JP2018198280A - Nitride-based bond magnet - Google Patents

Nitride-based bond magnet Download PDF

Info

Publication number
JP2018198280A
JP2018198280A JP2017102884A JP2017102884A JP2018198280A JP 2018198280 A JP2018198280 A JP 2018198280A JP 2017102884 A JP2017102884 A JP 2017102884A JP 2017102884 A JP2017102884 A JP 2017102884A JP 2018198280 A JP2018198280 A JP 2018198280A
Authority
JP
Japan
Prior art keywords
iron nitride
magnetic powder
nitride
iron
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017102884A
Other languages
Japanese (ja)
Other versions
JP6778651B2 (en
Inventor
竜二 藤澤
Ryuji Fujisawa
竜二 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Toda Kogyo Corp
Original Assignee
TDK Corp
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp, Toda Kogyo Corp filed Critical TDK Corp
Priority to JP2017102884A priority Critical patent/JP6778651B2/en
Publication of JP2018198280A publication Critical patent/JP2018198280A/en
Application granted granted Critical
Publication of JP6778651B2 publication Critical patent/JP6778651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a nitride-based bond magnet having high remanent magnetization, high coercive force, and high mechanical strength.SOLUTION: In a nitride-based bond magnet containing nitride-based magnetic powder and resin, the nitride-based magnetic powder is composed of particles containing an iron nitride phase, and the cross section structure of the nitride-based bond magnet is a structure in which a plurality of nitride-based magnetic powder layers including nitride-based magnetic powders and resin organic material layers made of resins are alternately laminated, and a ratio expressed by (cross-sectional area of the nitride-based magnetic powder layer/cross-sectional area of the resin organic material layer) is 3.0 or more and 10.0 or less, and the thickness per organic resin layer is 1.0 μm or more and 5.0 μm or less.SELECTED DRAWING: Figure 1

Description

本発明は、窒化鉄系ボンド磁石に関する。    The present invention relates to an iron nitride based bonded magnet.

近年、電気自動車やハイブリッド自動車などのモーター用磁石として、Nd−Fe−B系の磁石が広く使われている。しかしながら、Ndに代表されるレアアースは、産業分野を支える高付加価値な部材の原料であり、近年需要が拡大しているため、資源の枯渇や原料価格の不安定化が懸念されている。さらには、途上国においても著しく需要が拡大していることや、その偏在性ゆえに特定の産出国への依存度が高いことから、安定供給確保に対する問題が生じている。   In recent years, Nd-Fe-B magnets have been widely used as motor magnets for electric vehicles and hybrid vehicles. However, rare earths typified by Nd are raw materials for high-value-added members that support the industrial field, and since demand is increasing in recent years, there is a concern about depletion of resources and destabilization of raw material prices. Furthermore, there is a problem in securing a stable supply because the demand is growing significantly in developing countries and the dependence on specific producing countries is high due to its uneven distribution.

上記の問題を回避するため、レアアースを使用せず自然界に無尽蔵に存在する元素(鉄、窒素)から高性能磁石を開発することが求められている。   In order to avoid the above problems, it is required to develop a high-performance magnet from elements (iron, nitrogen) that are inexhaustible in nature without using rare earth.

Fe−N系の化合物、特にFe16は、Feよりも巨大な飽和磁化を示す材料のひとつとして注目されている。 Fe-N-based compounds, particularly Fe 16 N 2, are attracting attention as one of materials exhibiting a larger saturation magnetization than Fe.

しかしながら、Fe16は200℃以上の温度にある程度の時間、さらされることで分解し、巨大な飽和磁化が消失する。したがって、通常の焼結等のプロセスを経ることができない。したがって、Fe16を用いた焼結磁石を得ることができない。すなわち、焼結により緻密化したバルク磁石を作製することができない。このような問題があるため、通常の焼結等のプロセスを経ないで作成可能な磁石にFe16を用いることが検討されてきた。例えば、特許文献1には、Fe16を用いたボンド磁石が記載されている。しかし、ボンド磁石では、磁気特性と機械強度とを両立することができないという問題があり、高性能なモーターに用いることができない。 However, Fe 16 N 2 decomposes when exposed to a temperature of 200 ° C. or higher for a certain period of time, and the huge saturation magnetization disappears. Therefore, it cannot pass through processes, such as normal sintering. Therefore, a sintered magnet using Fe 16 N 2 cannot be obtained. That is, a bulk magnet densified by sintering cannot be produced. Because of such problems, it has been studied to use Fe 16 N 2 for a magnet that can be produced without a process such as ordinary sintering. For example, Patent Document 1 describes a bonded magnet using Fe 16 N 2 . However, the bond magnet has a problem that it is impossible to achieve both magnetic properties and mechanical strength, and cannot be used for a high-performance motor.

特開2009−84115号公報JP 2009-84115 A

本発明は、上記を鑑みたものであり、高い残留磁化、高い保磁力、かつ、高い機械強度を有する窒化鉄系ボンド磁石の提供を目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide an iron nitride-based bonded magnet having high residual magnetization, high coercive force, and high mechanical strength.

本発明に係る窒化鉄系ボンド磁石は、
窒化鉄系磁性粉末および樹脂で構成される窒化鉄系ボンド磁石であり、
前記窒化鉄系磁性粉末は窒化鉄相を含む粒子からなり、
前記窒化鉄系ボンド磁石の断面構造が、前記窒化鉄系磁性粉末を含む窒化鉄系磁性粉末層と前記樹脂からなる樹脂有機物層とが交互に複数積層された構造であり、
(窒化鉄系磁性粉末層の断面積 / 樹脂有機物層の断面積)で表される比が3.0以上10.0以下であり、
前記有機物樹脂層の一層あたりの厚みが1.0μm以上5.0μm以下であることを特徴とする。
The iron nitride bond magnet according to the present invention is
It is an iron nitride based bonded magnet composed of iron nitride based magnetic powder and resin,
The iron nitride magnetic powder is composed of particles containing an iron nitride phase,
The cross-sectional structure of the iron nitride-based bonded magnet is a structure in which a plurality of iron nitride-based magnetic powder layers including the iron nitride-based magnetic powder and a resin organic material layer made of the resin are alternately stacked,
The ratio represented by (the cross-sectional area of the iron nitride magnetic powder layer / the cross-sectional area of the resin organic material layer) is 3.0 or more and 10.0 or less,
The thickness per layer of the organic resin layer is 1.0 μm or more and 5.0 μm or less.

本発明に係る窒化鉄系ボンド磁石は従来の窒化鉄系ボンド磁石に比べて、高い残留磁化、かつ、高い機械強度を有する。   The iron nitride-based bonded magnet according to the present invention has higher residual magnetization and higher mechanical strength than conventional iron nitride-based bonded magnets.

本発明に係る窒化鉄系ボンド磁石は、前記(窒化鉄系磁性粉末層の断面積 / 樹脂有機物層の断面積)で表される比が4.0以上7.0以下であってもよい。   In the iron nitride-based bonded magnet according to the present invention, the ratio represented by (the cross-sectional area of the iron nitride-based magnetic powder layer / the cross-sectional area of the resin organic material layer) may be 4.0 or more and 7.0 or less.

本発明に係る窒化鉄系ボンド磁石は、前記樹脂有機物層の厚みが2.0μm以上4.0μm以下であってもよい。   In the iron nitride-based bonded magnet according to the present invention, the resin organic layer may have a thickness of 2.0 μm or more and 4.0 μm or less.

本発明に係る窒化鉄系ボンド磁石は、前記窒化鉄相を含む粒子の円相当径の平均が30nm以上150nm以下であってもよい。   In the iron nitride-based bonded magnet according to the present invention, the average equivalent circle diameter of the particles containing the iron nitride phase may be 30 nm or more and 150 nm or less.

図1は、本発明の一実施形態に係る窒化鉄系ボンド磁石を積層面に対して垂直な面に削り出した断面の概略図である。FIG. 1 is a schematic cross-sectional view of an iron nitride-based bonded magnet according to an embodiment of the present invention cut into a plane perpendicular to the laminated surface.

以下、本発明の好適な実施形態について、図面に示す実施形態に基づき説明する。なお、本発明は以下に記載の実施形態に限定されるものではない。また、以下に記載の実施形態および実施例にて示された構成要素は適宜組み合わせても良く、適宜選択しても良い。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described based on the embodiments shown in the drawings. The present invention is not limited to the embodiments described below. In addition, the constituent elements shown in the embodiments and examples described below may be appropriately combined or may be appropriately selected.

図1に示すように、本発明に記載の窒化鉄系ボンド磁石1は窒化鉄相を含む粒子2aからなる窒化鉄系磁性粉末および樹脂有機物4aからなる窒化鉄系磁性粉末層2と樹脂有機物4aからなる樹脂有機物層4とが交互に積層された構造を有する。   As shown in FIG. 1, an iron nitride based bonded magnet 1 according to the present invention includes an iron nitride based magnetic powder composed of particles 2a containing an iron nitride phase, an iron nitride based magnetic powder layer 2 composed of a resin organic material 4a, and a resin organic material 4a. And a resin organic material layer 4 made of

窒化鉄相とは、窒化鉄を主成分とする強磁性相である。窒化鉄としてはFe16化合物が代表的であるが、Fe16化合物に限定されず、FeN化合物など、FeおよびNのみからなる化合物であればよい。窒化鉄相を含む粒子2aは、窒化鉄相以外の窒化物相を含んでいてもよい。窒化鉄相を含む粒子2aにおける窒化鉄相の割合には特に限定はないが95重量%以上であることが好ましい。また、粒子が窒化鉄相を含むことはXRDを用いて確認することができる。 The iron nitride phase is a ferromagnetic phase mainly composed of iron nitride. While content of the Fe 16 N 2 compound was as iron nitride is typically not limited to content of the Fe 16 N 2 compound thereof, such as Fe 4 N compound may be a compound consisting of Fe and N. The particles 2a containing an iron nitride phase may contain a nitride phase other than the iron nitride phase. The ratio of the iron nitride phase in the particles 2a containing the iron nitride phase is not particularly limited, but is preferably 95% by weight or more. Moreover, it can be confirmed using XRD that the particles contain an iron nitride phase.

さらに、前記窒化鉄相を含む粒子2aにおける窒化鉄相はMn、Ni、Co、Ti、Zn等の遷移金属を含んでいてもよい。また、前記窒化鉄相を含む粒子2aはFe、FeおよびFeO等の酸化物や微量のSi化合物等を含んでいてもよく、本願発明の効果を妨げる範囲外であればその他の成分を含んでいてもよい。これらの成分の含有量には特に制限はない。例えば、前記窒化鉄相を含む粒子2a全体を100重量%として、前記Mn、Ni、Co、Ti、Zn等の遷移金属は1重量%以下、前記Si化合物は3重量%以下、前記その他の成分は1重量%以下、含んでいてもよい。 Furthermore, the iron nitride phase in the particles 2a containing the iron nitride phase may contain a transition metal such as Mn, Ni, Co, Ti, Zn. Further, the particles 2a containing the iron nitride phase may contain oxides such as Fe 2 O 3 , Fe 3 O 4 and FeO, a trace amount of Si compounds, etc. Other components may be included. There is no restriction | limiting in particular in content of these components. For example, assuming that the entire particle 2a containing the iron nitride phase is 100% by weight, the transition metal such as Mn, Ni, Co, Ti and Zn is 1% by weight or less, the Si compound is 3% by weight or less, and the other components May be contained in an amount of 1% by weight or less.

また、前記窒化鉄相を含む粒子2aは表面に非磁性相を有していてもよい。非磁性相の種類には特に限定はない。例えば窒化鉄の酸化物相が例示される。また、本実施形態では、図1に示すように、窒化鉄系磁性粉末層2における前記窒化鉄相を含む粒子2a以外の部分には樹脂有機物4aが充填されているが、窒化鉄相を含む粒子2a以外の部分は空隙であってもよい。   The particles 2a containing the iron nitride phase may have a nonmagnetic phase on the surface. There is no particular limitation on the type of nonmagnetic phase. For example, an oxide phase of iron nitride is exemplified. Moreover, in this embodiment, as shown in FIG. 1, although resin organic substance 4a is filled in parts other than the particle | grains 2a containing the said iron nitride phase in the iron nitride type magnetic powder layer 2, it contains an iron nitride phase. Portions other than the particles 2a may be voids.

前記樹脂有機物層4は、分子量10000以上である樹脂有機物4aを主成分とするが、分子量の小さい有機物を含んでいてもよい。そして、前記樹脂有機物層4は前記窒化鉄相を含む粒子2aを実質的に含まない。樹脂有機物4aを主成分とするとは、樹脂有機物層4に占める分子量10000以上である樹脂有機物4aの割合が99重量%以上であることを指す。また、前記窒化鉄相を含む粒子2aを実質的に含まないことは、後述する元素マッピングにおいて前記窒化鉄相を含む粒子2a由来の成分が検出されないことにより確認できる。   The resin organic material layer 4 is mainly composed of the resin organic material 4a having a molecular weight of 10,000 or more, but may contain an organic material having a small molecular weight. And the resin organic substance layer 4 does not contain the particle | grains 2a containing the said iron nitride phase substantially. The phrase “resin organic matter 4a as a main component” means that the proportion of the resin organic matter 4a having a molecular weight of 10,000 or more in the resin organic matter layer 4 is 99% by weight or more. Moreover, it can confirm that the particle | grains 2a containing the said iron nitride phase are not included substantially because the component derived from the particle | grains 2a containing the said iron nitride phase is not detected in the element mapping mentioned later.

本実施形態に係る窒化鉄系ボンド磁石は、前記窒化鉄相を含む粒子2aを実質的に含まない樹脂有機物層4が存在することにより、前記窒化鉄系磁性粉末層2同士の接着性が向上し、機械強度(特に曲げ強度)が向上する。   In the iron nitride-based bonded magnet according to the present embodiment, the adhesion between the iron nitride-based magnetic powder layers 2 is improved by the presence of the resin organic material layer 4 that does not substantially include the particles 2a including the iron nitride phase. In addition, mechanical strength (particularly bending strength) is improved.

前記窒化鉄系磁石1の断面において、(窒化鉄系磁性粉末層の断面積/樹脂有機物層の断面積)で表される比(以下、単に「断面積比」と呼ぶことがある)が3.0以上10.0以下である。断面積比が3.0未満の場合には、窒化鉄系ボンド磁石1中の樹脂有機物層4の割合が少なくなるため、十分な機械強度(特に曲げ強度)が得られなくなりやすい。また、断面積比が10.0より大きい場合には、窒化鉄系ボンド磁石1中の窒化鉄系磁性粉末層2の割合が少なくなるため、十分な残留磁化が得られなくなりやすい。より好ましくは断面積比が4.0以上7.0以下である。   In the cross section of the iron nitride-based magnet 1, a ratio represented by (the cross-sectional area of the iron nitride-based magnetic powder layer / the cross-sectional area of the resin organic material layer) (hereinafter sometimes simply referred to as “cross-sectional area ratio”) is 3. 0.0 or more and 10.0 or less. When the cross-sectional area ratio is less than 3.0, the ratio of the resin organic material layer 4 in the iron nitride-based bond magnet 1 is reduced, so that sufficient mechanical strength (particularly bending strength) is not easily obtained. Further, when the cross-sectional area ratio is greater than 10.0, the ratio of the iron nitride magnetic powder layer 2 in the iron nitride bond magnet 1 is reduced, so that it is difficult to obtain sufficient residual magnetization. More preferably, the cross-sectional area ratio is 4.0 or more and 7.0 or less.

なお、窒化鉄系磁性粉末層2の一層当りの厚みには特に制限はない。例えば、3.0μm以上50μm以下とすることができる。また、4.0μm以上35μm以下としてもよく、8.0μm以上24μm以下としてもよい。   The thickness per layer of the iron nitride magnetic powder layer 2 is not particularly limited. For example, it can be 3.0 μm or more and 50 μm or less. Moreover, it is good also as 4.0 micrometers or more and 35 micrometers or less, and good also as 8.0 micrometers or more and 24 micrometers or less.

前記窒化鉄系ボンド磁石1の断面において、樹脂有機物層4の一層当りの厚みは1.0μm以上5.0μm以下である。前記樹脂有機物層4の一層当りの厚みが1.0μm未満の場合には、窒化鉄系磁性粉末層2同士を樹脂有機物層4により十分に接着することが難しくなり、十分な機械強度(特に曲げ強度)が得られなくなりやすい。また、樹脂有機物層4の一層当りの厚みが5.0μmより大きい場合は、相対的に前記窒化鉄系磁性粉末層2の一層当りの厚みが厚くなりすぎ、前記窒化鉄系磁性粉末層2内部にてクラックが発生しやすくなり、十分な機械強度(特に曲げ強度)が得られなくなりやすい。より好ましくは樹脂有機物層の一層当りの厚みが2.0μm以上4.0μm以下である。   In the cross section of the iron nitride-based bonded magnet 1, the thickness of the resin organic material layer 4 per layer is 1.0 μm or more and 5.0 μm or less. When the thickness per layer of the resin organic material layer 4 is less than 1.0 μm, it becomes difficult to sufficiently bond the iron nitride magnetic powder layers 2 to each other with the resin organic material layer 4, and sufficient mechanical strength (especially bending) (Strength) is not easily obtained. Further, when the thickness per layer of the resin organic material layer 4 is larger than 5.0 μm, the thickness per layer of the iron nitride magnetic powder layer 2 becomes relatively thick, and the inside of the iron nitride magnetic powder layer 2 is relatively thick. Cracks are likely to occur, and sufficient mechanical strength (particularly bending strength) cannot be obtained. More preferably, the thickness per layer of the resin organic material layer is 2.0 μm or more and 4.0 μm or less.

ここで、窒化鉄系磁性粉末層および樹脂有機物層を同定する方法を説明し、断面積比の同定方法および各層の厚みを同定する方法を説明する。   Here, a method for identifying the iron nitride magnetic powder layer and the resin organic material layer will be described, and a method for identifying the cross-sectional area ratio and a method for identifying the thickness of each layer will be described.

窒化鉄系磁性粉末層および樹脂有機物層は窒化鉄系ボンド磁石1の断面を観察することによって同定できる。例えば、透過型電子顕微鏡によって1.0μm×1.0μmの測定領域について倍率20万倍で断面観察を行い、さらにEDSにより元素分布マッピングを行い、元素マッピング像において窒化鉄相を含む粒子2a由来の元素および樹脂有機物4a由来の元素が含まれる層を窒化鉄系磁性粉末層2とした。具体的には、Fe、NおよびCが元素マッピングにより検出された層を窒化鉄系磁性粉末層とした。これに対し、樹脂有機物4a由来の元素のみが含まれ、窒化鉄相を含む粒子2a由来の元素が実質的に含まれない層を樹脂有機物層4とした。具体的には、Feが元素マッピングにより検出されず、Cが元素マッピングにより検出された層を樹脂有機物層として同定する。なお、樹脂有機物4aとしてNを含有しない化合物を用いる場合には、Feと共にNも元素マッピングにより検出されないことになる。   The iron nitride magnetic powder layer and the resin organic material layer can be identified by observing the cross section of the iron nitride bond magnet 1. For example, a cross section of a 1.0 μm × 1.0 μm measurement area is observed with a transmission electron microscope at a magnification of 200,000 times, further element distribution mapping is performed by EDS, and the element mapping image is derived from particles 2a containing an iron nitride phase. The layer containing the element and the element derived from the resin organic substance 4a was used as the iron nitride magnetic powder layer 2. Specifically, the layer in which Fe, N and C were detected by element mapping was used as an iron nitride magnetic powder layer. On the other hand, the layer containing only the element derived from the resin organic material 4a and substantially not including the element derived from the particle 2a containing the iron nitride phase was defined as the resin organic material layer 4. Specifically, a layer in which Fe is not detected by element mapping and C is detected by element mapping is identified as a resin organic material layer. In addition, when using the compound which does not contain N as the resin organic substance 4a, N will not be detected by elemental mapping with Fe.

断面積比については、まず、窒化鉄系ボンド磁石の断面に対して、それぞれ異なる500個の測定領域で断面観察を行い、それぞれの測定領域における断面積比を算出する。そして、500個の領域での断面積比を平均することにより、当該窒化鉄系ボンド磁石の断面積比を算出できる。   Regarding the cross-sectional area ratio, first, cross-sectional observation is performed on 500 different measurement regions with respect to the cross-section of the iron nitride-based bonded magnet, and the cross-sectional area ratio in each measurement region is calculated. Then, by averaging the cross-sectional area ratios in 500 regions, the cross-sectional area ratio of the iron nitride-based bond magnet can be calculated.

また、有機物層の一層当たりの厚みは、各構成層の断面積比、有機物樹脂層の長さおよび有機物樹脂層の数より算出できる。   Moreover, the thickness per layer of the organic material layer can be calculated from the cross-sectional area ratio of each constituent layer, the length of the organic material resin layer, and the number of organic material resin layers.

前記窒化鉄相を含む粒子2aの円相当径の平均が30nm以上150nm以下であることが好ましい。前記窒化鉄相を含む粒子2aの円相当径の平均が上記の範囲内である場合には、特に保磁力が増加する傾向がある。窒化鉄相を含む粒子2aの円相当径の平均は、各構成層の断面積比、各測定領域全体の面積および各測定領域における窒化鉄相を含む粒子の数より算出できる。   The average equivalent circle diameter of the particles 2a containing the iron nitride phase is preferably 30 nm or more and 150 nm or less. When the average equivalent circle diameter of the particles 2a containing the iron nitride phase is within the above range, the coercive force tends to increase particularly. The average equivalent circle diameter of the particles 2a containing the iron nitride phase can be calculated from the cross-sectional area ratio of each constituent layer, the total area of each measurement region, and the number of particles containing the iron nitride phase in each measurement region.

以下、本実施形態に係る窒化鉄系ボンド磁石1の好適な製造方法について述べるが、本実施形態に係る窒化鉄系ボンド磁石1の製造方法は以下の方法に限定されない。   Hereinafter, although the suitable manufacturing method of the iron nitride based bonded magnet 1 which concerns on this embodiment is described, the manufacturing method of the iron nitride based bonded magnet 1 which concerns on this embodiment is not limited to the following method.

まず、窒化鉄相を含む粒子2aの原料となる酸化鉄粒子を準備する。前記酸化鉄粒子は、鉄(II)塩および/または鉄(III)塩(以下、単に「鉄塩」と呼ぶことがある)を含む鉄塩水溶液と、アルカリ水溶液と、を混合させた後に、熟成反応を進行させることにより製造することができる。   First, iron oxide particles serving as a raw material for the particles 2a containing an iron nitride phase are prepared. The iron oxide particles are mixed with an aqueous iron salt solution containing an iron (II) salt and / or an iron (III) salt (hereinafter sometimes simply referred to as “iron salt”) and an alkaline aqueous solution. It can be produced by advancing the aging reaction.

前期鉄塩の種類には特に限定はなく、例えば、硫酸塩、塩化物、硝酸塩等を使用することができ、これらを適宜組み合わせて使用してもよい。また、それらの水和物を使用することができる。   There are no particular limitations on the type of the iron salt, and for example, sulfates, chlorides, nitrates, and the like can be used, and these may be used in appropriate combination. Moreover, those hydrates can be used.

前記アルカリ水溶液の種類には特に限定はなく、例えば、水酸化ナトリウム水溶液、アンモニア水、アンモニア塩水溶液、および尿素水溶液からなる群から選択される1つ以上を用いることができるが、その他のアルカリ水溶液を用いてもよい。   There is no particular limitation on the type of the aqueous alkali solution, and for example, one or more selected from the group consisting of an aqueous sodium hydroxide solution, aqueous ammonia, aqueous ammonia salt solution, and aqueous urea solution can be used. May be used.

前記熟成反応の条件に特に制限はなく、前記鉄塩の種類および前記アルカリ水溶液の種類により適宜選択することができる。   There is no restriction | limiting in particular in the conditions of the said ageing | curing | ripening reaction, It can select suitably by the kind of the said iron salt and the kind of said aqueous alkali solution.

また、熟成反応後に得られる酸化鉄の結晶性改良、粒子サイズの制御、および、粒子形状の制御を容易にする観点からは、オートクレーブによる水熱処理などの液中熟成反応により熟成反応を行うことが好ましい。   Further, from the viewpoint of improving the crystallinity of iron oxide obtained after the aging reaction, controlling the particle size, and controlling the particle shape, the aging reaction can be carried out by in-liquid aging reaction such as hydrothermal treatment with an autoclave. preferable.

熟成反応後の水溶液をろ過することで熟成反応により得られた酸化鉄粒子を回収することができる。また、熟成反応後の水溶液に対して遠心分離機等を用いて水洗等の洗浄処理を施すことで、酸化鉄粒子を含む酸化鉄スラリーを得てもよい。   The iron oxide particles obtained by the aging reaction can be recovered by filtering the aqueous solution after the aging reaction. Moreover, you may obtain the iron oxide slurry containing an iron oxide particle by performing washing processes, such as water washing, using the centrifuge etc. with respect to the aqueous solution after aging reaction.

前記酸化鉄粒子は、後述する還元処理によって酸化鉄粒子同士が焼結することを抑制するために、粒子表面の一部をSi化合物で被覆してもよい。Si化合物としては、コロイダルシリカ、シランカップリング剤、シラノール化合物等が使用できるが、これらに限定されない。   In order to suppress the iron oxide particles from being sintered together by a reduction treatment described later, a part of the particle surface may be coated with a Si compound. As the Si compound, colloidal silica, a silane coupling agent, a silanol compound, and the like can be used, but are not limited thereto.

Si化合物で被覆する場合には、Si化合物の被覆量は酸化鉄粒子に対してSi換算で0.1重量%以上20重量%以下であることが好ましい。0.1重量%以上とすることで、熱処理時に酸化鉄粒子間の焼結を抑制する効果が十分に得られやすくなり、最終的に得られる窒化鉄相を含む粒子2aの円相当径の平均を150nm以下に制御しやすくなる。20重量%以下とすることで熱処理時に酸化鉄粒子間の焼結を適度に抑制しやすくなり、最終的に得られる窒化鉄相を含む粒子2aの円相当径の平均を30nm以上に制御しやすくなる。   When coating with a Si compound, the coating amount of the Si compound is preferably 0.1% by weight or more and 20% by weight or less in terms of Si with respect to the iron oxide particles. By making the content 0.1% by weight or more, the effect of suppressing the sintering between the iron oxide particles during the heat treatment can be sufficiently obtained, and the average equivalent circle diameter of the particles 2a containing the iron nitride phase finally obtained is Can be controlled to 150 nm or less. By making the content 20% by weight or less, it becomes easy to moderately suppress the sintering between the iron oxide particles during the heat treatment, and it is easy to control the average equivalent circle diameter of the particles 2a containing the iron nitride phase finally obtained to 30 nm or more. Become.

また、Si化合物で被覆する工程は、ろ過により得られた酸化鉄粒子に対して行ってもよく、上述した酸化鉄スラリーに対して行ってもよい。また、酸化鉄スラリーに対してSi化合物で被覆する工程を行った後には、酸化鉄スラリーをろ過することで酸化鉄粒子を回収することができる。   Further, the step of coating with the Si compound may be performed on the iron oxide particles obtained by filtration, or may be performed on the iron oxide slurry described above. Moreover, after performing the process which coat | covers with an Si compound with respect to an iron oxide slurry, an iron oxide particle can be collect | recovered by filtering an iron oxide slurry.

前記酸化鉄粒子の平均粒子径には特に制限はないが、10nm以上150nm以下であることが好ましい。平均粒子径を10nm以上150nm以下とすることで、最終的に得られる窒化鉄相を含む粒子2aの円相当径の平均を30nm以上150nm以下に制御しやすくなる。   The average particle diameter of the iron oxide particles is not particularly limited, but is preferably 10 nm or more and 150 nm or less. By setting the average particle size to 10 nm or more and 150 nm or less, it becomes easy to control the average of the equivalent circle diameter of the finally obtained particles 2 a containing an iron nitride phase to 30 nm or more and 150 nm or less.

前記酸化鉄粒子の種類としては、マグネタイト、γ−Fe、α−Fe、α−FeOOH、β−FeOOH、γ−FeOOH、FeOなどが例示されるが、その他の種類の酸化鉄粒子を用いてもよい。 Examples of the iron oxide particles include magnetite, γ-Fe 2 O 3 , α-Fe 2 O 3 , α-FeOOH, β-FeOOH, γ-FeOOH, FeO and the like, but other types of oxidation Iron particles may be used.

前記酸化鉄粒子の粒子形状には特に制限はなく、球状、針状、粒状、紡錘状、直方体状などのいずれでもよい。また、得られた酸化鉄粒子に対して後述する還元処理を行う前に、必要に応じて酸化鉄粒子を乾燥させてもよい。乾燥条件には特に制限はない。   There is no restriction | limiting in particular in the particle shape of the said iron oxide particle, Any, such as spherical shape, needle shape, a granular form, a spindle shape, a rectangular parallelepiped shape, may be sufficient. Moreover, before performing the reduction process mentioned later with respect to the obtained iron oxide particle, you may dry an iron oxide particle as needed. There is no particular limitation on the drying conditions.

本実施形態に係る窒化鉄相を含む粒子2aは、前記酸化鉄粒子に還元処理を行い、得られた鉄粒子に窒化処理を施すことにより得ることができる。さらに、得られた窒化鉄相を含む粒子2aに対して、低温かつ低酸素分圧下にて徐酸化処理を施し、窒化鉄相を含む粒子2aの表面に酸化物相を形成させてもよい。   The particles 2a containing an iron nitride phase according to the present embodiment can be obtained by subjecting the iron oxide particles to a reduction treatment and subjecting the obtained iron particles to a nitriding treatment. Furthermore, the obtained particles 2a containing the iron nitride phase may be subjected to a gradual oxidation treatment at a low temperature and under a low oxygen partial pressure to form an oxide phase on the surface of the particles 2a containing the iron nitride phase.

以下、還元処理、窒化処理および徐酸化処理について説明する。   Hereinafter, reduction treatment, nitriding treatment, and gradual oxidation treatment will be described.

還元処理の温度は特に限定されないが、200℃以上400℃以下とすることが好ましい。還元処理の温度を200℃以上とすることで酸化鉄粒子を十分に還元しやすくなる。還元処理の温度を400℃以下とすることで酸化鉄粒子を十分に還元しつつ、粒子間の焼結は適度に抑制しやすくなる。還元処理の温度は、より好ましくは230℃以上350℃以下である。   Although the temperature of a reduction process is not specifically limited, It is preferable to set it as 200 to 400 degreeC. By reducing the temperature of the reduction treatment to 200 ° C. or higher, the iron oxide particles can be sufficiently reduced. By reducing the temperature of the reduction treatment to 400 ° C. or less, the iron oxide particles are sufficiently reduced, and the sintering between the particles can be moderately suppressed. The temperature of the reduction treatment is more preferably 230 ° C. or higher and 350 ° C. or lower.

還元処理の時間は特に限定されないが、1時間以上96時間以下とすることが好ましい。還元処理の時間が96時間以下であると、還元処理の温度を上昇させても粒子間の焼結を適度に進みにくくなる。その結果、後段の窒化処理が進みやすくなる。還元処理の時間が1時間以上であると十分に還元が進行しやすくなる。還元処理の時間は、より好ましくは2時間以上72時間以下である。   The time for the reduction treatment is not particularly limited, but is preferably 1 hour or more and 96 hours or less. When the time for the reduction treatment is 96 hours or less, it becomes difficult to appropriately proceed the sintering between particles even if the temperature of the reduction treatment is increased. As a result, the nitridation process at the later stage is likely to proceed. If the reduction treatment time is 1 hour or longer, the reduction is sufficiently facilitated. The reduction treatment time is more preferably 2 hours or more and 72 hours or less.

還元処理の雰囲気は、例えばH雰囲気である。 The atmosphere of the reduction process is, for example, an H 2 atmosphere.

次に、還元処理によって得られた鉄粒子の窒化処理を行い、窒化鉄相を含む粒子2aを得る。なお、窒化鉄相としては、例えばFe16相が挙げられるが特に限定されない。 Next, nitriding treatment of the iron particles obtained by the reduction treatment is performed to obtain particles 2a containing an iron nitride phase. Examples of the iron nitride phase include, but are not particularly limited to, an Fe 16 N 2 phase.

窒化処理の温度は100℃以上200℃以下であることが好ましい。窒化処理の温度が100℃以上の場合には窒化が十分に進行しやすくなる。窒化処理の温度が200℃以下の場合には、窒化が過剰に進行しにくくなり、磁気特性の低下を抑制しやすくなる。窒化処理の温度は、より好ましくは120℃以上180℃以下である。   The nitriding temperature is preferably 100 ° C. or higher and 200 ° C. or lower. When the nitriding temperature is 100 ° C. or higher, nitriding is likely to proceed sufficiently. When the temperature of the nitriding treatment is 200 ° C. or less, the nitriding does not easily proceed excessively, and the deterioration of the magnetic characteristics is easily suppressed. The temperature of the nitriding treatment is more preferably 120 ° C. or higher and 180 ° C. or lower.

窒化処理の時間は特に限定されないが、1時間以上48時間以下とすることが好ましい。窒化処理の時間が48時間以下であると、窒化処理の温度を高くしても磁気特性が低下しにくくなる。窒化処理の時間が1時間以上であると、窒化が十分に進行しやすくなる。窒化処理の時間は、より好ましくは3時間以上24時間以下である。   The nitriding time is not particularly limited, but is preferably 1 hour or more and 48 hours or less. When the nitriding time is 48 hours or less, the magnetic characteristics are hardly deteriorated even if the nitriding temperature is increased. If the nitriding time is 1 hour or longer, nitriding is likely to proceed sufficiently. The nitriding time is more preferably 3 hours or more and 24 hours or less.

窒化処理の雰囲気は、NH雰囲気が好ましい。また、NHの他にNおよび/またはHなどを混合させた雰囲気で窒化処理を行ってもよい。 The atmosphere of the nitriding treatment is preferably an NH 3 atmosphere. Further, nitriding treatment may be performed in an atmosphere in which N 2 and / or H 2 or the like is mixed in addition to NH 3 .

また、得られた窒化鉄相を含む粒子2aの徐酸化処理を行うことで、窒化鉄相を含む粒子の表面に酸化物相を形成させることができる。徐酸化処理の温度は40℃以上100℃以下であることが好ましい。徐酸化処理の温度を40℃以上とすることで、粒子表面に酸化物相が十分に形成されやすくなり、磁気特性が低下しにくくなる。また、徐酸化処理の温度が100℃以下の場合には、酸化物相の割合が過剰にならないように制御しやすくなり、磁気特性が低下しにくくなる。徐酸化処理の温度は、より好ましくは50℃以上80℃以下である。   Moreover, an oxide phase can be formed on the surface of the particle | grains containing an iron nitride phase by performing the slow oxidation process of the particle | grains 2a containing the obtained iron nitride phase. The temperature of the gradual oxidation treatment is preferably 40 ° C. or higher and 100 ° C. or lower. By setting the temperature of the gradual oxidation treatment to 40 ° C. or higher, an oxide phase is easily formed on the particle surface, and the magnetic properties are hardly deteriorated. Further, when the temperature of the gradual oxidation treatment is 100 ° C. or lower, it becomes easy to control so that the ratio of the oxide phase does not become excessive, and the magnetic characteristics are not easily lowered. The temperature of the gradual oxidation treatment is more preferably 50 ° C. or higher and 80 ° C. or lower.

徐酸化処理の時間は特に限定されないが、1時間以上96時間以下が好ましい。徐酸化処理の時間が96時間以下であると徐酸化温度が高い場合や徐酸化雰囲気中の酸素濃度が高い場合であっても酸化物相の割合が過剰になりにくく磁気特性が低下しにくくなる。徐酸化処理の時間が1時間以上未満であると酸化物相を十分に形成しやすくなり磁気特性が低下しにくくなる。徐酸化処理の時間は、より好ましくは2時間以上72時間以下である。   The time for the gradual oxidation treatment is not particularly limited, but is preferably 1 hour or more and 96 hours or less. When the gradual oxidation treatment time is 96 hours or less, even if the gradual oxidation temperature is high or the oxygen concentration in the gradual oxidation atmosphere is high, the ratio of the oxide phase is hardly excessive and the magnetic characteristics are not easily lowered. . If the time for the gradual oxidation treatment is less than 1 hour or more, the oxide phase is sufficiently formed and the magnetic properties are not easily lowered. The time for the gradual oxidation treatment is more preferably 2 hours or more and 72 hours or less.

徐酸化処理の雰囲気は、Oを10ppm以上500ppm以下含むN雰囲気が好ましく、Nの他にHeやArなどの不活性ガスを混合させても良い。Oが10ppm以上であると、酸化物相を十分に形成しやすく磁気特性が低下しにくくなる。また、Oが500ppm以下であると、徐酸化温度が高くても酸化物相の割合が過剰になりにくく磁気特性が低下しにくくなる。Oの含有量は、より好ましくは30ppm以上100ppm以下である。 Xu atmosphere oxidation treatment is preferably N 2 atmosphere containing 10ppm or 500ppm or less O 2, may be in addition to mixed with an inert gas such as He or Ar in N 2. When O 2 is 10 ppm or more, it is easy to sufficiently form an oxide phase, and the magnetic properties are hardly deteriorated. In addition, when O 2 is 500 ppm or less, even if the gradual oxidation temperature is high, the ratio of the oxide phase does not easily become excessive, and the magnetic characteristics are hardly lowered. The content of O 2 is more preferably 30 ppm or more and 100 ppm or less.

得られた窒化鉄相を含む粒子2aからなる窒化鉄系磁性粉末と、樹脂と、溶剤と、必要に応じて、各種分散剤、可塑剤などから選択される添加物と、をボールミルなどで混練し、窒化鉄系磁性粉末スラリーを得る。   The obtained iron nitride magnetic powder comprising particles 2a containing an iron nitride phase, a resin, a solvent, and, if necessary, an additive selected from various dispersants, plasticizers, and the like are kneaded with a ball mill or the like. As a result, an iron nitride magnetic powder slurry is obtained.

また、樹脂と、溶剤と、必要に応じて、各種分散剤、可塑剤などから選択される添加物と、をボールミルなどで混練し、樹脂有機物スラリーを得る。   Further, a resin, a solvent, and, if necessary, an additive selected from various dispersants, plasticizers, and the like are kneaded with a ball mill or the like to obtain a resin organic substance slurry.

上述の工程により得られた窒化鉄系磁性粉末スラリーと樹脂有機物スラリーとをそれぞれ塗布し、乾燥することにより、窒化鉄系磁性粉末シートと樹脂有機物シートをそれぞれ得る。窒化鉄磁性粉末シートを作製する際には、窒化鉄系磁性粉末スラリーの塗布後、乾燥するまでの間に、磁石等を用いて磁気的な配向処理を施してもよい。各スラリーの塗布の方法には特に制限はない。代表的な方法としては、ドクターブレード法があげられる。   The iron nitride magnetic powder slurry and the resin organic slurry obtained by the above-described steps are respectively applied and dried to obtain an iron nitride magnetic powder sheet and a resin organic sheet. When producing an iron nitride magnetic powder sheet, a magnetic orientation treatment may be performed using a magnet or the like after applying the iron nitride magnetic powder slurry and before drying. There is no particular limitation on the method of applying each slurry. A typical method is a doctor blade method.

次いで、上述の工程により得られた窒化鉄系磁性粉末シートと、樹脂有機物シートと、を交互に積層して積層体を得る。続いて、得られた積層体に対し、積層方向の両側から緩やかに加圧して窒化鉄系ボンド磁石1を得る。加圧時の圧力には特に制限はなく、窒化鉄系磁性粉末シートにおける磁気的な配向が崩れない程度に緩やかな圧力であればよい。例えば1.0MPa以上100MPa以下とすることができる。   Next, the iron nitride magnetic powder sheet obtained by the above-described process and the resin organic material sheet are alternately laminated to obtain a laminate. Subsequently, the obtained laminated body is gently pressed from both sides in the laminating direction to obtain the iron nitride bond magnet 1. There is no restriction | limiting in particular in the pressure at the time of pressurization, What is necessary is just a moderate pressure so that the magnetic orientation in an iron nitride type magnetic powder sheet may not collapse. For example, it can be 1.0 MPa or more and 100 MPa or less.

本実施形態に係る窒化鉄系ボンド磁石の磁気特性が著しく向上するのは、窒化鉄系磁性粉末シートを磁気的に配向させ、その後の工程で配向が崩れないように加圧するために、得られる窒化鉄系ボンド磁石1の配向度が非常に高くなると考えられる。   The magnetic characteristics of the iron nitride-based bonded magnet according to the present embodiment are remarkably improved because the iron nitride-based magnetic powder sheet is magnetically oriented and pressed so that the orientation does not collapse in subsequent steps. It is considered that the degree of orientation of the iron nitride-based bonded magnet 1 becomes very high.

前記積層体を加圧する際に、磁場を印加しながら加圧しても良い。磁場を印加しながら加圧することにより、最終的に得られる窒化鉄系ボンド磁石1に含まれる窒化鉄系磁性粉末がさらに特定の方向に配向するので、より磁気特性に優れた窒化鉄系ボンド磁石1を得ることができる。   When the laminate is pressurized, it may be pressurized while applying a magnetic field. By applying pressure while applying a magnetic field, the iron nitride-based magnetic powder contained in the finally obtained iron nitride-based bonded magnet 1 is further oriented in a specific direction, so that the iron nitride-based bonded magnet has more excellent magnetic properties. 1 can be obtained.

得られた窒化鉄系ボンド磁石1は、酸化層や樹脂等の劣化を防止するために、表面にめっきや塗装を施しても良い。   The obtained iron nitride-based bonded magnet 1 may be plated or painted on the surface in order to prevent deterioration of the oxide layer, resin, or the like.

次に、本発明の窒化鉄系ボンド磁石について、実施例・比較例を用いてさらに詳細に説明するが、本発明は実施例に示す態様に限定されるものではない。   Next, the iron nitride-based bonded magnet of the present invention will be described in more detail using examples and comparative examples, but the present invention is not limited to the embodiments shown in the examples.

(実施例1)硫酸鉄七水和物(FeSO・7HO)167gと塩化鉄六水和物(FeCl・6HO)85gとをイオン交換水248mLに溶解し、鉄塩水溶液を作製した。前記鉄塩水溶液とは別に準備した2.5mol/Lアンモニア水溶液600gを30℃に保持し、前記アンモニア水溶液600gに対して、先に調整した鉄塩水溶液を500g添加した。その後、70℃で一定となるように前記アンモニア水溶液の温度を制御して30分撹拌することで液中熟成反応を進行させ、酸化鉄を生成させた。その後、遠心分離機を用いて2Lのイオン交換水で3回洗浄を行うことにより酸化鉄スラリーを作製した。 (Example 1) 167 g of iron sulfate heptahydrate (FeSO 4 · 7H 2 O) and 85 g of iron chloride hexahydrate (FeCl 3 · 6H 2 O) are dissolved in 248 mL of ion-exchanged water. Produced. Separately from the iron salt aqueous solution, 600 g of a 2.5 mol / L ammonia aqueous solution prepared was maintained at 30 ° C., and 500 g of the iron salt aqueous solution prepared previously was added to 600 g of the ammonia aqueous solution. Thereafter, the temperature of the aqueous ammonia solution was controlled so as to be constant at 70 ° C., and the mixture was stirred for 30 minutes to advance the aging reaction in the liquid, thereby generating iron oxide. Then, the iron oxide slurry was produced by performing washing | cleaning 3 times with 2L ion-exchange water using a centrifuge.

前記酸化鉄スラリー1000gに、テトラエトキシシラン5.0g、エタノール21g、ジエチレングリコールモノブチルエーテル78gを添加し、Si被着処理を施した。Si被着処理を施した酸化鉄スラリーをろ過した後に85℃で24時間乾燥し、Feを含む酸化鉄粒子を作製した。 To 1000 g of the iron oxide slurry, 5.0 g of tetraethoxysilane, 21 g of ethanol, and 78 g of diethylene glycol monobutyl ether were added to perform Si deposition treatment. The iron oxide slurry subjected to the Si deposition treatment was filtered and then dried at 85 ° C. for 24 hours to produce iron oxide particles containing Fe 2 O 3 .

前記酸化鉄粒子2gを焼成ボートに入れ、熱処理炉に静置した。炉内に窒素ガスを充填した後、水素ガスを1L/minの流量で流しながら、5℃/minの昇温速度で250℃まで昇温し、250℃で48時間保持して還元処理を行った。250℃で48時間保持後、水素ガスの供給を止めて窒素ガスを2L/minの流量で流しながら140℃まで降温した。続いて、アンモニアガスを0.2L/minの流量で流しながら、140℃で24時間保持して窒化処理を行った。140℃で24時間保持後、窒素ガスを2L/minの流量で流しながら、50℃まで降温した。   2 g of the iron oxide particles were placed in a firing boat and left in a heat treatment furnace. After filling the furnace with nitrogen gas, increase the temperature to 250 ° C. at a rate of 5 ° C./min while flowing hydrogen gas at a flow rate of 1 L / min. It was. After maintaining at 250 ° C. for 48 hours, the supply of hydrogen gas was stopped and the temperature was lowered to 140 ° C. while flowing nitrogen gas at a flow rate of 2 L / min. Subsequently, nitriding treatment was performed by maintaining ammonia gas at a flow rate of 0.2 L / min and holding at 140 ° C. for 24 hours. After holding at 140 ° C. for 24 hours, the temperature was lowered to 50 ° C. while flowing nitrogen gas at a flow rate of 2 L / min.

次に、得られた窒化鉄系磁性粉末と混練させる樹脂と溶剤とを準備した。樹脂としてはウレタン樹脂を、溶剤としてはキシレン、メチルエチルケトンおよびシクロヘキサノンを準備した。ウレタン樹脂は分子量23000のものを用いた。溶剤はキシレン、メチルエチルケトンおよびシクロヘキサノンを重量比4:4:2で混合したものを用いた。   Next, a resin and a solvent to be kneaded with the obtained iron nitride magnetic powder were prepared. Urethane resin was prepared as a resin, and xylene, methyl ethyl ketone and cyclohexanone were prepared as solvents. A urethane resin having a molecular weight of 23,000 was used. The solvent used was a mixture of xylene, methyl ethyl ketone and cyclohexanone in a weight ratio of 4: 4: 2.

前記窒化鉄系磁性粉末10g、前記ウレタン樹脂4.7gおよび前記溶剤30gをそれぞれ秤量し、直径2mmのジルコニアボールとともにボールミルで20時間混練し、窒化鉄系磁性粉末スラリーを得た。   10 g of the iron nitride magnetic powder, 4.7 g of the urethane resin, and 30 g of the solvent were weighed and kneaded with a zirconia ball having a diameter of 2 mm for 20 hours by a ball mill to obtain an iron nitride magnetic powder slurry.

また、前記ウレタン樹脂4.7gと前記溶剤30gとをそれぞれ秤量し、直径2mmのジルコニアボールとともにボールミルで20時間混練し、樹脂有機物スラリーを得た。   Further, 4.7 g of the urethane resin and 30 g of the solvent were weighed and kneaded with a zirconia ball having a diameter of 2 mm for 20 hours by a ball mill to obtain a resin organic slurry.

PETフィルム上に前記窒化鉄系磁性粉末スラリーをドクターブレード法にて塗布して、窒化鉄系磁性粉末シートを得た。また、PETフィルム上に樹脂有機物スラリーをドクターブレード法にて塗布して、樹脂有機物シートを得た。   The iron nitride magnetic powder slurry was applied onto a PET film by a doctor blade method to obtain an iron nitride magnetic powder sheet. Moreover, the resin organic substance slurry was apply | coated by the doctor blade method on PET film, and the resin organic substance sheet was obtained.

最終的に得られる窒化鉄系ボンド磁石における窒化鉄系磁性粉末層の厚みが15μmとなるようにブレードのギャップを調整した。また、最終的に得られる窒化鉄系ボンド磁石における樹脂有機物層の厚みが3μmとなるようにブレードのギャップを調整した。   The gap of the blade was adjusted so that the thickness of the iron nitride magnetic powder layer in the finally obtained iron nitride bond magnet was 15 μm. Further, the gap of the blade was adjusted so that the thickness of the resin organic material layer in the finally obtained iron nitride-based bonded magnet was 3 μm.

作製した窒化鉄系磁性粉末シートと樹脂有機物シートとをPETフィルムから剥離し、それぞれ交互に積層し、積層方向の両側から20MPaの圧力をかけて成形することにより、積層構造を有する窒化鉄系ボンド磁石を得た。   The produced iron nitride-based magnetic powder sheet and the resin organic material sheet are peeled off from the PET film, alternately laminated, and molded by applying a pressure of 20 MPa from both sides in the lamination direction, thereby providing an iron nitride-based bond having a laminated structure. A magnet was obtained.

(実施例2)酸化鉄スラリーに添加するテトラエトキシシランの量を4.0gとした点以外は、実施例1と同様にして窒化鉄系ボンド磁石を作製した。   (Example 2) An iron nitride-based bonded magnet was produced in the same manner as in Example 1 except that the amount of tetraethoxysilane added to the iron oxide slurry was 4.0 g.

(実施例3)酸化鉄スラリーに添加するテトラエトキシシランの量を2.5gとした点以外は、実施例1と同様にして窒化鉄系ボンド磁石を作製した。   Example 3 An iron nitride-based bonded magnet was produced in the same manner as in Example 1 except that the amount of tetraethoxysilane added to the iron oxide slurry was 2.5 g.

(実施例4)酸化鉄スラリーに添加するテトラエトキシシランの量を2.5gとし、最終的に得られる窒化鉄系磁性粉末層の厚みが9μmとなるようにブレードギャップを調整した点以外は、実施例1と同様にして窒化鉄系ボンド磁石を作製した。   (Example 4) Except that the amount of tetraethoxysilane added to the iron oxide slurry was 2.5 g, and the blade gap was adjusted so that the thickness of the finally obtained iron nitride magnetic powder layer was 9 μm, In the same manner as in Example 1, an iron nitride based bonded magnet was produced.

(実施例5)酸化鉄スラリーに添加するテトラエトキシシランの量を2.5gとし、最終的に得られる窒化鉄系磁性粉末層の厚みが12μmとなるようにブレードギャップを調整した点以外は、実施例1と同様にして窒化鉄系ボンド磁石を作製した。   (Example 5) Except that the amount of tetraethoxysilane added to the iron oxide slurry was 2.5 g, and the blade gap was adjusted so that the thickness of the finally obtained iron nitride magnetic powder layer was 12 μm, In the same manner as in Example 1, an iron nitride based bonded magnet was produced.

(実施例6)酸化鉄スラリーに添加するテトラエトキシシランの量を2.5gとし、最終的に得られる窒化鉄系磁性粉末層の厚みが21μmとなるようにブレードギャップを調整した点以外は、実施例1と同様にして窒化鉄系ボンド磁石を作製した。   (Example 6) Except that the amount of tetraethoxysilane added to the iron oxide slurry was 2.5 g, and the blade gap was adjusted so that the thickness of the finally obtained iron nitride magnetic powder layer was 21 μm, In the same manner as in Example 1, an iron nitride based bonded magnet was produced.

(実施例7)酸化鉄スラリーに添加するテトラエトキシシランの量を2.5gとし、最終的に得られる窒化鉄系磁性粉末層の厚みが30μmとなるようにブレードギャップを調整した点以外は、実施例1と同様にして窒化鉄系ボンド磁石を作製した。   (Example 7) The amount of tetraethoxysilane added to the iron oxide slurry was 2.5 g, and the blade gap was adjusted so that the thickness of the finally obtained iron nitride-based magnetic powder layer was 30 μm, In the same manner as in Example 1, an iron nitride based bonded magnet was produced.

(実施例8)酸化鉄スラリーに添加するテトラエトキシシランの量を2.5gとし、最終的に得られる窒化鉄系磁性粉末層の厚みが5μmとなるようにブレードギャップを調整し、最終的に得られる樹脂有機物層の厚みが1μmとなるようにブレードギャップを調整した点以外は、実施例1と同様にして窒化鉄系ボンド磁石を作製した。   (Example 8) The amount of tetraethoxysilane added to the iron oxide slurry was 2.5 g, and the blade gap was adjusted so that the thickness of the finally obtained iron nitride magnetic powder layer was 5 μm. An iron nitride-based bonded magnet was produced in the same manner as in Example 1 except that the blade gap was adjusted so that the thickness of the obtained resin organic layer was 1 μm.

(実施例9)酸化鉄スラリーに添加するテトラエトキシシランの量を2.5gとし、最終的に得られる窒化鉄系磁性粉末層の厚みが10μmとなるようにブレードギャップを調整し、最終的に得られる樹脂有機物層の厚みが2μmとなるようにブレードギャップを調整した点以外は、実施例1と同様にして窒化鉄系ボンド磁石を作製した。   (Example 9) The amount of tetraethoxysilane added to the iron oxide slurry is 2.5 g, and the blade gap is adjusted so that the thickness of the finally obtained iron nitride magnetic powder layer is 10 μm. An iron nitride-based bonded magnet was produced in the same manner as in Example 1 except that the blade gap was adjusted so that the thickness of the resulting resin organic layer was 2 μm.

(実施例10)酸化鉄スラリーに添加するテトラエトキシシランの量を2.5gとし、最終的に得られる窒化鉄系磁性粉末層の厚みが20μmとなるようにブレードギャップを調整し、最終的に得られる樹脂有機物層の厚みが4μmとなるようにブレードギャップを調整した点以外は、実施例1と同様にして窒化鉄系ボンド磁石を作製した。   (Example 10) The amount of tetraethoxysilane added to the iron oxide slurry is 2.5 g, and the blade gap is adjusted so that the thickness of the finally obtained iron nitride magnetic powder layer is 20 μm. An iron nitride-based bonded magnet was produced in the same manner as in Example 1 except that the blade gap was adjusted so that the thickness of the obtained resin organic layer was 4 μm.

(実施例11)酸化鉄スラリーに添加するテトラエトキシシランの量を2.5gとし、最終的に得られる窒化鉄系磁性粉末層の厚みが25μmとなるようにブレードギャップを調整し、最終的に得られる樹脂有機物層の厚みが5μmとなるようにブレードギャップを調整した点以外は、実施例1と同様にして窒化鉄系ボンド磁石を作製した。   (Example 11) The amount of tetraethoxysilane added to the iron oxide slurry was 2.5 g, and the blade gap was adjusted so that the thickness of the finally obtained iron nitride magnetic powder layer was 25 μm, and finally An iron nitride-based bonded magnet was produced in the same manner as in Example 1 except that the blade gap was adjusted so that the thickness of the obtained resin organic layer was 5 μm.

(実施例12)酸化鉄スラリーに添加するテトラエトキシシランの量を1.8gとした点以外は、実施例1と同様にして窒化鉄系ボンド磁石を作製した。   (Example 12) An iron nitride-based bonded magnet was produced in the same manner as in Example 1 except that the amount of tetraethoxysilane added to the iron oxide slurry was 1.8 g.

(実施例13)酸化鉄スラリーに添加するテトラエトキシシランの量を0.8gとした点以外は、実施例1と同様にして窒化鉄系ボンド磁石を作製した。   (Example 13) An iron nitride-based bonded magnet was produced in the same manner as in Example 1 except that the amount of tetraethoxysilane added to the iron oxide slurry was 0.8 g.

(実施例14)酸化鉄スラリーに添加するテトラエトキシシランの量を0.6gとした点以外は、実施例1と同様にして窒化鉄系ボンド磁石を作製した。   (Example 14) An iron nitride-based bonded magnet was produced in the same manner as in Example 1 except that the amount of tetraethoxysilane added to the iron oxide slurry was 0.6 g.

(比較例1)酸化鉄スラリーに添加するテトラエトキシシランの量を2.5gとし、最終的に得られる窒化鉄系磁性粉末層の厚みが7.5μmとなるようにブレードギャップを調整した点以外は、実施例1と同様にして窒化鉄系ボンド磁石を作製した。   (Comparative Example 1) Except that the amount of tetraethoxysilane added to the iron oxide slurry was 2.5 g and the blade gap was adjusted so that the finally obtained iron nitride magnetic powder layer had a thickness of 7.5 μm. Produced an iron nitride-based bonded magnet in the same manner as in Example 1.

(比較例2)酸化鉄スラリーに添加するテトラエトキシシランの量を2.5gとし、最終的に得られる窒化鉄系磁性粉末層の厚みが31.5μmとなるようにブレードギャップを調整した点以外は、実施例1と同様にして窒化鉄系ボンド磁石を作製した。   (Comparative example 2) Other than the point that the amount of tetraethoxysilane added to the iron oxide slurry was 2.5 g, and the blade gap was adjusted so that the finally obtained iron nitride magnetic powder layer had a thickness of 31.5 μm Produced an iron nitride-based bonded magnet in the same manner as in Example 1.

(比較例3)酸化鉄スラリーに添加するテトラエトキシシランの量を2.5gとし、最終的に得られる窒化鉄系磁性粉末層の厚みが2.5μmとなるようにブレードギャップを調整し、最終的に得られる樹脂有機物層の厚みが0.5μmとなるようにブレードギャップを調整した点以外は、実施例1と同様にして窒化鉄系ボンド磁石を作製した。   (Comparative Example 3) The amount of tetraethoxysilane added to the iron oxide slurry was 2.5 g, and the blade gap was adjusted so that the thickness of the finally obtained iron nitride magnetic powder layer was 2.5 μm. An iron nitride-based bonded magnet was produced in the same manner as in Example 1 except that the blade gap was adjusted so that the thickness of the resin organic layer thus obtained was 0.5 μm.

(比較例4)酸化鉄スラリーに添加するテトラエトキシシランの量を2.5gとし、最終的に得られる窒化鉄系磁性粉末層の厚みが27.5μmとなるようにブレードギャップを調整し、最終的に得られる樹脂有機物層の厚みが5.5μmとなるようにブレードギャップを調整した点以外は、実施例1と同様にして窒化鉄系ボンド磁石を作製した。   (Comparative Example 4) The amount of tetraethoxysilane added to the iron oxide slurry was 2.5 g, and the blade gap was adjusted so that the thickness of the finally obtained iron nitride magnetic powder layer was 27.5 μm. An iron nitride-based bonded magnet was produced in the same manner as in Example 1 except that the blade gap was adjusted so that the thickness of the resin organic layer thus obtained was 5.5 μm.

(比較例5)まず、酸化鉄スラリーに添加するテトラエトキシシランの量を2.5gとした点以外は実施例1と同様にして、窒化鉄系磁性粉末スラリーと樹脂有機物スラリーとを得た。次に前記窒化鉄系磁性粉末スラリーと前記樹脂有機物スラリーとを重量比5:1で混合して混合スラリーを得た。さらに、前記混合スラリーを熱風乾燥機内にて24時間乾燥して窒化鉄磁性粉末と有機物粉末の混合紛体を得た。そして、前記混合紛体を金型に充填し、3kgf/cmの荷重をかけて圧縮成形を行い、積層構造を有さない窒化鉄系ボンド磁石を作製した。 (Comparative Example 5) First, an iron nitride magnetic powder slurry and a resin organic matter slurry were obtained in the same manner as in Example 1 except that the amount of tetraethoxysilane added to the iron oxide slurry was 2.5 g. Next, the iron nitride magnetic powder slurry and the resin organic slurry were mixed at a weight ratio of 5: 1 to obtain a mixed slurry. Furthermore, the mixed slurry was dried in a hot air dryer for 24 hours to obtain a mixed powder of iron nitride magnetic powder and organic powder. Then, the mixed powder was filled in a mold and compression-molded by applying a load of 3 kgf / cm 2 to produce an iron nitride-based bonded magnet having no laminated structure.

<窒化鉄系磁性粉末が窒化鉄相を含むことの確認>
作製した窒化鉄系磁性粉末について、粉末XRD(リガク製RINT−2500)によりX線回折プロファイルを得た。当該X線回折プロファイルにより、窒化鉄系磁性粉末が窒化鉄相を含む粒子であることを確認した。当該X線回折プロファイルにより同定される窒化鉄相としては、例えばFe16化合物相が例示されるが、特に限定はない。
<Confirmation that iron nitride magnetic powder contains iron nitride phase>
About the produced iron nitride magnetic powder, an X-ray diffraction profile was obtained by powder XRD (Rigaku RINT-2500). From the X-ray diffraction profile, it was confirmed that the iron nitride magnetic powder was a particle containing an iron nitride phase. Examples of the iron nitride phase identified by the X-ray diffraction profile include an Fe 16 N 2 compound phase, but are not particularly limited.

<窒化鉄系ボンド磁石の断面中の構成層の同定>
得られた窒化鉄系ボンド磁石を積層方向に対して垂直な方向に断面が出るように削り出した。透過型電子顕微鏡(TEM、日本電子製JEM−2100FCS)によって1.0μm×1.0μmの測定領域について倍率20万倍で断面観察を行い、さらにEDSにより元素分布マッピングを行った。元素マッピング像より、Fe、NおよびCを含む層を窒化鉄系磁性粉末層とし、Cのみを含む層(FeおよびNが検出されなかった層)を樹脂有機物層として同定した。
<Identification of constituent layers in the cross section of iron nitride-based bonded magnet>
The obtained iron nitride-based bonded magnet was cut out so that a cross section appeared in a direction perpendicular to the stacking direction. A cross section of the 1.0 μm × 1.0 μm measurement region was observed at a magnification of 200,000 with a transmission electron microscope (TEM, JEM-2100FCS manufactured by JEOL), and element distribution mapping was performed with EDS. From the element mapping image, a layer containing Fe, N and C was identified as an iron nitride magnetic powder layer, and a layer containing only C (a layer in which Fe and N were not detected) was identified as a resin organic material layer.

<各構成層の断面積比の同定>
窒化鉄系ボンド磁石の断面に対して、それぞれ異なる500個の50μm×50μmの測定領域で断面観察を行い、それぞれの領域における断面積比を算出し、平均することにより、当該窒化鉄系ボンド磁石の断面積比を算出した。
<Identification of cross-sectional area ratio of each constituent layer>
The cross section of the iron nitride bond magnet is observed in 500 different 50 μm × 50 μm measurement areas, and the cross-sectional area ratio in each area is calculated and averaged. The cross-sectional area ratio was calculated.

<有機物樹脂層の一層あたりの厚み>
各構成層の断面積比、有機物樹脂層の長さおよび有機物樹脂層の数より、有機物樹脂層の一層あたりの厚みを算出した。
<Thickness per layer of organic resin layer>
The thickness per layer of the organic resin layer was calculated from the cross-sectional area ratio of each constituent layer, the length of the organic resin layer, and the number of organic resin layers.

<窒化鉄相を含む粒子の円相当径>
各構成層の断面積比、各測定領域全体の面積および各測定領域における窒化鉄相を含む粒子の数より、窒化鉄相を含む粒子の円相当径を算出した。
<Equivalent circle diameter of particles containing iron nitride phase>
From the cross-sectional area ratio of each constituent layer, the area of each measurement region, and the number of particles containing the iron nitride phase in each measurement region, the equivalent circle diameter of the particles containing the iron nitride phase was calculated.

<残留磁化Brおよび保磁力Hcの測定>
得られた窒化鉄系ボンド磁石の残留磁化Brと保磁力Hcの測定にはB−Hトレーサー(東英工業製TRF−5BH)を用いた。外部印加磁場を25kOeから−25kOeまで変化させて得られた減磁曲線から残留磁化Brおよび保磁力Hcを求めた。本実施例では、残留磁化Brが3.0kG以上であり、かつ、保磁力Hcが2.0kOe以上である窒化鉄系ボンド磁石を磁気特性が良好とした。また、残留磁化Brが4.0kG以上であり、かつ、保磁力Hcが2.5kOe以上である窒化鉄系ボンド磁石を磁気特性がさらに良好とした。
<Measurement of residual magnetization Br and coercive force Hc>
A BH tracer (TRE-5BH manufactured by Toei Kogyo Co., Ltd.) was used to measure the residual magnetization Br and the coercive force Hc of the obtained iron nitride-based bonded magnet. The residual magnetization Br and the coercive force Hc were obtained from a demagnetization curve obtained by changing the externally applied magnetic field from 25 kOe to −25 kOe. In this example, an iron nitride based bond magnet having a residual magnetization Br of 3.0 kG or more and a coercive force Hc of 2.0 kOe or more was considered to have good magnetic properties. In addition, an iron nitride-based bonded magnet having a residual magnetization Br of 4.0 kG or more and a coercive force Hc of 2.5 kOe or more was further improved in magnetic characteristics.

<曲げ強度の測定>
曲げ強度は、得られた窒化鉄系ボンド磁石を80mm×10mm×4mmのサイズに加工し、JIS K7171規格に準じて曲げ強度試験機(インストロンジャパンカンパニーリミテド製INSTRON5543)を用いて測定した。一水準につき5個の試験サンプルを作製して曲げ強度を測定し、その平均値を各水準の曲げ強度とした。曲げ強度が25MPa以上である場合を良好とした。また、曲げ強度が35MPa以上である場合をさらに良好とした。
<Measurement of bending strength>
The bending strength was measured by processing the obtained iron nitride-based bonded magnet into a size of 80 mm × 10 mm × 4 mm and using a bending strength tester (INSTRON 5543 manufactured by Instron Japan Company Limited) according to JIS K7171 standard. Five test samples were prepared for each level, the bending strength was measured, and the average value was taken as the bending strength for each level. The case where the bending strength was 25 MPa or more was considered good. Moreover, the case where bending strength was 35 Mpa or more was made further favorable.

Figure 2018198280
Figure 2018198280

全ての実施例と比較例において、窒化鉄系磁性粉末がFe16化合物相にて構成されていることが確認された。 In all Examples and Comparative Examples, it was confirmed that the iron nitride magnetic powder was composed of an Fe 16 N 2 compound phase.

実施例1〜14より、断面積比および樹脂有機物層の一層当たりの厚みが所定の範囲内である場合には、Br、Hcおよび曲げ強度が全て良好であった。   From Examples 1 to 14, when the cross-sectional area ratio and the thickness per layer of the resin organic material layer were within the predetermined ranges, Br, Hc and bending strength were all good.

実施例1〜3および12〜14より、窒化鉄相を含む粒子の円相当径が30nm以上150nm以下である場合(実施例2,3,12および13)には、Hcがさらに良好であった。   From Examples 1 to 3 and 12 to 14, when the equivalent circle diameter of the particles containing the iron nitride phase was 30 nm or more and 150 nm or less (Examples 2, 3, 12 and 13), Hc was even better. .

実施例3〜7より、断面積比が4.0以上7.0以下である場合(実施例4〜6)には、Brおよび曲げ強度がさらに良好であった。これに対し、断面積比が2.5である比較例1はBrが著しく低下した。また、断面積比が10.5である比較例2は曲げ強度が著しく低下した。   From Examples 3 to 7, when the cross-sectional area ratio was 4.0 or more and 7.0 or less (Examples 4 to 6), the Br and bending strength were even better. On the other hand, in Comparative Example 1 in which the cross-sectional area ratio was 2.5, Br was significantly reduced. Further, in Comparative Example 2 in which the cross-sectional area ratio was 10.5, the bending strength was remarkably reduced.

比較例1でBrが著しく低下した理由は、窒化鉄系ボンド磁石中に含まれる強磁性相の割合が小さくなりすぎたためであると考えらえる。また、比較例2で曲げ強度が著しく低下した理由は、窒化鉄系ボンド磁石中に含まれる樹脂の割合が小さくなり、窒化鉄系磁性粉末層同士を樹脂有機物層により十分に接着できていないためであると考えられる。   It can be considered that the reason why Br was significantly reduced in Comparative Example 1 was that the proportion of the ferromagnetic phase contained in the iron nitride-based bonded magnet was too small. Further, the reason why the bending strength is remarkably lowered in Comparative Example 2 is that the ratio of the resin contained in the iron nitride-based bonded magnet is reduced, and the iron nitride-based magnetic powder layers cannot be sufficiently bonded to each other by the resin organic material layer. It is thought that.

実施例3および8〜11より、樹脂有機物層の一層当たりの厚みが2.0μm以上4.0μm以下である場合(実施例3、9および10)には、曲げ強度がさらに良好であった。これに対し、樹脂有機物層の一層当たりの厚みが0.5μmである比較例3、および、5.5μmである比較例4は、いずれも曲げ強度が著しく低下した。   From Examples 3 and 8 to 11, when the thickness per layer of the resin organic material layer was 2.0 μm or more and 4.0 μm or less (Examples 3, 9 and 10), the bending strength was even better. On the other hand, the comparative example 3 in which the thickness per layer of the resin organic material layer is 0.5 μm and the comparative example 4 in which the thickness is 5.5 μm are remarkably lowered in bending strength.

比較例3で曲げ強度が著しく低下した理由は、樹脂有機物層の厚みが薄すぎるために、窒化鉄系磁性粉末層同士を樹脂有機物層により十分に接着できていないためであると考えられる。   The reason why the bending strength is remarkably reduced in Comparative Example 3 is considered to be because the thickness of the resin organic material layer is too thin and the iron nitride magnetic powder layers cannot be sufficiently bonded to each other by the resin organic material layer.

比較例4で曲げ強度が著しく低下した理由は、窒化鉄系磁性粉末層が相対的に厚くなりすぎることにより、窒化鉄系磁性粉末層内部にてクラックが発生しやすくなったためであると考えられる。   The reason why the bending strength is remarkably lowered in Comparative Example 4 is considered to be that cracks are likely to occur inside the iron nitride magnetic powder layer because the iron nitride magnetic powder layer becomes too thick. .

比較例5に示したように本願発明の積層構造を有していない窒化鉄系ボンド磁石の場合にも、曲げ強度が著しく低い結果となった。これは、窒化鉄相を含む粒子と樹脂とが均一に混ざったことにより、本願発明の積層構造に起因する曲げ強度が得られなかったためであると考えられる。   As shown in Comparative Example 5, even in the case of an iron nitride-based bonded magnet not having the laminated structure of the present invention, the bending strength was extremely low. This is considered to be because the bending strength resulting from the laminated structure of the present invention was not obtained because the particles containing the iron nitride phase and the resin were uniformly mixed.

以上のように、本発明に係る窒化鉄系ボンド磁石は、高い残留磁化、高い保磁力、かつ、高い機械強度(特に曲げ強度)を有することから、レアアースを使用しない磁石として有用である。   As described above, the iron nitride-based bonded magnet according to the present invention has high residual magnetization, high coercive force, and high mechanical strength (particularly bending strength), and thus is useful as a magnet that does not use rare earth.

1 窒化鉄系ボンド磁石
2 窒化鉄系磁性粉末層
2a 窒化鉄相を含む粒子
4 樹脂有機物層
4a 樹脂有機物
DESCRIPTION OF SYMBOLS 1 Iron nitride type bonded magnet 2 Iron nitride type magnetic powder layer 2a Particles containing iron nitride phase 4 Resin organic material layer 4a Resin organic material

Claims (4)

窒化鉄系磁性粉末および樹脂を含む窒化鉄系ボンド磁石であり、
前記窒化鉄系磁性粉末は窒化鉄相を含む粒子からなり、
前記窒化鉄系ボンド磁石の断面構造が、前記窒化鉄系磁性粉末を含む窒化鉄系磁性粉末層と前記樹脂からなる樹脂有機物層とが交互に複数積層された構造であり、
(窒化鉄系磁性粉末層の断面積 / 樹脂有機物層の断面積)で表される比が3.0以上10.0以下であり、
前記有機物樹脂層の一層あたりの厚みが1.0μm以上5.0μm以下である窒化鉄系ボンド磁石。
An iron nitride-based bond magnet containing iron nitride-based magnetic powder and resin,
The iron nitride magnetic powder is composed of particles containing an iron nitride phase,
The cross-sectional structure of the iron nitride-based bonded magnet is a structure in which a plurality of iron nitride-based magnetic powder layers including the iron nitride-based magnetic powder and a resin organic material layer made of the resin are alternately stacked,
The ratio represented by (the cross-sectional area of the iron nitride magnetic powder layer / the cross-sectional area of the resin organic material layer) is 3.0 or more and 10.0 or less,
An iron nitride-based bonded magnet having a thickness per layer of the organic resin layer of 1.0 μm or more and 5.0 μm or less.
前記(窒化鉄系磁性粉末層の断面積 / 樹脂有機物層の断面積)で表される比が4.0以上7.0以下である請求項1に記載の窒化鉄系ボンド磁石。   2. The iron nitride-based bonded magnet according to claim 1, wherein a ratio represented by (the cross-sectional area of the iron nitride-based magnetic powder layer / the cross-sectional area of the resin organic material layer) is 4.0 or more and 7.0 or less. 前記樹脂有機物層の厚みが2.0μm以上4.0μm以下である請求項1または2に記載の窒化鉄系ボンド磁石。   The iron nitride based bonded magnet according to claim 1 or 2, wherein the resin organic layer has a thickness of 2.0 µm or more and 4.0 µm or less. 前記窒化鉄相を含む粒子の円相当径の平均が30nm以上150nm以下である請求項1〜3のいずれかに記載の窒化鉄系ボンド磁石。


The iron nitride-based bond magnet according to any one of claims 1 to 3, wherein an average equivalent circle diameter of the particles containing the iron nitride phase is 30 nm or more and 150 nm or less.


JP2017102884A 2017-05-24 2017-05-24 Iron nitride based bond magnet Active JP6778651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017102884A JP6778651B2 (en) 2017-05-24 2017-05-24 Iron nitride based bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017102884A JP6778651B2 (en) 2017-05-24 2017-05-24 Iron nitride based bond magnet

Publications (2)

Publication Number Publication Date
JP2018198280A true JP2018198280A (en) 2018-12-13
JP6778651B2 JP6778651B2 (en) 2020-11-04

Family

ID=64663554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017102884A Active JP6778651B2 (en) 2017-05-24 2017-05-24 Iron nitride based bond magnet

Country Status (1)

Country Link
JP (1) JP6778651B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085279A1 (en) 2018-10-22 2020-04-30 株式会社アマダホールディングス Laser machining device and laser machining method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114021A (en) * 1998-10-07 2000-04-21 Tokyo Ferrite Seizo Kk Flexible bond magnet
JP2007235017A (en) * 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd Sheet-shaped rare earth bond magnet, its manufacturing method, and motor using it
WO2015151930A1 (en) * 2014-03-31 2015-10-08 株式会社巴川製紙所 Flexible magnetic attraction sheet and method for manufacturing same
JP2016146388A (en) * 2015-02-06 2016-08-12 Tdk株式会社 Iron nitride magnetic powder and bond magnet including same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114021A (en) * 1998-10-07 2000-04-21 Tokyo Ferrite Seizo Kk Flexible bond magnet
JP2007235017A (en) * 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd Sheet-shaped rare earth bond magnet, its manufacturing method, and motor using it
WO2015151930A1 (en) * 2014-03-31 2015-10-08 株式会社巴川製紙所 Flexible magnetic attraction sheet and method for manufacturing same
JP2016146388A (en) * 2015-02-06 2016-08-12 Tdk株式会社 Iron nitride magnetic powder and bond magnet including same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085279A1 (en) 2018-10-22 2020-04-30 株式会社アマダホールディングス Laser machining device and laser machining method

Also Published As

Publication number Publication date
JP6778651B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
US9373432B2 (en) Alcoholic solution and sintered magnet
JP4802795B2 (en) Magnetic particles and method for producing the same
JP5499738B2 (en) Surface-treated rare earth magnetic powder, resin composition for bonded magnet containing the rare earth magnetic powder, and bonded magnet
JP2844269B2 (en) Corrosion resistant permanent magnet and method for producing the same
WO2012128371A1 (en) Rare-earth magnetic powder, method for manufacturing same, compound of same, and bond magnet of same
WO2011081170A1 (en) Corrosion-resistant magnet and method for producing the same
JP4623308B2 (en) Sm-Fe-N-based magnetic particle powder for bonded magnet and method for producing the same, resin composition for bonded magnet, and bonded magnet
JP6485066B2 (en) Iron nitride magnet
JP6778651B2 (en) Iron nitride based bond magnet
JP2019080055A (en) Composite magnetic material, magnet, motor, and method of producing composite magnetic material
JP6520168B2 (en) Iron nitride based magnetic powder and bonded magnet using the same
JPS63217601A (en) Corrosion-resistant permanent magnet and manufacture thereof
US20180301255A1 (en) Composite magnetic material and motor
JP4586937B2 (en) Corrosion-resistant magnet and manufacturing method thereof
WO1998020507A1 (en) Powder for permanent magnet, method for its production and anisotropic permanent magnet made using said powder
JP6778652B2 (en) Iron nitride based magnet
JP6500470B2 (en) Iron nitride magnet
JP6344129B2 (en) Iron nitride magnetic powder and magnet using the same
JP2017183322A (en) Bond magnet arranged by use of iron nitride-based magnetic powder
JP7111549B2 (en) iron nitride magnet
JP2007251059A (en) Rare-earth magnet and manufacturing method thereof
WO2015122271A1 (en) Rare-earth-based magnetic powder and method for producing same, resin composition for bonded magnets, and bonded magnet
JP6225440B2 (en) Magnetic material, method for producing the same, and coating liquid used for the production
JP6519419B2 (en) Iron nitride based magnetic powder and bonded magnet using the same
JP2018198282A (en) Nitriding iron-based magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R150 Certificate of patent or registration of utility model

Ref document number: 6778651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250