JP2012209484A - Bond magnet and method of manufacturing the same - Google Patents

Bond magnet and method of manufacturing the same Download PDF

Info

Publication number
JP2012209484A
JP2012209484A JP2011075151A JP2011075151A JP2012209484A JP 2012209484 A JP2012209484 A JP 2012209484A JP 2011075151 A JP2011075151 A JP 2011075151A JP 2011075151 A JP2011075151 A JP 2011075151A JP 2012209484 A JP2012209484 A JP 2012209484A
Authority
JP
Japan
Prior art keywords
raw material
powder
resin
magnet
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011075151A
Other languages
Japanese (ja)
Other versions
JP5802413B2 (en
Inventor
Teruo Ito
輝雄 伊藤
Chio Ishihara
千生 石原
Toshio Mitsugi
敏夫 三次
和宏 ▲高▼山
Kazuhiro Takayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Resonac Corp
Original Assignee
Hitachi Metals Ltd
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Hitachi Powdered Metals Co Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011075151A priority Critical patent/JP5802413B2/en
Publication of JP2012209484A publication Critical patent/JP2012209484A/en
Application granted granted Critical
Publication of JP5802413B2 publication Critical patent/JP5802413B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-density bond magnet by obtaining a sound green compact less susceptible to cracks even when base powder whose resin amount is reduced to 0.5-1.0 mass% is formed under high pressure.SOLUTION: The bond magnet obtained by binding magnet powder with resin has a cylindrical shape including a hollow part, in which a first layer P11 whose resin amount is 1.5-2.0 mass% is disposed at both end parts or one end part in an axial direction of the hollow part, and a second layer P12 whose resin amount is 0.5-1.0 mass% is disposed in the remaining part at a density of 6.4 Mg/mor more.

Description

本発明は、磁石粉末を樹脂で結着したボンド磁石およびその製造方法に関し、特に、磁石の密度を6.4Mg/m以上とした筒形状を有するボンド磁石およびその製造方法に係る。 The present invention relates to a bonded magnet obtained by binding magnet powder with a resin and a method for manufacturing the same, and more particularly to a bonded magnet having a cylindrical shape with a magnet density of 6.4 Mg / m 3 or more and a method for manufacturing the bonded magnet.

磁石粉末を樹脂で結着したボンド磁石は、形状自由度が高く、また、磁石粉末としてネオジウム磁石等の希土類磁石材料を用いることで、高い磁束密度と強い磁力を発揮できることから、各種小型モータやセンサへの使用を代表とし、一般家電製品、自動車部品、音響機器、医療機器、一般産業機器等、幅広い分野で使用されている。   Bonded magnets made by binding magnet powder with resin have a high degree of freedom in shape, and by using rare earth magnet materials such as neodymium magnets as magnet powder, high magnetic flux density and strong magnetic force can be exhibited. Used for sensors, it is used in a wide range of fields such as general household appliances, automobile parts, acoustic equipment, medical equipment, and general industrial equipment.

ボンド磁石は、成形工程により製品形状が付与される。成形工程は、製品形状が付与された金型内に、磁石粉末を可塑性の原料とともに射出して成形する射出成形法(特許文献1等)と、金型のキャビティに磁石粉末と樹脂を含む原料粉末を充填し、上下パンチで圧縮成形する圧縮成形法(特許文献2等)に大別される。これらの成形方法は用途に応じて使い分けられる。   The bonded magnet is given a product shape by a molding process. The molding process includes an injection molding method (such as Patent Document 1) in which magnet powder is injected and molded together with a plastic raw material into a mold having a product shape, and a raw material containing magnet powder and resin in the mold cavity. It is roughly classified into a compression molding method (Patent Document 2 or the like) in which powder is filled and compression molding is performed by upper and lower punches. These molding methods are properly used according to the application.

上記の各種機器においては、近年の小型化・軽量化の要求の下、ボンド磁石に対して、磁束密度や最大エネルギー積(BH)max等の磁気特性向上の要求が大きくなってきている。この点で、射出成形法は、形状自由度は高いものの、原料に可塑性を与える必要があるため、原料に占める磁石粉末の量が制限され、磁束密度や最大エネルギー積(BH)max等の磁気特性向上の要求に応えることが難しい。一方、圧縮成形法においては、形状の自由度が射出成形法に比して低いものの、磁石粉末の含有量を多くすることができるため、優れた磁束密度および最大エネルギー積(BH)maxを有するボンド磁石を得ることができる。 In the various devices described above, demands for improving magnetic properties such as magnetic flux density and maximum energy product (BH) max have been increasing with respect to bonded magnets under recent demands for miniaturization and weight reduction. In this respect, although the injection molding method has a high degree of freedom in shape, it is necessary to impart plasticity to the raw material, so the amount of magnet powder occupying the raw material is limited, and magnetic properties such as magnetic flux density and maximum energy product (BH) max are limited. It is difficult to meet the demand for improved characteristics. On the other hand, in the compression molding method, although the degree of freedom of shape is lower than that of the injection molding method, the content of the magnet powder can be increased, so that the magnetic flux density and the maximum energy product (BH) max are excellent. A bonded magnet can be obtained.

図1は、中空部を有する円筒形状のボンド磁石の圧粉体を圧縮成形法により成形するための一般的な成形工程を示すものである。図1に示す金型装置は、圧粉体の外周および底面を形成する型孔1aを有するダイ1と、圧粉体の中空部を形成するコアロッド2と、圧粉体の上面を形成する上パンチ4とを備えている。圧粉体の底面形成側には、成形後の圧粉体を押し出すためのエジェクトピン31が円周方向等間隔に配置されている。このような金型装置を用い、図1(a)に示すように、ダイ1の型孔1aとコアロッド2とでキャビティを形成し、このキャビティにフィーダ5等の粉末供給手段により原料粉末Mを充填する。次いで、図1(b)に示すように、上パンチ4を降下させて、キャビティ内に充填された原料粉末Mを上パンチ4で圧縮成形して圧粉体Cとする。この後、図1(c)に示すように、上パンチ4を上方に移動させて待機位置まで復帰させるとともに、エジェクトピン31を上方に移動させ、圧粉体Cをダイ1の型孔1aから押し出す。   FIG. 1 shows a general molding process for molding a green compact of a bonded magnet having a hollow portion by a compression molding method. The mold apparatus shown in FIG. 1 has a die 1 having a mold hole 1a that forms the outer periphery and bottom surface of a green compact, a core rod 2 that forms a hollow portion of the green compact, and an upper surface of the green compact. And a punch 4. On the bottom surface forming side of the green compact, eject pins 31 for extruding the green compact after molding are arranged at equal intervals in the circumferential direction. Using such a mold apparatus, as shown in FIG. 1 (a), a cavity is formed by the mold hole 1a of the die 1 and the core rod 2, and the raw material powder M is fed into the cavity by means of powder supply such as a feeder 5. Fill. Next, as shown in FIG. 1B, the upper punch 4 is lowered, and the raw material powder M filled in the cavity is compression-molded by the upper punch 4 to obtain a green compact C. Thereafter, as shown in FIG. 1 (c), the upper punch 4 is moved upward to return to the standby position, and the eject pin 31 is moved upward to move the green compact C from the mold hole 1 a of the die 1. Extrude.

特開2009−137138号公報JP 2009-137138 A 特開2009−099580号公報JP 2009-099580 A

圧縮成形法は、射出成形法に比して、原料粉末中の磁石粉末の含有量を多くすることができるため、磁束密度に優れたボンド磁石を得易いものの、近年では、より一層の磁束密度の向上が望まれている。ボンド磁石の磁束密度および最大エネルギー積(BH)maxの向上には、磁石粉末の含有量を増加させるとともに、原料粉末を高密度に成形してボンド磁石の密度比を高める必要がある。したがって、ボンド磁石の成形に際しては、原料粉末の樹脂量を低減して磁石粉末の割合を高めるとともに、この原料粉末を高圧力で成形することが必要となる。 The compression molding method can increase the content of the magnet powder in the raw material powder compared to the injection molding method, so it is easy to obtain a bonded magnet with excellent magnetic flux density. Improvement is desired. In order to improve the magnetic flux density and maximum energy product (BH) max of the bonded magnet, it is necessary to increase the content ratio of the bonded magnet by increasing the content of the magnet powder and forming the raw material powder at a high density. Therefore, when forming the bonded magnet, it is necessary to reduce the resin amount of the raw material powder to increase the ratio of the magnet powder and to form the raw material powder at a high pressure.

そこで、本発明者等は、原料粉末中の樹脂量を0.5〜1.0質量%として従来よりも低減させて、ボンド磁石の圧粉体の成形を行った。成形は、図1に示すような片押し成形によって1960MPaの高い成形圧力の下で行い、上記原料粉末を円筒形状に圧縮成形した。しかしながら、図2に示すように、得られた圧粉体Cの上端面からtの位置に、内周面から上端面に向かうクラックが発生した。この圧粉体の上端面は上パンチ4で押圧した面である。このクラックは次のようにして発生したと考えられる。すなわち、原料粉末中の磁石粉末は硬くかつほとんど塑性変形しないため、上パンチ4からの加圧によって、上パンチ4に接した磁石粉末およびその近傍の磁石粉末が弾性変形する。このとき、上パンチ4からの加圧力は、軸方向のみではなく軸方向に対して直交する方向、すなわちコアロッド2をその外周面から圧縮する方向に働き、コアロッド2が半径方向外方に弾性変形した状態で圧縮成形が行われる。この後、上パンチ4からの加圧力が除荷される際に、コアロッド2が弾性復帰して圧粉体Cの上端面近傍の内周面にクラックが発生するものと考えられる。 Therefore, the inventors of the present invention reduced the amount of resin in the raw material powder to 0.5 to 1.0% by mass, and formed a green compact of the bonded magnet. The molding was performed under a high molding pressure of 1960 MPa by a one-press molding as shown in FIG. 1, and the raw material powder was compression molded into a cylindrical shape. However, as shown in FIG. 2, a crack occurred from the inner peripheral surface to the upper end surface at a position t from the upper end surface of the obtained green compact C 1 . The upper end surface of the green compact is a surface pressed by the upper punch 4. This crack is considered to have occurred as follows. That is, since the magnet powder in the raw material powder is hard and hardly plastically deformed, the magnet powder in contact with the upper punch 4 and the magnet powder in the vicinity thereof are elastically deformed by pressurization from the upper punch 4. At this time, the pressing force from the upper punch 4 acts not only in the axial direction but also in a direction orthogonal to the axial direction, that is, in a direction in which the core rod 2 is compressed from its outer peripheral surface, and the core rod 2 is elastically deformed radially outward. In this state, compression molding is performed. Thereafter, when the pressure from the upper punch 4 is unloaded, the core rod 2 is considered that cracks are generated on the inner circumferential surface of the upper end face near the compact C 1 elastically restored.

したがって、本発明は、樹脂量を0.5〜1.0質量%と低減させた原料粉末を高圧力の下で成形してもクラックの発生し難い健全な圧粉体を得ることにより、密度の高いボンド磁石を提供することを目的とする。   Therefore, the present invention provides a green compact that is less prone to cracking even if the raw material powder with the resin content reduced to 0.5 to 1.0% by mass is molded under high pressure. An object of the present invention is to provide a bonded magnet having a high height.

本発明のボンド磁石は、磁石粉末を樹脂で結着したボンド磁石であって、中空部を有する筒形状を有し、中空部の軸方向の両端部もしくは一方の端部に樹脂量が1.5〜2.0質量%の第1層が設けられているとともに、残部に樹脂量が0.5〜1.0質量%の第2層が設けられ、密度が6.4Mg/m以上であることを特徴とする。 The bonded magnet of the present invention is a bonded magnet obtained by binding magnet powder with a resin, and has a cylindrical shape having a hollow portion, and the amount of resin is 1. at both ends or one end in the axial direction of the hollow portion. A first layer of 5 to 2.0% by mass is provided, and a second layer having a resin amount of 0.5 to 1.0% by mass is provided in the balance, and the density is 6.4 Mg / m 3 or more. It is characterized by being.

本発明では、ボンド磁石の中空部の軸方向の両端部もしくは一方の端部に、樹脂量が1.5〜2.0質量%の第1層が設けられているため、圧縮成形時の端部の変形能が高い。このため、端部成形後のコアロッドの弾性復帰による変形を吸収して、端部のクラックの発生を防止することができる。また、残部に、樹脂量を0.5〜1.0質量%と低減させた第2層が設けられているため、ボンド磁石の密度比を80%以上として、磁束密度を高くすることができる。   In this invention, since the 1st layer whose resin amount is 1.5-2.0 mass% is provided in the both ends or one edge part of the axial direction of the hollow part of a bonded magnet, the end at the time of compression molding The deformability of the part is high. For this reason, the deformation | transformation by the elastic return of the core rod after edge part shaping | molding can be absorbed, and generation | occurrence | production of the crack of an edge part can be prevented. Moreover, since the 2nd layer which reduced resin amount with 0.5-1.0 mass% is provided in remainder, the density ratio of a bond magnet can be made 80% or more, and a magnetic flux density can be made high. .

第1層における樹脂量は、1.5〜2.0質量%とする。樹脂量が1.5質量%に満たないと、コアロッドの弾性復帰の際に、変形を吸収できずクラックが発生し易くなる。一方、樹脂量が2.0質量%を超えると、原料粉末中の磁石粉末の量の低下の影響が大きくなり、所望の磁気特性を得難くなる。また、第1層を上記の樹脂量に設定することで、第2層の樹脂量を0.5〜1.0質量%まで低減しても、圧縮成形時に端部にクラックが発生するのを防止することができる。第2層の樹脂量は、少なすぎると成形が困難となるため、0.5質量%以上が必要となる。一方、樹脂量が1.0質量%を超えると、磁石の密度が低下して6.4Mg/mを下回ってしまう。 The amount of resin in the first layer is 1.5 to 2.0% by mass. If the amount of resin is less than 1.5% by mass, the elastic deformation of the core rod cannot be absorbed and cracks are likely to occur. On the other hand, if the amount of resin exceeds 2.0% by mass, the influence of a decrease in the amount of magnet powder in the raw material powder becomes large, and it becomes difficult to obtain desired magnetic properties. Moreover, even if the resin amount of the second layer is reduced to 0.5 to 1.0% by mass by setting the first layer to the above resin amount, cracks are generated at the end during compression molding. Can be prevented. If the amount of the resin in the second layer is too small, molding becomes difficult, so 0.5% by mass or more is required. On the other hand, if the amount of resin exceeds 1.0% by mass, the density of the magnet decreases and falls below 6.4 Mg / m 3 .

本発明のボンド磁石においては、その軸方向において、第1層の高さが1〜3mmであり、第2層の高さが9mm以上であることを好ましい態様とする。第1層の高さが1mm未満であると、圧縮成形時の変形能が十分得られないため、端部のクラックの発生を防止し難くなる。そして、第1層の高さが1〜3mmであれば、上記効果が十分に得られ、端部のクラックの発生を確実に防止することができる。また、第2層の軸方向の高さが9mm未満であると、ボンド磁石の密度比が低くなり、磁気特性が低下する。このため、第2層の高さは大きいほど良く、9mm以上が好ましい。   In the bonded magnet of the present invention, in the axial direction, it is preferable that the height of the first layer is 1 to 3 mm and the height of the second layer is 9 mm or more. If the height of the first layer is less than 1 mm, the deformability at the time of compression molding cannot be obtained sufficiently, and it becomes difficult to prevent the occurrence of cracks at the end. And if the height of a 1st layer is 1-3 mm, the said effect is fully acquired and generation | occurrence | production of the crack of an edge part can be prevented reliably. Further, if the height of the second layer in the axial direction is less than 9 mm, the density ratio of the bonded magnet is lowered and the magnetic properties are deteriorated. For this reason, the higher the height of the second layer, the better, and 9 mm or more is preferable.

なお、本発明のボンド磁石における、中空部を有する筒形状は、中空部の断面形状が円形、楕円形、他角形等や、これらの複合形状を含み、これらにキー溝等の凹条あるいは凸条が、1つもしくは複数形成された形状も含む。また、外周形状についても、円形、楕円形、他角形等や、これらの複合形状を含み、あるいはキー等の凹条あるいは凸条が、1つもしくは複数形成された形状も含む。   In the bonded magnet of the present invention, the cylindrical shape having a hollow portion includes a hollow portion having a circular, elliptical, polygonal shape, etc., or a composite shape thereof. The strip includes one or a plurality of formed shapes. Further, the outer peripheral shape includes a circular shape, an elliptical shape, a polygonal shape, and the like, or a composite shape thereof, or includes a shape in which one or a plurality of concave stripes or convex stripes such as a key are formed.

本発明の第1のボンド磁石の製造方法は、型孔を有するダイと、コアロッドと、コアロッドおよび型孔と摺動自在に嵌合する上パンチおよび下パンチとからなる金型装置を用い、ダイの型孔と、コアロッドと、下パンチにより形成されるキャビティに、樹脂の添加量が0.5〜1.0質量%の磁石粉末を含む第2原料粉末を充填する第1充填工程と、第2原料粉末の上に、樹脂の添加量が1.5〜2.0質量%の磁石粉末を含む第1原料粉末を充填して積層する第2充填工程と、上パンチにより、成形圧力1470〜2450MPaで、第1、第2原料粉末を片押し成形で圧縮成形する圧縮成形工程と、得られた圧粉体を押し出す押し出し工程と、圧粉体を加熱して磁石粉末を樹脂で結着する熱処理工程とを行うことを特徴とする。   The first bonded magnet manufacturing method of the present invention uses a die device comprising a die having a die hole, a core rod, and an upper punch and a lower punch that are slidably fitted to the core rod and the die hole. A first filling step of filling a mold raw material hole, a core rod, and a cavity formed by a lower punch with a second raw material powder containing a magnet powder having a resin addition amount of 0.5 to 1.0% by mass; 2 Forming pressure 1470 ~ by the 2nd filling process which fills and laminates the 1st ingredient powder containing magnet powder whose addition amount of resin is 1.5-2.0 mass% on the raw material powder, and an upper punch A compression molding process in which the first and second raw material powders are compression-molded by one-press molding at 2450 MPa, an extrusion process in which the obtained green compact is extruded, and the green compact is heated to bind the magnet powder with a resin. And a heat treatment step.

また、本発明の第2のボンド磁石の製造方法は、型孔を有するダイと、コアロッドと、コアロッドおよび型孔と摺動自在に嵌合する上パンチおよび下パンチとからなる金型装置を用い、ダイの型孔と、コアロッドと、下パンチにより形成されるキャビティに、樹脂の添加量が1.5〜2.0質量%の磁石粉末を含む第3原料粉末を充填する第1充填工程と、第3原料粉末の上に、樹脂の添加量が0.5〜1.0質量%の磁石粉末を含む第2原料粉末を充填して積層する第2充填工程と、第2原料粉末の上に、樹脂の添加量が1.5〜2.0質量%の磁石粉末を含む第1原料粉末を充填して積層する第3充填工程と、上パンチおよび下パンチにより、成形圧力1470〜2450MPaで、第1、第2、第3原料粉末を両押し成形で圧縮成形する圧縮成形工程と、得られた圧粉体を押し出す押し出し工程と、圧粉体を加熱して磁石粉末を樹脂で結着する熱処理工程とを行うことを特徴とする。   The second bonded magnet manufacturing method of the present invention uses a mold apparatus comprising a die having a mold hole, a core rod, and an upper punch and a lower punch that are slidably fitted to the core rod and the mold hole. A first filling step of filling a die raw material hole, a core rod, and a third raw material powder containing magnet powder having a resin addition amount of 1.5 to 2.0 mass% into a cavity formed by a lower punch; A second filling step of filling and laminating a second raw material powder containing a magnet powder having a resin addition amount of 0.5 to 1.0% by mass on the third raw material powder; In addition, the third filling step of laminating and laminating the first raw material powder containing the magnet powder having a resin addition amount of 1.5 to 2.0% by mass, and the upper punch and the lower punch at a molding pressure of 1470 to 2450 MPa The first, second and third raw material powders are compression-molded by double-press molding A compression molding step, the extrusion step of extruding the obtained green compact, and performing a heat treatment step of forming wear magnet powder with a resin by heating the green compact.

本発明の第1および第2のボンド磁石の製造方法によると、原料粉末の圧縮成形を1回行えばよいため、製造コストを低減することができる。また、樹脂の添加量の多い原料粉末をボンド磁石の端部に用いているため、端部のクラックの発生を防止しながら、成形圧力を高くすることができる。このため、ボンド磁石の密度を高くし、磁束密度を向上することができる。   According to the first and second methods for manufacturing a bonded magnet of the present invention, since the raw material powder needs to be compressed once, the manufacturing cost can be reduced. Moreover, since the raw material powder with a large amount of resin added is used at the end of the bonded magnet, the molding pressure can be increased while preventing the occurrence of cracks at the end. For this reason, the density of the bonded magnet can be increased and the magnetic flux density can be improved.

本発明の第1および第2のボンド磁石の製造方法においては、第1原料粉末および第3原料粉末の充填深さが、圧縮成形後に1〜3mmとなる深さであること、第2原料粉末の充填深さが、圧縮成形後に9mm以上となる深さであることを好ましい態様とする。また、第1〜3原料粉末が、樹脂を磁石粉末の表面に被覆して与えた樹脂被覆磁石粉末からなることを好ましい態様とする。なお、本発明においては、第1〜3原料粉末で用いる樹脂および磁石粉末は同じものでも良く、異なっていても良い。例えば、第1および第3原料粉末を同じ材料から構成し、第2原料粉末を異なる材料から構成しても良い。   In the first and second bonded magnet manufacturing methods of the present invention, the first raw material powder and the third raw material powder have a filling depth of 1 to 3 mm after compression molding, and the second raw material powder The preferred embodiment is that the filling depth is 9 mm or more after compression molding. Moreover, it is set as a preferable aspect that the 1st-3rd raw material powder consists of the resin coating magnet powder which coat | covered and provided resin on the surface of the magnet powder. In the present invention, the resin and magnet powder used in the first to third raw material powders may be the same or different. For example, the first and third raw material powders may be made of the same material, and the second raw material powder may be made of different materials.

圧縮成形時の成形圧力は、1470MPaを下回ると、原料粉末を十分に緻密化できず、ボンド磁石の密度を6.4Mg/m以上にすることができない。一方、2450MPaを超えて圧縮成形しても、ボンド磁石の密度向上の割合が小さく、金型破損が生じ易くなる。このため成形圧力は、1470〜2450MPaとする。 If the molding pressure at the time of compression molding is less than 1470 MPa, the raw material powder cannot be sufficiently densified, and the density of the bonded magnet cannot be made 6.4 Mg / m 3 or more. On the other hand, even if compression molding is performed at a pressure exceeding 2450 MPa, the density improvement rate of the bonded magnet is small, and the mold is easily damaged. Therefore, the molding pressure is set to 1470 to 2450 MPa.

圧粉体の加熱は、樹脂により磁石粉末を結着するために行う。加熱により樹脂を硬化させるとともに磁石粉末を結着させてボンド磁石の強度を向上させる。加熱温度は、樹脂の硬化温度以上であり、また、熱分解が生じると強度が低下するとともに、磁石粉末の絶縁が不良となるため、樹脂の分解温度未満とする。   The green compact is heated to bind the magnet powder with resin. The resin is cured by heating and the magnetic powder is bound to improve the strength of the bonded magnet. The heating temperature is equal to or higher than the curing temperature of the resin, and when thermal decomposition occurs, the strength decreases and the insulation of the magnet powder becomes poor.

樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ポリイミド樹脂等が挙げられ、1種または2種以上用いる。なお、必要に応じてそれぞれの樹脂に適合した硬化剤を併用しても良い。樹脂は粉末の形態で磁石粉末に添加しても良いが、樹脂を溶剤によって溶解させて乾燥させることによって、磁石粉末の表面に被覆して用いることが好ましい。   As resin, an epoxy resin, a phenol resin, a melamine resin, a polyimide resin etc. are mentioned, for example, 1 type (s) or 2 or more types are used. In addition, you may use together the hardening | curing agent suitable for each resin as needed. The resin may be added to the magnet powder in the form of powder, but it is preferable to coat the surface of the magnet powder by dissolving the resin with a solvent and drying.

また、磁石粉末としては、希土類磁石粉末やフェライト磁石粉末等の公知の磁石粉末を単独又は混合して使用することができる。例えば、希土類磁石粉末としては、Nd−Fe−B系磁石粉末、Sm−Co系磁石粉末、Sm−Fe−N系磁石粉末等が挙げられる。   Moreover, as magnet powder, well-known magnet powders, such as rare earth magnet powder and a ferrite magnet powder, can be used individually or in mixture. Examples of rare earth magnet powders include Nd—Fe—B based magnet powder, Sm—Co based magnet powder, Sm—Fe—N based magnet powder, and the like.

本発明によれば、樹脂量を0.5〜1.0質量%と低減させた原料粉末を高圧力の下で成形してもクラックの発生し難い健全な圧粉体を得ることができ、成形体密度の高いボンド磁石を作製することができる。   According to the present invention, it is possible to obtain a healthy green compact that does not easily generate cracks even when the raw material powder having a resin amount reduced to 0.5 to 1.0% by mass is molded under high pressure, A bonded magnet having a high density of the compact can be produced.

従来のボンド磁石の製造方法における成形工程の一例を示す模式図であり、(a)は原料粉末の充填工程、(b)は原料粉末の圧縮成形工程、(c)は圧粉体の押し出し工程である。It is a schematic diagram which shows an example of the shaping | molding process in the manufacturing method of the conventional bond magnet, (a) is a filling process of raw material powder, (b) is a compression molding process of raw material powder, (c) is an extrusion process of a green compact. It is. 従来のボンド磁石の製造方法において発生するクラックの状況を示す模式図である。It is a schematic diagram which shows the condition of the crack which generate | occur | produces in the manufacturing method of the conventional bond magnet. 本発明の第1実施形態のボンド磁石を示す模式図である。It is a mimetic diagram showing the bonded magnet of a 1st embodiment of the present invention. 本発明の第1のボンド磁石の製造方法における成形工程を説明する模式図であり、(a−1)および(a−2)は原料粉末の第1および第2充填工程、(b)は原料粉末の圧縮成形工程、(c)は圧粉体の押し出し工程である。It is a schematic diagram explaining the shaping | molding process in the manufacturing method of the 1st bonded magnet of this invention, (a-1) and (a-2) are the 1st and 2nd filling process of raw material powder, (b) is a raw material. The powder compression molding process, (c) is the green compact extrusion process. 本発明の第2実施形態のボンド磁石を示す模式図である。It is a schematic diagram which shows the bonded magnet of 2nd Embodiment of this invention. 本発明の第2のボンド磁石の製造方法における成形工程を説明する模式図であり、(a−1)〜(a−3)は原料粉末の第1〜3充填工程、(b)は原料粉末の圧縮成形工程、(c)は圧粉体の押し出し工程である。It is a schematic diagram explaining the shaping | molding process in the manufacturing method of the 2nd bonded magnet of this invention, (a-1)-(a-3) is the 1st-3rd filling process of raw material powder, (b) is raw material powder. (C) is a green compact extrusion process.

(1)第1実施形態
本発明の第1実施形態のボンド磁石を図3に示す。本発明の第1実施形態のボンド磁石Pは、中空部を有する筒形状を有し、上端面側(図の上側)に樹脂量が1.5〜2.0質量%の第1層P11が設けられ、残部には、樹脂量が0.5〜1.0質量%の第2層P12が本体として設けられて構成されている。
(1) 1st Embodiment The bonded magnet of 1st Embodiment of this invention is shown in FIG. Bond magnet P1 of 1st Embodiment of this invention has the cylinder shape which has a hollow part, and the 1st layer P whose resin amount is 1.5-2.0 mass% on an upper end surface side (upper side of a figure). 11 are mounted on the remaining portion, the second layer P 12 resin amount of 0.5 to 1.0 mass% is configured provided as the body.

通常、樹脂量が多いボンド磁石は、応力が加わった際に、樹脂が変形することでクラック等の発生が防止される。しかしながら、樹脂量が多いボンド磁石においては、相対的に磁石粉末の量が減少する結果、ボンド磁石の密度比が低下する。このことから、本発明の第1実施形態のボンド磁石Pにおいては、上端面側は樹脂量を多くして応力を吸収する能力を付与し、金型のコアロッドの弾性復帰に際して、応力を吸収してクラックの発生を防止する層として第1層P11を設けている。このため、第1層P11は、樹脂量が多く磁石粉末の量が少ない。第1層P11の高さdは、上端面からのクラックの発生位置t(図2(b)参照)よりも大きく設定すればよい。具体的には1mm以上の高さとすることが推奨される。 Usually, in a bonded magnet having a large amount of resin, when a stress is applied, the resin is deformed to prevent the occurrence of cracks and the like. However, in a bonded magnet with a large amount of resin, the density ratio of the bonded magnet decreases as a result of the relatively decreased amount of magnet powder. Therefore, in the bonded magnet P 1 of the first embodiment of the present invention, the upper end surface imparts the ability to absorb stress by increasing the amount of resin, when the elastic return of the mold core rod, absorb stress as a layer for preventing the occurrence of cracks and is provided with a first layer P 11. Therefore, the first layer P 11 has less amount of resin amount is large magnet powder. The height d of the first layer P 11 may be set larger than the crack generation position t from the top surface (see Figure 2 (b)). Specifically, a height of 1 mm or more is recommended.

一方、ボンド磁石の高さHは、製品の仕様から決定されるものであり、第1層P11の高さdが増加すると、その分、本体である第2層P12の高さhが減少して、ボンド磁石全体に占める磁石粉末の量が減少することとなり、磁気特性が低下する。このため、第1層P11の高さdは3mm以下に止めることが推奨される。また、ボンド磁石製品全体の密度比を大きくするためには、高さhは大きいほどよく、9mm以上とすることが推奨される。 On the other hand, the height H of the bonded magnet, which is determined from the specifications of the product, the height d of the first layer P 11 is increased, correspondingly, the height h of the second layer P 12 is a body As a result, the amount of magnet powder in the entire bonded magnet is reduced, and the magnetic properties are deteriorated. Therefore, the height d of the first layer P 11 is recommended to stop the 3mm or less. In order to increase the density ratio of the entire bonded magnet product, the height h is preferably as large as possible, and is recommended to be 9 mm or more.

第1層P11を上記の樹脂量および高さに設定することで、本体である第2層P12の樹脂量を0.5〜1.0質量%まで低減しても、圧縮成形時にクラックが発生するのを防止することができる。このため、ボンド磁石全体の密度比を80%以上に高めることができる。 The first layer P 11 By setting the resin amount and height of the, also to reduce the resin amount of the second layer P 12 is a body to 0.5-1.0 wt%, cracks at the time of compression molding Can be prevented. For this reason, the density ratio of the whole bonded magnet can be increased to 80% or more.

以上の本発明の第1実施形態のボンド磁石Pは、加圧成形が上パンチ4からの片押し成形の場合のものであり、第1層P11を上パンチ4と当接する側の端面に設けている。 The bond magnet P 1 according to the first embodiment of the present invention described above is for the case where the pressure molding is the one-push molding from the upper punch 4, and the end surface on the side where the first layer P 11 contacts the upper punch 4. Provided.

上記の第1実施形態のボンド磁石Pは、例えば図4のようにして成形される。すなわち、図4に示す金型装置は、圧粉体の外周を形成する型孔1aを有するダイ1と、圧粉体の中空部を形成するコアロッド2と、圧粉体の下面を形成する下パンチ3と、圧粉体の上面を形成する上パンチ4とを備えている。 Bonded magnet P 1 of the first embodiment described above is formed as shown in FIG. 4, for example. That is, the mold apparatus shown in FIG. 4 has a die 1 having a mold hole 1a that forms the outer periphery of the green compact, a core rod 2 that forms a hollow portion of the green compact, and a lower surface that forms the lower surface of the green compact. A punch 3 and an upper punch 4 that forms the upper surface of the green compact are provided.

このような金型装置を用い、図4(a−1)に示すように、ダイ1の型孔1a、コアロッド2および下パンチ3とでキャビティを形成し、このキャビティにフィーダ52等の粉末供給手段により、樹脂量が0.5〜1.0質量%の原料粉末Mを充填する(第1充填工程)。 Using such a mold apparatus, as shown in FIG. 4 (a-1), a cavity is formed by the mold hole 1a of the die 1, the core rod 2, and the lower punch 3, and powder such as a feeder 52 is supplied to the cavity. by means, the amount of resin fills the 0.5 to 1.0 wt% of the raw material powder M 2 (first filling step).

次いで、図4(a−2)に示すように、下パンチ3を降下させて、先に充填された原料粉末Mの上にダイ1の型孔1aとコアロッド2とで新たにキャビティを形成するとともに、このキャビティにフィーダ51により、樹脂量が1.5〜2.0質量%の原料粉末Mを充填する(第2充填工程)。このように原料粉末を充填することで、キャビティ内に樹脂量が0.5〜1.0質量%の原料粉末Mと、樹脂量が1.5〜2.0質量%の原料粉末Mを、積層することができる。 Then, as shown in FIG. 4 (a-2), and lowering the lower punch 3, a new cavity between the die hole 1a and the core rod 2 of the die 1 on the raw powder M 2 filled in the previously formed as well as by feeder 51 to the cavity, the amount of resin fills the raw powder M 1 of 1.5 to 2.0 wt% (second filling process). By thus filling the raw material powder, a raw powder M 1 resin amount of 0.5 to 1.0% by weight in the cavity, the resin amount of 1.5 to 2.0 mass% raw powder M 1 Can be laminated.

次いで、図4(b)に示すように、上パンチ4を降下させて、キャビティ内に積層充填された原料粉末MおよびMを上パンチ4で成形圧力1470〜2450MPaにおいて圧縮成形して圧粉体Cとする(圧縮成形工程)。このとき、原料粉末MおよびMは一体に成形される。 Then, as shown in FIG. 4 (b), lowering the upper punch 4, by compression molding at a molding pressure 1470~2450MPa the raw powder M 1 and M 2 which are stacked filled into the cavity by the upper punch 4 pressure and the powder C 1 (compression molding step). At this time, the raw material powder M 1 and M 2 are molded integrally.

上記のようにして原料粉末を圧縮成形した後、図4(c)に示すように、上パンチ4を上方に移動させて待機位置まで復帰させるとともに、下パンチ3を上昇させて圧粉体Cをダイ1の型孔1aから押し出す(押し出し工程)。圧粉体Cには、上パンチ4に当接する端面側に第1層P11となる層が形成されている。このため、上パンチ4の加圧力を除荷した際にコアロッド2が弾性復帰する変形を吸収できるため、クラックを生じさせずに圧粉体Cを押し出すことができる。この圧粉体Cを所定の温度に加熱することにより(熱処理工程)、本発明のボンド磁石Pを得る。なお、本体である第2層P12と第1層P11は一体となっている。 After the raw material powder is compression-molded as described above, as shown in FIG. 4 (c), the upper punch 4 is moved upward to return to the standby position, and the lower punch 3 is raised to raise the green compact C. 1 is extruded from the mold hole 1a of the die 1 (extrusion process). In the green compact C 1 , a layer that becomes the first layer P 11 is formed on the end face side that contacts the upper punch 4. Therefore, since it is possible to absorb the deformation of the core rod 2 upon unloading the pressure of the upper punch 4 is elastically restored, it is possible to push the powder compact C 1 without generating cracks. The (heat treatment step) by the powder compact C 1 is heated to a predetermined temperature to obtain a bonded magnet P 1 of the present invention. Incidentally, the second layer P 12 and the first layer P 11 is a main body are integrated.

上記の原料粉末MおよびMは、その充填深さが第2層P12の高さh、および第1層P11の高さdとなるように調整して充填される。ここで、原料粉末MおよびMは、同時に一体として圧縮されることから、両粉末とも圧縮比は等しい。したがって、原料粉末Mの充填深さと原料粉末Mの充填深さの比を、所望の第2層P12の高さhと第1層P11の高さdの比と等しくして充填すればよい。したがって、原料粉末Mの充填深さは、上記のように、成形後に1〜3mmとなるよう、また、原料粉末Mの充填深さは、上記のように、成形後に9mm以上となるよう調整する。 Raw powder M 1 and M 2 of the above, the filling depth is filled with adjusted so that the height d of the height h, and the first layer P 11 of the second layer P 12. Here, the raw material powder M 1 and M 2, from being compressed as the integral time, the compression ratio in both powder are equal. Therefore, the ratio of the filling depth of the raw material powder filling depth of M 1 and the raw material powder M 2, filled with equal ratio of the height d of the height h and the first layer P 11 of the desired second layer P 12 do it. Therefore, the filling depth of the raw material powder M 1, as described above, so that 1~3mm after molding, also filling depth of the raw powder M 2, as described above, so that a 9mm or more after the molding adjust.

なお、第1実施形態においては、ダイ1の位置を固定して、下パンチ3を移動制御したが、下パンチ3を固定してダイ1の位置を制御するようにしてもよい。また、原料粉末の加圧を上パンチ4で行ったが、下パンチ3で加圧してもよく、その場合は原料粉末MとMの充填の順序を入れ替えて、原料粉末を直接加圧するパンチの側に、樹脂量が多く磁石粉末の量が少ない原料粉末Mが配置されるように充填すればよい。 In the first embodiment, the position of the die 1 is fixed and the movement of the lower punch 3 is controlled. However, the lower punch 3 may be fixed and the position of the die 1 may be controlled. Moreover, although the raw material powder was pressurized with the upper punch 4, it may be pressurized with the lower punch 3, and in that case, the order of filling the raw material powders M 1 and M 2 is changed and the raw material powder is directly pressurized. on the side of the punch, may be filled as the raw material powder M 1 is small amounts of many magnetic powder resin amount is located.

(2)第2実施形態
以上の本発明の第1実施形態のボンド磁石および本発明の第1のボンド磁石の成形方法においては、片押し成形を行う場合の形態であるが、ボンド磁石の成形は、上パンチと下パンチの両方のパンチで原料粉末を圧縮成形する両押し成形とする場合が多い。すなわち、片押し成形では、金型構成が簡素となり制御し易いという利点はあるが、原料粉末を圧縮する圧力は一方のパンチからのみ与えられ、この圧力が原料粉末を通して減衰しながら他方のパンチに伝播し、この圧力の反力が他方のパンチの加圧力となる。したがって、直接加圧される端面に対し他方の端面が緻密化し難いという欠点を有している。一方、上パンチと下パンチと両方のパンチから直接原料粉末へ圧力を加えれば、両端面とも緻密化し、ボンド磁石の密度を高めることが容易となる。しかしながら、両押し成形とした場合には、下パンチ側でもコアロッドの弾性変形が生じるため、下端面近傍にもクラックが発生し易い。
(2) Second Embodiment The bonded magnet according to the first embodiment of the present invention and the first bonded magnet molding method according to the present invention described above are forms in which one-side press molding is performed. In many cases, the double-push molding in which the raw material powder is compression-molded by both the upper punch and the lower punch. That is, in the one-push molding, there is an advantage that the mold configuration is simple and easy to control, but the pressure for compressing the raw material powder is applied only from one punch, and this pressure is applied to the other punch while being attenuated through the raw material powder. Propagating and the reaction force of this pressure becomes the pressing force of the other punch. Therefore, the other end face is difficult to be densified with respect to the end face directly pressed. On the other hand, if pressure is directly applied to the raw material powder from both the upper punch and the lower punch, both end surfaces are densified, and the density of the bond magnet can be easily increased. However, in the case of double-press molding, the core rod is elastically deformed also on the lower punch side, so that cracks are likely to occur near the lower end surface.

本発明の第2実施形態のボンド磁石は、上記の両押し成形に対応するものであり、図5に示すように、両端面側(図の上下側)に樹脂量が1.5〜2.0質量%の第1層P21、第3層P23が設けられ、残部は、樹脂量が0.5〜1.0質量%の第2層P22が本体として構成されている。すなわち、本発明の第2実施形態のボンド磁石Pは、下パンチ3側にも、樹脂量が多く磁石粉末の量が少ない層が配置されており、圧縮成形時の下パンチ3側のクラックの発生を防止されたものである。 The bonded magnet according to the second embodiment of the present invention corresponds to the above-described double pressing, and as shown in FIG. 5, the resin amount is 1.5-2. The first layer P 21 and the third layer P 23 of 0% by mass are provided, and the second layer P 22 having a resin amount of 0.5 to 1.0% by mass is configured as the main body in the remaining part. That is, bonded magnets P 2 of the second embodiment of the present invention, also the lower punch 3 side, the amount of many magnetic powder resin amount are arranged fewer layers, cracking of the lower punch 3 side at the time of compression molding Is prevented from occurring.

本発明の第2実施形態のボンド磁石Pは、例えば図6のようにして成形される。金型装置は、上記の第1実施形態のボンド磁石の製造方法で用いたものと同じである。ただし、上記の第1実施形態のボンド磁石の製造方法においては、ダイ固定として説明したが、本実施形態においては、粉末成形で一般的なウイズドロアル法(下パンチ固定)を適用した場合について説明する。 Bond magnet P 2 of the second embodiment of the present invention is molded in the manner of Figure 6, for example. The mold apparatus is the same as that used in the manufacturing method of the bonded magnet of the first embodiment. However, in the manufacturing method of the bonded magnet of the first embodiment described above, the die fixing is described. However, in the present embodiment, a case where a general withdrawal method (lower punch fixing) is applied in powder molding will be described. .

上記の金型装置を用い、まず、図6(a−1)に示すように、ダイ1の型孔1a、コアロッド2および下パンチ3とでキャビティを形成し、このキャビティにフィーダ53により、樹脂量が1.5〜2.0質量%の原料粉末Mを充填する(第1充填工程)。 First, as shown in FIG. 6 (a-1), a cavity is formed by the die hole 1a of the die 1, the core rod 2 and the lower punch 3, and the feeder 53 is used for the resin. amount to fill the raw powder M 3 of 1.5 to 2.0 wt% (first filling step).

次いで、図6(a−2)に示すように、ダイ1を上昇させて、先に充填された原料粉末Mの上にダイ1の型孔1aとコアロッド2とで新たにキャビティを形成するとともに、このキャビティにフィーダ52により、樹脂量が0.5〜1.0質量%の原料粉末Mを充填する(第2充填工程)。 Then, as shown in FIG. 6 (a-2), raising the die 1, newly forms a cavity in the die hole 1a and the core rod 2 of the die 1 on the raw powder M 3 filled previously together, the feeder 52 into the cavity, the amount of resin fills the 0.5 to 1.0 wt% of the raw material powder M 2 (second filling process).

この後、さらに、図6(a−3)に示すように、ダイ1をさらに上昇させて、直前に充填された原料粉末Mの上にダイ1の型孔1aとコアロッド2とで、再度、新たにキャビティを形成するとともに、このキャビティにフィーダ51により、樹脂量が1.5〜2.0質量%の原料粉末Mを充填する(第3充填工程)。なお、原料粉末M〜Mにおいて用いる樹脂および磁石粉末は同じものでも良く、異なっていても良い。 Thereafter, further, as shown in FIG. 6 (a-3), to further increase the die 1, with a die hole 1a and the core rod 2 of the die 1 on the raw powder M 2 filled just before, again newly to form a cavity, the feeder 51 into the cavity, the amount of resin fills the raw powder M 1 of 1.5 to 2.0 wt% (3 filling step). The resin and magnet powder used in the raw material powders M 1 to M 3 may be the same or different.

このように原料粉末を充填することで、キャビティ内に、下から、原料粉末M、原料粉末M、原料粉末Mの順に原料粉末を積層し、樹脂量が多く磁石粉末の量が少ない原料粉末M、Mを両端に、樹脂量が少なく磁石粉末の量が多い原料粉末Mを中間に配置して積層充填することができる。 By filling the raw material powder in this way, the raw material powders are stacked in the order of the raw material powder M 3 , the raw material powder M 2 , and the raw material powder M 1 from the bottom in the cavity, and the amount of resin is large and the amount of magnet powder is small. The raw material powders M 1 and M 3 can be laminated and filled with the raw material powder M 2 having a small amount of resin and a large amount of magnet powder in the middle at both ends.

そして、図6(b)に示すように、上パンチ4を降下させるとともに、ダイ1を降下させて、キャビティ内の原料粉末を上パンチ4および下パンチ3で成形圧力1470〜2450MPaにおいて圧縮成形して圧粉体Cとする(圧縮成形工程)。すなわち、本実施形態においては、ダイ1を降下させることにより、相対的に下パンチ3が上昇することとなり、上パンチ4と下パンチ3の両パンチより原料粉末を加圧して両押し成形としている。このとき、原料粉末M、Mは両端部に、原料粉末Mは本体として一体に成形される。 Then, as shown in FIG. 6B, the upper punch 4 is lowered and the die 1 is lowered, and the raw material powder in the cavity is compression molded by the upper punch 4 and the lower punch 3 at a molding pressure of 1470 to 2450 MPa. To obtain a green compact C 2 (compression molding process). That is, in this embodiment, the lower punch 3 is relatively lifted by lowering the die 1, and the raw material powder is pressed from both the upper punch 4 and the lower punch 3 to form a double press molding. . At this time, the raw material powders M 1 and M 3 are integrally formed at both ends, and the raw material powder M 2 is integrally formed as a main body.

上記のようにして原料粉末を圧縮成形した後、図6(c)に示すように、上パンチ4を上方に移動させて待機位置まで復帰させるとともに、ダイ1を、ダイ1の上面が下パンチ3の上端面と一致するまで下降させて、圧粉体Cをダイ1の型孔1aから押し出す(押し出し工程)。圧粉体Cは、上パンチ4および下パンチ3に当接する端面に第1層P21および第3層P23となる層が形成されている。このため、上パンチ4および下パンチ3の加圧力を除荷した際にコアロッド2が弾性復帰する変形を吸収できるため、クラックを生じさせずに圧粉体Cを押し出すことができる。この圧粉体Cを所定の温度に加熱することによって、本発明のボンド磁石Pを得ることができる。なお、第1層P21および第3層P23は両端部に、第2層P22は中間部に配置されて一体に成形されている。 After compression molding the raw material powder as described above, the upper punch 4 is moved upward to return to the standby position as shown in FIG. until it coincides with the 3 upper end surface of is lowered to push the green compact C 2 from the mold hole 1a of the die 1 (extrusion process). In the green compact C 2 , layers that become the first layer P 21 and the third layer P 23 are formed on the end surfaces in contact with the upper punch 4 and the lower punch 3. Therefore, since it is possible to absorb the deformation of the core rod of the pressure of the upper punch 4 and the lower punch 3 upon unloading 2 is elastically restored, it is possible to push the green compact C 2 without generating cracks. By heating the green compact C 2 to a predetermined temperature, it is possible to obtain a bonded magnet P 2 of the present invention. The first layer P 21 and the third layer P 23 are disposed at both end portions, and the second layer P 22 is disposed at the intermediate portion and formed integrally.

以上の本発明の第2のボンド磁石の製造方法において、原料粉末Mおよびその両端に配置される原料粉末M、Mの充填深さは、本発明の第1のボンド磁石の製造方法と同様に設定すればよい。また、成形圧力についても、本発明の第1のボンド磁石の製造方法と同様にして設定すればよい。なお、第2の実施形態においては、ウイズドロアル法を用いており、下パンチ3の位置を固定して、ダイ1を移動制御したが、ダイ1を固定して下パンチ3の位置を制御するようにしてもよい。 In the second method for fabricating a bonded magnet of the present invention described above, the raw material powder M 2 and the filling depth of the raw powder M 1, M 3 are disposed at both ends of the first method for manufacturing a bonded magnet of the present invention You can set as well. The molding pressure may be set in the same manner as in the first method for manufacturing a bonded magnet of the present invention. In the second embodiment, the width method is used and the position of the lower punch 3 is fixed and the die 1 is controlled to move. However, the die 1 is fixed and the position of the lower punch 3 is controlled. It may be.

樹脂被覆磁石粉末は、例えば、樹脂を有機溶媒に溶解した溶液を磁石粉末に混練し、この樹脂溶液と混練された磁石粉末を必要に応じて加熱するなどして、有機溶媒成分を揮発させて得ることができる。すなわち、磁石粉末に混合された樹脂溶液は、磁石粉末の表面に濡れて、これを覆うが、この状態から溶液中の有機溶媒成分を揮発させて除去することで、樹脂成分のみが磁石粉末の表面に被膜として残留する。   The resin-coated magnet powder is prepared by, for example, kneading a solution obtained by dissolving a resin in an organic solvent into the magnet powder, and heating the magnet powder kneaded with the resin solution as necessary to volatilize the organic solvent component. Obtainable. That is, the resin solution mixed with the magnet powder wets and covers the surface of the magnet powder. From this state, the organic solvent component in the solution is volatilized and removed, so that only the resin component is the magnet powder. It remains as a film on the surface.

[第1実施例]
メルトスピニング法で得られたNd8.6Pr0.1Fe84.46.0Ti0.9原子%組成の急冷合金薄帯を粉砕、熱処理して得たTi含有ナノコンポジット磁石粉末を用意した。また、ビスフェノールA型エポキシ樹脂および硬化剤を用意し、表1に示す割合で磁石粉末と樹脂の添加量を変えて混練して、成形後に第2層P12を形成する原料粉末Mを調整するとともに、磁石粉末に、樹脂1.5質量%を添加し混合して、成形後に第1層P11を形成する原料粉末Mを調整した。
[First embodiment]
A Ti-containing nanocomposite magnet powder obtained by pulverizing and heat-treating a quenched alloy ribbon having a composition of Nd 8.6 Pr 0.1 Fe 84.4 B 6.0 Ti 0.9 atomic% obtained by the melt spinning method Prepared. The adjustment prepared bisphenol A type epoxy resin and a curing agent, and kneading by changing the addition amount of the magnetic powder and the resin in the proportions shown in Table 1, the raw material powder M 2 forming the second layer P 12 after the molding as well as, the magnet powder was added and mixed 1.5 wt% resin, to prepare a raw powder M 1 for forming the first layer P 11 after molding.

上記のようにして調整した原料粉末MおよびMを用い、原料粉末Mを充填深さ21.6mmとして充填した上に、原料粉末Mを充填深さ2.4mmとして積層充填し、成形圧力1960MPaで、上パンチによる片押し成形を行った。そして、外径25mm、内径17mm、高さ12mmであり、原料粉末Mにより形成される第2層P12の高さが10.8mm、原料粉末Mにより形成される第1層P11の高さが1.2mmの円筒形状圧粉体を成形し、試料番号01〜06の圧粉体試料を作製した。 Using a raw material powder M 1 and M 2, which was prepared as described above, on the filled raw material powder M 2 as filling depth 21.6 mm, the raw powder M 1 stacked filled as the filling depth 2.4 mm, One-press molding with an upper punch was performed at a molding pressure of 1960 MPa. And the outer diameter is 25 mm, the inner diameter is 17 mm, the height is 12 mm, the height of the second layer P 12 formed by the raw material powder M 2 is 10.8 mm, and the first layer P 11 is formed by the raw material powder M 1 . A cylindrical green compact having a height of 1.2 mm was molded to produce green compact samples of sample numbers 01 to 06.

これらの圧粉体試料について、目視で圧粉体の内径上部を観察し、クラックの有無を調査した。また、クラックが認められない圧粉体試料について、窒素ガス雰囲気中180℃で2時間加熱して熱処理を行った後、アルキメデス法にてボンド磁石としての密度を測定した。これらの結果を表1に併せて示す。   About these green compact samples, the inside diameter upper part of the green compact was observed visually, and the presence or absence of cracks was investigated. Further, a green compact sample in which no cracks were observed was heated in a nitrogen gas atmosphere at 180 ° C. for 2 hours for heat treatment, and then the density as a bonded magnet was measured by the Archimedes method. These results are also shown in Table 1.

Figure 2012209484
Figure 2012209484

表1より、原料粉末Mが樹脂を含有しない試料番号01においては、原料粉末Mが固まらず、押し出し後の圧粉体においてクラックが発生した。一方、樹脂を0.5質量%以上含有する原料粉末Mを用いた試料番号02〜06の試料では、樹脂が磁石粉末に滑りを与えて磁石粉末再配列を促すとともに、樹脂が磁石粉末を結着したため、クラックを発生させることなく成形することができた。また、原料粉末Mの樹脂量が0.5〜2.0質量%の範囲において、樹脂量が0.5質量%の試料番号02の試料の密度が最も高く、樹脂量の増加にしたがい密度が低下する傾向を示している。そして、原料粉末M中の樹脂量が1.0量%を超える試料番号05、06では、密度が6.4Mg/mを下回り低かった。 From Table 1, in Sample No. 01 that the raw material powder M 2 does not contain a resin, the raw material powder M 2 is not harden, crack is generated in the green compact after extrusion. On the other hand, in the sample of the sample No. 02-06 using raw powder M 2 containing resin 0.5 mass% or more, it encourages the magnet powder rearrangement resin giving sliding the magnet powder, the resin magnet powder Since it was bound, it could be molded without generating cracks. Density is also in the scope resin amount of the raw material powder M 2 is 0.5 to 2.0 mass%, the amount of resin is the highest density of the sample of 0.5% by weight of the sample No. 02, with an increase of the resin weight Shows a tendency to decrease. Then, Sample No. 05,06 weight resin of the raw material powder M 2 exceeds 1.0 weight%, the density is low below the 6.4 mg / m 3.

以上のことから、第2層P12を形成する原料粉末Mに樹脂を含有させ、その樹脂量を0.5〜1.0質量%の範囲とすることで、クラックを発生させることなく、密度が6.4Mg/m以上の高い密度のボンド磁石を得られることが確認された。 From the above, by incorporating a resin as a raw material powder M 2 for forming the second layer P 12, by the range and the resin amount of 0.5 to 1.0 mass%, without causing cracks, It was confirmed that a high-density bonded magnet having a density of 6.4 Mg / m 3 or more can be obtained.

[第2実施例]
第1実施例と同じ磁石粉末および樹脂を用い、磁石粉末に、樹脂0.5質量%を添加し混練して、成形後に第2層P12を形成する原料粉末Mを調整するとともに、表2に示す割合で磁石粉末と樹脂粉末の添加量を変えて混練して、第1層P11を形成する原料粉末Mを調整した。
[Second Embodiment]
Using the same magnet powder and the resin to the first embodiment, the magnet powder, together with the addition of 0.5 wt% resin kneaded, to adjust the raw powder M 2 forming the second layer P 12 after molding, the table and kneading by changing the addition amount of the magnetic powder and the resin powder in the ratio shown in 2, to prepare a raw powder M 1 for forming the first layer P 11.

これらの原料粉末を用いて、第1実施例と同様にして、円筒形状圧粉体を成形し、試料番号07〜11の圧粉体試料を作製した。これらの圧粉体試料について、第1実施例と同様にして、クラックの調査を行うとともに、クラックが認められない圧粉体試料について、第1実施例と同様にして熱処理を行った後、ボンド磁石としての密度の測定を行った。これらの結果を表2に併せて示す。なお、表2には、第1実施例の試料番号02の試料の各測定値を併せて示す。   Using these raw material powders, cylindrical green compacts were molded in the same manner as in the first example, and green compact samples of sample numbers 07 to 11 were produced. These green compact samples were investigated for cracks in the same manner as in the first example, and after the heat treatment was performed on the green compact samples in which no cracks were observed in the same manner as in the first example, The density as a magnet was measured. These results are also shown in Table 2. Table 2 also shows the measured values of the sample No. 02 of the first example.

Figure 2012209484
Figure 2012209484

表2より、第1層P11を形成する原料粉末Mの樹脂量を1.5質量%未満とした試料番号07、08の試料は、圧粉体の端部にクラックが発生した。一方、原料粉末Mの樹脂量を1.5質量%以上とした試料番号02、09〜11の試料では、端部にクラックが発生することなく良好な圧粉体を得ることができた。また、原料粉末Mの樹脂量が1.5〜2.5質量%の範囲において、樹脂量が1.5質量%の試料番号02の試料の密度が最も高く、樹脂量の増加にしたがい密度が低下する傾向を示している。そして、原料粉末M中の樹脂量が2.0質量%を超える試料番号11の試料では密度が6.4Mg/mを下回り低くなった。 From Table 2, the sintered sample 07, 08 with the resin amount of the raw material powder M 1 for forming the first layer P 11 is less than 1.5 mass%, cracks occurred in the end portion of the green compact. On the other hand, in the sample of the sample No. 02,09~11 that the resin amount of the raw material powder M 1 and 1.5 mass% or more, it was possible to obtain good green compact without cracks in the end. Density is also in the scope resin amount of 1.5 to 2.5 mass% of the raw material powder M 1, the amount of resin is the highest density of the sample of 1.5 wt% of Sample No. 02, with an increase of the resin weight Shows a tendency to decrease. The density in the sample of the sample No. 11 in which the resin amount of the raw material powder M in 1 exceeds 2.0 mass% is lower below the 6.4 mg / m 3.

以上のことから、第1層P11を形成する原料粉末Mに樹脂を含有させ、この樹脂量を1.5〜2.0質量%の範囲とすることで、クラックを発生させることなく、密度が6.4Mg/m以上の高い密度のボンド磁石を得られることが確認された。 From the above, by incorporating a resin as a raw material powder M 1 for forming the first layer P 11, that the range of this resin amount of 1.5 to 2.0 mass%, without causing cracks, It was confirmed that a high-density bonded magnet having a density of 6.4 Mg / m 3 or more can be obtained.

[第3実施例]
第1実施例と同じ磁石粉末および樹脂を用い、磁石粉末に、樹脂0.5質量%を添加し混練して、第2層P12を形成する原料粉末Mを調整するとともに、磁石粉末に、樹脂粉末1.5質量%を添加し混練して、第1層P11を形成する原料粉末Mを調整した。
[Third embodiment]
Using the same magnet powder and the resin to the first embodiment, the magnet powder, and the addition of 0.5 wt% resin kneaded, with adjusting the raw material powder M 2 for forming the second layer P 12, the magnet powder , it was added 1.5 wt% resin powder kneaded, to prepare a raw powder M 1 for forming the first layer P 11.

これらの原料粉末を用いて、表3に示すように、原料粉末MとMの充填深さを変えて充填し、他の成形条件は第1実施例と同様にして成形して試料番号12〜16の圧粉体試料を作製した。これらの圧粉体試料について、第1実施例と同様にして、クラックの調査クラックの調査を行うとともに、クラックが認められない圧粉体試料について、第1実施例と同様にして熱処理を行った後、ボンド磁石としての密度の測定を行った。これらの結果を表3に併せて示す。なお、表3には、第1実施例の試料番号02の試料の各測定値を併せて示す。 By using these raw powders, as shown in Table 3, were filled with different filling depth of the raw material powder M 1 and M 2, other molding conditions Sample No. molded in the same manner as in the first embodiment 12 to 16 green compact samples were prepared. These green compact samples were examined for cracks in the same manner as in the first example, and cracks were investigated, and the green compact samples in which no cracks were observed were heat treated in the same manner as in the first example. Then, the density as a bonded magnet was measured. These results are also shown in Table 3. Table 3 also shows the measured values of the sample No. 02 of the first example.

Figure 2012209484
Figure 2012209484

表3より、本体である第2層P12を形成する原料粉末Mのみ(第1層P11無し)の試料番号12の試料は、圧粉体の端部にクラックが発生した。一方、第1層P11を形成する原料粉末Mの充填深さを2.0mm以上として第1層P11の高さを1.0mm以上とした試料番号02、13〜16の試料では、端部にクラックが発生することがなく、良好な圧粉体を得ることができた。また、第1層P11の高さが1.0〜3.0mmの範囲において、第1層P11の高さが1.0mmの試料番号13の試料の密度が最も高く、第1層P11の高さの増加にしたがい密度が低下する傾向を示している。そして、第1層P11の高さが3mmを超える試料番号16の試料では密度が6.4Mg/mを下回り低くなった。 From Table 3, samples of sample numbers 12 only raw powder M 2 forming the second layer P 12 is a body (without the first layer P 11), the cracks occurred in the end portion of the green compact. On the other hand, in the sample of the sample No. 02,13~16 the filling depth of the raw material powder M 1 and the height of the first layer P 11 and above 1.0mm as above 2.0mm for forming the first layer P 11, A good green compact could be obtained without cracking at the end. Further, in the height range of 1.0~3.0mm of the first layer P 11, the density of the sample of the sample No. 13 height 1.0mm of the first layer P 11 is the highest, the first layer P As the height of 11 increases, the density tends to decrease. Then, in the sample of the sample No. 16 in which the height of the first layer P 11 exceeds 3mm density is lower below the 6.4 mg / m 3.

以上のことから、第1層P11を第2層P12の端部に設けるとともに、第1層P11の高さを1.0〜3.0mmの範囲とすることで、クラックを発生させることなく、密度が6.4Mg/m以上の高い密度のボンド磁石を得られることが確認された。 From the above, it provided with a first layer P 11 on the end portion of the second layer P 12, by the height of the first layer P 11 in the range of 1.0 to 3.0 mm, to generate cracks It was confirmed that a high-density bonded magnet having a density of 6.4 Mg / m 3 or more can be obtained.

[第4実施例]
第1実施例と同じ磁石粉末および樹脂を用い、磁石粉末に、樹脂0.5質量%を添加し混練して、本体である第2層P12を形成する原料粉末Mを調整するとともに、磁石粉末に、樹脂1.5質量%を添加し混練して、第1層P11を形成する原料粉末Mを調整した。
[Fourth embodiment]
Using the same magnet powder and the resin to the first embodiment, the magnet powder, and the addition of 0.5 wt% resin kneaded, with adjusting the raw material powder M 2 forming the second layer P 12 is a main body, the magnet powder, and the addition of 1.5 wt% resin kneaded to prepare a raw powder M 1 for forming the first layer P 11.

これらの原料粉末を用いて、表4に示すように、成形圧力を変え、他の成形条件は第1実施例と同様にして成形して試料番号17〜22の圧粉体試料を作製した。これらの圧粉体試料について、第1実施例と同様にして、クラックの調査クラックの調査を行うとともに、クラックが認められない圧粉体試料について、第1実施例と同様にして熱処理を行った後、ボンド磁石としての密度の測定を行った。これらの結果を表4に併せて示す。なお、表4には、第1実施例の試料番号02の試料の各測定値を併せて示す。   Using these raw material powders, as shown in Table 4, the molding pressure was changed and the other molding conditions were molded in the same manner as in the first example to prepare green compact samples of sample numbers 17-22. These green compact samples were examined for cracks in the same manner as in the first example, and cracks were investigated, and the green compact samples in which no cracks were observed were heat treated in the same manner as in the first example. Then, the density as a bonded magnet was measured. These results are also shown in Table 4. Table 4 also shows the measured values of the sample No. 02 of the first example.

Figure 2012209484
Figure 2012209484

表4より、成形圧力が1470MPaに満たない試料番号17の試料では、密度が6.4Mg/mを下回り低くなった。一方、成形圧力が1470〜2450MPaの試料番号02、18〜21の試料では、密度が6.4Mg/mを超える高い値となった。成形圧力が増加するにしたがい、密度が増加するが、成形圧力が1960MPaを超えると、成形圧力の増加の割に密度の増加の割合が小さくなってきている。そして、成形圧力が2450MPaを超える試料番号22の試料では、成形圧力が過大となり圧粉体にクラックが発生している。 From Table 4, the density of sample No. 17 having a molding pressure of less than 1470 MPa was lower than 6.4 Mg / m 3 . On the other hand, in the samples Nos. 02 and 18-21 having a molding pressure of 1470 to 2450 MPa, the density was a high value exceeding 6.4 Mg / m 3 . As the molding pressure increases, the density increases. However, when the molding pressure exceeds 1960 MPa, the rate of increase in density decreases with respect to the increase in molding pressure. And in the sample of the sample number 22 whose molding pressure exceeds 2450 MPa, the molding pressure is excessive and cracks are generated in the green compact.

以上のことから、成形圧力が1470〜2450MPaの範囲でクラックを発生させることなく、密度が6.4Mg/m以上の高い密度のボンド磁石を得られることが確認できた。 From the above, it was confirmed that a high-density bonded magnet having a density of 6.4 Mg / m 3 or more can be obtained without generating cracks in a molding pressure range of 1470 to 2450 MPa.

本発明のボンド磁石は、高い密度を得ることによって高い磁束密度と最大エネルギー積(BH)maxを有し、機器の小型化・軽量化に貢献できるものであり、各種小型モータやセンサへの使用を代表とし、一般家電製品、自動車部品、音響機器、医療機器、一般産業機器等、幅広い分野で利用可能である。 The bonded magnet of the present invention has a high magnetic flux density and a maximum energy product (BH) max by obtaining a high density, and can contribute to miniaturization and weight reduction of equipment, and can be used for various small motors and sensors. Can be used in a wide range of fields such as general household appliances, automobile parts, acoustic equipment, medical equipment, general industrial equipment.

1…ダイ、1a…型孔、2…コアロッド、3…下パンチ、31…エジェクトピン、4…上パンチ、5、51、52、53…フィーダ、M…原料粉末、M…第1原料粉末、M…第2原料粉末、M…第3原料粉末、C、C、C…圧粉体、P、P…ボンド磁石、P11、P21…第1層、P12、P22…第2層、P23…第3層、d…第1層および第3層の高さ、h…第2層の高さ、H…圧粉体高さ。 1 ... die, 1a ... die hole, 2 ... core rod, 3 ... lower punch, 31 ... eject pin, 4 ... upper punch, 5,51,52,53 ... feeder, M ... raw powder, M 1 ... first raw material powder M 2 ... second raw material powder, M 3 ... third raw material powder, C, C 1 , C 2 ... green compact, P 1 , P 2 ... bond magnet, P 11 , P 21 ... first layer, P 12 , P 22 ... second layer, P 23 ... third layer, d ... height of the first layer and the third layer, h ... height of the second layer, H ... height of the green compact.

Claims (9)

磁石粉末を樹脂で結着したボンド磁石であって、中空部を有する筒形状を有し、前記中空部の軸方向の両端部もしくは一方の端部に樹脂量が1.5〜2.0質量%の第1層が設けられているとともに、残部に樹脂量が0.5〜1.0質量%の第2層が設けられ、密度が6.4Mg/m以上であることを特徴とするボンド磁石。 A bonded magnet obtained by binding magnet powder with a resin, having a cylindrical shape having a hollow portion, and a resin amount of 1.5 to 2.0 mass at both ends or one end in the axial direction of the hollow portion % Of the first layer is provided, and the remainder is provided with the second layer having a resin amount of 0.5 to 1.0% by mass, and the density is 6.4 Mg / m 3 or more. Bond magnet. 前記第1層の軸方向の高さが1〜3mmであることを特徴とする請求項1に記載のボンド磁石。   The bonded magnet according to claim 1, wherein the first layer has an axial height of 1 to 3 mm. 前記第2層の軸方向の高さが9mm以上であることを特徴とする請求項1または2に記載のボンド磁石。   The bonded magnet according to claim 1 or 2, wherein the second layer has an axial height of 9 mm or more. 型孔を有するダイと、コアロッドと、前記コアロッドおよび型孔と摺動自在に嵌合する上パンチおよび下パンチとからなる金型装置を用い、
前記ダイの型孔と、前記コアロッドと、前記下パンチにより形成されるキャビティに、 樹脂の添加量が0.5〜1.0質量%の磁石粉末を含む第2原料粉末を充填する第1充填工程と、
前記第2原料粉末の上に、樹脂の添加量が1.5〜2.0質量%の磁石粉末を含む第1原料粉末を充填して積層する第2充填工程と、
前記上パンチにより、成形圧力1470〜2450MPaで、第1、第2原料粉末を片押し成形で圧縮成形する圧縮成形工程と、
得られた圧粉体を押し出す押し出し工程と、
前記圧粉体を加熱して磁石粉末を樹脂で結着する熱処理工程とを行うことを特徴とするボンド磁石の製造方法。
Using a die device comprising a die having a mold hole, a core rod, and an upper punch and a lower punch that are slidably fitted to the core rod and the mold hole,
A first filling that fills a cavity formed by the die hole of the die, the core rod, and the lower punch with a second raw material powder containing a magnet powder having a resin addition amount of 0.5 to 1.0 mass%. Process,
On the second raw material powder, a second filling step of filling and laminating the first raw material powder containing a magnet powder having a resin addition amount of 1.5 to 2.0% by mass;
A compression molding step in which the first and second raw material powders are compression-molded by one-press molding at a molding pressure of 1470 to 2450 MPa by the upper punch;
An extrusion process for extruding the obtained green compact;
A method of manufacturing a bonded magnet, comprising performing a heat treatment step of heating the green compact and binding the magnet powder with a resin.
型孔を有するダイと、コアロッドと、前記コアロッドおよび型孔と摺動自在に嵌合する上パンチおよび下パンチとからなる金型装置を用い、
前記ダイの型孔と、前記コアロッドと、前記下パンチにより形成されるキャビティに、 樹脂の添加量が1.5〜2.0質量%の磁石粉末を含む第3原料粉末を充填する第1充填工程と、
前記第3原料粉末の上に、樹脂の添加量が0.5〜1.0質量%の磁石粉末を含む第2原料粉末を充填して積層する第2充填工程と、
前記第2原料粉末の上に、樹脂の添加量が1.5〜2.0質量%の磁石粉末を含む第1原料粉末を充填して積層する第3充填工程と、
前記上パンチおよび下パンチにより、成形圧力1470〜2450MPaで、第1、第2、第3原料粉末を両押し成形で圧縮成形する圧縮成形工程と、
得られた圧粉体を押し出す押し出し工程と、
前記圧粉体を加熱して磁石粉末を樹脂で結着する熱処理工程とを行うことを特徴とするボンド磁石の製造方法。
Using a die device comprising a die having a mold hole, a core rod, and an upper punch and a lower punch that are slidably fitted to the core rod and the mold hole,
A first filling that fills a cavity formed by the die hole of the die, the core rod, and the lower punch with a third raw material powder containing a magnet powder having a resin addition amount of 1.5 to 2.0 mass%. Process,
A second filling step of filling and laminating a second raw material powder containing a magnet powder having a resin addition amount of 0.5 to 1.0% by mass on the third raw material powder;
A third filling step of filling and laminating the first raw material powder containing the magnet powder having a resin addition amount of 1.5 to 2.0% by mass on the second raw material powder;
A compression molding process in which the first, second, and third raw material powders are compression-molded by double-press molding at a molding pressure of 1470 to 2450 MPa by the upper punch and the lower punch;
An extrusion process for extruding the obtained green compact;
A method of manufacturing a bonded magnet, comprising performing a heat treatment step of heating the green compact and binding the magnet powder with a resin.
前記第1原料粉末の充填深さが、圧縮成形後に1〜3mmとなる深さであることを特徴とする請求項4または5に記載のボンド磁石の製造方法。   6. The method of manufacturing a bonded magnet according to claim 4, wherein a filling depth of the first raw material powder is a depth of 1 to 3 mm after compression molding. 前記第3原料粉末の充填深さが、圧縮成形後に1〜3mmとなる深さであることを特徴とする請求項5に記載のボンド磁石の製造方法。   The method for producing a bonded magnet according to claim 5, wherein the filling depth of the third raw material powder is a depth of 1 to 3 mm after compression molding. 前記第2原料粉末の充填深さが、圧縮成形後に9mm以上となる深さであることを特徴とする請求項4〜7のいずれかに記載のボンド磁石の製造方法。   The method for manufacturing a bonded magnet according to any one of claims 4 to 7, wherein a filling depth of the second raw material powder is a depth of 9 mm or more after compression molding. 前記第1〜3原料粉末が、樹脂を磁石粉末の表面に被覆して与えた樹脂被覆磁石粉末からなることを特徴とする請求項4〜8のいずれかに記載のボンド磁石の製造方法。   The method for producing a bonded magnet according to any one of claims 4 to 8, wherein the first to third raw material powders are made of resin-coated magnet powder obtained by coating a surface of a magnet powder with resin.
JP2011075151A 2011-03-30 2011-03-30 Bond magnet and manufacturing method thereof Expired - Fee Related JP5802413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011075151A JP5802413B2 (en) 2011-03-30 2011-03-30 Bond magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011075151A JP5802413B2 (en) 2011-03-30 2011-03-30 Bond magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012209484A true JP2012209484A (en) 2012-10-25
JP5802413B2 JP5802413B2 (en) 2015-10-28

Family

ID=47188969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011075151A Expired - Fee Related JP5802413B2 (en) 2011-03-30 2011-03-30 Bond magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5802413B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230965A (en) * 2011-04-25 2012-11-22 Hitachi Powdered Metals Co Ltd Powder magnetic core, and manufacturing method therefor
JP2021015835A (en) * 2019-07-10 2021-02-12 日本電産サンキョー株式会社 Bond magnet manufacturing device and manufacturing method of bond magnet
WO2022014593A1 (en) 2020-07-14 2022-01-20 昭和電工マテリアルズ株式会社 Compund for bonded magnets, molded body and bonded magnet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001162638A (en) * 1999-12-10 2001-06-19 Honda Motor Co Ltd Method for manufacturing radial anisotropic ring magnet
JP2001192705A (en) * 1999-10-25 2001-07-17 Sumitomo Special Metals Co Ltd Method of manufacturing for compact of rare earth alloy powder, compaction device, and rare earth magnet
JP2003347143A (en) * 1999-10-25 2003-12-05 Sumitomo Special Metals Co Ltd Rare-earth magnet
JP2007228699A (en) * 2006-02-22 2007-09-06 Daido Electronics Co Ltd Cylindrical magnet and its production process
JP2007235017A (en) * 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd Sheet-shaped rare earth bond magnet, its manufacturing method, and motor using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192705A (en) * 1999-10-25 2001-07-17 Sumitomo Special Metals Co Ltd Method of manufacturing for compact of rare earth alloy powder, compaction device, and rare earth magnet
JP2003347143A (en) * 1999-10-25 2003-12-05 Sumitomo Special Metals Co Ltd Rare-earth magnet
JP2001162638A (en) * 1999-12-10 2001-06-19 Honda Motor Co Ltd Method for manufacturing radial anisotropic ring magnet
JP2007228699A (en) * 2006-02-22 2007-09-06 Daido Electronics Co Ltd Cylindrical magnet and its production process
JP2007235017A (en) * 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd Sheet-shaped rare earth bond magnet, its manufacturing method, and motor using it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230965A (en) * 2011-04-25 2012-11-22 Hitachi Powdered Metals Co Ltd Powder magnetic core, and manufacturing method therefor
JP2021015835A (en) * 2019-07-10 2021-02-12 日本電産サンキョー株式会社 Bond magnet manufacturing device and manufacturing method of bond magnet
JP7290491B2 (en) 2019-07-10 2023-06-13 ニデックインスツルメンツ株式会社 BOND MAGNET MANUFACTURING DEVICE AND BOND MAGNET MANUFACTURING METHOD
WO2022014593A1 (en) 2020-07-14 2022-01-20 昭和電工マテリアルズ株式会社 Compund for bonded magnets, molded body and bonded magnet
KR20230038411A (en) 2020-07-14 2023-03-20 가부시끼가이샤 레조낙 Compounds for bond magnets, moldings, and bond magnets

Also Published As

Publication number Publication date
JP5802413B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
KR101247796B1 (en) Rare earth alloy binderless magnet and method for manufacture thereof
EP2562775A1 (en) Case-body bonded magnet, and method for producing same
JP4883706B2 (en) Wire ring parts
TW201521049A (en) Compressed core using soft magnetic powder and method of manufacturing the compressed core
JP5802413B2 (en) Bond magnet and manufacturing method thereof
JP2010245216A (en) Magnetic powder material, granulating powder, compact, baked object for magnetic core, and method of manufacturing electromagnetic component and baked object for magnetic core
JP2014203922A (en) Production method of magnet and magnet
KR20190118114A (en) Production method of rare earth magnet and production apparatus used therefor
CN110062948B (en) Method for manufacturing reactor
JP7127270B2 (en) Shaft integrated bond magnet
KR101261099B1 (en) method for manufacturing rare earth sintering magnets
JP2015008200A (en) Method of manufacturing magnet and magnet
KR102454806B1 (en) Anisotropic bonded magnet and preparation method thereof
JP6523778B2 (en) Dust core and manufacturing method of dust core
JP2016207710A (en) Manufacturing method of magnet and magnet
JP5867674B2 (en) Powder magnetic core and manufacturing method thereof
CN110942882A (en) Composite magnetic material, reactor, and metal composite core and method for manufacturing same
US20170011828A1 (en) Manufacturing Method for Magnet and Magnet
JP4613658B2 (en) Manufacturing method of resin bonded permanent magnet
JP5412172B2 (en) Rare earth permanent magnet and method for producing the same
JP2017033980A (en) Manufacturing method of magnet, and magnet
JP2013089813A (en) Rare earth nitride-based isotropic sintered magnet and production method therefor
KR20150008652A (en) Soft magnetic composite, method for preparing thereof, and electronic elements comprising core material the same
TWI526544B (en) Preparation of High Density Powder Metallurgy Metal Soft Magnetic Materials
KR101269688B1 (en) Method for manufacturing a soft magnetic core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150831

R150 Certificate of patent or registration of utility model

Ref document number: 5802413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees