JP4816146B2 - Sheet-like rare earth bonded magnet, method of manufacturing the same, and motor using the same - Google Patents
Sheet-like rare earth bonded magnet, method of manufacturing the same, and motor using the same Download PDFInfo
- Publication number
- JP4816146B2 JP4816146B2 JP2006057415A JP2006057415A JP4816146B2 JP 4816146 B2 JP4816146 B2 JP 4816146B2 JP 2006057415 A JP2006057415 A JP 2006057415A JP 2006057415 A JP2006057415 A JP 2006057415A JP 4816146 B2 JP4816146 B2 JP 4816146B2
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- rare earth
- sheet
- powder
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims description 41
- 150000002910 rare earth metals Chemical group 0.000 title claims description 40
- 238000004519 manufacturing process Methods 0.000 title description 8
- 239000000843 powder Substances 0.000 claims description 57
- 239000011342 resin composition Substances 0.000 claims description 34
- 229920005989 resin Polymers 0.000 claims description 32
- 239000011347 resin Substances 0.000 claims description 32
- 239000004593 Epoxy Substances 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 18
- 239000006247 magnetic powder Substances 0.000 claims description 17
- 229910045601 alloy Inorganic materials 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 14
- 229920006122 polyamide resin Polymers 0.000 claims description 14
- 238000002156 mixing Methods 0.000 claims description 12
- 229910001172 neodymium magnet Inorganic materials 0.000 claims description 11
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 229920001187 thermosetting polymer Polymers 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 239000003822 epoxy resin Substances 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 claims 2
- 239000010410 layer Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 16
- 238000004804 winding Methods 0.000 description 16
- 239000011230 binding agent Substances 0.000 description 15
- 238000000748 compression moulding Methods 0.000 description 13
- 238000000465 moulding Methods 0.000 description 12
- 238000011049 filling Methods 0.000 description 11
- 238000005096 rolling process Methods 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 239000004952 Polyamide Substances 0.000 description 6
- 230000004907 flux Effects 0.000 description 6
- 238000001746 injection moulding Methods 0.000 description 6
- 229920002647 polyamide Polymers 0.000 description 6
- 238000005215 recombination Methods 0.000 description 6
- 230000006798 recombination Effects 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- 229920003986 novolac Polymers 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000000470 constituent Substances 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000006356 dehydrogenation reaction Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 229910000521 B alloy Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920006334 epoxy coating Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
本発明は薄肉で極配向性のシート状希土類ボンド磁石とその製造方法、およびこの磁石を用いるモータに関するものである。 The present invention relates to a sheet-like rare earth bonded magnet having a thin wall and polar orientation, a method for producing the same, and a motor using the magnet.
希土類ボンド磁石はNdFeB系合金もしくはSmFeN系合金に代表される磁石粉末を用い生産がおこなわれている。このボンド磁石は、焼結法により作製された焼結磁石とは異なり、熱可塑性樹脂や熱硬化性樹脂など結合剤成分を含んでいる。このため、磁石の磁気特性は低くなるものの、焼結磁石に見られる収縮がほとんどなく、高い寸法精度で環状、円弧状や薄肉形状などの特殊な形状の磁石が割れ欠けなどなく作製できるという点が特徴である。このため、ボンド磁石のなかでも中空円筒形状の磁石は家電、電装、情報用のモータに多く用いられてきている。 Rare earth bonded magnets are produced using magnet powders typified by NdFeB-based alloys or SmFeN-based alloys. Unlike a sintered magnet produced by a sintering method, this bonded magnet includes a binder component such as a thermoplastic resin or a thermosetting resin. For this reason, although the magnetic properties of the magnet are lowered, there is almost no shrinkage seen in sintered magnets, and a specially shaped magnet such as an annular shape, arc shape or thin wall shape can be produced with high dimensional accuracy without cracking. Is a feature. For this reason, among the bonded magnets, a hollow cylindrical magnet has been widely used in home appliances, electrical equipment, and information motors.
ボンド磁石の製造は、射出成形、押出成形、圧縮成形などの方法に代表されるが、この中でも圧縮成形は射出成形や押出成形とは大きく異なる。その違いの一つが、ボンド磁石用樹脂組成物(磁石粉末と結合材成分で構成)の組成比である。圧縮成形に用いるボンド磁石用樹脂組成物は射出成形や押出成形のように成形時の成形温度において流動性を必要とせず、このため結合剤成分に対する磁石粉末の比率を上げることが可能となる。つまり、圧縮成形されたボンド磁石は、一般的に射出成形や押出成形で形成されたボンド磁石と比較すると高い磁気特性を有するといえる。 The production of bonded magnets is represented by methods such as injection molding, extrusion molding, and compression molding. Among them, compression molding is greatly different from injection molding and extrusion molding. One of the differences is the composition ratio of the resin composition for bonded magnets (consisting of magnet powder and binder component). The resin composition for bonded magnets used for compression molding does not require fluidity at the molding temperature at the time of molding unlike injection molding or extrusion molding. Therefore, the ratio of the magnet powder to the binder component can be increased. That is, it can be said that a compression-bonded bonded magnet generally has higher magnetic properties than a bonded magnet formed by injection molding or extrusion molding.
モータを搭載する機器の高性能化を実現するために、モータには小型軽量化、高出力化、高効率化が要求され、それにともない、ボンド磁石にも更なる磁気特性の向上が求められている。前述したように磁気特性向上の手段として、磁石粉末に希土類磁石を用い、圧縮成形をおこないボンド磁石を形成する方法がとられる。その中でも特に結晶方位を一方向に配向させた異方性希土類磁石粉末を用いたものがより高い磁気特性が得られるため、各種検討がなされている。 In order to realize higher performance of equipment equipped with motors, motors are required to be smaller, lighter, higher output, and more efficient, and with this, bond magnets are required to further improve magnetic properties. Yes. As described above, as a means for improving the magnetic characteristics, a rare earth magnet is used as the magnet powder, and a compression molding is performed to form a bonded magnet. Among them, various studies have been made since a magnetic material having an anisotropic rare earth magnet powder in which the crystal orientation is oriented in one direction can obtain higher magnetic characteristics.
この結晶方位を一方向に配向させた磁石粉末は以下のプロセスによって得られる。まず、熱間据え込み加工によるものは、機械的に配向させて得たバルク体を粉砕して形成するものである。HDDR処理(水素分解/再結合)によるものはGa,Zr,Hf,などの元素を添加したNd−Fe(Co)−B系合金インゴットを水素中で熱処理し、650〜1000℃で相分解し、脱水素した後、再結合させて得るものである。HDDR処理の意味はNd−0(Fe,Co)−B相の水素化(Hydrogenation)、650〜1000℃での相分解(Decomposition)、脱水素(Desorpsion)、再結合(Recombination)するということである。 Magnet powder in which the crystal orientation is oriented in one direction is obtained by the following process. First, what is formed by hot upsetting is formed by pulverizing a bulk body obtained by mechanical orientation. In the case of HDDR treatment (hydrogen decomposition / recombination), Nd—Fe (Co) —B alloy ingot added with elements such as Ga, Zr, Hf, etc. is heat-treated in hydrogen and phase decomposed at 650-1000 ° C. This is obtained by dehydrogenation and recombination. The meaning of the HDDR treatment is that Nd-0 (Fe, Co) -B phase is hydrogenated (Hydrogenation), phase decomposition (Decomposition) at 650 to 1000 ° C., dehydrogenation (Desorption), and recombination (Recombination). is there.
HDDR処理により作製された異方性磁石粉末を用いてボンド磁石を形成する場合について説明する。磁石粉末はエポキシ樹脂などの熱硬化性樹脂と混合された後、金型のキャビティ内に充填され、圧縮成形を実施する。圧縮成形による緻密化の際、磁石粉末に亀裂や破損が発生すると、新たにNdFeB結晶が暴露され、高温暴露時においてそれらの組織が変化し永久減磁が増大するなど、異方性の磁石粉末は、熱的な安定性に対する課題を有している。このため、HDDR処理により作製された異方性Nd−Fe−B系磁石粉末に対しては、平均粒子径が1〜5μmの異方性のSm−Fe−N系磁石粉末と混合し、ボンド磁石用樹脂組成物とすることにより、熱的な耐久性を向上させることが知られている。これは、平均粒子径が1〜5μmと細かな異方性のSm−Fe−N系磁石粉末が圧縮成形の際、HDDR処理により作製された異方性磁石粉末に加わる圧力を分散し、HDDR
処理により作製された異方性磁石粉末の破損の発生を抑制するためと考えられている。
The case where a bonded magnet is formed using the anisotropic magnet powder produced by HDDR process is demonstrated. The magnet powder is mixed with a thermosetting resin such as an epoxy resin, and then filled into a cavity of a mold to perform compression molding. When the magnet powder is cracked or broken during densification by compression molding, the NdFeB crystals are newly exposed, and their structure changes and the permanent demagnetization increases during high temperature exposure. Has problems with thermal stability. For this reason, the anisotropic Nd—Fe—B magnet powder produced by HDDR treatment is mixed with an anisotropic Sm—Fe—N magnet powder having an average particle diameter of 1 to 5 μm, and bonded. It is known that thermal durability is improved by using a magnet resin composition. This is because the anisotropic Sm-Fe-N magnet powder having an average particle diameter of 1 to 5 μm is dispersed during compression molding, and the pressure applied to the anisotropic magnet powder produced by HDDR treatment is dispersed.
It is considered to suppress the occurrence of breakage of the anisotropic magnet powder produced by the treatment.
異方性ボンド磁石は成形時に印加する磁界により磁石の配向方向が制御可能な特徴をもつ。その中で、極配向磁石は磁石の片方の表面にNS極が現れるものであり、反対側の面には(裏面)にはNS極がほとんど現れないようになっている。一方でラジアル配向磁石は磁石の両面にそれぞれ対になるようにNS極が現れる。極配向磁石は同一形状のラジアル配向磁石に対して磁気特性が高いことが知られている。 An anisotropic bonded magnet has a feature that the orientation direction of the magnet can be controlled by a magnetic field applied during molding. Among them, in the pole-oriented magnet, NS poles appear on one surface of the magnet, and NS poles hardly appear on the opposite surface (back surface). On the other hand, NS poles appear so that the radially oriented magnets are paired on both sides of the magnet. It is known that a pole-oriented magnet has higher magnetic characteristics than a radially oriented magnet having the same shape.
極配向磁石の形成はあらかじめ配向磁界発生用に金型内部に焼結磁石などのエネルギー積の高い磁石を組み込んだ金型を用いて成形をおこなう。組み込む磁石は金型キャビティの側面のいずれかの方向に配置される。このような構成の金型を用い、金型キャビティ内に磁性粉と結合材を主成分とするボンド磁石用樹脂組成物を充填し成形をおこなう。得られたボンド磁石は金型内に配置された配向用磁石側の表面にNS極が現れ、極配向磁石となる。 The pole-oriented magnet is formed by using a mold in which a magnet having a high energy product such as a sintered magnet is previously incorporated in the mold for generating an orientation magnetic field. The magnet to be incorporated is placed in either direction on the side of the mold cavity. Using the mold having such a configuration, molding is performed by filling the mold cavity with a resin composition for a bond magnet mainly composed of magnetic powder and a binder. In the obtained bonded magnet, the NS pole appears on the surface on the side of the orientation magnet arranged in the mold and becomes a pole orientation magnet.
従来、このような極配向磁石としてはフェライト磁性粉末を用いた射出成形ボンド磁石もしくは焼結磁石で形成されたものがほとんどであった。最近では、希土類磁石粉末でも射出成形にて極配向性磁石を形成する方法が開示されている(例えば、特許文献1参照)。 Conventionally, most of such pole-oriented magnets are formed of injection-molded bonded magnets or sintered magnets using ferrite magnetic powder. Recently, a method of forming a polar orientation magnet by injection molding even with rare earth magnet powder has been disclosed (for example, see Patent Document 1).
また、シート状の極配向性磁石として磁石粉末の配向をシート面内方向に制御し、後着磁後に極配向磁石としたものが開示されている(例えば、特許文献2参照)。 Also, a sheet-like polar orientation magnet is disclosed in which the orientation of the magnet powder is controlled in the in-plane direction of the sheet, and a polar orientation magnet is formed after post-magnetization (see, for example, Patent Document 2).
またシート状磁石の製造方法としてソフト磁性粉末を含有したグリーンシートと希土類磁石粉末を含有したグリーンシートを一体的に成形したシート状希土類ボンド磁石の製造方法について開示されている。
良好な曲げ性を有するシート状磁石を形成するためには磁石構成成分中に含まれる結合材などの樹脂比率を高くすることが有効である。しかしながら、特許文献1に記載されているように流動性の高い樹脂組成物を用いる射出成形レベルの樹脂組成物では、結果的に樹脂比率が高くなり得られる磁気特性が低下する課題がある。 In order to form a sheet-shaped magnet having good bendability, it is effective to increase the resin ratio of a binder or the like contained in the magnet component. However, as described in Patent Document 1, a resin composition at an injection molding level using a resin composition with high fluidity has a problem that the magnetic properties that can be obtained as a result of a high resin ratio are lowered.
圧縮成形の特徴である低樹脂量の樹脂組成物を用いると相対的に熱可塑性樹脂などの柔軟性成分も低下し曲げ性が低下する。また、たとえば100μm程度の粒径の大きい磁性粉と1μm程度の粒径の小さい磁性粉との混合体とした場合も曲げ性が著しく低下することが課題である。 When a resin composition having a low resin amount, which is a feature of compression molding, is used, the flexibility component such as a thermoplastic resin is relatively lowered and the bendability is lowered. Further, for example, when a mixture of a magnetic powder having a large particle diameter of about 100 μm and a magnetic powder having a small particle diameter of about 1 μm is used, the problem is that the bendability is significantly reduced.
本発明のシート状希土類ボンド磁石は厚み方向で樹脂量や磁性粉の混合比を変え擬似的な2層構成にすることを特徴としている。樹脂量が多くなるほど柔軟性が高くなるが、磁気特性は低下するため、後にリング形状にする際にはステータコア側に樹脂量が低く磁気特性の高い側を配置することが望ましい。 The sheet-like rare earth bonded magnet of the present invention is characterized by having a pseudo two-layer structure by changing the resin amount and the magnetic powder mixing ratio in the thickness direction. As the amount of resin increases, the flexibility increases, but the magnetic characteristics deteriorate. Therefore, when the ring shape is formed later, it is desirable to arrange the side having a low resin amount and high magnetic characteristics on the stator core side.
磁性粉の混合比を変えることでも柔軟性は変化する。粒径の異なる磁石粉末の混合する場合、粒径の細かい粉末が増えることにより柔軟性は低下する。微粉末量が相対的に多い
ほうが見かけ上の密度も高く、磁気特性も向上し有効である。
The flexibility also changes by changing the mixing ratio of the magnetic powder. When magnetic powders having different particle diameters are mixed, flexibility decreases due to an increase in powders having a fine particle diameter. A relatively large amount of fine powder is effective because it has a higher apparent density and improved magnetic properties.
成形する際には密度が高くなる方を先に充填し、次にもう一方の樹脂組成物を充填した後、圧縮成形をおこなうのが望ましいが、その効果には影響がない。 When molding, it is desirable to first fill the one with higher density, and then fill the other resin composition and then perform compression molding, but this does not affect the effect.
シート磁石の板厚によっても柔軟性は変化し、板厚が薄くなるにつれ柔軟性が増す。このため、磁石の一部を薄くし、見かけ上の有効な磁石体積をほとんど減じることなく柔軟性を向上させることが可能になった。一部を薄くすることでなることに関して、強度が低下する際には樹脂シートを磁石と一体化することにより強度は向上する。 The flexibility also changes depending on the plate thickness of the sheet magnet, and the flexibility increases as the plate thickness decreases. For this reason, it became possible to make a part of the magnet thin and to improve flexibility without substantially reducing the apparent effective magnet volume. When the strength is reduced with respect to thinning a part, the strength is improved by integrating the resin sheet with the magnet.
本発明の極配向性のシート状ボンド磁石は1mm以下の薄肉の状態でも高い磁気特性、フレキシブル性、強度を維持したものを得ることが可能になった。この磁石を用いることによりモータの小型軽量化、高出力化、高効率化が可能となった。 The pole-oriented sheet-like bonded magnet of the present invention can be obtained with high magnetic properties, flexibility and strength even in a thin state of 1 mm or less. By using this magnet, the motor can be reduced in size, weight, output, and efficiency.
以下、発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the invention will be described with reference to the drawings.
本発明は図1(a)に示されるように厚み方向に樹脂量や磁性粉の混合比を変えることにより擬似的な2層構造を有する極配向シート磁石を提供するものである。 As shown in FIG. 1A, the present invention provides a pole-oriented sheet magnet having a pseudo two-layer structure by changing the amount of resin and the mixing ratio of magnetic powder in the thickness direction.
希土類磁石粉末としてはHDDR処理(水素分解/再結合)によって準備された磁気的に異方性のNd−Fe―B系合金粉末、すなわちNd−Fe(Co)−B系合金の水素化、650〜1000℃での相分解、脱水素、再結合するHDDR処理で作成したものや、熱間据込加工(Die−Up−Setting)により準備されたNd−Fe−B系合金粉末など用いることができる。 As rare earth magnet powder, magnetically anisotropic Nd—Fe—B alloy powder prepared by HDDR treatment (hydrogen decomposition / recombination), that is, hydrogenation of Nd—Fe (Co) —B alloy, 650 Use of those prepared by HDDR treatment that undergoes phase decomposition, dehydrogenation, and recombination at ˜1000 ° C., or Nd—Fe—B alloy powder prepared by hot upsetting (Die-Up-Setting) it can.
一方でRD(酸化還元)処理により形成された異方性のSmFeN系微粉末や、前記粉末の表面をあらかじめ不活性化処理した磁石粉末を用いることができる。 On the other hand, anisotropic SmFeN-based fine powder formed by RD (oxidation reduction) treatment or magnet powder obtained by previously inactivating the surface of the powder can be used.
希土類磁石粉末を被覆するためにもちいる固体のエポキシオリゴマーは溶剤などに溶解し、磁石粉末の比表面積から算出して被覆厚さ0.1μm以下になるように調整する。 The solid epoxy oligomer used for coating the rare earth magnet powder is dissolved in a solvent or the like, and is adjusted so that the coating thickness is 0.1 μm or less calculated from the specific surface area of the magnet powder.
また、上記希土類磁石粉末は単独でもちいることができるが、2種類の混合系であるほうが熱安定性の観点で望ましく、その混合組成比を厚み方向で変えることによっても、高い柔軟性を有する。 In addition, the rare earth magnet powder can be used alone, but two mixed systems are desirable from the viewpoint of thermal stability, and also have high flexibility by changing the mixing composition ratio in the thickness direction. .
本発明に用いる結合剤は少なくとも熱圧着機能と熱硬化性官能基を有する粉末状樹脂成分を含んでおり、ボンド磁石用樹脂組成物として結合剤成分の粘着力により希土類磁石粉末を圧縮成形前に結合剤と機械的分離を防ぐ役割を有しており、結合剤としては少なくとも室温で固体のエポキシオリゴマーと室温で粘着性を有する熱圧着性ポリアミドと必要に応じて適時加える粉末状の潜在性エポキシ硬化剤から構成することが望ましい。 The binder used in the present invention contains at least a powdered resin component having a thermocompression bonding function and a thermosetting functional group, and the rare earth magnet powder is compressed before the compression molding by the adhesive force of the binder component as a resin composition for a bond magnet. It has a role to prevent mechanical separation from the binder, and the binder is at least an epoxy oligomer that is solid at room temperature, a thermocompression-bonding polyamide that is sticky at room temperature, and a powdery latent epoxy that is added as needed. It is desirable to comprise a curing agent.
本発明に用いた樹脂組成物の形成プロセスについて説明する。 The process for forming the resin composition used in the present invention will be described.
前記、希土類磁石粉末にエポキシオリゴマーを有機溶媒に溶解したものを湿式混合する。有機溶媒としてはアセトンを用いた。湿式混合はニーダを用いておこなった。その後、湿った混合物を60〜80℃で加熱し溶媒を除去し乾燥する。そして、乾いた塊状の混合物を解砕した。HDDR処理されたNdFeB系合金粉末についてはエポキシ被覆前後での粉末粒子径の分布はほぼ同等である。 The rare earth magnet powder prepared by dissolving an epoxy oligomer in an organic solvent is wet mixed. Acetone was used as the organic solvent. Wet mixing was performed using a kneader. Thereafter, the wet mixture is heated at 60-80 ° C. to remove the solvent and dry. And the dry blocky mixture was crushed. For the NdFeB-based alloy powder subjected to HDDR, the powder particle size distribution before and after the epoxy coating is almost the same.
次に前記エポキシオリゴマーを表面被覆した希土類磁石粉末とポリアミド樹脂、潤滑剤を乾式混合する。樹脂量の異なるボンド磁石用樹脂組成物を作製する際は、ここでポリアミド樹脂の量を増減させ、調整することが可能である。樹脂量を増やす場合においては、前述したエポキシオリゴマ−量を増加させることも可能である。また、異なる合金系の複数種の希土類磁石粉末を用いる場合、この時点で混合することが望ましい。そしてこの混合物を加熱混練して塊状となったものを、さらに粉砕し顆粒状にする。この顆粒を分級工程で粒径の大きい粒子を分離し、この分離された大きい粒子をさらに粉砕、分級を繰り返しおこない、最終的に粒径の揃った粉末を得る。得られた顆粒の粒径は500μm以下、さらには250μm以下とすることが望ましい。この顆粒に潜在性エポキシ硬化剤を乾式混合しボンド磁石用樹脂組成物を得る。 Next, the rare earth magnet powder whose surface is coated with the epoxy oligomer, the polyamide resin, and the lubricant are dry mixed. When producing resin compositions for bonded magnets having different resin amounts, the amount of polyamide resin can be increased or decreased here for adjustment. When increasing the amount of resin, it is also possible to increase the amount of epoxy oligomer described above. Moreover, when using multiple types of rare earth magnet powders of different alloy systems, mixing at this point is desirable. Then, the mixture is kneaded by heating and kneaded to be further pulverized into granules. The granule is separated into particles having a large particle size in a classification step, and the separated large particle is further pulverized and classified repeatedly to finally obtain a powder having a uniform particle size. The particle size of the obtained granules is preferably 500 μm or less, and more preferably 250 μm or less. A latent epoxy curing agent is dry-mixed with the granules to obtain a resin composition for bonded magnets.
本発明のシート状希土類ボンド磁石の成形は圧縮成形によって形成されるものであり、特に平行磁界中で成形されることが好ましい。成形型の上下パンチとキャビティ周辺は加熱されており、その状態でボンド磁石用樹脂組成物を充填する。充填は基本的には2回に分けておこなう。今後2層同時に充填する方式などがあれば、その方式でも可能である。各層は樹脂組成物中の樹脂量もしくは磁性粉末の混合比の異なる樹脂組成物により構成される物である。そして充填が完了したあと配向用の磁石を埋め込んだ金型(上パンチ)を用いて圧縮成形をおこなう。 The sheet-like rare earth bonded magnet of the present invention is formed by compression molding, and is particularly preferably formed in a parallel magnetic field. The upper and lower punches and the cavity periphery of the mold are heated, and in this state, the resin composition for bonded magnets is filled. The filling is basically performed in two steps. If there is a method of filling two layers simultaneously in the future, that method is also possible. Each layer is a thing comprised by the resin composition from which the resin amount in a resin composition or the mixing ratio of magnetic powder differs. After the filling is completed, compression molding is performed using a mold (upper punch) in which an orientation magnet is embedded.
成形後に取りだしたシート状希土類ボンド磁石は標準的には160℃20分の加熱によって熱硬化され、さらに圧延ロールによって圧延率2〜5%の圧延を実施し、本発明の極配向性のシート状希土類ボンド磁石が得られる。 The sheet-like rare earth bonded magnet taken out after the forming is typically thermally cured by heating at 160 ° C. for 20 minutes, and further rolled with a rolling roll at a rolling rate of 2 to 5%. A rare earth bonded magnet is obtained.
上記、シート状希土類ボンド磁石を用いて円筒状のロータコアを用いロータを作製する場合、図1(b)に示すようにコアの内周側に樹脂量の多い面側もしくは微粉量が少なく磁気特性が低い面側を接着してロータコアを形成し、これを用いてモータを構成する。円筒状のロータコアを用いてロータを作製する場合はコアの内周側に同様に樹脂量の多い面側もしくは微粉量が少なく磁気特性が低い面側を接着するようにする。 When producing a rotor using a cylindrical rotor core using the above-mentioned sheet-like rare earth bonded magnet, as shown in FIG. 1 (b), on the inner peripheral side of the core, the surface side with a large amount of resin or the amount of fine powder is small and the magnetic properties The lower surface side is bonded to form a rotor core, which is used to constitute a motor. When a rotor is manufactured using a cylindrical rotor core, a surface side with a large amount of resin or a surface side with a small amount of fine powder and a low magnetic property is adhered to the inner peripheral side of the core.
次に、シート磁石の一部を薄く形成したものに関し、以下説明する。成型体は極数に対応した配向用磁石で構成される金型と、前記金型の極間部分は凹形状になるような表面を有する金型によって形成される。配向用磁石を埋め込んだ金型上にボンド磁石用樹脂組成物を充填することにより配向用の磁界に影響され、充填層の表面は極間部が円弧上の凸形となる。 Next, a sheet magnet that is partially thinned will be described below. The molded body is formed of a mold composed of orientation magnets corresponding to the number of poles, and a mold having a surface such that the inter-electrode portion of the mold has a concave shape. By filling the resin composition for bonded magnets on the mold in which the magnet for orientation is embedded, the magnetic field for orientation is affected, and the surface of the packed layer has a convex shape on the arc.
その後、前述した極間部分が円弧状の凹型となるように対応させた金型を配置し圧縮成形をおこなう。成形後は熱硬化処理のみをおこない、圧延処理は実施しない。このシート状磁石を樹脂層と一体化する工程については、樹脂フィルムをシート磁石の円弧状の凸部を有する面側に配置した後、再度シート磁石と樹脂フィルムとを圧縮する方法もしくは熱可塑性樹脂を磁石の凹部に埋め込む構成にすることが可能である。 After that, a mold is arranged so that the above-described inter-electrode portion is an arc-shaped concave mold, and compression molding is performed. After the molding, only the thermosetting process is performed, and the rolling process is not performed. Regarding the step of integrating the sheet magnet with the resin layer, a method of compressing the sheet magnet and the resin film again after placing the resin film on the surface side having the arc-shaped convex portion of the sheet magnet or a thermoplastic resin Can be embedded in the recess of the magnet.
上記、シート状希土類ボンド磁石を用いて円柱状のロータコアを用いロータを作製する場合、図2(c)に示すようにコアの外周側に磁石面の凹凸形状を有する面もしくは磁石凹部に熱可塑性樹脂を埋め込んだ面側を接着してロータコアを形成し、これを用いてモータを構成する。円筒状のロータコアを用いてロータを作製する場合はコアの内周側に磁石面の凹凸形状を有する面もしくは磁石凹部に熱可塑性樹脂を埋め込んだ面側を同様に接着しロータコア形成し、これを用いてモータを構成する。 When a rotor is manufactured using a cylindrical rotor core using the sheet-like rare earth bonded magnet as described above, as shown in FIG. 2 (c), the surface of the core having an irregular shape of the magnet surface or the magnet recess is thermoplastic. A rotor core is formed by adhering the resin-embedded surface side, and a motor is configured using the rotor core. When a rotor is manufactured using a cylindrical rotor core, a rotor core is formed by similarly bonding the surface having an irregular shape of the magnet surface on the inner peripheral side of the core or the surface side in which the thermoplastic resin is embedded in the magnet recess, The motor is configured using the above.
以下、本発明を実施例により更に詳しく説明する。ただし、本発明は実施例により限定
される物ではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.
本実施例ではHDDR処理された磁気的な異方性を有するNdFeB粉末(HDDRと表記する)を用いた例について説明する。 In this embodiment, an example using NdFeB powder (denoted as HDDR) having magnetic anisotropy processed by HDDR will be described.
ボンド磁石用樹脂組成物は上記希土類磁性粉末と結合剤を主成分とするものである。結合剤の構成成分としては、室温で固体のノボラック型エポキシオリゴマー、粉末状潜在性エポキシ硬化剤、ポリアミド粉末および滑剤から構成されるものを用いた。 The resin composition for bonded magnets contains the rare earth magnetic powder and a binder as main components. As a constituent component of the binder, a constituent composed of a novolak type epoxy oligomer, a powdery latent epoxy curing agent, a polyamide powder and a lubricant which are solid at room temperature was used.
ボンド磁石用樹脂組成物の形成は下記の手順で実施した。 Formation of the resin composition for bond magnets was performed in the following procedure.
最初に上記、ノボラック型エポキシオリゴマーをアセトンに溶解したものを準備する。エポキシ濃度は被覆する磁石粉末に対して0.1μm以下の厚みとなるように調整した物を用いる。HDDRを被覆するためには0.5wt%のエポキシオリゴマーを溶解したものを用いた。その混合物は乾燥、粗粉砕されポリアミド樹脂、滑材を加えて混合した。樹脂量の異なる樹脂組成物を形成するために添加するポリアミド樹脂量を変え、それぞれ個々に準備した。本実施例ではポリアミド量として1.5〜4wt%の範囲で作製した例を示す。これらの混合物はそれぞれ熱ロールなどを用いて混錬し、その混錬物を粉砕、分級し粒径が350μm以下になるように調整する。調整後この粉末に潜在性エポキシ硬化剤を加え乾式混合し、各ボンド磁石用樹脂組成物を得た。 First, the above-mentioned novolac type epoxy oligomer dissolved in acetone is prepared. The epoxy concentration is adjusted to a thickness of 0.1 μm or less with respect to the magnet powder to be coated. In order to coat HDDR, a solution in which 0.5 wt% of an epoxy oligomer was dissolved was used. The mixture was dried and coarsely pulverized, mixed with polyamide resin and a lubricant. The amount of polyamide resin added to form resin compositions having different resin amounts was changed and prepared individually. In this example, an example in which the amount of polyamide is 1.5 to 4 wt% is shown. Each of these mixtures is kneaded using a hot roll or the like, and the kneaded product is pulverized and classified to adjust the particle size to 350 μm or less. After adjustment, a latent epoxy curing agent was added to this powder and dry mixed to obtain a resin composition for each bond magnet.
シート状磁石の成形プロセスは以下のように実施した。金型キャビティ内を150℃以上に、保った後、前記準備したボンド磁石用樹脂組成物をキャビティ内に充填する。充填はポリアミド量の異なる個々の樹脂組成物ごとに順におこなった。充填完了後、配向用の磁石を埋めこんだ金型を押し込み0.6GPaで成形を実施する。その金型の位置で100℃まで冷却した後、配向用磁石を埋めこんだ金型を取り去る。その後、シート厚み方向にポリアミド樹脂量が異なったシート磁石を取りだす。このシート状磁石を窒素雰囲気化で160℃、20分の熱硬化をおこない、硬化完了後に圧延ロールにて2から5%の圧延率で圧延した。 The forming process of the sheet magnet was performed as follows. After keeping the inside of the mold cavity at 150 ° C. or higher, the prepared resin composition for bonded magnet is filled into the cavity. The filling was performed in order for each resin composition having a different amount of polyamide. After the completion of filling, a mold embedded with an orientation magnet is pushed in and molding is performed at 0.6 GPa. After cooling to 100 ° C. at the position of the mold, the mold embedded with the orientation magnet is removed. Thereafter, sheet magnets having different amounts of polyamide resin in the sheet thickness direction are taken out. This sheet-shaped magnet was heat-cured at 160 ° C. for 20 minutes in a nitrogen atmosphere, and after the curing was completed, it was rolled with a rolling roll at a rolling rate of 2 to 5%.
得られたシート磁石の柔軟性を評価するため、限界巻きつけ径試験をおこなった。φ10からφ60までφ5刻みでシート磁石を巻きつけ、表面に異常を生じたひとつ大きい径を限界巻きつけ径として比較検討した。表1は樹脂量違いでの限界巻き付け径試験結果を示すものである。比較例としてポリアミド樹脂量3wt%で作製したものを用いた。第1層2.0wt%と第2層4.0wt%で平均が3wt%とした場合限界巻きつけ径φ10であり曲げ性が良化している。第1層1.5wt%と第2層3.0wt%とした場合限界巻きつけ径はφ20で単層品と同等であるがポリアミド樹脂量が減っているため、曲げ性が良化している。シート磁石の表面の磁束密度を計測した結果、極配向時の表面磁束密度の波形に見られるような極間でピークをもつようなものになっており、極配向していることが確認できた。 In order to evaluate the flexibility of the obtained sheet magnet, a limit winding diameter test was conducted. A sheet magnet was wound in steps of φ5 from φ10 to φ60, and one large diameter that caused an abnormality on the surface was compared as a limit winding diameter. Table 1 shows the limit winding diameter test results with different amounts of resin. As a comparative example, a polyamide resin amount of 3 wt% was used. When the average is 3 wt% in the first layer 2.0 wt% and the second layer 4.0 wt%, the limit winding diameter φ10 and the bendability is improved. When the first layer is 1.5 wt% and the second layer is 3.0 wt%, the limit winding diameter is φ20, which is the same as that of a single layer product, but since the amount of polyamide resin is reduced, the bendability is improved. As a result of measuring the magnetic flux density on the surface of the sheet magnet, it was found that there was a peak between the poles as seen in the waveform of the surface magnetic flux density at the time of polar orientation, and it was confirmed that the magnetic orientation was polar. .
上記作製方法により作製した極配向性シート磁石を搭載したモータは磁気特性が改善され高出力化が可能になる。以下のような永久磁石搭載モータとするとモータの高性能化が可能となる。以下、表1に限界巻きつけ径試験(樹脂量違い)の結果を示す。 A motor equipped with the polar orientation sheet magnet produced by the above production method has improved magnetic characteristics and high output. If the following permanent magnet-mounted motor is used, the performance of the motor can be improved. Table 1 below shows the results of the limit winding diameter test (resin amount difference).
本実施例では2種類の希土類磁石粉末を用いたものについて説明する。具体的にはHDDR処理された磁気的に異方性を有するNdFeB粉末(HDDRと表記する)およびRD処理したSmFeN微粉末を用いて実施したものである。 In the present embodiment, an example using two types of rare earth magnet powder will be described. Specifically, this was carried out using HDDr-treated magnetically anisotropic NdFeB powder (denoted as HDDR) and RD-treated SmFeN fine powder.
ボンド磁石用樹脂組成物は上記希土類磁性粉末と結合剤を主成分とするものである。結合剤の構成成分としては、室温で固体のノボラック型エポキシオリゴマー、粉末状潜在性エポキシ硬化剤、ポリアミド粉末および滑剤から構成されるものを用いた。 The resin composition for bonded magnets contains the rare earth magnetic powder and a binder as main components. As a constituent component of the binder, a constituent composed of a novolak type epoxy oligomer, a powdery latent epoxy curing agent, a polyamide powder and a lubricant which are solid at room temperature was used.
ボンド磁石用樹脂組成物の形成は下記の手順で実施した。 Formation of the resin composition for bond magnets was performed in the following procedure.
最初に上記、ノボラック型エポキシオリゴマーをアセトンに溶解したものを準備する。エポキシ濃度は被覆する磁性粉末に対して0.1μm以下の厚みとなるように調整した物を用いる。HDDRを被覆するためには0.5wt%のエポキシオリゴマーを溶解したものを用いた。SmFeNはHDDRに比較して平均粒子径が小さいため、更に多くのエポキシオリゴマーが必要であり、本発明では2.0wtに調整したものを用いた。HDDRとSmFeNそれぞれにエポキシオリゴマーを被覆したものをそれそれ重量比で6:4となるようにして混合したものを準備し、ポリアミド樹脂量依存性評価のため実施例1と同様にポリアミド樹脂量が2wt%〜5.0wt%ものを個々に用意した。また混合比依存性評価の為、混合比が6:4〜9:1になるようにしたものに、それぞれポリアミド樹脂を3.0wt%加えて混合したものを別途用意した。これらの混合物は個々に熱ロールなどを用いて混錬し、その混錬物を粉砕、分級し粒径が350μm以下になるように調整する。調整後この粉末に潜在性エポキシ硬化剤を加え乾式混合し、ボンド磁石用樹脂組成物を得た。 First, the above-mentioned novolac type epoxy oligomer dissolved in acetone is prepared. The epoxy concentration is adjusted to a thickness of 0.1 μm or less with respect to the magnetic powder to be coated. In order to coat HDDR, a solution in which 0.5 wt% of an epoxy oligomer was dissolved was used. Since SmFeN has a smaller average particle size than HDDR, more epoxy oligomers are required. In the present invention, SmFeN adjusted to 2.0 wt. Prepare a mixture of HDDR and SmFeN coated with an epoxy oligomer in a weight ratio of 6: 4, and the amount of polyamide resin is the same as in Example 1 for evaluating the dependency on the amount of polyamide resin. 2 wt% to 5.0 wt% were prepared individually. Further, for the evaluation of the dependency on the mixing ratio, a mixture prepared by adding 3.0 wt% of polyamide resin to the mixture having a mixing ratio of 6: 4 to 9: 1 was separately prepared. These mixtures are individually kneaded using a hot roll or the like, and the kneaded product is pulverized and classified to adjust the particle size to 350 μm or less. After adjustment, a latent epoxy curing agent was added to this powder and dry mixed to obtain a resin composition for bonded magnets.
シート状磁石の成形プロセスは実施例1と同様に実施した。金型キャビティ内を150℃以上に、保った後、前記準備したボンド磁石用樹脂組成物をキャビティ内に充填する。充填は樹脂量の異なる個々の樹脂組成物ごとあるいは混合比の異なる個々の樹脂組成物の順におこなった。充填完了後、配向用の磁石を埋めこんだ金型を押し込み0.6GPaで成形を実施する。その金型の位置で100℃まで冷却した後、配向用磁石を埋めこんだ金型を取り去る。その後、シート厚み方向で磁石粉末の組成比が異なったシート状磁石を取りだす。このシート状磁石を窒素雰囲気化で160℃、20分の熱硬化をおこない、硬化完了後にロールにて圧延した。圧延率は2から5%の範囲である。得られたシート磁石の柔軟性を評価するため限界巻きつけ径試験をおこなった。表2は樹脂量違いでの限界巻き
付け径試験結果を示すものである。比較例としてポリアミド樹脂量3.5wt%で作製したものを用いた。第1層2.0wt%、第2層5.0wt%で平均が3.5wt%とした場合限界巻きつけ径φ30であり曲げ性が良化している。第1層3.0wt%、第2層4.0wt%とした場合限界巻きつけ径はφ25で曲げ性は良化している。表3は組成比違いでの限界巻き付け径試験結果を示すものである。2種類の磁粉の混合により限界巻きつけ径はφ40であり実施例1に比較し曲げ性は悪い。しかし組成比が異なる表3の組み合わせでは限界巻きつけ径φ25〜φ35であり、曲げ性が良化した。シート磁石の表面の磁束密度を計測した結果、いずれの試料も極配向時の表面磁束密度の波形に見られるような極間でピークをもつようなものになっており、一体化成形した本シート形状の磁石は極配向していることが確認できた。
The molding process of the sheet magnet was performed in the same manner as in Example 1. After keeping the inside of the mold cavity at 150 ° C. or higher, the prepared resin composition for bonded magnet is filled into the cavity. The filling was performed in the order of individual resin compositions having different resin amounts or individual resin compositions having different mixing ratios. After the completion of filling, a mold embedded with an orientation magnet is pushed in and molding is performed at 0.6 GPa. After cooling to 100 ° C. at the position of the mold, the mold embedded with the orientation magnet is removed. Then, the sheet-like magnet from which the composition ratio of the magnet powder differs in the sheet thickness direction is taken out. This sheet magnet was thermally cured at 160 ° C. for 20 minutes in a nitrogen atmosphere, and rolled with a roll after curing was completed. The rolling rate is in the range of 2 to 5%. In order to evaluate the flexibility of the obtained sheet magnet, a limit winding diameter test was conducted. Table 2 shows the limit winding diameter test results with different resin amounts. As a comparative example, a polyamide resin having a weight of 3.5 wt% was used. When the average of the first layer is 2.0 wt% and the second layer is 5.0 wt% and the average is 3.5 wt%, the limit winding diameter is φ30 and the bendability is improved. When the first layer is 3.0 wt% and the second layer is 4.0 wt%, the limit winding diameter is φ25 and the bendability is improved. Table 3 shows the limit winding diameter test results with different composition ratios. The limit winding diameter is 40 by mixing two kinds of magnetic powders, and the bendability is worse than that of Example 1. However, in the combinations of Table 3 having different composition ratios, the limit winding diameter was φ25 to φ35, and the bendability was improved. As a result of measuring the magnetic flux density on the surface of the sheet magnet, every sample has a peak between the poles as seen in the waveform of the surface magnetic flux density at the time of polar orientation. It was confirmed that the magnet of the shape was polar-oriented.
上記作製方法により作製した極配向性シート磁石を搭載したモータは磁気特性が改善され高出力化が可能になる。以下のような永久磁石搭載モータとするとモータの高性能化が可能となる。以下、表2に限界巻きつけ径試験(樹脂量違い)の結果を示す A motor equipped with the polar orientation sheet magnet produced by the above production method has improved magnetic characteristics and high output. If the following permanent magnet-mounted motor is used, the performance of the motor can be improved. Table 2 shows the results of the limit winding diameter test (resin amount difference).
本実施例ではHDDR、SmFeN2種類の希土類磁石粉末を用いたものについて説明する。ボンド磁石用樹脂組成物は実施例2と同様に、上記希土類磁性粉末と結合剤を主成
分とし、結合剤として、室温で固体のノボラック型エポキシオリゴマー、粉末状潜在性エポキシ硬化剤、ポリアミド粉末および滑剤から構成されるものを用いた。
In this embodiment, HDDR and SmFeN two kinds of rare earth magnet powders will be described. As in Example 2, the bonded magnet resin composition was composed mainly of the rare earth magnetic powder and a binder, and the binder was a novolak epoxy oligomer that was solid at room temperature, a powdery latent epoxy curing agent, a polyamide powder, and A composition composed of a lubricant was used.
ボンド磁石用樹脂組成物の形成も実施例2と同様の手法で実施した。 The bond magnet resin composition was also formed in the same manner as in Example 2.
HDDRとSmFeNそれぞれにエポキシオリゴマーを被覆したものをそれそれ重量比で6:4となるようにし、ポリアミド樹脂量は3.0wt%で混合した。これらの混合物を混錬、粉砕、分級し粒径が350μm以下になるように調整する。調整後この粉末に潜在性エポキシ硬化剤を加え乾式混合し、ボンド磁石用樹脂組成物を得た。 Each of HDDR and SmFeN coated with an epoxy oligomer was mixed at a weight ratio of 6: 4, and the amount of polyamide resin was mixed at 3.0 wt%. These mixtures are kneaded, pulverized, and classified to adjust the particle size to 350 μm or less. After adjustment, a latent epoxy curing agent was added to this powder and dry mixed to obtain a resin composition for bonded magnets.
シート状磁石の成形プロセスは以下のように実施した。配向用磁石を埋め込んだ配向磁石付き下金型21に金型ダイ22を組み合わせキャビティ内を150℃以上に保ち、前記準備したボンド磁石用樹脂組成物23をキャビティ内に充填する。充填は配向用磁石の影響で不均一な状態になっている。充填完了後、表面が円弧状の凹形状である上金型24を押し込み0.6GPaで成形を実施する。その金型の位置で100℃まで冷却した後、表面が円弧状の凹形状である金型を取り去る。その後、シート長手方向で厚さの異なる、表面が円弧状の凸形状で下面側が平坦なシート状の磁石体25を取りだす。このシート状磁石を窒素雰囲気化で160℃、20分の熱硬化をおこなった。硬化完了後におこなう圧延工程は実施していない。得られたシート磁石の柔軟性評価のため限界巻きつけ径試験をおこなった結果φ30であり、シート磁石の表面の磁束密度を計測した結果、極配向時の表面磁束密度の波形に見られるような極間でピークをもつようなものになっており、一体化成形した本シート形状の磁石は極配向していることが確認できた。凸面側に樹脂を配置し一体化するために、成形後のキャビティ内に樹脂シートを磁石の上に配置し圧縮し一体化することが可能であった。樹脂を粉体にし上金型を表面が平坦なものにするとシート磁石の凹形状部に樹脂が充填された状態で一体化した物が得られた。 The forming process of the sheet magnet was performed as follows. A die die 22 is combined with a lower die 21 with an orientation magnet embedded with an orientation magnet, and the inside of the cavity is kept at 150 ° C. or higher, and the prepared resin composition 23 for bonded magnet is filled into the cavity. The filling is in a non-uniform state due to the influence of the magnet for orientation. After completion of filling, the upper mold 24 having a concave surface with an arc shape is pushed in and molding is performed at 0.6 GPa. After cooling to 100 ° C. at the position of the mold, the mold whose surface has an arcuate concave shape is removed. Thereafter, a sheet-like magnet body 25 having a thickness different in the sheet longitudinal direction and having a convex surface having an arc shape and a flat bottom surface is taken out. This sheet magnet was thermoset at 160 ° C. for 20 minutes in a nitrogen atmosphere. The rolling process performed after completion of hardening is not implemented. The result of a limit winding diameter test for evaluating the flexibility of the obtained sheet magnet is φ30. As a result of measuring the magnetic flux density on the surface of the sheet magnet, as shown in the waveform of the surface magnetic flux density during polar orientation It has become a thing with a peak between poles, and it has confirmed that the magnet of this sheet | seat shape integrally molded was pole-oriented. In order to dispose and integrate the resin on the convex surface side, it was possible to dispose and compress the resin sheet on the magnet in the cavity after molding. When the resin was powdered and the upper mold was flat, an integrated product with the resin filled in the concave portion of the sheet magnet was obtained.
上記作製方法により作製した極配向性シート磁石を搭載したモータは磁気特性が改善され高出力化が可能になる。以下のような永久磁石搭載モータとするとモータの高性能化が可能となる。 A motor equipped with the polar orientation sheet magnet produced by the above production method has improved magnetic characteristics and high output. If the following permanent magnet-mounted motor is used, the performance of the motor can be improved.
本発明の極配向性のシート状希土類ボンド磁石を用いることにより、熱的な耐久性を向上させたロータ磁石が作製可能であり、当該磁石を搭載したモータの小型軽量化、高出力化、高効率化が可能である。 By using the polar-oriented sheet-like rare earth bonded magnet of the present invention, it is possible to produce a rotor magnet with improved thermal durability. A motor equipped with the magnet is reduced in size and weight, increased in output, and increased in power. Efficiency can be improved.
11 磁石部第1層
12 磁石部第2層軟磁性金属体
13 円筒状ロータコア
21 金型ダイ
22 配向用磁石付き金型
23 樹脂組成物
24 上金型
25 磁石体
DESCRIPTION OF SYMBOLS 11 Magnet part 1st layer 12 Magnet part 2nd layer Soft magnetic metal body 13 Cylindrical rotor core 21 Mold die 22 Mold with magnet for orientation 23 Resin composition 24 Upper mold 25 Magnet body
Claims (8)
前記ボンド磁石は、前記異方性磁石粉末の配向方向が極配向性になるように配向され、前記1または2種以上の異方性の希土類磁石粉末に対する前記熱硬化性エポキシ樹脂組成物の樹脂量が異なる複数の磁石体を積層した構成であることを特徴とする極配向形シート状希土類ボンド磁石。 A resin composition for bonded magnets , comprising one or more anisotropic rare earth magnet powders and a thermosetting epoxy resin composition comprising an epoxy oligomer, a polyamide resin and an epoxy curing agent that coat the rare earth magnet powders A sheet-like rare earth bonded magnet compression-molded by
The bonded magnet is oriented so that the orientation direction of the anisotropic magnet powder becomes polar orientation, and the thermosetting epoxy resin composition for the one or more anisotropic rare earth magnet powders A pole-oriented sheet-like rare earth bonded magnet characterized in that a plurality of magnet bodies having different resin amounts are laminated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006057415A JP4816146B2 (en) | 2006-03-03 | 2006-03-03 | Sheet-like rare earth bonded magnet, method of manufacturing the same, and motor using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006057415A JP4816146B2 (en) | 2006-03-03 | 2006-03-03 | Sheet-like rare earth bonded magnet, method of manufacturing the same, and motor using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007235017A JP2007235017A (en) | 2007-09-13 |
JP4816146B2 true JP4816146B2 (en) | 2011-11-16 |
Family
ID=38555267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006057415A Active JP4816146B2 (en) | 2006-03-03 | 2006-03-03 | Sheet-like rare earth bonded magnet, method of manufacturing the same, and motor using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4816146B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5359382B2 (en) * | 2009-03-05 | 2013-12-04 | 日産自動車株式会社 | Magnet molded body and manufacturing method thereof |
JP5802413B2 (en) * | 2011-03-30 | 2015-10-28 | 日立化成株式会社 | Bond magnet and manufacturing method thereof |
JP6009745B2 (en) * | 2011-08-24 | 2016-10-19 | ミネベア株式会社 | Rare earth resin magnet manufacturing method |
JP6003085B2 (en) * | 2012-02-27 | 2016-10-05 | 株式会社ジェイテクト | Magnet manufacturing method |
CN104043829A (en) * | 2014-06-29 | 2014-09-17 | 江苏新旭磁电科技有限公司 | Press forming die for neodymium iron boron permanent magnet rotors |
CN104107909B (en) * | 2014-07-21 | 2016-05-25 | 中磁科技股份有限公司 | The forming method of hollow cylinder rare earth magnetic steel pressed compact |
JP6778651B2 (en) * | 2017-05-24 | 2020-11-04 | Tdk株式会社 | Iron nitride based bond magnet |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6431402A (en) * | 1987-07-28 | 1989-02-01 | Kubota Ltd | Magnetic anisotropy-oriented resin magnet |
JPH06349630A (en) * | 1993-06-14 | 1994-12-22 | Kawasaki Steel Corp | Anisortopical magmet |
JP2963371B2 (en) * | 1994-08-22 | 1999-10-18 | 株式会社三協精機製作所 | Brushless motor |
JP3301730B2 (en) * | 1998-10-07 | 2002-07-15 | 東京フェライト製造株式会社 | Flexible bonded magnet |
JP2000311806A (en) * | 1999-04-26 | 2000-11-07 | Tokin Corp | Composite magnetic material and manufacture thereof |
JP2002199668A (en) * | 2000-12-27 | 2002-07-12 | Nichia Chem Ind Ltd | Manufacturing method of cylindrical-shaped magnet for polar magnetizing |
JP2003088057A (en) * | 2001-09-14 | 2003-03-20 | Nichia Chem Ind Ltd | Motor field magnet and its manufacturing method |
JP3956760B2 (en) * | 2002-04-25 | 2007-08-08 | 松下電器産業株式会社 | Manufacturing method of flexible magnet and its permanent magnet type motor |
KR100579914B1 (en) * | 2003-08-13 | 2006-05-15 | 자화전자 주식회사 | Manufacture method of laminating polar hybrid magnet |
JP4701641B2 (en) * | 2004-07-02 | 2011-06-15 | 三菱電機株式会社 | Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet. |
-
2006
- 2006-03-03 JP JP2006057415A patent/JP4816146B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007235017A (en) | 2007-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4816146B2 (en) | Sheet-like rare earth bonded magnet, method of manufacturing the same, and motor using the same | |
JP4618553B2 (en) | Method for producing RTB-based sintered magnet | |
US9818513B2 (en) | RFeB-based magnet and method for producing RFeB-based magnet | |
WO2007119393A1 (en) | Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, iron core-equipped permanent magnet motor | |
JP2007180368A (en) | Method for manufacturing magnetic circuit part | |
KR20130030896A (en) | Manufacturing method for bonded magnet | |
WO2003085684A1 (en) | Composite rare earth anisotropic bonded magnet, compound for composite rare earth anisotropic bonded magnet, and method for production thereof | |
WO2012105226A1 (en) | Method for manufacturing anisotropic bonded magnet, and motor | |
JP2017050396A (en) | Rare-earth magnet and manufacturing method therefor | |
KR101804313B1 (en) | Method Of rare earth sintered magnet | |
JP4311063B2 (en) | Anisotropic rare earth bonded magnet and motor | |
JP4364487B2 (en) | Rare earth bonded magnet from sheet to film and permanent magnet motor using the same | |
JP2014192460A (en) | Method of manufacturing r-t-x based powder-compacted magnet, and r-t-x based powder-compacted magnet | |
JP2015032805A (en) | Method of manufacturing anisotropic bond magnet | |
JP2006180607A (en) | Sheet-shaped rare earth bond magnet, its manufacturing method, and motor | |
JP4887617B2 (en) | Resin composition for anisotropic bonded magnet, anisotropic bonded magnet, and motor | |
JP3883138B2 (en) | Manufacturing method of resin bonded magnet | |
JP3651098B2 (en) | Manufacturing method of long radial anisotropic ring magnet | |
JP2005344142A (en) | Method for producing radial anisotropic ring magnet | |
JP4556238B2 (en) | Manufacturing method of resin bonded permanent magnet | |
JP2018152526A (en) | Method for manufacturing rare earth-iron-boron based sintered magnet | |
JP4508019B2 (en) | Anisotropic bond sheet magnet and manufacturing apparatus thereof | |
JP3151604B2 (en) | Method for producing radial anisotropic bonded magnet and bonded magnet | |
JP2013258169A (en) | Bond magnet, method of manufacturing the same, and motor | |
JP2011176014A (en) | Manufacturing method for rare earth bonded magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090114 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110802 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110815 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140909 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4816146 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140909 Year of fee payment: 3 |