JP2007235017A - Sheet-shaped rare earth bond magnet, its manufacturing method, and motor using it - Google Patents

Sheet-shaped rare earth bond magnet, its manufacturing method, and motor using it Download PDF

Info

Publication number
JP2007235017A
JP2007235017A JP2006057415A JP2006057415A JP2007235017A JP 2007235017 A JP2007235017 A JP 2007235017A JP 2006057415 A JP2006057415 A JP 2006057415A JP 2006057415 A JP2006057415 A JP 2006057415A JP 2007235017 A JP2007235017 A JP 2007235017A
Authority
JP
Japan
Prior art keywords
magnet
sheet
rare earth
earth bonded
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006057415A
Other languages
Japanese (ja)
Other versions
JP4816146B2 (en
Inventor
Hiroki Asai
弘紀 浅井
Shinichi Tsutsumi
慎一 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006057415A priority Critical patent/JP4816146B2/en
Publication of JP2007235017A publication Critical patent/JP2007235017A/en
Application granted granted Critical
Publication of JP4816146B2 publication Critical patent/JP4816146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnet maintaining high magnetic property, flexibility and intensity, and to enable reduction in size and weight, high output and high efficiency of a motor by using the magnet. <P>SOLUTION: The sheet-shaped rare earth bond magnet has a constitution where a magnet part has a pseudo double layer structure comprising a magnet part first layer 11 and a magnet part second layer 12. It is effective that the first layer and the second layer contain the different amount of resin which is constituent of the magnet, each other. Further, when the magnet is constituted by using two kinds of magnet powder, bending characteristics is improved by altering composition ratio. As a result, thin pole oriented sheet-shaped rare earth bond magnet having superior magnetic property can be obtained to constitute a high-performance motor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は薄肉で極配向性のシート状希土類ボンド磁石とその製造方法、およびこの磁石を用いるモータに関するものである。   The present invention relates to a sheet-like rare earth bonded magnet having a thin wall and polar orientation, a method for producing the same, and a motor using the magnet.

希土類ボンド磁石はNdFeB系合金もしくはSmFeN系合金に代表される磁石粉末を用い生産がおこなわれている。このボンド磁石は、焼結法により作製された焼結磁石とは異なり、熱可塑性樹脂や熱硬化性樹脂など結合剤成分を含んでいる。このため、磁石の磁気特性は低くなるものの、焼結磁石に見られる収縮がほとんどなく、高い寸法精度で環状、円弧状や薄肉形状などの特殊な形状の磁石が割れ欠けなどなく作製できるという点が特徴である。このため、ボンド磁石のなかでも中空円筒形状の磁石は家電、電装、情報用のモータに多く用いられてきている。   Rare earth bonded magnets are produced using magnet powders typified by NdFeB-based alloys or SmFeN-based alloys. Unlike a sintered magnet produced by a sintering method, this bonded magnet includes a binder component such as a thermoplastic resin or a thermosetting resin. For this reason, although the magnetic properties of the magnet are lowered, there is almost no shrinkage seen in sintered magnets, and a specially shaped magnet such as an annular shape, arc shape or thin wall shape can be produced with high dimensional accuracy without cracking. Is a feature. For this reason, among the bonded magnets, a hollow cylindrical magnet has been widely used in home appliances, electrical equipment, and information motors.

ボンド磁石の製造は、射出成形、押出成形、圧縮成形などの方法に代表されるが、この中でも圧縮成形は射出成形や押出成形とは大きく異なる。その違いの一つが、ボンド磁石用樹脂組成物(磁石粉末と結合材成分で構成)の組成比である。圧縮成形に用いるボンド磁石用樹脂組成物は射出成形や押出成形のように成形時の成形温度において流動性を必要とせず、このため結合剤成分に対する磁石粉末の比率を上げることが可能となる。つまり、圧縮成形されたボンド磁石は、一般的に射出成形や押出成形で形成されたボンド磁石と比較すると高い磁気特性を有するといえる。   The production of bonded magnets is represented by methods such as injection molding, extrusion molding, and compression molding. Among them, compression molding is greatly different from injection molding and extrusion molding. One of the differences is the composition ratio of the resin composition for bonded magnets (consisting of magnet powder and binder component). The resin composition for bonded magnets used for compression molding does not require fluidity at the molding temperature at the time of molding unlike injection molding or extrusion molding. Therefore, the ratio of the magnet powder to the binder component can be increased. That is, it can be said that a compression-bonded bonded magnet generally has higher magnetic properties than a bonded magnet formed by injection molding or extrusion molding.

モータを搭載する機器の高性能化を実現するために、モータには小型軽量化、高出力化、高効率化が要求され、それにともない、ボンド磁石にも更なる磁気特性の向上が求められている。前述したように磁気特性向上の手段として、磁石粉末に希土類磁石を用い、圧縮成形をおこないボンド磁石を形成する方法がとられる。その中でも特に結晶方位を一方向に配向させた異方性希土類磁石粉末を用いたものがより高い磁気特性が得られるため、各種検討がなされている。   In order to realize higher performance of equipment equipped with motors, motors are required to be smaller, lighter, higher output, and more efficient, and with this, bond magnets are required to further improve magnetic properties. Yes. As described above, as a means for improving the magnetic characteristics, a rare earth magnet is used as the magnet powder, and a compression molding is performed to form a bonded magnet. Among them, various studies have been made since a magnetic material having an anisotropic rare earth magnet powder in which the crystal orientation is oriented in one direction can obtain higher magnetic characteristics.

この結晶方位を一方向に配向させた磁石粉末は以下のプロセスによって得られる。まず、熱間据え込み加工によるものは、機械的に配向させて得たバルク体を粉砕して形成するものである。HDDR処理(水素分解/再結合)によるものはGa,Zr,Hf,などの元素を添加したNd−Fe(Co)−B系合金インゴットを水素中で熱処理し、650〜1000℃で相分解し、脱水素した後、再結合させて得るものである。HDDR処理の意味はNd−0(Fe,Co)−B相の水素化(Hydrogenation)、650〜1000℃での相分解(Decomposition)、脱水素(Desorpsion)、再結合(Recombination)するということである。   Magnet powder in which the crystal orientation is oriented in one direction is obtained by the following process. First, what is formed by hot upsetting is formed by pulverizing a bulk body obtained by mechanical orientation. In the case of HDDR treatment (hydrogen decomposition / recombination), Nd—Fe (Co) —B alloy ingot added with elements such as Ga, Zr, Hf, etc. is heat-treated in hydrogen and phase decomposed at 650-1000 ° C. This is obtained by dehydrogenation and recombination. The meaning of the HDDR treatment is that the Nd-0 (Fe, Co) -B phase is hydrogenated (Hydrogenation), phase decomposition (Decomposition) at 650 to 1000 ° C., dehydrogenation (Desorption), and recombination (Recombination). is there.

HDDR処理により作製された異方性磁石粉末を用いてボンド磁石を形成する場合について説明する。磁石粉末はエポキシ樹脂などの熱硬化性樹脂と混合された後、金型のキャビティ内に充填され、圧縮成形を実施する。圧縮成形による緻密化の際、磁石粉末に亀裂や破損が発生すると、新たにNdFeB結晶が暴露され、高温暴露時においてそれらの組織が変化し永久減磁が増大するなど、異方性の磁石粉末は、熱的な安定性に対する課題を有している。このため、HDDR処理により作製された異方性Nd−Fe−B系磁石粉末に対しては、平均粒子径が1〜5μmの異方性のSm−Fe−N系磁石粉末と混合し、ボンド磁石用樹脂組成物とすることにより、熱的な耐久性を向上させることが知られている。これは、平均粒子径が1〜5μmと細かな異方性のSm−Fe−N系磁石粉末が圧縮成形の際、HDDR処理により作製された異方性磁石粉末に加わる圧力を分散し、HDDR
処理により作製された異方性磁石粉末の破損の発生を抑制するためと考えられている。
The case where a bonded magnet is formed using the anisotropic magnet powder produced by HDDR process is demonstrated. The magnet powder is mixed with a thermosetting resin such as an epoxy resin, and then filled into a cavity of a mold to perform compression molding. When the magnet powder is cracked or broken during densification by compression molding, new NdFeB crystals are exposed, and their structure changes and the permanent demagnetization increases during high temperature exposure. Has problems with thermal stability. For this reason, the anisotropic Nd—Fe—B magnet powder produced by HDDR treatment is mixed with an anisotropic Sm—Fe—N magnet powder having an average particle diameter of 1 to 5 μm, and bonded. It is known that thermal durability is improved by using a magnet resin composition. This is because the anisotropic Sm-Fe-N magnet powder having an average particle diameter of 1 to 5 μm is dispersed during compression molding, and the pressure applied to the anisotropic magnet powder produced by HDDR treatment is dispersed.
It is considered to suppress the occurrence of breakage of the anisotropic magnet powder produced by the treatment.

異方性ボンド磁石は成形時に印加する磁界により磁石の配向方向が制御可能な特徴をもつ。その中で、極配向磁石は磁石の片方の表面にNS極が現れるものであり、反対側の面には(裏面)にはNS極がほとんど現れないようになっている。一方でラジアル配向磁石は磁石の両面にそれぞれ対になるようにNS極が現れる。極配向磁石は同一形状のラジアル配向磁石に対して磁気特性が高いことが知られている。   An anisotropic bonded magnet has a feature that the orientation direction of the magnet can be controlled by a magnetic field applied during molding. Among them, in the pole-oriented magnet, NS poles appear on one surface of the magnet, and NS poles hardly appear on the opposite surface (back surface). On the other hand, NS poles appear so that the radially oriented magnets are paired on both sides of the magnet. It is known that a pole-oriented magnet has higher magnetic characteristics than a radially oriented magnet having the same shape.

極配向磁石の形成はあらかじめ配向磁界発生用に金型内部に焼結磁石などのエネルギー積の高い磁石を組み込んだ金型を用いて成形をおこなう。組み込む磁石は金型キャビティの側面のいずれかの方向に配置される。このような構成の金型を用い、金型キャビティ内に磁性粉と結合材を主成分とするボンド磁石用樹脂組成物を充填し成形をおこなう。得られたボンド磁石は金型内に配置された配向用磁石側の表面にNS極が現れ、極配向磁石となる。   The pole-oriented magnet is formed by using a mold in which a magnet having a high energy product such as a sintered magnet is previously incorporated in the mold for generating an orientation magnetic field. The magnet to be incorporated is placed in either direction on the side of the mold cavity. Using the mold having such a configuration, molding is performed by filling the mold cavity with a resin composition for a bond magnet mainly composed of magnetic powder and a binder. In the obtained bonded magnet, the NS pole appears on the surface on the side of the orientation magnet arranged in the mold and becomes a pole orientation magnet.

従来、このような極配向磁石としてはフェライト磁性粉末を用いた射出成形ボンド磁石もしくは焼結磁石で形成されたものがほとんどであった。最近では、希土類磁石粉末でも射出成形にて極配向性磁石を形成する方法が開示されている(例えば、特許文献1参照)。   Conventionally, most of such pole-oriented magnets are formed of injection-molded bonded magnets or sintered magnets using ferrite magnetic powder. Recently, a method of forming a polar orientation magnet by injection molding even with rare earth magnet powder has been disclosed (for example, see Patent Document 1).

また、シート状の極配向性磁石として磁石粉末の配向をシート面内方向に制御し、後着磁後に極配向磁石としたものが開示されている(例えば、特許文献2参照)。   Also, a sheet-like polar orientation magnet is disclosed in which the orientation of the magnet powder is controlled in the in-plane direction of the sheet, and a polar orientation magnet is formed after post-magnetization (see, for example, Patent Document 2).

またシート状磁石の製造方法としてソフト磁性粉末を含有したグリーンシートと希土類磁石粉末を含有したグリーンシートを一体的に成形したシート状希土類ボンド磁石の製造方法について開示されている。
特開2000−195714号公報 特開2004−55992号公報 特開2003−318052号公報
Further, as a method for producing a sheet-like magnet, a method for producing a sheet-like rare earth bonded magnet in which a green sheet containing soft magnetic powder and a green sheet containing rare earth magnet powder are integrally formed is disclosed.
JP 2000-195714 A JP 2004-55992 A Japanese Patent Laid-Open No. 2003-318052

良好な曲げ性を有するシート状磁石を形成するためには磁石構成成分中に含まれる結合材などの樹脂比率を高くすることが有効である。しかしながら、特許文献1に記載されているように流動性の高い樹脂組成物を用いる射出成形レベルの樹脂組成物では、結果的に樹脂比率が高くなり得られる磁気特性が低下する課題がある。   In order to form a sheet-shaped magnet having good bendability, it is effective to increase the resin ratio of a binder or the like contained in the magnet component. However, as described in Patent Document 1, a resin composition at an injection molding level using a resin composition with high fluidity has a problem that the magnetic properties that can be obtained as a result of a high resin ratio are lowered.

圧縮成形の特徴である低樹脂量の樹脂組成物を用いると相対的に熱可塑性樹脂などの柔軟性成分も低下し曲げ性が低下する。また、たとえば100μm程度の粒径の大きい磁性粉と1μm程度の粒径の小さい磁性粉との混合体とした場合も曲げ性が著しく低下することが課題である。   When a resin composition having a low resin amount, which is a feature of compression molding, is used, the flexibility component such as a thermoplastic resin is relatively lowered and the bendability is lowered. Further, for example, when a mixture of a magnetic powder having a large particle diameter of about 100 μm and a magnetic powder having a small particle diameter of about 1 μm is used, the problem is that the bendability is significantly reduced.

本発明のシート状希土類ボンド磁石は厚み方向で樹脂量や磁性粉の混合比を変え擬似的な2層構成にすることを特徴としている。樹脂量が多くなるほど柔軟性が高くなるが、磁気特性は低下するため、後にリング形状にする際にはステータコア側に樹脂量が低く磁気特性の高い側を配置することが望ましい。   The sheet-like rare earth bonded magnet of the present invention is characterized by having a pseudo two-layer structure by changing the resin amount and the magnetic powder mixing ratio in the thickness direction. As the amount of resin increases, the flexibility increases, but the magnetic characteristics deteriorate. Therefore, when the ring shape is formed later, it is desirable to arrange the side having a low resin amount and high magnetic characteristics on the stator core side.

磁性粉の混合比を変えることでも柔軟性は変化する。粒径の異なる磁石粉末の混合する場合、粒径の細かい粉末が増えることにより柔軟性は低下する。微粉末量が相対的に多い
ほうが見かけ上の密度も高く、磁気特性も向上し有効である。
The flexibility also changes by changing the mixing ratio of the magnetic powder. When magnetic powders having different particle diameters are mixed, flexibility decreases due to an increase in powders having a fine particle diameter. A relatively large amount of fine powder is effective because it has a higher apparent density and improved magnetic properties.

成形する際には密度が高くなる方を先に充填し、次にもう一方の樹脂組成物を充填した後、圧縮成形をおこなうのが望ましいが、その効果には影響がない。   When molding, it is desirable to first fill the one with higher density, and then fill the other resin composition and then perform compression molding, but this does not affect the effect.

シート磁石の板厚によっても柔軟性は変化し、板厚が薄くなるにつれ柔軟性が増す。このため、磁石の一部を薄くし、見かけ上の有効な磁石体積をほとんど減じることなく柔軟性を向上させることが可能になった。一部を薄くすることでなることに関して、強度が低下する際には樹脂シートを磁石と一体化することにより強度は向上する。   The flexibility also changes depending on the plate thickness of the sheet magnet, and the flexibility increases as the plate thickness decreases. For this reason, it became possible to make a part of the magnet thin and to improve flexibility without substantially reducing the apparent effective magnet volume. When the strength is reduced with respect to thinning a part, the strength is improved by integrating the resin sheet with the magnet.

本発明の極配向性のシート状ボンド磁石は1mm以下の薄肉の状態でも高い磁気特性、フレキシブル性、強度を維持したものを得ることが可能になった。この磁石を用いることによりモータの小型軽量化、高出力化、高効率化が可能となった。   The pole-oriented sheet-like bonded magnet of the present invention can be obtained with high magnetic properties, flexibility and strength even in a thin state of 1 mm or less. By using this magnet, the motor can be reduced in size, weight, output, and efficiency.

以下、発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the invention will be described with reference to the drawings.

本発明は図1(a)に示されるように厚み方向に樹脂量や磁性粉の混合比を変えることにより擬似的な2層構造を有する極配向シート磁石を提供するものである。   As shown in FIG. 1A, the present invention provides a pole-oriented sheet magnet having a pseudo two-layer structure by changing the amount of resin and the mixing ratio of magnetic powder in the thickness direction.

希土類磁石粉末としてはHDDR処理(水素分解/再結合)によって準備された磁気的に異方性のNd−Fe―B系合金粉末、すなわちNd−Fe(Co)−B系合金の水素化、650〜1000℃での相分解、脱水素、再結合するHDDR処理で作成したものや、熱間据込加工(Die−Up−Setting)により準備されたNd−Fe−B系合金粉末など用いることができる。   As rare earth magnet powder, magnetically anisotropic Nd—Fe—B alloy powder prepared by HDDR treatment (hydrogen decomposition / recombination), that is, hydrogenation of Nd—Fe (Co) —B alloy, 650 Use of those prepared by HDDR treatment that undergoes phase decomposition, dehydrogenation, and recombination at ˜1000 ° C., or Nd—Fe—B alloy powder prepared by hot upsetting (Die-Up-Setting) it can.

一方でRD(酸化還元)処理により形成された異方性のSmFeN系微粉末や、前記粉末の表面をあらかじめ不活性化処理した磁石粉末を用いることができる。   On the other hand, anisotropic SmFeN-based fine powder formed by RD (oxidation reduction) treatment or magnet powder obtained by previously inactivating the surface of the powder can be used.

希土類磁石粉末を被覆するためにもちいる固体のエポキシオリゴマーは溶剤などに溶解し、磁石粉末の比表面積から算出して被覆厚さ0.1μm以下になるように調整する。   The solid epoxy oligomer used for coating the rare earth magnet powder is dissolved in a solvent or the like, and is adjusted so that the coating thickness is 0.1 μm or less calculated from the specific surface area of the magnet powder.

また、上記希土類磁石粉末は単独でもちいることができるが、2種類の混合系であるほうが熱安定性の観点で望ましく、その混合組成比を厚み方向で変えることによっても、高い柔軟性を有する。   In addition, the rare earth magnet powder can be used alone, but two mixed systems are desirable from the viewpoint of thermal stability, and also have high flexibility by changing the mixing composition ratio in the thickness direction. .

本発明に用いる結合剤は少なくとも熱圧着機能と熱硬化性官能基を有する粉末状樹脂成分を含んでおり、ボンド磁石用樹脂組成物として結合剤成分の粘着力により希土類磁石粉末を圧縮成形前に結合剤と機械的分離を防ぐ役割を有しており、結合剤としては少なくとも室温で固体のエポキシオリゴマーと室温で粘着性を有する熱圧着性ポリアミドと必要に応じて適時加える粉末状の潜在性エポキシ硬化剤から構成することが望ましい。   The binder used in the present invention contains at least a powdered resin component having a thermocompression bonding function and a thermosetting functional group, and the rare earth magnet powder is compressed before the compression molding by the adhesive force of the binder component as a resin composition for a bond magnet. It has a role to prevent mechanical separation from the binder, and the binder is at least an epoxy oligomer that is solid at room temperature, a thermocompression-bonding polyamide that is sticky at room temperature, and a powdery latent epoxy that is added as needed. It is desirable to comprise a curing agent.

本発明に用いた樹脂組成物の形成プロセスについて説明する。   The process for forming the resin composition used in the present invention will be described.

前記、希土類磁石粉末にエポキシオリゴマーを有機溶媒に溶解したものを湿式混合する。有機溶媒としてはアセトンを用いた。湿式混合はニーダを用いておこなった。その後、湿った混合物を60〜80℃で加熱し溶媒を除去し乾燥する。そして、乾いた塊状の混合物を解砕した。HDDR処理されたNdFeB系合金粉末についてはエポキシ被覆前後での粉末粒子径の分布はほぼ同等である。   The rare earth magnet powder prepared by dissolving an epoxy oligomer in an organic solvent is wet mixed. Acetone was used as the organic solvent. Wet mixing was performed using a kneader. Thereafter, the wet mixture is heated at 60-80 ° C. to remove the solvent and dry. And the dry blocky mixture was crushed. For the NdFeB-based alloy powder subjected to HDDR, the powder particle size distribution before and after the epoxy coating is almost the same.

次に前記エポキシオリゴマーを表面被覆した希土類磁石粉末とポリアミド樹脂、潤滑剤を乾式混合する。樹脂量の異なるボンド磁石用樹脂組成物を作製する際は、ここでポリアミド樹脂の量を増減させ、調整することが可能である。樹脂量を増やす場合においては、前述したエポキシオリゴマ−量を増加させることも可能である。また、異なる合金系の複数種の希土類磁石粉末を用いる場合、この時点で混合することが望ましい。そしてこの混合物を加熱混練して塊状となったものを、さらに粉砕し顆粒状にする。この顆粒を分級工程で粒径の大きい粒子を分離し、この分離された大きい粒子をさらに粉砕、分級を繰り返しおこない、最終的に粒径の揃った粉末を得る。得られた顆粒の粒径は500μm以下、さらには250μm以下とすることが望ましい。この顆粒に潜在性エポキシ硬化剤を乾式混合しボンド磁石用樹脂組成物を得る。   Next, the rare earth magnet powder whose surface is coated with the epoxy oligomer, the polyamide resin, and the lubricant are dry mixed. When producing resin compositions for bonded magnets having different resin amounts, the amount of polyamide resin can be increased or decreased here for adjustment. When increasing the amount of resin, it is also possible to increase the amount of epoxy oligomer described above. Moreover, when using multiple types of rare earth magnet powders of different alloy systems, mixing at this point is desirable. Then, the mixture is kneaded by heating and kneaded to be further pulverized into granules. The granule is separated into particles having a large particle size in a classification step, and the separated large particle is further pulverized and classified repeatedly to finally obtain a powder having a uniform particle size. The particle size of the obtained granules is preferably 500 μm or less, and more preferably 250 μm or less. A latent epoxy curing agent is dry-mixed with the granules to obtain a resin composition for bonded magnets.

本発明のシート状希土類ボンド磁石の成形は圧縮成形によって形成されるものであり、特に平行磁界中で成形されることが好ましい。成形型の上下パンチとキャビティ周辺は加熱されており、その状態でボンド磁石用樹脂組成物を充填する。充填は基本的には2回に分けておこなう。今後2層同時に充填する方式などがあれば、その方式でも可能である。各層は樹脂組成物中の樹脂量もしくは磁性粉末の混合比の異なる樹脂組成物により構成される物である。そして充填が完了したあと配向用の磁石を埋め込んだ金型(上パンチ)を用いて圧縮成形をおこなう。   The sheet-like rare earth bonded magnet of the present invention is formed by compression molding, and is particularly preferably formed in a parallel magnetic field. The upper and lower punches and the cavity periphery of the mold are heated, and in this state, the resin composition for bonded magnets is filled. The filling is basically performed in two steps. If there is a method of filling two layers simultaneously in the future, that method is also possible. Each layer is a thing comprised by the resin composition from which the resin amount in a resin composition or the mixing ratio of magnetic powder differs. After the filling is completed, compression molding is performed using a mold (upper punch) in which an orientation magnet is embedded.

成形後に取りだしたシート状希土類ボンド磁石は標準的には160℃20分の加熱によって熱硬化され、さらに圧延ロールによって圧延率2〜5%の圧延を実施し、本発明の極配向性のシート状希土類ボンド磁石が得られる。   The sheet-like rare earth bonded magnet taken out after the forming is typically thermally cured by heating at 160 ° C. for 20 minutes, and further rolled with a rolling roll at a rolling rate of 2 to 5%. A rare earth bonded magnet is obtained.

上記、シート状希土類ボンド磁石を用いて円筒状のロータコアを用いロータを作製する場合、図1(b)に示すようにコアの内周側に樹脂量の多い面側もしくは微粉量が少なく磁気特性が低い面側を接着してロータコアを形成し、これを用いてモータを構成する。円筒状のロータコアを用いてロータを作製する場合はコアの内周側に同様に樹脂量の多い面側もしくは微粉量が少なく磁気特性が低い面側を接着するようにする。   When producing a rotor using a cylindrical rotor core using the above-mentioned sheet-like rare earth bonded magnet, as shown in FIG. 1 (b), on the inner peripheral side of the core, the surface side with a large amount of resin or the amount of fine powder is small and the magnetic properties The lower surface side is bonded to form a rotor core, which is used to constitute a motor. When a rotor is manufactured using a cylindrical rotor core, a surface side with a large amount of resin or a surface side with a small amount of fine powder and a low magnetic property is adhered to the inner peripheral side of the core.

次に、シート磁石の一部を薄く形成したものに関し、以下説明する。成型体は極数に対応した配向用磁石で構成される金型と、前記金型の極間部分は凹形状になるような表面を有する金型によって形成される。配向用磁石を埋め込んだ金型上にボンド磁石用樹脂組成物を充填することにより配向用の磁界に影響され、充填層の表面は極間部が円弧上の凸形となる。   Next, a sheet magnet that is partially thinned will be described below. The molded body is formed of a mold composed of orientation magnets corresponding to the number of poles, and a mold having a surface such that the inter-electrode portion of the mold has a concave shape. By filling the resin composition for bonded magnets on the mold in which the magnet for orientation is embedded, the magnetic field for orientation is affected, and the surface of the packed layer has a convex shape on the arc.

その後、前述した極間部分が円弧状の凹型となるように対応させた金型を配置し圧縮成形をおこなう。成形後は熱硬化処理のみをおこない、圧延処理は実施しない。このシート状磁石を樹脂層と一体化する工程については、樹脂フィルムをシート磁石の円弧状の凸部を有する面側に配置した後、再度シート磁石と樹脂フィルムとを圧縮する方法もしくは熱可塑性樹脂を磁石の凹部に埋め込む構成にすることが可能である。   After that, a mold is arranged so that the above-described inter-electrode portion is an arc-shaped concave mold, and compression molding is performed. After the molding, only the thermosetting process is performed, and the rolling process is not performed. Regarding the step of integrating the sheet magnet with the resin layer, a method of compressing the sheet magnet and the resin film again after placing the resin film on the surface side having the arc-shaped convex portion of the sheet magnet or a thermoplastic resin Can be embedded in the recess of the magnet.

上記、シート状希土類ボンド磁石を用いて円柱状のロータコアを用いロータを作製する場合、図2(c)に示すようにコアの外周側に磁石面の凹凸形状を有する面もしくは磁石凹部に熱可塑性樹脂を埋め込んだ面側を接着してロータコアを形成し、これを用いてモータを構成する。円筒状のロータコアを用いてロータを作製する場合はコアの内周側に磁石面の凹凸形状を有する面もしくは磁石凹部に熱可塑性樹脂を埋め込んだ面側を同様に接着しロータコア形成し、これを用いてモータを構成する。   When a rotor is manufactured using a cylindrical rotor core using the sheet-like rare earth bonded magnet as described above, as shown in FIG. 2 (c), the surface of the core having an irregular shape of the magnet surface or the magnet recess is thermoplastic. A rotor core is formed by adhering the resin-embedded surface side, and a motor is configured using the rotor core. When a rotor is manufactured using a cylindrical rotor core, a rotor core is formed by similarly bonding the surface having an irregular shape of the magnet surface on the inner peripheral side of the core or the surface side in which the thermoplastic resin is embedded in the magnet recess, The motor is configured using the above.

以下、本発明を実施例により更に詳しく説明する。ただし、本発明は実施例により限定
される物ではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.

本実施例ではHDDR処理された磁気的な異方性を有するNdFeB粉末(HDDRと表記する)を用いた例について説明する。   In this embodiment, an example using NdFeB powder (denoted as HDDR) having magnetic anisotropy processed by HDDR will be described.

ボンド磁石用樹脂組成物は上記希土類磁性粉末と結合剤を主成分とするものである。結合剤の構成成分としては、室温で固体のノボラック型エポキシオリゴマー、粉末状潜在性エポキシ硬化剤、ポリアミド粉末および滑剤から構成されるものを用いた。   The resin composition for bonded magnets contains the rare earth magnetic powder and a binder as main components. As a constituent component of the binder, a constituent composed of a novolak type epoxy oligomer, a powdery latent epoxy curing agent, a polyamide powder and a lubricant which are solid at room temperature was used.

ボンド磁石用樹脂組成物の形成は下記の手順で実施した。   Formation of the resin composition for bond magnets was performed in the following procedure.

最初に上記、ノボラック型エポキシオリゴマーをアセトンに溶解したものを準備する。エポキシ濃度は被覆する磁石粉末に対して0.1μm以下の厚みとなるように調整した物を用いる。HDDRを被覆するためには0.5wt%のエポキシオリゴマーを溶解したものを用いた。その混合物は乾燥、粗粉砕されポリアミド樹脂、滑材を加えて混合した。樹脂量の異なる樹脂組成物を形成するために添加するポリアミド樹脂量を変え、それぞれ個々に準備した。本実施例ではポリアミド量として1.5〜4wt%の範囲で作製した例を示す。これらの混合物はそれぞれ熱ロールなどを用いて混錬し、その混錬物を粉砕、分級し粒径が350μm以下になるように調整する。調整後この粉末に潜在性エポキシ硬化剤を加え乾式混合し、各ボンド磁石用樹脂組成物を得た。   First, the above-mentioned novolac type epoxy oligomer dissolved in acetone is prepared. The epoxy concentration is adjusted to a thickness of 0.1 μm or less with respect to the magnet powder to be coated. In order to coat HDDR, a solution in which 0.5 wt% of an epoxy oligomer was dissolved was used. The mixture was dried and coarsely pulverized, mixed with polyamide resin and a lubricant. The amount of polyamide resin added to form resin compositions having different resin amounts was changed and prepared individually. In this example, an example in which the amount of polyamide is 1.5 to 4 wt% is shown. Each of these mixtures is kneaded using a hot roll or the like, and the kneaded product is pulverized and classified to adjust the particle size to 350 μm or less. After adjustment, a latent epoxy curing agent was added to this powder and dry mixed to obtain a resin composition for each bond magnet.

シート状磁石の成形プロセスは以下のように実施した。金型キャビティ内を150℃以上に、保った後、前記準備したボンド磁石用樹脂組成物をキャビティ内に充填する。充填はポリアミド量の異なる個々の樹脂組成物ごとに順におこなった。充填完了後、配向用の磁石を埋めこんだ金型を押し込み0.6GPaで成形を実施する。その金型の位置で100℃まで冷却した後、配向用磁石を埋めこんだ金型を取り去る。その後、シート厚み方向にポリアミド樹脂量が異なったシート磁石を取りだす。このシート状磁石を窒素雰囲気化で160℃、20分の熱硬化をおこない、硬化完了後に圧延ロールにて2から5%の圧延率で圧延した。   The forming process of the sheet magnet was performed as follows. After keeping the inside of the mold cavity at 150 ° C. or higher, the prepared resin composition for bonded magnet is filled into the cavity. The filling was performed in order for each resin composition having a different amount of polyamide. After the completion of filling, a mold embedded with an orientation magnet is pushed in and molding is performed at 0.6 GPa. After cooling to 100 ° C. at the position of the mold, the mold embedded with the orientation magnet is removed. Thereafter, sheet magnets having different amounts of polyamide resin in the sheet thickness direction are taken out. This sheet-shaped magnet was heat-cured at 160 ° C. for 20 minutes in a nitrogen atmosphere, and after the curing was completed, it was rolled with a rolling roll at a rolling rate of 2 to 5%.

得られたシート磁石の柔軟性を評価するため、限界巻きつけ径試験をおこなった。φ10からφ60までφ5刻みでシート磁石を巻きつけ、表面に異常を生じたひとつ大きい径を限界巻きつけ径として比較検討した。表1は樹脂量違いでの限界巻き付け径試験結果を示すものである。比較例としてポリアミド樹脂量3wt%で作製したものを用いた。第1層2.0wt%と第2層4.0wt%で平均が3wt%とした場合限界巻きつけ径φ10であり曲げ性が良化している。第1層1.5wt%と第2層3.0wt%とした場合限界巻きつけ径はφ20で単層品と同等であるがポリアミド樹脂量が減っているため、曲げ性が良化している。シート磁石の表面の磁束密度を計測した結果、極配向時の表面磁束密度の波形に見られるような極間でピークをもつようなものになっており、極配向していることが確認できた。   In order to evaluate the flexibility of the obtained sheet magnet, a limit winding diameter test was conducted. A sheet magnet was wound in steps of φ5 from φ10 to φ60, and one large diameter that caused an abnormality on the surface was compared as a limit winding diameter. Table 1 shows the limit winding diameter test results with different amounts of resin. As a comparative example, a polyamide resin amount of 3 wt% was used. When the average is 3 wt% in the first layer 2.0 wt% and the second layer 4.0 wt%, the limit winding diameter φ10 and the bendability is improved. When the first layer is 1.5 wt% and the second layer is 3.0 wt%, the limit winding diameter is φ20, which is the same as that of a single layer product, but since the amount of polyamide resin is reduced, the bendability is improved. As a result of measuring the magnetic flux density on the surface of the sheet magnet, it was found that there was a peak between the poles as seen in the waveform of the surface magnetic flux density at the time of polar orientation, and it was confirmed that the magnetic orientation was polar. .

上記作製方法により作製した極配向性シート磁石を搭載したモータは磁気特性が改善され高出力化が可能になる。以下のような永久磁石搭載モータとするとモータの高性能化が可能となる。以下、表1に限界巻きつけ径試験(樹脂量違い)の結果を示す。   A motor equipped with the polar orientation sheet magnet produced by the above production method has improved magnetic characteristics and high output. If the following permanent magnet-mounted motor is used, the performance of the motor can be improved. Table 1 below shows the results of the limit winding diameter test (resin amount difference).

本実施例では2種類の希土類磁石粉末を用いたものについて説明する。具体的にはHDDR処理された磁気的に異方性を有するNdFeB粉末(HDDRと表記する)およびRD処理したSmFeN微粉末を用いて実施したものである。   In the present embodiment, an example using two types of rare earth magnet powder will be described. Specifically, this was carried out using HDDr-treated magnetically anisotropic NdFeB powder (denoted as HDDR) and RD-treated SmFeN fine powder.

ボンド磁石用樹脂組成物は上記希土類磁性粉末と結合剤を主成分とするものである。結合剤の構成成分としては、室温で固体のノボラック型エポキシオリゴマー、粉末状潜在性エポキシ硬化剤、ポリアミド粉末および滑剤から構成されるものを用いた。   The resin composition for bonded magnets contains the rare earth magnetic powder and a binder as main components. As a constituent component of the binder, a constituent composed of a novolak type epoxy oligomer, a powdery latent epoxy curing agent, a polyamide powder and a lubricant which are solid at room temperature was used.

ボンド磁石用樹脂組成物の形成は下記の手順で実施した。   Formation of the resin composition for bond magnets was performed in the following procedure.

最初に上記、ノボラック型エポキシオリゴマーをアセトンに溶解したものを準備する。エポキシ濃度は被覆する磁性粉末に対して0.1μm以下の厚みとなるように調整した物を用いる。HDDRを被覆するためには0.5wt%のエポキシオリゴマーを溶解したものを用いた。SmFeNはHDDRに比較して平均粒子径が小さいため、更に多くのエポキシオリゴマーが必要であり、本発明では2.0wtに調整したものを用いた。HDDRとSmFeNそれぞれにエポキシオリゴマーを被覆したものをそれそれ重量比で6:4となるようにして混合したものを準備し、ポリアミド樹脂量依存性評価のため実施例1と同様にポリアミド樹脂量が2wt%〜5.0wt%ものを個々に用意した。また混合比依存性評価の為、混合比が6:4〜9:1になるようにしたものに、それぞれポリアミド樹脂を3.0wt%加えて混合したものを別途用意した。これらの混合物は個々に熱ロールなどを用いて混錬し、その混錬物を粉砕、分級し粒径が350μm以下になるように調整する。調整後この粉末に潜在性エポキシ硬化剤を加え乾式混合し、ボンド磁石用樹脂組成物を得た。   First, the above-mentioned novolac type epoxy oligomer dissolved in acetone is prepared. The epoxy concentration is adjusted to a thickness of 0.1 μm or less with respect to the magnetic powder to be coated. In order to coat HDDR, a solution in which 0.5 wt% of an epoxy oligomer was dissolved was used. Since SmFeN has a smaller average particle size than HDDR, more epoxy oligomers are required. In the present invention, SmFeN adjusted to 2.0 wt. Prepare a mixture of HDDR and SmFeN coated with an epoxy oligomer in a weight ratio of 6: 4, and the amount of polyamide resin is the same as in Example 1 for evaluating the dependency on the amount of polyamide resin. 2 wt% to 5.0 wt% were prepared individually. Further, for the evaluation of the dependency on the mixing ratio, a mixture prepared by adding 3.0 wt% of polyamide resin to the mixture having a mixing ratio of 6: 4 to 9: 1 was separately prepared. These mixtures are individually kneaded using a hot roll or the like, and the kneaded product is pulverized and classified to adjust the particle size to 350 μm or less. After adjustment, a latent epoxy curing agent was added to this powder and dry mixed to obtain a resin composition for bonded magnets.

シート状磁石の成形プロセスは実施例1と同様に実施した。金型キャビティ内を150℃以上に、保った後、前記準備したボンド磁石用樹脂組成物をキャビティ内に充填する。充填は樹脂量の異なる個々の樹脂組成物ごとあるいは混合比の異なる個々の樹脂組成物の順におこなった。充填完了後、配向用の磁石を埋めこんだ金型を押し込み0.6GPaで成形を実施する。その金型の位置で100℃まで冷却した後、配向用磁石を埋めこんだ金型を取り去る。その後、シート厚み方向で磁石粉末の組成比が異なったシート状磁石を取りだす。このシート状磁石を窒素雰囲気化で160℃、20分の熱硬化をおこない、硬化完了後にロールにて圧延した。圧延率は2から5%の範囲である。得られたシート磁石の柔軟性を評価するため限界巻きつけ径試験をおこなった。表2は樹脂量違いでの限界巻き
付け径試験結果を示すものである。比較例としてポリアミド樹脂量3.5wt%で作製したものを用いた。第1層2.0wt%、第2層5.0wt%で平均が3.5wt%とした場合限界巻きつけ径φ30であり曲げ性が良化している。第1層3.0wt%、第2層4.0wt%とした場合限界巻きつけ径はφ25で曲げ性は良化している。表3は組成比違いでの限界巻き付け径試験結果を示すものである。2種類の磁粉の混合により限界巻きつけ径はφ40であり実施例1に比較し曲げ性は悪い。しかし組成比が異なる表3の組み合わせでは限界巻きつけ径φ25〜φ35であり、曲げ性が良化した。シート磁石の表面の磁束密度を計測した結果、いずれの試料も極配向時の表面磁束密度の波形に見られるような極間でピークをもつようなものになっており、一体化成形した本シート形状の磁石は極配向していることが確認できた。
The molding process of the sheet magnet was performed in the same manner as in Example 1. After keeping the inside of the mold cavity at 150 ° C. or higher, the prepared resin composition for bonded magnet is filled into the cavity. The filling was performed in the order of individual resin compositions having different resin amounts or individual resin compositions having different mixing ratios. After the completion of filling, a mold embedded with an orientation magnet is pushed in and molding is performed at 0.6 GPa. After cooling to 100 ° C. at the position of the mold, the mold embedded with the orientation magnet is removed. Then, the sheet-like magnet from which the composition ratio of the magnet powder differs in the sheet thickness direction is taken out. This sheet magnet was thermally cured at 160 ° C. for 20 minutes in a nitrogen atmosphere, and rolled with a roll after curing was completed. The rolling rate is in the range of 2 to 5%. In order to evaluate the flexibility of the obtained sheet magnet, a limit winding diameter test was conducted. Table 2 shows the limit winding diameter test results with different resin amounts. As a comparative example, a polyamide resin having a weight of 3.5 wt% was used. When the average of the first layer is 2.0 wt% and the second layer is 5.0 wt% and the average is 3.5 wt%, the limit winding diameter is φ30 and the bendability is improved. When the first layer is 3.0 wt% and the second layer is 4.0 wt%, the limit winding diameter is φ25 and the bendability is improved. Table 3 shows the limit winding diameter test results with different composition ratios. The limit winding diameter is 40 by mixing two kinds of magnetic powders, and the bendability is worse than that of Example 1. However, in the combinations of Table 3 having different composition ratios, the limit winding diameter was φ25 to φ35, and the bendability was improved. As a result of measuring the magnetic flux density on the surface of the sheet magnet, every sample has a peak between the poles as seen in the waveform of the surface magnetic flux density at the time of polar orientation. It was confirmed that the magnet of the shape was polar-oriented.

上記作製方法により作製した極配向性シート磁石を搭載したモータは磁気特性が改善され高出力化が可能になる。以下のような永久磁石搭載モータとするとモータの高性能化が可能となる。以下、表2に限界巻きつけ径試験(樹脂量違い)の結果を示す   A motor equipped with the polar orientation sheet magnet produced by the above production method has improved magnetic characteristics and high output. If the following permanent magnet-mounted motor is used, the performance of the motor can be improved. Table 2 shows the results of the limit winding diameter test (resin amount difference).

以下、表3に限界巻きつけ径試験(組成比違い)の結果を示す。 Table 3 shows the results of the limit winding diameter test (composition ratio difference).

本実施例ではHDDR、SmFeN2種類の希土類磁石粉末を用いたものについて説明する。ボンド磁石用樹脂組成物は実施例2と同様に、上記希土類磁性粉末と結合剤を主成
分とし、結合剤として、室温で固体のノボラック型エポキシオリゴマー、粉末状潜在性エポキシ硬化剤、ポリアミド粉末および滑剤から構成されるものを用いた。
In this embodiment, HDDR and SmFeN two kinds of rare earth magnet powders will be described. As in Example 2, the bonded magnet resin composition was composed mainly of the rare earth magnetic powder and a binder, and the binder was a novolak epoxy oligomer that was solid at room temperature, a powdery latent epoxy curing agent, a polyamide powder, and A composition composed of a lubricant was used.

ボンド磁石用樹脂組成物の形成も実施例2と同様の手法で実施した。   The bond magnet resin composition was also formed in the same manner as in Example 2.

HDDRとSmFeNそれぞれにエポキシオリゴマーを被覆したものをそれそれ重量比で6:4となるようにし、ポリアミド樹脂量は3.0wt%で混合した。これらの混合物を混錬、粉砕、分級し粒径が350μm以下になるように調整する。調整後この粉末に潜在性エポキシ硬化剤を加え乾式混合し、ボンド磁石用樹脂組成物を得た。   Each of HDDR and SmFeN coated with an epoxy oligomer was mixed at a weight ratio of 6: 4, and the amount of polyamide resin was mixed at 3.0 wt%. These mixtures are kneaded, pulverized, and classified to adjust the particle size to 350 μm or less. After adjustment, a latent epoxy curing agent was added to this powder and dry mixed to obtain a resin composition for bonded magnets.

シート状磁石の成形プロセスは以下のように実施した。配向用磁石を埋め込んだ配向磁石付き下金型21に金型ダイ22を組み合わせキャビティ内を150℃以上に保ち、前記準備したボンド磁石用樹脂組成物23をキャビティ内に充填する。充填は配向用磁石の影響で不均一な状態になっている。充填完了後、表面が円弧状の凹形状である上金型24を押し込み0.6GPaで成形を実施する。その金型の位置で100℃まで冷却した後、表面が円弧状の凹形状である金型を取り去る。その後、シート長手方向で厚さの異なる、表面が円弧状の凸形状で下面側が平坦なシート状の磁石体25を取りだす。このシート状磁石を窒素雰囲気化で160℃、20分の熱硬化をおこなった。硬化完了後におこなう圧延工程は実施していない。得られたシート磁石の柔軟性評価のため限界巻きつけ径試験をおこなった結果φ30であり、シート磁石の表面の磁束密度を計測した結果、極配向時の表面磁束密度の波形に見られるような極間でピークをもつようなものになっており、一体化成形した本シート形状の磁石は極配向していることが確認できた。凸面側に樹脂を配置し一体化するために、成形後のキャビティ内に樹脂シートを磁石の上に配置し圧縮し一体化することが可能であった。樹脂を粉体にし上金型を表面が平坦なものにするとシート磁石の凹形状部に樹脂が充填された状態で一体化した物が得られた。   The forming process of the sheet magnet was performed as follows. A die die 22 is combined with a lower die 21 with an orientation magnet embedded with an orientation magnet, and the inside of the cavity is kept at 150 ° C. or higher, and the prepared resin composition 23 for bonded magnet is filled into the cavity. The filling is in a non-uniform state due to the influence of the magnet for orientation. After completion of filling, the upper mold 24 having a concave surface with an arc shape is pushed in and molding is performed at 0.6 GPa. After cooling to 100 ° C. at the position of the mold, the mold whose surface has an arcuate concave shape is removed. Thereafter, a sheet-like magnet body 25 having a thickness different in the sheet longitudinal direction and having a convex surface having an arc shape and a flat bottom surface is taken out. This sheet magnet was thermoset at 160 ° C. for 20 minutes in a nitrogen atmosphere. The rolling process performed after completion of hardening is not implemented. The result of a limit winding diameter test for evaluating the flexibility of the obtained sheet magnet is φ30. As a result of measuring the magnetic flux density on the surface of the sheet magnet, as shown in the waveform of the surface magnetic flux density during polar orientation It has become a thing with a peak between poles, and it has confirmed that the magnet of this sheet | seat shape integrally molded was pole-oriented. In order to dispose and integrate the resin on the convex surface side, it was possible to dispose and compress the resin sheet on the magnet in the cavity after molding. When the resin was powdered and the upper mold was flat, an integrated product with the resin filled in the concave portion of the sheet magnet was obtained.

上記作製方法により作製した極配向性シート磁石を搭載したモータは磁気特性が改善され高出力化が可能になる。以下のような永久磁石搭載モータとするとモータの高性能化が可能となる。   A motor equipped with the polar orientation sheet magnet produced by the above production method has improved magnetic characteristics and high output. If the following permanent magnet-mounted motor is used, the performance of the motor can be improved.

本発明の極配向性のシート状希土類ボンド磁石を用いることにより、熱的な耐久性を向上させたロータ磁石が作製可能であり、当該磁石を搭載したモータの小型軽量化、高出力化、高効率化が可能である。   By using the polar-oriented sheet-like rare earth bonded magnet of the present invention, it is possible to produce a rotor magnet with improved thermal durability. A motor equipped with the magnet is reduced in size and weight, increased in output, and increased in power. Efficiency can be improved.

本発明のシート状希土類ボンド磁石の構成を示す図The figure which shows the structure of the sheet-like rare earth bond magnet of this invention 本発明の成形工程の一例を示す図The figure which shows an example of the shaping | molding process of this invention

符号の説明Explanation of symbols

11 磁石部第1層
12 磁石部第2層軟磁性金属体
13 円筒状ロータコア
21 金型ダイ
22 配向用磁石付き金型
23 樹脂組成物
24 上金型
25 磁石体
DESCRIPTION OF SYMBOLS 11 Magnet part 1st layer 12 Magnet part 2nd layer Soft magnetic metal body 13 Cylindrical rotor core 21 Mold die 22 Mold with magnet for orientation 23 Resin composition 24 Upper mold 25 Magnet body

Claims (13)

磁石粉末が異方性の希土類磁石で結合剤がエポキシ樹脂組成物でありこれらを主成分とするボンド磁石用樹脂組成物により形成されたシート状希土類ボンド磁石であって、前記異方性磁石粉末の配向方向を極配向性になるように配向させた磁石部分は構成成分比の異なる複数の磁石体を積層した構成であることを特徴とする極配向形シート状希土類ボンド磁石。 A sheet-like rare earth bonded magnet formed of an anisotropic rare earth magnet, a binder being an epoxy resin composition, and a bonded magnet resin composition containing them as a main component, wherein the anisotropic magnet powder A pole-oriented sheet-like rare earth bonded magnet characterized in that the magnet portion oriented so that the orientation direction of the magnet is oriented is a laminate of a plurality of magnet bodies having different component ratios. 磁石粉末がNdFeB系合金、SmFeN系合金、SmCo系合金の少なくとも一つから構成されることを特徴とする請求項1記載のシート状希土類ボンド磁石。 2. The sheet-like rare earth bonded magnet according to claim 1, wherein the magnet powder is composed of at least one of an NdFeB alloy, an SmFeN alloy, and an SmCo alloy. 積層する磁石体構成物の樹脂量が異なることを特徴とする請求項1記載のシート状希土類ボンド磁石。 2. The sheet-like rare earth bonded magnet according to claim 1, wherein the amount of resin of the magnet body component to be laminated is different. 積層する磁石体構成物が2種類の磁粉の混合体であり、その混合比がそれぞれ異なることを特徴とする請求項1記載のシート状希土類ボンド磁石。 2. The sheet-like rare earth bonded magnet according to claim 1, wherein the magnet body composition to be laminated is a mixture of two kinds of magnetic powders, and the mixing ratios thereof are different from each other. 2種類の磁粉がNdFeB系合金、SmFeN系合金およびSmCo系合金の少なくとも2つから構成されることを特徴とする請求項4記載のシート状希土類ボンド磁石。 5. The sheet-like rare earth bonded magnet according to claim 4, wherein the two types of magnetic particles are composed of at least two of an NdFeB alloy, an SmFeN alloy, and an SmCo alloy. NdFeB系合金の平均粒子径が100μm、SmFeN系合金の平均粒子径が2μmであることを特徴とする請求項5記載のシート状希土類ボンド磁石。 6. The sheet-like rare earth bonded magnet according to claim 5, wherein the NdFeB alloy has an average particle diameter of 100 μm and the SmFeN alloy has an average particle diameter of 2 μm. 極配向磁石であってその磁極を有する面が平坦面であり、正対する面が円弧状の凸形状であることを特徴とする極配向シート状希土類ボンド磁石。 A pole-oriented sheet-like rare earth bonded magnet, wherein the pole-oriented magnet has a flat surface having a magnetic pole, and a face facing it is an arc-shaped convex shape. 円弧状の凸面側に樹脂シートを配置し一体とすることを特徴とする極配向シート磁石。 A polar-orientated sheet magnet comprising a resin sheet disposed on an arcuate convex side and integrated. 配向用磁石を保持した下金型に樹脂組成物を充填する第1の工程と表面が連続した凹凸形状を有する上金型を配置し成形温度まで加熱し保持した後、圧縮成形する第2の工程と金型を冷却後、シート磁石を取り出す第3の工程からなることを特徴とする請求項7記載のシート状希土類ボンド磁石の製造方法。 A first step of filling the lower mold holding the orientation magnet with the resin composition and an upper die having an uneven shape with a continuous surface are arranged, heated to the molding temperature and held, and then compression molded. 8. The method for producing a sheet-like rare earth bonded magnet according to claim 7, comprising a third step of taking out the sheet magnet after cooling the step and the mold. 成形温度が樹脂組成物の軟化点以上であり、圧縮成形後、軟化点以下でシート磁石を金型から取り出すことを特徴とする請求項9記載のシート状希土類ボンド磁石の製造方法。 10. The method for producing a sheet-like rare earth bonded magnet according to claim 9, wherein the molding temperature is equal to or higher than the softening point of the resin composition, and after compression molding, the sheet magnet is taken out of the mold below the softening point. コアの円柱枠の外周面側もしくはコアの円筒枠の内周面側に請求項3のシート状希土類ボンド磁石で樹脂量の多い側の面を接着させて形成したロータを備えたモータ。 A motor comprising a rotor formed by adhering a surface having a large amount of resin with the sheet-like rare earth bonded magnet according to claim 3 to an outer peripheral surface side of a core cylindrical frame or an inner peripheral surface side of a core cylindrical frame. コアの円柱枠の外周面側もしくはコアの円筒枠の内周面側に請求項6のシート状希土類ボンド磁石でNdFeB系合金とSmFeN系合金の構成比でSmFeN系合金比が小さい面側を接着させて形成したロータを備えたモータ。 The sheet side rare earth bonded magnet of claim 6 is bonded to the outer peripheral surface side of the core cylindrical frame or the inner peripheral surface side of the core cylindrical frame with the surface side having a smaller SmFeN alloy ratio in the composition ratio of the NdFeB alloy and the SmFeN alloy. A motor provided with a rotor formed. コアの円柱枠の外周面側もしくはコアの円筒枠の内周面側に請求項7のシート状希土類ボンド磁石で凸面側を接着させて形成したロータを備えたモータ。

A motor comprising a rotor formed by adhering the convex side to the outer peripheral surface side of the cylindrical column frame of the core or the inner peripheral surface side of the cylindrical frame of the core with the sheet-like rare earth bonded magnet according to claim 7.

JP2006057415A 2006-03-03 2006-03-03 Sheet-like rare earth bonded magnet, method of manufacturing the same, and motor using the same Active JP4816146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057415A JP4816146B2 (en) 2006-03-03 2006-03-03 Sheet-like rare earth bonded magnet, method of manufacturing the same, and motor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006057415A JP4816146B2 (en) 2006-03-03 2006-03-03 Sheet-like rare earth bonded magnet, method of manufacturing the same, and motor using the same

Publications (2)

Publication Number Publication Date
JP2007235017A true JP2007235017A (en) 2007-09-13
JP4816146B2 JP4816146B2 (en) 2011-11-16

Family

ID=38555267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057415A Active JP4816146B2 (en) 2006-03-03 2006-03-03 Sheet-like rare earth bonded magnet, method of manufacturing the same, and motor using the same

Country Status (1)

Country Link
JP (1) JP4816146B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206045A (en) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd Magnet molding and method of making the same
JP2012209484A (en) * 2011-03-30 2012-10-25 Hitachi Powdered Metals Co Ltd Bond magnet and method of manufacturing the same
JP2013045902A (en) * 2011-08-24 2013-03-04 Minebea Co Ltd Method for manufacturing rare earth resin magnet
JP2013175651A (en) * 2012-02-27 2013-09-05 Jtekt Corp Magnet manufacturing method and magnet
CN104043829A (en) * 2014-06-29 2014-09-17 江苏新旭磁电科技有限公司 Press forming die for neodymium iron boron permanent magnet rotors
CN104107909A (en) * 2014-07-21 2014-10-22 中磁科技股份有限公司 Forming method for hollow cylindrical rare-earth magnetic steel compacts
JP2018198280A (en) * 2017-05-24 2018-12-13 Tdk株式会社 Nitride-based bond magnet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431402A (en) * 1987-07-28 1989-02-01 Kubota Ltd Magnetic anisotropy-oriented resin magnet
JPH06349630A (en) * 1993-06-14 1994-12-22 Kawasaki Steel Corp Anisortopical magmet
JPH08116657A (en) * 1994-08-22 1996-05-07 Sankyo Seiki Mfg Co Ltd Brushless motor
JP2000114021A (en) * 1998-10-07 2000-04-21 Tokyo Ferrite Seizo Kk Flexible bond magnet
JP2000311806A (en) * 1999-04-26 2000-11-07 Tokin Corp Composite magnetic material and manufacture thereof
JP2002199668A (en) * 2000-12-27 2002-07-12 Nichia Chem Ind Ltd Manufacturing method of cylindrical-shaped magnet for polar magnetizing
JP2003088057A (en) * 2001-09-14 2003-03-20 Nichia Chem Ind Ltd Motor field magnet and its manufacturing method
JP2003318052A (en) * 2002-04-25 2003-11-07 Matsushita Electric Ind Co Ltd Manufacturing method for flexible magnet, and permanent magnet type motor thereof
JP2005064448A (en) * 2003-08-13 2005-03-10 Jahwa Electronics Co Ltd Method of manufacturing laminated polar anisotropic hybrid magnet
JP2006019573A (en) * 2004-07-02 2006-01-19 Mitsubishi Electric Corp Composite bonded magnet and manufacturing method thereof, and rotor of dc brushless motor having composite bonded magnet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431402A (en) * 1987-07-28 1989-02-01 Kubota Ltd Magnetic anisotropy-oriented resin magnet
JPH06349630A (en) * 1993-06-14 1994-12-22 Kawasaki Steel Corp Anisortopical magmet
JPH08116657A (en) * 1994-08-22 1996-05-07 Sankyo Seiki Mfg Co Ltd Brushless motor
JP2000114021A (en) * 1998-10-07 2000-04-21 Tokyo Ferrite Seizo Kk Flexible bond magnet
JP2000311806A (en) * 1999-04-26 2000-11-07 Tokin Corp Composite magnetic material and manufacture thereof
JP2002199668A (en) * 2000-12-27 2002-07-12 Nichia Chem Ind Ltd Manufacturing method of cylindrical-shaped magnet for polar magnetizing
JP2003088057A (en) * 2001-09-14 2003-03-20 Nichia Chem Ind Ltd Motor field magnet and its manufacturing method
JP2003318052A (en) * 2002-04-25 2003-11-07 Matsushita Electric Ind Co Ltd Manufacturing method for flexible magnet, and permanent magnet type motor thereof
JP2005064448A (en) * 2003-08-13 2005-03-10 Jahwa Electronics Co Ltd Method of manufacturing laminated polar anisotropic hybrid magnet
JP2006019573A (en) * 2004-07-02 2006-01-19 Mitsubishi Electric Corp Composite bonded magnet and manufacturing method thereof, and rotor of dc brushless motor having composite bonded magnet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206045A (en) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd Magnet molding and method of making the same
JP2012209484A (en) * 2011-03-30 2012-10-25 Hitachi Powdered Metals Co Ltd Bond magnet and method of manufacturing the same
JP2013045902A (en) * 2011-08-24 2013-03-04 Minebea Co Ltd Method for manufacturing rare earth resin magnet
JP2013175651A (en) * 2012-02-27 2013-09-05 Jtekt Corp Magnet manufacturing method and magnet
CN103295760A (en) * 2012-02-27 2013-09-11 株式会社捷太格特 Method for manufacturing magnet, and magnet
US9601246B2 (en) 2012-02-27 2017-03-21 Jtekt Corporation Method of manufacturing magnet, and magnet
CN104043829A (en) * 2014-06-29 2014-09-17 江苏新旭磁电科技有限公司 Press forming die for neodymium iron boron permanent magnet rotors
CN104107909A (en) * 2014-07-21 2014-10-22 中磁科技股份有限公司 Forming method for hollow cylindrical rare-earth magnetic steel compacts
CN104107909B (en) * 2014-07-21 2016-05-25 中磁科技股份有限公司 The forming method of hollow cylinder rare earth magnetic steel pressed compact
JP2018198280A (en) * 2017-05-24 2018-12-13 Tdk株式会社 Nitride-based bond magnet

Also Published As

Publication number Publication date
JP4816146B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4816146B2 (en) Sheet-like rare earth bonded magnet, method of manufacturing the same, and motor using the same
JP4618553B2 (en) Method for producing RTB-based sintered magnet
US9818513B2 (en) RFeB-based magnet and method for producing RFeB-based magnet
JP2007180368A (en) Method for manufacturing magnetic circuit part
WO2003085684A1 (en) Composite rare earth anisotropic bonded magnet, compound for composite rare earth anisotropic bonded magnet, and method for production thereof
WO2012105226A1 (en) Method for manufacturing anisotropic bonded magnet, and motor
JP6613730B2 (en) Rare earth magnet manufacturing method
KR101804313B1 (en) Method Of rare earth sintered magnet
EP2980815A1 (en) Sintered magnet production method
JP4311063B2 (en) Anisotropic rare earth bonded magnet and motor
Mitarai et al. Development of compound for anisotropic bonded Nd magnets using d-HDDR magnet powder
CN113168961A (en) Method for manufacturing rare earth magnet
JPWO2016035670A1 (en) Radial anisotropic sintered ring magnet and manufacturing method thereof
JP2006180607A (en) Sheet-shaped rare earth bond magnet, its manufacturing method, and motor
JP2004047872A (en) Method for manufacturing rare earth bonded magnet from sheet to film, and its permanent magnet motor
JP3933040B2 (en) Rare earth bonded magnet manufacturing method and permanent magnet motor having the same
JP4887617B2 (en) Resin composition for anisotropic bonded magnet, anisotropic bonded magnet, and motor
JP2005344142A (en) Method for producing radial anisotropic ring magnet
JP3651098B2 (en) Manufacturing method of long radial anisotropic ring magnet
JP2007028725A (en) Anisotropic bonded magnet assembly, its manufacturing method, and permanent magnet motor using the magnet assembly
JP2007123467A (en) Method for manufacturing anisotropic magnet
JP2018152526A (en) Method for manufacturing rare earth-iron-boron based sintered magnet
JP2020504446A (en) Sintered magnet, electric equipment, use of sintered magnet for electric equipment, and method of manufacturing sintered magnet
EP2631919B1 (en) Method of manufacturing magnet
JP4508019B2 (en) Anisotropic bond sheet magnet and manufacturing apparatus thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4816146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3