ . If the amount of adhesion is less than 1 mass %, the amount of RL2 and M2 introduced into the magnet material may be too small to obtain high H cJ . On the other hand, lowered B r is much adhesion amount is too large, the amount of introduced RL2 and M2 exceeds 15 mass%, RL2-M2 alloy which can not be diffused to the inside of the magnet remains in the magnet surface, corrosion resistance Ya Another problem such as workability may occur. Preferably, the amount of the RL2-M2 system alloy deposited on the R-T-B system sintered magnet material is 2 mass% or more and 10 mass% or less. Higher H cJ can be obtained. Further, the R-T-B system sintered magnet material has the above-mentioned range (the content of R is 27 mass% or more and 35 mass% or less of the entire R-T-B system sintered magnet material, and [T]/[B not equal 14.0 ultra 15.0) mol ratio], the second diffusion high B r and a high even when the process to the first diffusion step is the implementation the R-T-B based sintered magnet material Unable to get H cJ .

第二拡散工程における加熱する温度が400℃未満であると、RL2およびM2を含む液相量が少なすぎて高いHcJを得ることができない可能性がある。一方、600℃を超えるとHcJが低下する可能性がある。好ましくは、拡散工程における加熱する温度は450℃以上550℃以下である。より高いHcJを得ることができる。 If the heating temperature in the second diffusion step is lower than 400°C, the amount of liquid phase containing RL2 and M2 may be too small to obtain high H cJ . On the other hand, if it exceeds 600° C., H cJ may decrease. Preferably, the heating temperature in the diffusion step is 450° C. or higher and 550° C. or lower. Higher H cJ can be obtained.

第二拡散工程は、第一拡散工程と同様に、前記第一拡散工程が実施されたR−T−B系焼結磁石素材表面に、任意形状のRL2−M2合金を配置し、公知の熱処理装置を用いて行うことができる。また第一拡散工程と同様に、RL2―M2合金の少なくとも一部がR−T−B系焼結磁石素材の少なくとも一部に付着していれば、その配置位置は特に問わないが、好ましくは、RL2−M2合金は、少なくともR−T−B系焼結磁石素材の配向方向に対して垂直な表面に付着させるように配置する。より効率よくRL2およびM2を含む液相を磁石表面から内部に拡散導入させることができる。この場合、R−T−B系焼結磁石素材の配向方向のみにRL2−M2合金を付着させても、R−T−B系焼結磁石素材の全面にRL2−M2合金を付着させてもよい。 In the second diffusion step, similarly to the first diffusion step, an RL2-M2 alloy having an arbitrary shape is arranged on the surface of the RTB-based sintered magnet material on which the first diffusion step has been performed, and a known heat treatment is performed. It can be performed using the device. Further, similar to the first diffusion step, if at least a part of the RL2-M2 alloy is attached to at least a part of the R-T-B system sintered magnet material, its arrangement position is not particularly limited, but preferably , RL2-M2 alloy is arranged so as to adhere to at least the surface perpendicular to the orientation direction of the RTB-based sintered magnet material. The liquid phase containing RL2 and M2 can be more efficiently diffused and introduced from the magnet surface to the inside. In this case, even if the RL2-M2 alloy is adhered only to the orientation direction of the RTB-based sintered magnet material, or the RL2-M2 alloy is adhered to the entire surface of the RTB-based sintered magnet material. Good.

本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

実験例1
[R−T−B系焼結磁石素材(磁石素材)を準備する工程]
表1の符号1−A〜1−Dに示す磁石素材の組成となるように、各元素を秤量しストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 1
[Step of preparing RTB sintered magnet material (magnet material)]
Each element was weighed and cast by the strip casting method so as to have the composition of the magnet raw material indicated by reference numerals 1-A to 1-D in Table 1, and a flaky raw material alloy having a thickness of 0.2 to 0.4 mm was obtained. It was The obtained flaky raw material alloy was pulverized with hydrogen and then subjected to a dehydrogenation treatment of heating in vacuum to 550° C. and then cooling to obtain coarsely pulverized powder. Next, after adding zinc stearate as a lubricant to the obtained coarsely pulverized powder in an amount of 0.04 mass% with respect to 100 mass% of the coarsely pulverized powder and mixing them, nitrogen was obtained by using an air flow type pulverizer (jet mill device). Dry pulverization was performed in an air stream to obtain finely pulverized powder (alloy powder) having a particle size D 50 of 4 μm. The particle diameter D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate as a lubricant was added to the finely pulverized powder in an amount of 0.05 mass% with respect to 100 mass% of the finely pulverized powder, and the mixture was molded in a magnetic field to obtain a molded body. A so-called orthogonal magnetic field molding device (transverse magnetic field molding device) in which the magnetic field applying direction and the pressurizing direction are orthogonal to each other was used as the molding device.

得られた成形体を、真空中、1000℃以上1050℃以下(サンプル毎に焼結による緻密化が十分起こる温度を選定)で4時間焼結した後急冷し、磁石素材を得た。得られた磁石素材の密度は7.5Mg/m以上であった。得られた磁石素材の成分の結果を表1に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、磁石素材の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.1mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。表1における「[T]/[B]」は、Tを構成する各元素(Fe、Co、Al、Si、Mn)に対し、分析値(mass%)をその元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。以下の全ての表も同様である。なお、表1の各組成および酸素量、炭素量を合計しても100mass%にはならない。これは、前記の通り、各成分によって分析方法が異なるためである。その他の表についても同様である。 The obtained molded body was sintered in vacuum at a temperature of 1000° C. or higher and 1050° C. or lower (a temperature at which sufficient densification by sintering is sufficiently selected is selected for each sample) for 4 hours and then rapidly cooled to obtain a magnet material. The density of the obtained magnet material was 7.5 Mg/m 3 or more. Table 1 shows the results of the components of the obtained magnet material. In addition, each component in Table 1 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, as a result of measuring the oxygen content of the magnet material by the gas melting-infrared absorption method, it was confirmed that all were about 0.1 mass %. Moreover, as a result of measuring C (carbon content) using a gas analyzer by a combustion-infrared absorption method, it was confirmed that it was around 0.1 mass %. “[T]/[B]” in Table 1 is obtained by dividing the analytical value (mass %) for each element (Fe, Co, Al, Si, Mn) constituting T by the atomic weight of the element. It is the ratio (a/b) of the value obtained by summing these values (a) and the value obtained by dividing the B analysis value (mass %) by the atomic weight of B (b). The same applies to all the tables below. In addition, even if each composition, oxygen content, and carbon content of Table 1 are added together, it does not become 100 mass %. This is because the analysis method differs depending on each component as described above. The same applies to the other tables.

Figure 2020120101
Figure 2020120101

[RL1−RH−M1系合金を準備する工程]
表2の符号1−a1に示すRL1−RH−M1系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られたRL1−RH−M1系合金の組成を表2に示す。尚、表2における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Step of preparing RL1-RH-M1 series alloy]
Each element is weighed and the raw materials thereof are melted so as to have the composition of the RL1-RH-M1 series alloy shown by reference numeral 1-a1 in Table 2, and ribbons or flakes are prepared by a single roll ultra-quenching method (melt spinning method). A shaped alloy was obtained. Table 2 shows the composition of the obtained RL1-RH-M1 alloy. In addition, each component in Table 2 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120101
Figure 2020120101

[RL2−M2系合金を準備する工程]
表3の符号1−a2に示すRL2−M2系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られたRL2−M2系合金の組成を表3に示す。尚、表3における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Process of preparing RL2-M2 alloy]
Each element was weighed and their raw materials were melted so as to have the composition of the RL2-M2 alloy shown by reference numeral 1-a2 in Table 3, and ribbon-shaped or flaky-shaped was formed by the single-roll ultra-quenching method (melt spinning method). An alloy was obtained. Table 3 shows the composition of the obtained RL2-M2 alloy. In addition, each component in Table 3 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120101
Figure 2020120101

[第一拡散工程]
表1の符号1−A〜1−DのR−T−B系焼結磁石素材をそれぞれ切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体とした。加工後のR−T−B系焼結磁石素材にディッピング法により粘着剤としてPVAをR−T−B系焼結磁石素材全面に塗布した。次に表4に示す作製条件で粘着剤を塗布したR−T−B系焼結磁石素材全面にRL1−RH−M1系合金を付着させた。なお、RL1−RH−M1系合金付着量およびRH付着量は、RL1−RH−M1系合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き38〜1000μmの数種類の篩を通過させ、粒度の異なるRL1−RH−M1系合金を用いることにより調整した。そして、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、表4の第一拡散工程に示す条件で前記RL1−RH−M1系合金及び前記R−T−B系焼結磁石素材を加熱した後、冷却した。
[First diffusion step]
Each of the RTB-based sintered magnet materials 1-A to 1-D shown in Table 1 was cut and cut into a cube of 7.2 mm x 7.2 mm x 7.2 mm. PVA as an adhesive was applied to the entire surface of the RTB-based sintered magnet material by a dipping method on the processed RTB-based sintered magnet material. Next, the RL1-RH-M1 system alloy was adhered to the entire surface of the R-T-B system sintered magnet material coated with the adhesive under the production conditions shown in Table 4. The RL1-RH-M1 alloy deposition amount and the RH deposition amount are obtained by crushing the RL1-RH-M1 alloy in an argon atmosphere using a mortar and then passing through several sieves having openings 38 to 1000 μm. It was adjusted by using RL1-RH-M1 series alloys having different grain sizes. Then, using a vacuum heat treatment furnace, the RL1-RH-M1 system alloy and the R-T-B system sintered magnet material were prepared under reduced pressure argon controlled to 200 Pa under the conditions shown in the first diffusion step of Table 4. After heating, it was cooled.

[第二拡散工程]
第一拡散工程が実施されたR−T−B系焼結磁石素材に再度、ディッピング法により粘着剤としてPVAを全面に塗布した。その後、表4に示す作製条件で、粘着剤が塗布された第一拡散工程が実施されたR−T−B系焼結磁石素材全面にRL2−M2系合金を付着させた。なお、RL2−M2系合金は、RL2−M2系合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き300μmの櫛を通過させたものを用いた。そして、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、表4の第二拡散工程に示す条件で前記RL2−M2系合金及び前記第一拡散工程が実施されたR−T−B系焼結磁石素材を加熱した後、冷却した。第二拡散処理後の各サンプルに対し表面研削盤を用いて各サンプルの全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体状のサンプル(R−T−B系焼結磁石)を得た。尚、第一拡散工程を実施する工程におけるRL1−RH−M1系合金及びR−T−B系焼結磁石素材の加熱温度、並びに第二拡散工程を実施する工程におけるRL2−M2系合金及びR−T−B系焼結磁石素材の加熱温度は、それぞれ熱電対により測定した。
[Second diffusion step]
PVA as an adhesive was applied to the entire surface of the RTB-based sintered magnet material on which the first diffusion step was performed again by the dipping method. Then, under the production conditions shown in Table 4, the RL2-M2 alloy was adhered to the entire surface of the RTB-based sintered magnet material on which the first diffusion step in which the adhesive was applied was performed. The RL2-M2 alloy used was one obtained by crushing the RL2-M2 alloy in a mortar in an argon atmosphere and then passing it through a comb having an opening of 300 μm. Then, using a vacuum heat treatment furnace, the RL2-M2 alloy and the RTB in which the first diffusion step was performed under the conditions shown in the second diffusion step of Table 4 in reduced pressure argon controlled to 200 Pa. The sintered magnet material was heated and then cooled. The surface of each sample after the second diffusion treatment was cut using a surface grinder, and a cubic sample of 7.0 mm×7.0 mm×7.0 mm (RTB-based sintering) Got a magnet). In addition, the heating temperature of the RL1-RH-M1 system alloy and the RTB system sintered magnet material in the process of performing the first diffusion process, and the RL2-M2 system alloy and R in the process of performing the second diffusion process. The heating temperature of the -TB sintered magnet material was measured by a thermocouple.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各サンプルのB及びHcJを測定した。測定結果を表4に示す。表4の通りサンプルNo.1−6〜1−10、1−13〜1−14の本発明例は、いずれも重希土類元素の使用量を低減しつつ、高いBと高いHcJが得られていることがわかる。これに対し、R−T−B系焼結磁石素材における[T]/[B]のmol比が14.0超15.0以下でないサンプルNo.1−1〜1−4は、高いHcJが得られなかった。さらに、RL1−RH−M1系合金の付着量が4mass%未満であるサンプルNo.1−5および1−12は高いHcJが得られなかった。また、サンプルNo.1−11は高いBと高いHcJが得られているが、RL1−RH−M1系合金の付着量が15mass%超で、且つRH付着量が0.6mass%超であり、HcJ向上効果が低い(No.1−10からHcJがあまり向上しておらず、Bが低下している)。そのため、重希土類元素の使用量を低減しつつ、高いBと高いHcJを有するR−T−B系焼結磁石を得ることができない。
[sample test]
The obtained sample was measured B r and H cJ of each sample by the B-H tracer. The measurement results are shown in Table 4. As shown in Table 4, sample No. The present invention Examples of 1-6~1-10,1-13~1-14 are all while reducing the amount of heavy rare earth elements, it can be seen that obtain a high B r and high H cJ. On the other hand, in the case of the sample No. 1 in which the [T]/[B] mol ratio in the RTB-based sintered magnet material is not more than 14.0 and not more than 15.0. No high H cJ was obtained in 1-1 to 1-4 . Furthermore, the sample No. in which the adhesion amount of the RL1-RH-M1 alloy is less than 4 mass%. 1-5 and 1-12 did not obtain high HcJ . In addition, the sample No. 1-11 is higher B r and high H cJ are obtained, the adhesion amount of RL1-RH-M1-based alloy with 15 mass% greater, and RH adhesion amount is 0.6 mass% greater, H cJ increased is less effective (H cJ is not so much improved from No.1-10, B r is decreased). Therefore, while reducing the amount of heavy rare earth elements, it is impossible to obtain a R-T-B based sintered magnet having a high B r and high H cJ.

Figure 2020120101
Figure 2020120101

実験例2
[R−T−B系焼結磁石素材(磁石素材)を準備する工程]
表5の符号2−A〜2−Dに示す磁石素材の組成となるように、各元素を秤量しストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 2
[Step of preparing RTB sintered magnet material (magnet material)]
Each element was weighed and cast by the strip casting method so as to have the composition of the magnet raw material indicated by reference numerals 2-A to 2-D in Table 5, and a flaky raw material alloy having a thickness of 0.2 to 0.4 mm was obtained. It was The obtained flaky raw material alloy was pulverized with hydrogen and then subjected to a dehydrogenation treatment of heating in vacuum to 550° C. and then cooling to obtain coarsely pulverized powder. Next, after adding zinc stearate as a lubricant to the obtained coarsely pulverized powder in an amount of 0.04 mass% with respect to 100 mass% of the coarsely pulverized powder and mixing them, nitrogen was obtained by using an air flow type pulverizer (jet mill device). Dry pulverization was performed in an air stream to obtain finely pulverized powder (alloy powder) having a particle size D 50 of 4 μm. The particle diameter D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate as a lubricant was added to the finely pulverized powder in an amount of 0.05 mass% with respect to 100 mass% of the finely pulverized powder, and the mixture was molded in a magnetic field to obtain a molded body. A so-called orthogonal magnetic field molding device (transverse magnetic field molding device) in which the magnetic field applying direction and the pressurizing direction are orthogonal to each other was used as the molding device.

得られた成形体を、真空中、1000℃以上1050℃以下(サンプル毎に焼結による緻密化が十分起こる温度を選定)で4時間焼結した後急冷し、磁石素材を得た。得られた磁石素材の密度は7.5Mg/m以上であった。得られた磁石素材の成分の結果を表5に示す。なお、表5における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、磁石素材の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.1mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。 The obtained molded body was sintered in vacuum at a temperature of 1000° C. or higher and 1050° C. or lower (a temperature at which sufficient densification by sintering is sufficiently selected is selected for each sample) for 4 hours and then rapidly cooled to obtain a magnet material. The density of the obtained magnet material was 7.5 Mg/m 3 or more. The results of the components of the obtained magnet material are shown in Table 5. In addition, each component in Table 5 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). As a result of measuring the oxygen content of the magnet material by the gas melting-infrared absorption method, it was confirmed that all were about 0.1 mass%. Moreover, as a result of measuring C (carbon content) using a gas analyzer by a combustion-infrared absorption method, it was confirmed that it was around 0.1 mass %.

Figure 2020120101
Figure 2020120101

[RL1−RH−M1系合金を準備する工程]
表6の符号2−a1に示すRL1−RH−M1系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られたRL1−RH−M1系合金の組成を表6に示す。尚、表6における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Step of preparing RL1-RH-M1 series alloy]
Each element is weighed and the raw materials thereof are melted so as to have the composition of the RL1-RH-M1 series alloy shown by symbol 2-a1 in Table 6, and ribbons or flakes are prepared by a single roll ultra-quenching method (melt spinning method). A shaped alloy was obtained. Table 6 shows the composition of the obtained RL1-RH-M1 alloy. In addition, each component in Table 6 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120101
Figure 2020120101

[RL2−M2系合金を準備する工程]
表7の符号2−a2に示すRL2−M2系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られたRL2−M2系合金の組成を表7に示す。尚、表7における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Process of preparing RL2-M2 alloy]
Each element was weighed and their raw materials were melted so as to have the composition of the RL2-M2 alloy shown by reference numeral 2-a2 in Table 7, and ribbons or flakes were formed by a single roll ultra-quenching method (melt spinning method). An alloy was obtained. Table 7 shows the composition of the obtained RL2-M2 alloy. Each component in Table 7 was measured by using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120101
Figure 2020120101

[第一拡散工程]
表5の符号2−A〜2−DのR−T−B系焼結磁石素材をそれぞれ切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体とした。加工後のR−T−B系焼結磁石素材にディッピング法により粘着剤としてPVAをR−T−B系焼結磁石素材全面に塗布した。次に表8に示す作製条件で粘着剤を塗布したR−T−B系焼結磁石素材全面にRL1−RH−M1系合金を付着させた。なお、RL1−RH−M1系合金は、RL1−RH−M1系合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き300μmの櫛を通過させたものを用いた。そして、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、表8の第一拡散工程に示す条件で前記RL1−RH−M1系合金及び前記R−T−B系焼結磁石素材を加熱した後、冷却した。
[First diffusion step]
Each of the R-T-B based sintered magnet materials indicated by reference numerals 2-A to 2-D in Table 5 was cut and cut into a cube of 7.2 mm x 7.2 mm x 7.2 mm. PVA as an adhesive was applied to the entire surface of the RTB-based sintered magnet material by a dipping method on the processed RTB-based sintered magnet material. Next, the RL1-RH-M1 system alloy was adhered to the entire surface of the R-T-B system sintered magnet material coated with the adhesive under the production conditions shown in Table 8. The RL1-RH-M1 alloy used was one obtained by crushing the RL1-RH-M1 alloy in an argon atmosphere using a mortar and then passing it through a comb having an opening of 300 μm. Then, using a vacuum heat treatment furnace, the RL1-RH-M1 system alloy and the R-T-B system sintered magnet material were prepared under reduced pressure argon controlled to 200 Pa under the conditions shown in the first diffusion step of Table 8. After heating, it was cooled.

[第二拡散工程]
第一拡散工程が実施されたR−T−B系焼結磁石素材に再度、ディッピング法により粘着剤としてPVAを全面に塗布した。その後、表8に示す作製条件で、粘着剤が塗布された第一拡散工程が実施されたR−T−B系焼結磁石素材全面にRL2−M2系合金を付着させた(但し、サンプルNo.2−1、2−2及び2−6はRL2−M2系合金の付着無し)。なお、RL2−M2系合金は、RL2−M2系合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き300〜1000μmの数種類の篩を通過させ、粒度の異なるRL2−M2系合金を用いることにより調整した。そして、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、表8の第二拡散工程に示す条件で前記RL2−M2系合金が付着したR−T−B系焼結磁石素材を加熱した後、冷却した(但し、サンプルNo.2−1、2−2及び2−6はRL2−M2系合金の付着無しで加熱のみ)。第二拡散処理後の各サンプルに対し表面研削盤を用いて各サンプルの全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体状のサンプル(R−T−B系焼結磁石)を得た。尚、第一拡散工程を実施する工程におけるRL1−RH−M1系合金及びR−T−B系焼結磁石素材の加熱温度、並びに第二拡散工程を実施する工程におけるRL2−M2系合金及びR−T−B系焼結磁石素材の加熱温度は、それぞれ熱電対により測定した。
[Second diffusion step]
PVA as an adhesive was applied to the entire surface of the RTB-based sintered magnet material on which the first diffusion step was performed again by the dipping method. Then, under the manufacturing conditions shown in Table 8, the RL2-M2 alloy was attached to the entire surface of the RTB-based sintered magnet material on which the first diffusion step in which the adhesive was applied was performed (however, sample No. 2-1, 2-2 and 2-6 have no RL2-M2 alloy adhered). As the RL2-M2 alloy, the RL2-M2 alloy is crushed in an argon atmosphere using a mortar and then passed through several kinds of sieves having openings of 300 to 1000 μm to use RL2-M2 alloys having different particle sizes. Adjusted accordingly. Then, using a vacuum heat treatment furnace, the RTB-based sintered magnet material to which the RL2-M2 alloy is attached is heated under reduced pressure argon controlled to 200 Pa under the conditions shown in the second diffusion step of Table 8. After that, it was cooled (however, sample Nos. 2-1, 2-2 and 2-6 were only heated without adhesion of the RL2-M2 alloy). The surface of each sample after the second diffusion treatment was cut using a surface grinder, and a cubic sample of 7.0 mm×7.0 mm×7.0 mm (RTB-based sintering) Got a magnet). In addition, the heating temperature of the RL1-RH-M1 system alloy and the RTB system sintered magnet material in the process of performing the first diffusion process, and the RL2-M2 system alloy and R in the process of performing the second diffusion process. The heating temperature of the -TB sintered magnet material was measured by a thermocouple.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各サンプルのB及びHcJを測定した。測定結果を表8に示す。表8の通りサンプルNo.2−7〜2−13、2−15〜2−17の本発明例は、いずれも重希土類元素の使用量を低減しつつ、高いBと高いHcJが得られていることがわかる。これに対し、R−T−B系焼結磁石素材における[T]/[B]のmol比が14.0超15.0以下でなく、かつ、R−T−B系焼結磁石素材にRL2−M2合金を付着させなかったサンプルNo.2−1及び2−2や、R−T−B系焼結磁石素材における[T]/[B]のmol比が14.0超15.0以下でないサンプルNo.2−3〜2−5は高いHcJが得られなかった。さらに、R−T−B系焼結磁石素材にRL2−M2合金を付着させなかったサンプルNo.2−6は高いHcJが得られなかった。また、RL2−M2系合金の付着量が15mass%超であるサンプルNo.2−14はBが大幅に低下していた。
[sample test]
The obtained sample was measured B r and H cJ of each sample by the B-H tracer. The measurement results are shown in Table 8. As shown in Table 8, sample No. The present invention Examples of 2-7~2-13,2-15~2-17 are all while reducing the amount of heavy rare earth elements, it can be seen that obtain a high B r and high H cJ. On the other hand, the [T]/[B] molar ratio in the RTB-based sintered magnet material is not more than 14.0 and 15.0 or less, and the RTB-based sintered magnet material is Sample No. with no RL2-M2 alloy attached. Sample Nos. 2-1 and 2-2, and the [T]/[B] molar ratio in the RTB-based sintered magnet material that is not more than 14.0 and not more than 15.0. In 2-3 to 2-5, high HcJ was not obtained. Furthermore, sample No. in which the RL2-M2 alloy was not attached to the R-T-B system sintered magnet material. 2-6 did not obtain high H cJ . In addition, Sample No. 1 having an adhesion amount of the RL2-M2 alloy of more than 15 mass%. 2-14 B r had been significantly reduced.

Figure 2020120101
Figure 2020120101

実験例3
[R−T−B系焼結磁石素材(磁石素材)を準備する工程]
表9の符号3−Aに示す磁石素材の組成となるように、各元素を秤量しストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 3
[Step of preparing RTB sintered magnet material (magnet material)]
Each element was weighed and cast by the strip casting method so as to have the composition of the magnet material shown by reference numeral 3-A in Table 9, and a flaky raw material alloy having a thickness of 0.2 to 0.4 mm was obtained. The obtained flaky raw material alloy was pulverized with hydrogen and then subjected to a dehydrogenation treatment of heating in vacuum to 550° C. and then cooling to obtain coarsely pulverized powder. Next, after adding zinc stearate as a lubricant to the obtained coarsely pulverized powder in an amount of 0.04 mass% with respect to 100 mass% of the coarsely pulverized powder and mixing them, nitrogen was obtained by using an air flow type pulverizer (jet mill device). Dry pulverization was performed in an air stream to obtain finely pulverized powder (alloy powder) having a particle size D 50 of 4 μm. The particle diameter D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate as a lubricant was added to the finely pulverized powder in an amount of 0.05 mass% with respect to 100 mass% of the finely pulverized powder, and the mixture was molded in a magnetic field to obtain a molded body. A so-called orthogonal magnetic field molding device (transverse magnetic field molding device) in which the magnetic field applying direction and the pressurizing direction are orthogonal to each other was used as the molding device.

得られた成形体を、真空中で4時間焼結(焼結による緻密化が十分起こる温度を選定)した後急冷し、磁石素材を得た。得られた磁石素材の密度は7.5Mg/m以上であった。得られた磁石素材の成分の結果を表9に示す。なお、表9における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、磁石素材の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.1mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。 The obtained molded body was sintered in a vacuum for 4 hours (selecting a temperature at which sufficient densification by sintering occurs) and then rapidly cooled to obtain a magnet material. The density of the obtained magnet material was 7.5 Mg/m 3 or more. Table 9 shows the results of the components of the obtained magnetic material. In addition, each component in Table 9 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). As a result of measuring the oxygen content of the magnet material by the gas melting-infrared absorption method, it was confirmed that all were about 0.1 mass%. Moreover, as a result of measuring C (carbon content) using a gas analyzer by a combustion-infrared absorption method, it was confirmed that it was around 0.1 mass %.

Figure 2020120101
Figure 2020120101

[RL1−RH−M1系合金を準備する工程]
表10の符号3−a1〜3−g1に示すRL1−RH−M1系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られたRL1−RH−M1系合金の組成を表10に示す。尚、表10における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Step of preparing RL1-RH-M1 series alloy]
Each element was weighed and the raw materials thereof were melted so that the composition of the RL1-RH-M1 series alloy indicated by the reference signs 3-a1 to 3-g1 in Table 10 was obtained, and the single roll ultra-quenching method (melt spinning method) was used. A ribbon or flake alloy was obtained by. Table 10 shows the composition of the obtained RL1-RH-M1 based alloy. In addition, each component in Table 10 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120101
Figure 2020120101

[RL2−M2系合金を準備する工程]
表11の符号3−a2に示すRL2−M2系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られたRL2−M2系合金の組成を表11に示す。尚、表11における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Process of preparing RL2-M2 alloy]
Each element was weighed and their raw materials were melted so as to have the composition of the RL2-M2 alloy shown by symbol 3-a2 in Table 11, and ribbons or flakes were formed by the single-roll ultra-quenching method (melt spinning method). An alloy was obtained. Table 11 shows the composition of the obtained RL2-M2 alloy. In addition, each component in Table 11 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120101
Figure 2020120101

[第一拡散工程]
表9の符号3−AのR−T−B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体とした。加工後のR−T−B系焼結磁石素材にディッピング法により粘着剤としてPVAをR−T−B系焼結磁石素材全面に塗布した。次に表12に示す作製条件で粘着剤を塗布したR−T−B系焼結磁石素材全面にRL1−RH−M1系合金を付着させた。なお、RL1−RH−M1系合金付着量およびRH付着量は、RL1−RH−M1系合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き38〜1000μmの数種類の篩を通過させ、粒度の異なるRL1−RH−M1系合金を用いることにより調整した。そして、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、表12の第一拡散工程に示す条件で前記RL1−RH−M1系合金及び前記R−T−B系焼結磁石素材を加熱した後、冷却した。
[First diffusion step]
The R-T-B based sintered magnet material indicated by the reference numeral 3-A in Table 9 was cut and cut into a cube of 7.2 mm x 7.2 mm x 7.2 mm. PVA as an adhesive was applied to the entire surface of the RTB-based sintered magnet material by a dipping method on the processed RTB-based sintered magnet material. Next, the RL1-RH-M1 system alloy was adhered to the entire surface of the R-T-B system sintered magnet material coated with the adhesive under the production conditions shown in Table 12. The RL1-RH-M1 alloy deposition amount and the RH deposition amount are obtained by crushing the RL1-RH-M1 alloy in an argon atmosphere using a mortar and then passing through several sieves having openings 38 to 1000 μm. It was adjusted by using RL1-RH-M1 series alloys having different grain sizes. Then, using a vacuum heat treatment furnace, the RL1-RH-M1 system alloy and the R-T-B system sintered magnet material were prepared under reduced pressure argon controlled to 200 Pa under the conditions shown in the first diffusion step of Table 12. After heating, it was cooled.

[第二拡散工程]
第一拡散工程が実施されたR−T−B系焼結磁石素材に再度、ディッピング法により粘着剤としてPVAを全面に塗布した。その後、表12に示す作製条件で、粘着剤が塗布された第一拡散工程が実施されたR−T−B系焼結磁石素材全面にRL2−M2系合金を付着させた。なお、RL2−M2系合金は、RL2−M2系合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き300μmの櫛を通過させたものを用いた。そして、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、表12の第二拡散工程に示す条件で前記RL2−M2系合金及び前記第一拡散工程が実施されたR−T−B系焼結磁石素材を加熱した後、冷却した。第二拡散処理後の各サンプルに対し表面研削盤を用いて各サンプルの全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体状のサンプル(R−T−B系焼結磁石)を得た。尚、第一拡散工程を実施する工程におけるRL1−RH−M1系合金及びR−T−B系焼結磁石素材の加熱温度、並びに第二拡散工程を実施する工程におけるRL2−M2系合金及びR−T−B系焼結磁石素材の加熱温度は、それぞれ熱電対により測定した。
[Second diffusion step]
PVA as an adhesive was applied to the entire surface of the RTB-based sintered magnet material on which the first diffusion step was performed again by the dipping method. Then, under the manufacturing conditions shown in Table 12, the RL2-M2 alloy was attached to the entire surface of the RTB-based sintered magnet material on which the first diffusion step in which the adhesive was applied was performed. The RL2-M2 alloy used was one obtained by crushing the RL2-M2 alloy in a mortar in an argon atmosphere and then passing it through a comb having an opening of 300 μm. Then, using the vacuum heat treatment furnace, in the reduced pressure argon controlled to 200 Pa, the RL2-M2 alloy and the RTB in which the first diffusion step was performed under the conditions shown in the second diffusion step of Table 12. The sintered magnet material was heated and then cooled. The surface of each sample after the second diffusion treatment was cut using a surface grinder, and a cubic sample of 7.0 mm×7.0 mm×7.0 mm (RTB-based sintering) Got a magnet). In addition, the heating temperature of the RL1-RH-M1 system alloy and the RTB system sintered magnet material in the process of performing the first diffusion process, and the RL2-M2 system alloy and R in the process of performing the second diffusion process. The heating temperature of the -TB sintered magnet material was measured by a thermocouple.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各サンプルのB及びHcJを測定した。測定結果を表12に示す。表12の通りサンプルNo.3−2〜3−6の本発明例は、いずれも重希土類元素の使用量を低減しつつ、高いBと高いHcJが得られていることがわかる。これに対し、RL1−RH−M1系合金のRH量が1mass%未満であるサンプルNo.3−1は高いHcJが得られなかった。また、サンプルNo.3−7は高いBと高いHcJが得られているが、RH付着量が0.6mass%超でありサンプルNo.3−6に比べてBとHcJがともに低下している。そのため、重希土類元素の使用量を低減しつつ、高いBと高いHcJを有するR−T−B系焼結磁石を得ることができない。
[sample test]
The obtained sample was measured B r and H cJ of each sample by the B-H tracer. The measurement results are shown in Table 12. As shown in Table 12, sample No. The present invention Examples of 3-2~3-6 are all while reducing the amount of heavy rare earth elements, it can be seen that obtain a high B r and high H cJ. On the other hand, the sample No. in which the RH amount of the RL1-RH-M1 alloy is less than 1 mass%. 3-1 could not obtain high HcJ . In addition, the sample No. 3-7 is higher B r and high H cJ are obtained, RH adhesion amount is 0.6 mass% greater Sample No. It has reduced both the B r and H cJ compared to the 3-6. Therefore, while reducing the amount of heavy rare earth elements, it is impossible to obtain a R-T-B based sintered magnet having a high B r and high H cJ.

Figure 2020120101
Figure 2020120101

実験例4
[R−T−B系焼結磁石素材(磁石素材)を準備する工程]
表13の符号4−Aに示す磁石素材の組成となるように、各元素を秤量しストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 4
[Step of preparing RTB sintered magnet material (magnet material)]
Each element was weighed and cast by the strip casting method so as to have the composition of the magnet raw material shown by the symbol 4-A in Table 13, and a flaky raw material alloy having a thickness of 0.2 to 0.4 mm was obtained. The obtained flaky raw material alloy was pulverized with hydrogen and then subjected to a dehydrogenation treatment of heating in vacuum to 550° C. and then cooling to obtain coarsely pulverized powder. Next, after adding zinc stearate as a lubricant to the obtained coarsely pulverized powder in an amount of 0.04 mass% with respect to 100 mass% of the coarsely pulverized powder and mixing them, nitrogen was obtained by using an air flow type pulverizer (jet mill device). Dry pulverization was performed in an air stream to obtain finely pulverized powder (alloy powder) having a particle size D 50 of 4 μm. The particle diameter D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate as a lubricant was added to the finely pulverized powder in an amount of 0.05 mass% with respect to 100 mass% of the finely pulverized powder, and the mixture was molded in a magnetic field to obtain a molded body. A so-called orthogonal magnetic field molding device (transverse magnetic field molding device) in which the magnetic field applying direction and the pressurizing direction are orthogonal to each other was used as the molding device.

得られた成形体を、真空中で4時間焼結(焼結による緻密化が十分起こる温度を選定)した後急冷し、磁石素材を得た。得られた磁石素材の密度は7.5Mg/m以上であった。得られた磁石素材の成分の結果を表13に示す。なお、表13における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、磁石素材の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.1mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。 The obtained molded body was sintered in a vacuum for 4 hours (selecting a temperature at which sufficient densification by sintering occurs) and then rapidly cooled to obtain a magnet material. The density of the obtained magnet material was 7.5 Mg/m 3 or more. Table 13 shows the results of the components of the obtained magnetic material. In addition, each component in Table 13 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). As a result of measuring the oxygen content of the magnet material by the gas melting-infrared absorption method, it was confirmed that all were about 0.1 mass%. Moreover, as a result of measuring C (carbon content) using a gas analyzer by a combustion-infrared absorption method, it was confirmed that it was around 0.1 mass %.

Figure 2020120101
Figure 2020120101

[RL1−RH−M1系合金を準備する工程]
表14の符号4−a1に示すRL1−RH−M1系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られたRL1−RH−M1系合金の組成を表14に示す。尚、表14における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Step of preparing RL1-RH-M1 series alloy]
Each element is weighed and the raw materials thereof are melted so as to have the composition of the RL1-RH-M1 series alloy shown by symbol 4-a1 in Table 14, and ribbons or flakes are formed by a single roll ultra-quenching method (melt spinning method). A shaped alloy was obtained. Table 14 shows the composition of the obtained RL1-RH-M1 based alloy. In addition, each component in Table 14 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120101
Figure 2020120101

[RL2−M2系合金を準備する工程]
表15の符号4−a2に示すRL2−M2系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られたRL2−M2系合金の組成を表15に示す。尚、表15における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Process of preparing RL2-M2 alloy]
Each element was weighed and their raw materials were melted so as to have the composition of the RL2-M2 series alloy shown by the symbol 4-a2 in Table 15, and ribbons or flakes were formed by the single roll ultra-quenching method (melt spinning method). An alloy was obtained. Table 15 shows the composition of the obtained RL2-M2 alloy. Each component in Table 15 was measured using a high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120101
Figure 2020120101

[第一拡散工程]
表13の符号4−AのR−T−B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体とした。加工後のR−T−B系焼結磁石素材にディッピング法により粘着剤としてPVAをR−T−B系焼結磁石素材全面に塗布した。次に表16に示す作製条件で粘着剤を塗布したR−T−B系焼結磁石素材全面にRL1−RH−M1系合金を付着させた。なお、RL1−RH−M1系合金は、RL1−RH−M1系合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き300μmの櫛を通過させたものを用いた。そして、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、表16の第一拡散工程に示す条件で前記RL1−RH−M1系合金及び前記R−T−B系焼結磁石素材を加熱した後、冷却した。
[First diffusion step]
The RTB-based sintered magnet material of 4-A in Table 13 was cut and cut into a cube of 7.2 mm×7.2 mm×7.2 mm. PVA as an adhesive was applied to the entire surface of the RTB-based sintered magnet material by a dipping method on the processed RTB-based sintered magnet material. Next, the RL1-RH-M1 system alloy was adhered to the entire surface of the R-T-B system sintered magnet material coated with the adhesive under the production conditions shown in Table 16. The RL1-RH-M1 alloy used was one obtained by crushing the RL1-RH-M1 alloy in an argon atmosphere using a mortar and then passing it through a comb having an opening of 300 μm. Then, using a vacuum heat treatment furnace, the RL1-RH-M1 system alloy and the R-T-B system sintered magnet material were prepared under reduced pressure argon controlled to 200 Pa under the conditions shown in the first diffusion step of Table 16. After heating, it was cooled.

[第二拡散工程]
第一拡散工程が実施されたR−T−B系焼結磁石素材に再度、ディッピング法により粘着剤としてPVAを全面に塗布した。その後、表16に示す作製条件で、粘着剤が塗布された第一拡散工程が実施されたR−T−B系焼結磁石素材全面にRL2−M2系合金を付着させた。なお、RL2−M2系合金は、RL2−M2系合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き300μmの櫛を通過させたものを用いた。そして、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、表16の第二拡散工程に示す条件で前記RL2−M2系合金及び前記第一拡散工程が実施されたR−T−B系焼結磁石素材を加熱した後、冷却した。第二拡散処理後の各サンプルに対し表面研削盤を用いて各サンプルの全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体状のサンプル(R−T−B系焼結磁石)を得た。尚、第一拡散工程を実施する工程におけるRL1−RH−M1系合金及びR−T−B系焼結磁石素材の加熱温度、並びに第二拡散工程を実施する工程におけるRL2−M2系合金及びR−T−B系焼結磁石素材の加熱温度は、それぞれ熱電対により測定した。
[Second diffusion step]
PVA as an adhesive was applied to the entire surface of the RTB-based sintered magnet material on which the first diffusion step was performed again by the dipping method. After that, under the production conditions shown in Table 16, the RL2-M2 alloy was attached to the entire surface of the RTB-based sintered magnet material on which the first diffusion step in which the adhesive was applied was performed. The RL2-M2 alloy used was one obtained by crushing the RL2-M2 alloy in a mortar in an argon atmosphere and then passing it through a comb having an opening of 300 μm. Then, using the vacuum heat treatment furnace, the RL2-M2 alloy and the R-T-B in which the first diffusion process was performed under the conditions shown in the second diffusion process of Table 16 in depressurized argon controlled to 200 Pa. The sintered magnet material was heated and then cooled. The surface of each sample after the second diffusion treatment was cut using a surface grinder, and a cubic sample of 7.0 mm×7.0 mm×7.0 mm (RTB-based sintering) Got a magnet). In addition, the heating temperature of the RL1-RH-M1 system alloy and the RTB system sintered magnet material in the process of performing the first diffusion process, and the RL2-M2 system alloy and R in the process of performing the second diffusion process. The heating temperature of the -TB sintered magnet material was measured by a thermocouple.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各サンプルのB及びHcJを測定した。測定結果を表16に示す。表16の通りサンプルNo.4−2〜4−8の本発明例は、いずれも重希土類元素の使用量を低減しつつ、高いBと高いHcJが得られていることがわかる。これに対し、第一拡散工程の処理温度が700℃未満であるサンプルNo.4−1は高いHcJが得られなかった。また、第一拡散工程の処理温度が1100℃超であるサンプルNo.4−9も高いHcJが得られなかった。
[sample test]
The obtained sample was measured B r and H cJ of each sample by the B-H tracer. The measurement results are shown in Table 16. As shown in Table 16, sample No. The present invention Examples of 4-2~4-8 are all while reducing the amount of heavy rare earth elements, it can be seen that obtain a high B r and high H cJ. On the other hand, sample No. 1 having a treatment temperature of less than 700° C. in the first diffusion step. No high H cJ was obtained for 4-1. In addition, in the sample No. 1 having a treatment temperature in the first diffusion step of more than 1100°C. High HcJ was not obtained even for 4-9.

Figure 2020120101
Figure 2020120101

実験例5
[R−T−B系焼結磁石素材(磁石素材)を準備する工程]
表17の符号5−Aに示す磁石素材の組成となるように、各元素を秤量しストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 5
[Step of preparing RTB sintered magnet material (magnet material)]
Each element was weighed and cast by a strip casting method so as to have the composition of the magnet material shown by the symbol 5-A in Table 17, and a flaky raw material alloy having a thickness of 0.2 to 0.4 mm was obtained. The obtained flaky raw material alloy was pulverized with hydrogen and then subjected to a dehydrogenation treatment of heating in vacuum to 550° C. and then cooling to obtain coarsely pulverized powder. Next, after adding zinc stearate as a lubricant to the obtained coarsely pulverized powder in an amount of 0.04 mass% with respect to 100 mass% of the coarsely pulverized powder and mixing them, nitrogen was obtained by using an air flow type pulverizer (jet mill device). Dry pulverization was performed in an air stream to obtain finely pulverized powder (alloy powder) having a particle size D 50 of 4 μm. The particle diameter D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate as a lubricant was added to the finely pulverized powder in an amount of 0.05 mass% with respect to 100 mass% of the finely pulverized powder, and the mixture was molded in a magnetic field to obtain a molded body. A so-called orthogonal magnetic field molding device (transverse magnetic field molding device) in which the magnetic field applying direction and the pressurizing direction are orthogonal to each other was used as the molding device.

得られた成形体を、真空中で4時間焼結(焼結による緻密化が十分起こる温度を選定)した後急冷し、磁石素材を得た。得られた磁石素材の密度は7.5Mg/m以上であった。得られた磁石素材の成分の結果を表17に示す。なお、表17における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、磁石素材の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.1mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。 The obtained molded body was sintered in a vacuum for 4 hours (selecting a temperature at which sufficient densification by sintering occurs) and then rapidly cooled to obtain a magnet material. The density of the obtained magnet material was 7.5 Mg/m 3 or more. Table 17 shows the results of the components of the obtained magnet material. In addition, each component in Table 17 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, as a result of measuring the oxygen content of the magnet material by the gas melting-infrared absorption method, it was confirmed that all were about 0.1 mass %. Moreover, as a result of measuring C (carbon content) using a gas analyzer by a combustion-infrared absorption method, it was confirmed that it was around 0.1 mass %.

Figure 2020120101
Figure 2020120101

[RL1−RH−M1系合金を準備する工程]
表18の符号5−a1に示すRL1−RH−M1系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られたRL1−RH−M1系合金の組成を表18に示す。尚、表18における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Step of preparing RL1-RH-M1 series alloy]
Each element is weighed and the raw materials thereof are melted so as to have the composition of the RL1-RH-M1 series alloy shown by the symbol 5-a1 in Table 18, and ribbons or flakes are prepared by a single roll ultra-quenching method (melt spinning method). A shaped alloy was obtained. Table 18 shows the composition of the obtained RL1-RH-M1 alloy. In addition, each component in Table 18 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120101
Figure 2020120101

[RL2−M2系合金を準備する工程]
表19の符号5−a2に示すRL−RH−M系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られたRL−RH−M系合金の組成を表19に示す。尚、表19における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Process of preparing RL2-M2 alloy]
Each element was weighed and the raw materials thereof were melted so as to have the composition of the RL-RH-M alloy shown by the symbol 5-a2 in Table 19, and ribbons or flakes were formed by a single roll ultra-quenching method (melt spinning method). A shaped alloy was obtained. Table 19 shows the composition of the obtained RL-RH-M alloy. In addition, each component in Table 19 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120101
Figure 2020120101

[第一拡散工程]
表17の符号5−AのR−T−B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体とした。加工後のR−T−B系焼結磁石素材にディッピング法により粘着剤としてPVAをR−T−B系焼結磁石素材全面に塗布した。次に表19に示す作製条件で粘着剤を塗布したR−T−B系焼結磁石素材全面にRL1−RH−M1系合金を付着させた。なお、RL1−RH−M1系合金は、RL1−RH−M1系合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き300μmの櫛を通過させたものを用いた。そして、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、表19の第一拡散工程に示す条件で前記RL1−RH−M1系合金及び前記R−T−B系焼結磁石素材を加熱した後、冷却した。
[First diffusion step]
The R-T-B based sintered magnet material with the code 5-A in Table 17 was cut and cut into a cube of 7.2 mm x 7.2 mm x 7.2 mm. PVA as an adhesive was applied to the entire surface of the RTB-based sintered magnet material by a dipping method on the processed RTB-based sintered magnet material. Next, the RL1-RH-M1 system alloy was adhered to the entire surface of the R-T-B system sintered magnet material coated with the adhesive under the production conditions shown in Table 19. The RL1-RH-M1 alloy used was one obtained by crushing the RL1-RH-M1 alloy in an argon atmosphere using a mortar and then passing it through a comb having an opening of 300 μm. Then, using a vacuum heat treatment furnace, the RL1-RH-M1 system alloy and the R-T-B system sintered magnet material were prepared under reduced pressure argon controlled to 200 Pa under the conditions shown in the first diffusion step of Table 19. After heating, it was cooled.

[第二拡散工程]
第一拡散工程が実施されたR−T−B系焼結磁石素材に再度、ディッピング法により粘着剤としてPVAを全面に塗布した。その後、表19に示す作製条件で、粘着剤が塗布された第一拡散工程が実施されたR−T−B系焼結磁石素材全面にRL2−M2系合金を付着させた。なお、RL2−M2系合金は、RL2−M2系合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き300μmの櫛を通過させたものを用いた。そして、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、表19の第二拡散工程に示す条件で前記RL2−M2系合金及び前記第一拡散工程が実施されたR−T−B系焼結磁石素材を加熱した後、冷却した。第二拡散処理後の各サンプルに対し表面研削盤を用いて各サンプルの全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体状のサンプル(R−T−B系焼結磁石)を得た。尚、第一拡散工程を実施する工程におけるRL1−RH−M1系合金及びR−T−B系焼結磁石素材の加熱温度、並びに第二拡散工程を実施する工程におけるRL2−M2系合金及びR−T−B系焼結磁石素材の加熱温度は、それぞれ熱電対により測定した
[Second diffusion step]
PVA as an adhesive was applied to the entire surface of the RTB-based sintered magnet material on which the first diffusion step was performed again by the dipping method. Then, under the manufacturing conditions shown in Table 19, the RL2-M2 alloy was attached to the entire surface of the RTB-based sintered magnet material on which the first diffusion step in which the adhesive was applied was performed. The RL2-M2 alloy used was one obtained by crushing the RL2-M2 alloy in a mortar in an argon atmosphere and then passing it through a comb having an opening of 300 μm. Then, using a vacuum heat treatment furnace, the RL2-M2 alloy and the R-T-B in which the first diffusion process was performed under the conditions shown in the second diffusion process of Table 19 in reduced pressure argon controlled to 200 Pa. The sintered magnet material was heated and then cooled. The surface of each sample after the second diffusion treatment was cut using a surface grinder, and a cubic sample of 7.0 mm×7.0 mm×7.0 mm (RTB-based sintering) Got a magnet). In addition, the heating temperature of the RL1-RH-M1 system alloy and the RTB system sintered magnet material in the process of performing the first diffusion process, and the RL2-M2 system alloy and R in the process of performing the second diffusion process. The heating temperature of the -T-B system sintered magnet material was measured by a thermocouple.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各サンプルのB及びHcJを測定した。測定結果を表20に示す。表20の通りサンプルNo.5−2〜5−8の本発明例は、いずれも重希土類元素の使用量を低減しつつ、高いBと高いHcJが得られていることがわかる。これに対し、第二拡散工程の処理温度が400℃未満であるサンプルNo.5−1は高いHcJが得られなかった。また、第二拡散工程の処理温度が600℃超であるサンプルNo.5−9も高いHcJが得られなかった。
[sample test]
The obtained sample was measured B r and H cJ of each sample by the B-H tracer. Table 20 shows the measurement results. As shown in Table 20, sample No. The present invention Examples of 5-2~5-8 are all while reducing the amount of heavy rare earth elements, it can be seen that obtain a high B r and high H cJ. On the other hand, sample No. 2 whose processing temperature in the second diffusion step is less than 400°C. 5-1 did not obtain high H cJ . In addition, the sample No. 1 having a treatment temperature of the second diffusion step of higher than 600° C. High HcJ was not obtained even in 5-9.

Figure 2020120101
Figure 2020120101

実験例6
[R−T−B系焼結磁石素材(磁石素材)を準備する工程]
表21の符号6−Aに示す磁石素材の組成となるように、各元素を秤量しストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 6
[Step of preparing RTB sintered magnet material (magnet material)]
Each element was weighed and cast by the strip casting method so as to have the composition of the magnet material shown by 6-A in Table 21, and a flaky raw material alloy having a thickness of 0.2 to 0.4 mm was obtained. The obtained flaky raw material alloy was pulverized with hydrogen and then subjected to a dehydrogenation treatment of heating in vacuum to 550° C. and then cooling to obtain coarsely pulverized powder. Next, after adding zinc stearate as a lubricant to the obtained coarsely pulverized powder in an amount of 0.04 mass% with respect to 100 mass% of the coarsely pulverized powder and mixing them, nitrogen was obtained by using an air flow type pulverizer (jet mill device). Dry pulverization was performed in an air stream to obtain finely pulverized powder (alloy powder) having a particle size D 50 of 4 μm. The particle diameter D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate as a lubricant was added to the finely pulverized powder in an amount of 0.05 mass% with respect to 100 mass% of the finely pulverized powder, and the mixture was molded in a magnetic field to obtain a molded body. A so-called orthogonal magnetic field molding device (transverse magnetic field molding device) in which the magnetic field applying direction and the pressurizing direction are orthogonal to each other was used as the molding device.

得られた成形体を、真空中で4時間焼結(焼結による緻密化が十分起こる温度を選定)した後急冷し、磁石素材を得た。得られた磁石素材の密度は7.5Mg/m以上であった。得られた磁石素材の成分の結果を表21に示す。なお、表21における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、磁石素材の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.1mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。 The obtained molded body was sintered in a vacuum for 4 hours (selecting a temperature at which sufficient densification by sintering occurs) and then rapidly cooled to obtain a magnet material. The density of the obtained magnet material was 7.5 Mg/m 3 or more. Table 21 shows the results of the components of the obtained magnetic material. In addition, each component in Table 21 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, as a result of measuring the oxygen content of the magnet material by the gas melting-infrared absorption method, it was confirmed that all were about 0.1 mass %. Moreover, as a result of measuring C (carbon content) using a gas analyzer by a combustion-infrared absorption method, it was confirmed that it was around 0.1 mass %.

Figure 2020120101
Figure 2020120101

[RL1−RH−M1系合金を準備する工程]
表22の符号6−a1に示すRL1−RH−M1系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られたRL1−RH−M1系合金の組成を表22に示す。尚、表22における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Step of preparing RL1-RH-M1 series alloy]
Each element is weighed and the raw materials thereof are melted so as to have the composition of the RL1-RH-M1 series alloy shown by the reference numeral 6-a1 in Table 22, and ribbons or flakes are prepared by the single-roll ultra-quenching method (melt spinning method). A shaped alloy was obtained. Table 22 shows the composition of the obtained RL1-RH-M1 alloy. In addition, each component in Table 22 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120101
Figure 2020120101

[RL2−M2系合金を準備する工程]
表23の符号6−a2に示すRL2−M2系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られたRL2−M2系合金の組成を表23に示す。尚、表23における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Process of preparing RL2-M2 alloy]
Each element was weighed and the raw materials thereof were melted so as to have the composition of the RL2-M2 series alloy shown by the reference numeral 6-a2 in Table 23, and ribbons or flakes were formed by the single roll ultra-quenching method (melt spinning method). An alloy was obtained. Table 23 shows the composition of the obtained RL2-M2 alloy. In addition, each component in Table 23 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120101
Figure 2020120101

[第一拡散工程]
表21の符号6−AのR−T−B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体とした。加工後のR−T−B系焼結磁石素材にディッピング法により粘着剤としてPVAをR−T−B系焼結磁石素材の全面に塗布した。次に表24に示す作製条件で粘着剤を塗布したR−T−B系焼結磁石素材全面にRL1−RH−M1系合金を付着させた。なお、RL1−RH−M1系合金は、RL1−RH−M1系合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き300μmの櫛を通過させたものを用いた。そして、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、表24の第一拡散工程に示す条件で前記RL1−RH−M1系合金及び前記R−T−B系焼結磁石素材を加熱した後、冷却した。
[First diffusion step]
The RTB sintered magnet material of 6-A in Table 21 was cut and cut into a cube of 7.2 mm×7.2 mm×7.2 mm. PVA as an adhesive was applied to the entire surface of the RTB-based sintered magnet material by a dipping method on the processed RTB-based sintered magnet material. Next, the RL1-RH-M1 system alloy was adhered to the entire surface of the R-T-B system sintered magnet material coated with the adhesive under the production conditions shown in Table 24. The RL1-RH-M1 alloy used was one obtained by crushing the RL1-RH-M1 alloy in an argon atmosphere using a mortar and then passing it through a comb having an opening of 300 μm. Then, using a vacuum heat treatment furnace, the RL1-RH-M1 system alloy and the R-T-B system sintered magnet material were prepared under reduced pressure argon controlled to 200 Pa under the conditions shown in the first diffusion step of Table 24. After heating, it was cooled.

[第二拡散工程]
第一拡散工程が実施されたR−T−B系焼結磁石素材に再度、ディッピング法により粘着剤としてPVAを全面に塗布した。その後、表24に示す作製条件で、粘着剤が塗布された第一拡散工程が実施されたR−T−B系焼結磁石素材全面にRL2−M2系合金を付着させた。なお、RL2−M2系合金は、RL2−M2系合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き300μmの櫛を通過させたものを用いた。そして、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、表24の第二拡散工程に示す条件で前記RL2−M2系合金及び前記第一拡散工程が実施されたR−T−B系焼結磁石素材を加熱した後、冷却した。第二拡散処理後の各サンプルに対し表面研削盤を用いて各サンプルの全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体状のサンプル(R−T−B系焼結磁石)を得た。尚、第一拡散工程を実施する工程におけるRL1−RH−M1系合金及びR−T−B系焼結磁石素材の加熱温度、並びに第二拡散工程を実施する工程におけるRL2−M2系合金及びR−T−B系焼結磁石素材の加熱温度は、それぞれ熱電対により測定した。
[Second diffusion step]
PVA as an adhesive was applied to the entire surface of the RTB-based sintered magnet material on which the first diffusion step was performed again by the dipping method. Then, under the production conditions shown in Table 24, the RL2-M2 alloy was adhered to the entire surface of the RTB-based sintered magnet material on which the first diffusion step in which the adhesive was applied was performed. The RL2-M2 alloy used was one obtained by crushing the RL2-M2 alloy in a mortar in an argon atmosphere and then passing it through a comb having an opening of 300 μm. Then, using a vacuum heat treatment furnace, in the reduced pressure argon controlled to 200 Pa, the RL2-M2 alloy and the R-T-B in which the first diffusion process was performed under the conditions shown in the second diffusion process of Table 24. The sintered magnet material was heated and then cooled. The surface of each sample after the second diffusion treatment was cut using a surface grinder, and a cubic sample of 7.0 mm×7.0 mm×7.0 mm (RTB-based sintering) Got a magnet). In addition, the heating temperature of the RL1-RH-M1 system alloy and the RTB system sintered magnet material in the process of performing the first diffusion process, and the RL2-M2 system alloy and R in the process of performing the second diffusion process. The heating temperature of the -TB sintered magnet material was measured by a thermocouple.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各サンプルのB及びHcJを測定した。測定結果を表24に示す。表24の通りサンプルNo.6−1の本発明例は、重希土類元素の使用量を低減しつつ、高いBと高いHcJが得られていることがわかる。
[sample test]
The obtained sample was measured B r and H cJ of each sample by the B-H tracer. The measurement results are shown in Table 24. As shown in Table 24, sample No. The present invention example 6-1, while reducing the amount of heavy rare earth elements, it can be seen that obtain a high B r and high H cJ.

Figure 2020120101
Figure 2020120101

実験例7
[R−T−B系焼結磁石素材(磁石素材)を準備する工程]
表25の符号6−Aに示す磁石素材の組成となるように、各元素を秤量しストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 7
[Step of preparing RTB sintered magnet material (magnet material)]
Each element was weighed and cast by a strip casting method so as to have the composition of the magnet raw material shown by 6-A in Table 25, and a flaky raw material alloy having a thickness of 0.2 to 0.4 mm was obtained. The obtained flaky raw material alloy was pulverized with hydrogen and then subjected to a dehydrogenation treatment of heating in vacuum to 550° C. and then cooling to obtain coarsely pulverized powder. Next, after adding zinc stearate as a lubricant to the obtained coarsely pulverized powder in an amount of 0.04 mass% with respect to 100 mass% of the coarsely pulverized powder and mixing them, nitrogen was obtained by using an air flow type pulverizer (jet mill device). Dry pulverization was performed in an air stream to obtain finely pulverized powder (alloy powder) having a particle size D 50 of 4 μm. The particle size D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate as a lubricant was added to the finely pulverized powder in an amount of 0.05 mass% with respect to 100 mass% of the finely pulverized powder, and the mixture was molded in a magnetic field to obtain a molded body. A so-called orthogonal magnetic field molding device (transverse magnetic field molding device) in which the magnetic field applying direction and the pressurizing direction are orthogonal to each other was used as the molding device.

得られた成形体を、真空中、1040℃以下(焼結による緻密化が十分起こる温度を選定)で4時間焼結した後急冷し、磁石素材を得た。得られた磁石素材の密度は7.5Mg/m3 以上であった。得られた磁石素材の成分の結果を表25に示す。なお、表25における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、磁石素材の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.1mass%前後であることを確認した。また、C(炭素量)は、燃焼−赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。表25における「[T]/[B]」は、Tを構成する各元素(ここではFe、Al、Si、Mn)に対し、分析値(mass%)をその元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。以下の全ての表も同様である。なお、表25の各組成および酸素量、炭素量を合計しても100mass%にはならない。これは、前記の通り、各成分によって分析方法が異なるためである。その他表についても同様である。 The obtained compact was sintered in vacuum at 1040° C. or lower (selecting a temperature at which sufficient densification by sintering is selected) for 4 hours and then rapidly cooled to obtain a magnet material. The density of the obtained magnet material was 7.5 Mg/m 3 or more. Table 25 shows the results of the components of the obtained magnet material. In addition, each component in Table 25 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, as a result of measuring the oxygen content of the magnet material by the gas melting-infrared absorption method, it was confirmed that all were about 0.1 mass %. Moreover, as a result of measuring C (carbon content) using a gas analyzer by a combustion-infrared absorption method, it was confirmed that it was around 0.1 mass %. In Table 25, “[T]/[B]” means the analytical value (mass %) of each element (here, Fe, Al, Si, and Mn) constituting T divided by the atomic weight of the element. It is the ratio (a/b) of the value obtained by summing these values (a) and the value obtained by dividing the B analysis value (mass %) by the atomic weight of B (b). The same applies to all the tables below. It should be noted that, even if each composition, oxygen content, and carbon content in Table 25 are summed up, it does not reach 100 mass %. This is because the analysis method differs depending on each component as described above. The same applies to the other tables.

Figure 2020120101
Figure 2020120101

[RL1−RH−M1系合金を準備する工程]
表26の符号7−a1〜7−n1に示すRL1−RH−M1系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られた合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き300μmの篩を通過させ、L1−RH−M1系合金を準備した。得られたRL1−RH−M1系合金の組成を表26に示す。尚、表26における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Step of preparing RL1-RH-M1 series alloy]
Each element is weighed and the raw materials thereof are melted so as to have the composition of the RL1-RH-M1 system alloy shown by the symbols 7-a1 to 7-n1 in Table 26, and the single roll ultra-quenching method (melt spinning method) is used. A ribbon or flake alloy was obtained by. The obtained alloy was pulverized in an argon atmosphere using a mortar, and then passed through a sieve having an opening of 300 μm to prepare an L1-RH-M1 alloy. Table 26 shows the composition of the obtained RL1-RH-M1 alloy. In addition, each component in Table 26 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120101
Figure 2020120101

[第一拡散工程]
表25の符号7−AのR−T−B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体とした。次に、R−T−B系焼結磁石素材にディッピング法により粘着剤としてPVAをR−T−B系焼結磁石素材の全面に塗布した。粘着剤を塗布したR−T−B系焼結磁石素材にRL1−RH−M1系合金粉末を付着させた。処理容器にRL1−RH−M1系合金粉末を広げ、粘着剤を塗布したR−T−B系焼結磁石素材の全面に付着させた。次に、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、表28の第一拡散工程に示す温度で前記RL−RH−M系合金及び前記R−T−B系焼結磁石素材を加熱して拡散工程を実施した後、冷却した。
[First diffusion step]
The RTB sintered magnet material of 7-A in Table 25 was cut and cut into a cube of 7.2 mm x 7.2 mm x 7.2 mm. Next, PVA as an adhesive was applied to the entire surface of the RTB sintered magnet material by an dipping method on the RTB sintered magnet material. The RL1-RH-M1 system alloy powder was made to adhere to the RTB system sintered magnet raw material which applied the adhesive agent. The RL1-RH-M1 alloy powder was spread in a processing container and attached to the entire surface of the R-T-B sintered magnet material coated with an adhesive. Next, using a vacuum heat treatment furnace, in the reduced pressure argon controlled to 200 Pa, at the temperature shown in the first diffusion step of Table 28, the RL-RH-M system alloy and the R-T-B system sintered magnet material. Was heated to carry out the diffusion process, and then cooled.

[RL2−M2系合金を準備する工程]
表27の符号7−a2に示すRL2−M2系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られた合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き300μmの篩を通過させ、RL2−M2系合金を準備した。得られたRL2−M2系合金の組成を表27に示す。尚、表27における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。
[Process of preparing RL2-M2 alloy]
Each element was weighed and their raw materials were melted so as to have the composition of the RL2-M2 series alloy shown by the symbol 7-a2 in Table 27, and ribbon or flake shape was formed by the single roll ultra-quenching method (melt spinning method). An alloy was obtained. The obtained alloy was pulverized in an argon atmosphere using a mortar and then passed through a sieve with a mesh opening of 300 μm to prepare an RL2-M2 alloy. Table 27 shows the composition of the obtained RL2-M2 alloy. Each component in Table 27 was measured using a high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).

Figure 2020120101
Figure 2020120101

[第二拡散工程]
第一拡散工程をおこなった後のサンプルに再度、ディッピング法により粘着剤としてPVAを全面に塗布した。その後、処理容器にRL2−M2系合金粉末を広げ、粘着剤を塗布したサンプルの全面に付着させた。次に、真空熱処理炉を用いて200Paに制御した減圧アルゴン中にて、表28の第二拡散工程に示す温度で前記RL2−M2系合金及び前記R−T−B系焼結磁石素材を加熱して拡散工程を実施した後、冷却した。熱処理後の各サンプルに対し表面研削盤を用いて各サンプルの全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体状のサンプル(R−T−B系焼結磁石)を得た。尚、第一拡散工程を実施する工程におけるRL1−RH−M1系合金及びR−T−B系焼結磁石素材の加熱温度、並びに第二拡散工程を実施する工程におけるRL2−M2系合金及びR−T−B系焼結磁石素材の加熱温度は、それぞれ熱電対を取り付けることにより測定した。
[Second diffusion step]
PVA as an adhesive was applied to the entire surface of the sample after the first diffusion step again by the dipping method. Then, the RL2-M2 alloy powder was spread in a processing container and adhered to the entire surface of the sample coated with the adhesive. Next, the RL2-M2 system alloy and the R-T-B system sintered magnet material are heated at a temperature shown in the second diffusion step of Table 28 in reduced pressure argon controlled to 200 Pa using a vacuum heat treatment furnace. After carrying out the diffusion process, the sample was cooled. The entire surface of each sample after the heat treatment was cut using a surface grinder to obtain a cubic sample (RTB sintered magnet) of 7.0 mm × 7.0 mm × 7.0 mm. Obtained. In addition, the heating temperature of the RL1-RH-M1 system alloy and the RTB system sintered magnet material in the process of performing the first diffusion process, and the RL2-M2 system alloy and R in the process of performing the second diffusion process. The heating temperature of the -TB sintered magnet material was measured by attaching a thermocouple.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって各試料のBr及びHcJを測定した。測定結果を表28に示す。表28の通りサンプルNo.7−1〜7−14の本発明例はいずれも高いBr及び高いHcJが得られていることがわかる。
[sample test]
Br and HcJ of each sample of the obtained sample were measured by a BH tracer. Table 28 shows the measurement results. As shown in Table 28, sample No. It can be seen that high Br and high HcJ were obtained in all of the inventive examples 7-1 to 7-14.

Figure 2020120101
Figure 2020120101

本開示によれば、高残留磁束密度、高保磁力のR−T−B系焼結磁石を作製することができる。本開示の焼結磁石は、高温下に晒されるハイブリッド車搭載用モータ等の各種モータや家電製品等に好適である。 According to the present disclosure, an RTB-based sintered magnet having a high residual magnetic flux density and a high coercive force can be manufactured. INDUSTRIAL APPLICABILITY The sintered magnet according to the present disclosure is suitable for various motors such as a motor mounted on a hybrid vehicle exposed to high temperatures, home electric appliances, and the like.

12・・・R14B化合物からなる主相、14・・・粒界相、14a・・・二粒子粒界相、14b・・・粒界三重点 12... Main phase composed of R 2 T 14 B compound, 14... Grain boundary phase, 14a... Two-grain grain boundary phase, 14b... Grain boundary triple point

Claims (4)

R−T−B系焼結磁石素材を準備する工程と、
RL1−RH−M1系合金を準備する工程と、
RL2−M2系合金を準備する工程と、
前記R−T−B系焼結磁石素材の表面の少なくとも一部に、前記RL1−RH−M1系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する第一拡散工程と、
前記第一拡散工程が実施されたR−T−B系焼結磁石素材の表面の少なくとも一部に、前記RL2−M2系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、400℃以上600℃以下の温度で加熱する第二拡散工程と、を含み、
前記第一拡散工程における前記R−T−B系焼結磁石素材への前記RL1−RH−M1系合金の付着量は4mass%以上15mass%以下で、かつ、前記RL1−RH−M1系合金による前記R−T−B系焼結磁石素材へのRHの付着量は0.1mass%以上0.6mass%以下であり、
前記第二拡散工程における前記第一拡散工程が実施されたR−T−B系焼結磁石素材への前記RL2−M2系合金の付着量は1mass%以上15mass%以下であり、
前記R−T−B系焼結磁石素材において、
Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、Rの含有量は、R−T−B系焼結磁石素材全体の27mass%以上35mass%以下であり、
TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含み、T全体に対するFeの含有量が80mass%以上であり、
[T]/[B]のmol比が14.0超15.0以下であり、
前記RL1−RH−M1系合金において、
RL1は軽希土類元素のうちの少なくとも1つであり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、RL1の含有量は、RL1−RH−M1系合金全体の60mass%以上97mass%以下であり、
RHは、Tb、DyおよびHoからなる群から選択された少なくとも1つであり、RHの含有量は、RL1−RH−M1系合金全体の1mass%以上8mass%以下であり、
M1は、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1つであり、M1の含有量は、RL1−RH−M1系合金全体の2mass%以上39mass%以下であり、
前記RL2−M2系合金において、
RL2は軽希土類元素のうちの少なくとも1つであり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、RL2の含有量は、RL2−M2系合金全体の60mass%以上97mass%以下であり、
M2は、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1つであり、M2の含有量は、RL2−M2系合金全体の3mass%以上40mass%以下である、R−T−B系焼結磁石の製造方法。
A step of preparing an RTB-based sintered magnet material,
A step of preparing an RL1-RH-M1 alloy,
A step of preparing an RL2-M2 alloy,
At least a part of the RL1-RH-M1 system alloy is attached to at least a part of the surface of the R-T-B system sintered magnet material, and the temperature is 700°C or more and 1100°C or less in a vacuum or an inert gas atmosphere. A first diffusion step of heating at temperature,
At least a part of the RL2-M2 system alloy is adhered to at least a part of the surface of the R-T-B system sintered magnet material on which the first diffusion process is performed, and the temperature is set to 400 in a vacuum or an inert gas atmosphere. A second diffusion step of heating at a temperature of ℃ or more and 600 ℃ or less,
The amount of the RL1-RH-M1 alloy deposited on the R-T-B sintered magnet material in the first diffusion step is 4 mass% or more and 15 mass% or less, and depends on the RL1-RH-M1 alloy. The amount of RH attached to the R-T-B based sintered magnet material is 0.1 mass% or more and 0.6 mass% or less,
The amount of the RL2-M2 based alloy adhered to the RTB-based sintered magnet material subjected to the first diffusion step in the second diffusion step is 1 mass% or more and 15 mass% or less,
In the R-T-B system sintered magnet material,
R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, and the content of R is 27 mass% or more and 35 mass% or less of the entire RTB-based sintered magnet material. And
T is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, T always contains Fe, and the content of Fe with respect to the entire T is 80 mass% or more,
The molar ratio of [T]/[B] is more than 14.0 and 15.0 or less,
In the RL1-RH-M1 series alloy,
RL1 is at least one of the light rare earth elements, and always contains at least one selected from the group consisting of Nd, Pr and Ce, and the content of RL1 is 60 mass% of the entire RL1-RH-M1 alloy. Is 97 mass% or less,
RH is at least one selected from the group consisting of Tb, Dy, and Ho, and the content of RH is 1 mass% or more and 8 mass% or less of the entire RL1-RH-M1 alloy,
M1 is at least one selected from the group consisting of Cu, Ga, Fe, Co, Ni, and Al, and the content of M1 is 2 mass% or more and 39 mass% or less of the entire RL1-RH-M1 alloy. Yes,
In the RL2-M2 alloy,
RL2 is at least one of the light rare earth elements, and always contains at least one selected from the group consisting of Nd, Pr and Ce, and the content of RL2 is 60 mass% or more and 97 mass% or more of the entire RL2-M2 alloy. % Or less,
M2 is at least one selected from the group consisting of Cu, Ga, Fe, Co, Ni, and Al, and the content of M2 is 3 mass% or more and 40 mass% or less of the entire RL2-M2 alloy. A method for manufacturing an RTB-based sintered magnet.
前記RL1−RH−M1系合金において、RHの含有量は、RL1−RH−M1系合金全体の2mass%以上6mass%以下である、請求項1に記載のR−T−B系焼結磁石の製造方法。 In the RL1-RH-M1 system alloy, the content of RH is 2 mass% or more and 6 mass% or less of the entire RL1-RH-M1 system alloy, and the RTB system sintered magnet according to claim 1. Production method. 前記第一拡散工程における前記R−T−B系焼結磁石素材への前記RL1−RH−M1系合金の付着量は5mass%以上10massmass%以下である、請求項1又は2に記載のR−T−B系焼結磁石の製造方法。 The R- according to claim 1 or 2, wherein an amount of the RL1-RH-M1 based alloy deposited on the R-T-B based sintered magnet material in the first diffusion step is 5 mass% or more and 10 mass% or less. A manufacturing method of a TB type sintered magnet. 前記第二拡散工程における前記R−T−B系焼結磁石素材への前記RL2−M2系合金の付着量は2mass%以上10mass%以下である、請求項1から3のいずれかに記載のR−T−B系焼結磁石の製造方法。 The R according to any one of claims 1 to 3, wherein an amount of the RL2-M2 alloy deposited on the R-T-B sintered magnet material in the second diffusion step is 2 mass% or more and 10 mass% or less. -The manufacturing method of a TB type sintered magnet.
JP2019176503A 2019-01-28 2019-09-27 Method for producing RTB based sintered magnet Active JP7310499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010076504.7A CN111489888B (en) 2019-01-28 2020-01-23 Method for producing R-T-B sintered magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019012163 2019-01-28
JP2019012163 2019-01-28

Publications (2)

Publication Number Publication Date
JP2020120101A true JP2020120101A (en) 2020-08-06
JP7310499B2 JP7310499B2 (en) 2023-07-19

Family

ID=71891240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019176503A Active JP7310499B2 (en) 2019-01-28 2019-09-27 Method for producing RTB based sintered magnet

Country Status (1)

Country Link
JP (1) JP7310499B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7342058B2 (en) 2021-04-23 2023-09-11 株式会社大林組 Tunnel waterproofing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234971A (en) * 2011-05-02 2012-11-29 Hitachi Metals Ltd Method for manufacturing r-t-b-based sintered magnet
JP2014150119A (en) * 2013-01-31 2014-08-21 Hitachi Metals Ltd Method of manufacturing r-t-b based sintered magnet
JP2014160760A (en) * 2013-02-20 2014-09-04 Hitachi Metals Ltd Method for manufacturing r-t-b-based sintered magnet
JP2018018911A (en) * 2016-07-27 2018-02-01 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
WO2018034264A1 (en) * 2016-08-17 2018-02-22 日立金属株式会社 R-t-b sintered magnet
WO2018143230A1 (en) * 2017-01-31 2018-08-09 日立金属株式会社 Method for producing r-t-b sintered magnet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234971A (en) * 2011-05-02 2012-11-29 Hitachi Metals Ltd Method for manufacturing r-t-b-based sintered magnet
JP2014150119A (en) * 2013-01-31 2014-08-21 Hitachi Metals Ltd Method of manufacturing r-t-b based sintered magnet
JP2014160760A (en) * 2013-02-20 2014-09-04 Hitachi Metals Ltd Method for manufacturing r-t-b-based sintered magnet
JP2018018911A (en) * 2016-07-27 2018-02-01 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
WO2018034264A1 (en) * 2016-08-17 2018-02-22 日立金属株式会社 R-t-b sintered magnet
WO2018143230A1 (en) * 2017-01-31 2018-08-09 日立金属株式会社 Method for producing r-t-b sintered magnet

Also Published As

Publication number Publication date
JP7310499B2 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
JP6361813B2 (en) Method for producing RTB-based sintered magnet
JP6414653B1 (en) Method for producing RTB-based sintered magnet
JP6414654B1 (en) Method for producing RTB-based sintered magnet
WO2017018291A1 (en) Method for producing r-t-b system sintered magnet
JP6939337B2 (en) Manufacturing method of RTB-based sintered magnet
JP6380724B1 (en) R-T-B system sintered magnet and manufacturing method thereof
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP6624455B2 (en) Method for producing RTB based sintered magnet
JP7310499B2 (en) Method for producing RTB based sintered magnet
JP2019075426A (en) R-t-b based sintered magnet and manufacturing method thereof
JP2023052675A (en) R-t-b system based sintered magnet
US11424056B2 (en) Method for producing sintered R-T-B based magnet
JP7059995B2 (en) RTB-based sintered magnet
JP2023045934A (en) Method for manufacturing r-t-b based sintered magnet
JP7447606B2 (en) RTB system sintered magnet
JP7452159B2 (en) Manufacturing method of RTB based sintered magnet
CN111489888B (en) Method for producing R-T-B sintered magnet
JP2020120102A (en) Method for manufacturing r-t-b based sintered magnet
JP2020107888A (en) Method for manufacturing r-t-b based sintered magnet
JP6610957B2 (en) Method for producing RTB-based sintered magnet
JP2022147793A (en) Production method of r-t-b based sintered magnet
JP2022151483A (en) Manufacturing method of r-t-b system sintered magnet and r-t-b system sintered magnet
JP2023138369A (en) Manufacturing method of r-t-b-based sintered magnet
JP2022147794A (en) Production method of r-t-b based sintered magnet
JP2023046258A (en) Method for manufacturing r-t-b based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230619

R150 Certificate of patent or registration of utility model

Ref document number: 7310499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150