JP4364487B2 - Rare earth bonded magnet from sheet to film and permanent magnet motor using the same - Google Patents
Rare earth bonded magnet from sheet to film and permanent magnet motor using the same Download PDFInfo
- Publication number
- JP4364487B2 JP4364487B2 JP2002205409A JP2002205409A JP4364487B2 JP 4364487 B2 JP4364487 B2 JP 4364487B2 JP 2002205409 A JP2002205409 A JP 2002205409A JP 2002205409 A JP2002205409 A JP 2002205409A JP 4364487 B2 JP4364487 B2 JP 4364487B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- magnet
- sheet
- powder
- earth bonded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は希土類磁石粉末,熱硬化性樹脂組成物からなる結合剤,粉末成形と圧延または/およびスタンピング加工により可撓性を制御したシートから厚さ200μm以下のフィルムに至る希土類ボンド磁石,並びにそれらを利用した効率的な永久磁石型モ−タの製造方法に関する。例えば,1992年から2000年までの小型モータ生産台数の概算は24億から47億を既に超えた。直流モ−タ、ブラシレスモ−タ、ステッピングモ−タ、および無鉄心モ−タの4種の生産台数の増加が特に顕著で1992年から2000年まで26億も増加した。その上,将来も年率平均で9%の成長を見積もることができる。しかしながら,小型誘導モ−タと小型同期モ−タの生産数は徐々に減少傾向にある。この傾向は,小型モ−タ産業における高性能磁石による効率的な小型モータの開発と,電気電子機器分野における効率的な小型モータの需要が高度であることを示唆する。小型モータの生産台数のおよそ70%は直流モ−タである。なお,一般の小型直流モ−タではフェライトゴム磁石,高性能小型直流モ−タではメルトスピニングによって準備されたNd−Fe−B系のフレ−ク状の希土類磁石粉末をエポキシ樹脂のような堅い熱硬化性樹脂で圧縮成形した環状磁石が現在,主として利用されている。
【0002】
一方,経済産業省・資源エネルギ−庁の統計では日本における電力総消費は2000年で,およそ9500億kWhであった。その資料から推計すると,モータによる消費電力は総内需の50%を超えると推定される。モ−タの電力消費は大容量の動力用モ−タとは限らない。例えば,2.5インチのHDDスピンドルモータの消費電力はアイドルの状態におけるPCの消費電力の50%を超える。(J.G.W.West,Power Engineerig J.April77,1994)。すなわち,小型モータに関しては,それ自体の電力消費は高々数10W以下が多数である。しかしながら,電気電子機器など先端デバイス分野における需要が高度であることを勘案すれば,効率的な小型モータの広い利用と普及が環境保全や省資源の見地からも強く必要である。本発明は,上記,効率的な小型モ−タを主体とした各種先端デバイス機器に利用される効率的な小型モ−タと,それに適応するシ−トからフィルムに至る希土類ボンド磁石の新規な製造方法に関する。
【0003】
【従来の技術】
各種先端デバイスに利用される小型モ−タは,当該機器の小型軽量化に伴う更なるモ−タ体格の減少とともに小型,高出力,或いは高効率化が求められている。1960年代から永久磁石型モ−タが普及したのも,磁石の応用がモ−タの損失削減につながり,ひいては効率的な小型モ−タの作製に効果的であったからである。このような小型モ−タの発展は磁石粉末を結合剤で固めたボンド磁石の場合には磁石粉末,結合剤システム,成形加工方法が3大要素技術として,それぞれ等しく重要である。
【0004】
上記,小型モ−タに広く使われているボンド磁石に関して,広沢,富澤らのRecent Progress in Research and Development Related to Bonded Rare−Erath Permanent Magnets日本応用磁気学会誌,Vol.21,No.4−1,PP.161−167(1997)が端的に解説している。したがって,引用文献に基づく図1を用いてボンド磁石作製における3大要素技術,すなわち磁石粉末,結合剤,成形加工法の連携を説明する。
【0005】
先ず,磁石粉末▲1▼としてはフェライト系▲1▼−a,アルニコ系▲1▼−b,希土類系▲1▼−c,結合剤▲2▼としてはフレキシブル系(ゴム,熱可塑性エラストマ−)▲2▼−a,堅い熱可塑性樹脂▲2▼−b,堅い熱硬化性樹脂▲2▼−c,加工方法▲3▼としてはカレンダ−リング/押出成形▲3▼−a,射出成形▲3▼−b,圧縮成形▲3▼−cがある。そして,それらの連携は図中の実線で示すように整理される。例えば,希土類磁石粉末▲1▼−cは結合剤▲2▼としてフレキシブル系(ゴム,熱可塑性エラストマ−)▲2▼−a,堅い熱可塑性樹脂▲2▼−b,堅い熱硬化性樹脂▲2▼−c,また,成形加工法▲3▼としてカレンダ−リング/押出成形▲3▼−a,射出成形▲3▼−b,圧縮成形▲3▼−cというように▲2▼と▲3▼の全ての要素と連携している。しかし,圧縮成形▲3▼−cと希土類磁石粉末▲1▼−cとの連携では,結合剤▲2▼の要素が,例えばエポキシ樹脂のような堅い熱硬化性樹脂▲2▼−cとの関係に限られているのが現状である。
【0006】
上記,ボンド磁石作製における3大要素技術,すなわち希土類磁石粉末▲1▼−c,結合剤▲2▼,成形加工法▲3▼との連携とモ−タの高性能化の関係としては,例えばF.Yamashita,Y.Sasaki,H.Fukunaga,Isotropic Nd−Fe−B Thin Arc−shaped BondedMagnets for Small DC Motors Prepared by Powder Compacting Press withMetal Ion−implanted Punches,日本応用磁気学会誌,Vol.25,No.4−2,PP.683−686(2001)の記載のように,最大厚さ0.9mmの薄肉円弧状磁石の作製において,希土類磁石粉末▲1▼−c/堅い熱可塑性樹脂▲2▼−b/押出成形▲3▼−aとの連携から,希土類磁石粉末▲1▼−c/堅い熱硬化性樹脂▲2▼−c/圧縮成形▲3▼−cへの連携に変更することで,出力200mW級の永久磁石界磁型小型直流モ−タの最大効率を8%改善している。このことは,希土類磁石粉末が全く同じであっても,連携要素の組換えにより効率的な小型モ−タが提供できることを示唆している。
【0007】
ところで,本発明が対象とする主に機械出力数10W以下の小型モ−タの磁石として,従来検討されてきたシ−ト磁石を図1のボンド磁石製造における3大要素技術の連携の観点から整理すると,フェライト系磁石粉末▲1▼−aまたは希土類系磁石粉末▲1▼−c/フレキシブル系(ゴム,熱可塑性エラストマ−)▲2▼−a/カレンダ−リング/押出成形▲3▼−aの連携で表すことができる。この連携のもとで従来多くの工夫が行われている。
【0008】
例えば,希土類磁石粉末▲1▼−cと柔軟なゴム,熱可塑性エラストマ−▲2▼−aとで構成したシ−ト磁石を帯状に切断し,環状にカ−リングして枠の周壁内面に固着し,電機子鉄心の突極面と対向させた構成の永久磁石型モ−タが知られている。この磁石およびモ−タの先行技術として,特許第2766746号公報では,(1)Nd−Fe−B系、(Ce,La)−Fe−B系希土類磁石粉末,(2)天然ゴム,イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム,ブチルゴム,エチレンプロピレンゴム,エチレン酢ビゴム,ニトリルゴム,アクリルゴム,ウレタンゴム,(3)クロロプレンゴム,クロロスルホン化ポリエチレン,塩化ポリエチレンの各(1)〜(3)の群の1種または2種以を選択し,(1)が92〜96wt.%、密度4.9〜5.8Mg/m3としたシ−ト磁石。また,特許第2528574号公報には,(a)R−Fe−B(RはNd/Pr)系希土類磁石粉末とゴム,熱可塑性エラストマ−などの樹脂を混練する工程,(b)前記混練物を粉砕した後,シ−トにカレンダ−リングする工程,(c)前記シ−ト磁石を125〜180℃で60〜180mun熱処理する工程、とからなるシ−ト磁石の製造方法が開示されている。
【0009】
しかし、▲1▼.シ−ト磁石の密度が4.9〜5.8Mg/m3であることからの磁気性能の限界,▲2▼.柔軟な熱可塑性エラストマ−やゴムと希土類磁石粉末とは接着力に乏しく,励磁された電機子鉄心の磁気吸引力で希土類磁石粉末が脱落飛散してモ−タ運転中に回転雑音や回転障害を引き起こすなどの信頼性への課題,▲3▼.ゴムの加硫と切断面の再加熱など工程が瀕雑で,加硫による残存硫黄ガスによるブラシ−整流子など電気摺動接点の腐食や磨耗促進など信頼性にも課題があった。
【0010】
なお,特開平5−299221号公報に,Sm−Fe−N系の希土類磁石粉末と酸変性したスチレン系エラストマ−をカレンダ−リング(混練/圧延)し,更に切断した短冊をカ−リングすることにより小型モ−タに使用するような密度5.6Mg/m3,最大エネルギ−積(BH)max35kJ/m3の環状磁石が開示されている。しかし,磁気的に等方性のR−Fe−B(RはNd/Pr)希土類系磁石粉末と堅いエポキシ樹脂とを圧縮成形した(BH)max〜80kJ/m3の磁石に比べると磁気性能では及ばず,所望する電機子鉄心との空隙に強力な静磁界が得られない。また,Sm−Fe−N磁石粉末は数μmのSm2Fe17N3磁石相単相から成る微粉体のため一般には化学的に活性で,切断面で希土類−鉄−窒素磁石粉末が大気中に暴露され,酸化腐食による永久減磁に基づく不可逆磁束損失や熱可塑性エラストマ−と磁石粉末との密着力低下による磁石の部分崩壊,ひいては磁石粉末が脱落飛散するという重大な課題もあった。
【0011】
一方,厚さ200μm以下のフィルム磁石はマイクロロボット,医療,宇宙開発等において駆動源として利用されるミリメ−トルサイズの高性能モータ,アクチュエ−タ、磁気駆動素子等に利用される。言うもでもなく、薄膜の希土類磁石はスパッタリング法による作製が一般的である。例えば,特開平05−21865号公報には薄膜の希土類磁石をスパッタ法によりガラス基板,石英基板およびシリコンウエハ−等の基板等の上に形成する方法において,前記基板等と前記希土類薄膜磁石との間に金属層を形成する方法が開示されている。特開平06−151226号公報には,薄膜の希土類磁石をスパッタリング法で形成する方法において,膜厚が約1〜40nmの金属層と膜厚方向に異方性を持つ5μm未満のR2Fe14B(RはYを含む希土類元素)合金層とを交互に積層する薄膜の希土類磁石の形成方法,特開平08−83713号公報にはNd2Fe14Bを主相とする薄膜の希土類磁石のスパッタリング法における最適作製条件として,基板温度530〜570℃,成膜速度0.1〜4μm/hr,ガス圧力0.05〜4Paとすることが開示されている。さらに,特開平09−162034号公報には基板上にNd2Fe14B,SmCo5,Sm(Co,Fe,Cu,Zr)7,SmFe11Ti,Sm2Fe17N2などの所謂希土類磁石からなる硬磁性層とFe,Fe−Ni,Fe−Co,Fe−Si,Fe−N,Fe−Bなどの軟磁性層を交互に積層した多層合金膜を有する膜磁石において,基板温度450〜800℃でのスパッタリング法により基板上に一層あたり2〜4nmの厚さを有し,且つ厚さ方向に異方性をもつ前記硬磁性層と,基板温度150〜650℃でのスパッタリング法により一層あたり6〜12nmの厚さを有し,且つ厚さ方向に磁気的な異方性をもつ前記軟磁性層とが交互に積層された多層構造の薄膜希土類磁石も開示されている。また,特開平09−237714,特開平11−214219号公報にも,例えばスパッタリング法により基板温度300〜800℃で,膜面内方向において互いに隣接する軟磁性層と硬磁性層の厚さをnm水準で厳密に制御した厚さ0.01〜300μmの多層構造の薄膜希土類磁石が開示されている。
【0012】
しかしながら,スバッタリング法で薄膜の希土類磁石を作製するには基板を450℃以上に加熱する必要があり,成膜速度が0.1〜4μm/hrと制限される。とくに,Nd2Fe14Bを主相とする薄膜の希土類磁石では酸化による保磁力低下を抑制するため,膜厚が5μm未満に制限される。また,軟磁性層と硬磁性層の厚さをnm水準で厳密に制御した厚さ0.01〜300μmの多層構造の薄膜希土類磁石では,更に磁石作製が瀕雑で経済的な整合性が乏しくなる。そこで,特開平11−288812号公報では基板を加熱することなくスパッタリング法にて成膜し,かつ成膜後に熱処理した薄膜のR−Fe−B系希土類磁石が開示されている。しかしながら,この方法においても成膜速度が4μm/hr以下であるという課題や磁石の膜厚が十数μm以下に制限されるという課題があった。
【0013】
上記,モータやアクチュエ−タには小型化への強い要求がある。モ−タやアクチュエ−タでの小型化の要点は構成部品を少なくし,組立を単純化することである。このことから小型モ−タやアクチュエ−タの可動子を粉末冶金学的手法による希土類焼結磁石やメルトスパン法によるフレ−ク状の磁石粉末などを樹脂で特定形状に固めた希土類ボンド磁石で構成することが一般的である。なお,磁石と電機子巻線の位置関係から,磁石と電機子巻線が軸方向に空隙をもつ軸方向空隙型と,磁石と電機子巻線が半径方向に空隙をもつ径方向空隙型とが提案されている。ところが,例えば,図2のような直径5mm,高さ1mmというミリメ−トルサイズのモ−タやアクチュエ−タ(この場合は軸方向空隙型)では可動子を構成する希土類磁石も厚さ300μm,或いはそれ以下のフィルム磁石で構成する必要がある。ただし,図において1はフィルム磁石,2は回転軸,3は電機子巻線、4は軸受である。
【0014】
ところで,Nd2Fe14Bを主相とする希土類焼結磁石は結晶粒子径が一般に6〜9μmと大きく,その結晶粒界にはRリッチ相が存在するため研削加工時に表面から深さ数10μmに至る表層の磁気性能が加工劣化を起こす。また,材料が脆く難加工性であるため,歩留まりを考慮した加工限界は500μm程度と見積もられ,図2に示す用途への対応が困難となる。また,メルトスパン法によるNd2Fe14Bを主相とする希土類ボンド磁石は磁石のNd2Fe14B結晶粒径が20〜100nmと比較的小さいが,磁石の密度の低下による磁気性能の低下が避けられず,磁気性能の維持と歩留まりを考慮した加工限界はやはり,500μm程度と見積もられる。
【0015】
以上のように,ミリメ−トルサイズのモ−タやアクチュエ−タ,磁気駆動素子では従来の粉末冶金学的手法による希土類焼結磁石,或いは希土類磁石粉末を樹脂で固めるボンド磁石を,そのまま採用しても希土類磁石の本来の磁気性能をモ−タやアクチュエ−タとして十分に引出して利用することができなかった。
【0016】
また,スバッタリング法で薄膜の希土類磁石を作製には一般に基板を450℃以上に加熱する必要があり,成膜速度が0.1〜4μm/hrと制限される。とくに,Nd2Fe14Bを主相とする薄膜の希土類磁石ではスバッタ時の酸化による保磁力低下のため膜厚が5μm未満に制限される。また,軟磁性層と硬磁性層の厚さをnm水準で厳密に制御した厚さ0.01〜300μmの多層構造の薄膜希土類磁石では,磁石作製が,とくに瀕雑なため経済的な整合性が乏しくなる欠点がある。なお,モ−タやアクチュエ−タを小型化した場合,スケ−リング則によれば,電磁力は「L3」(Lは体格)であるため,例えば可動子寸法(磁石)が1/10になった場合,電磁力は1/1000に減少する。したがって膜厚が5μm未満の薄膜の希土類磁石を,そのまま可動子とすると実使用の負荷に対応した出力が得られない本質的な課題もあった。
【0017】
【発明が解決しようとする課題】
以上のように,図1のボンド磁石製造における3大要素技術の連携の観点から整理すると,希土類磁石粉末▲1▼−c/フレキシブル系(ゴム,熱可塑性エラストマ−)▲2▼−a/カレンダ−リングまたは押出成形▲3▼−aの連携のもとで,従来多くの工夫が行われてきた。にも拘らず,この連携のもとで作製された磁石には課題が多く,永久磁石型モ−タには殆ど利用されなかった。そして,この連携のもとでは,フェライト系磁石粉末▲1▼−a/フレキシブル系(ゴム,熱可塑性エラストマ−)▲2▼−a/カレンダ−リングまたは押出成形▲3▼−aという連携で製造されたフェライト磁石粉末を使用したシ−ト磁石が小型モ−タに適用されている。しかし,この磁石は(BH)maxが高々〜12kJ/m3と低く,電機子鉄心と界磁との空隙に強力な静磁界を得ることはできない。したがって,近年の電気電子機器にとっては,効率的でない小型モ−タといっても過言ではない。
【0018】
しからば,機械出力数10W以下における効率的な小型モ−タにはどのような連携で作製した磁石が主流となっているのか,以下に説明する。
【0019】
希土類ボンド磁石による効率的な小型モ−タへの代表的な提案の一つとして,本発明者らによる特公平6−87634号公報を引用できる。すなわち,電機子鉄心と対向した空隙に強力な静磁界をつくるため磁気的に等方性のR−Fe−B(RはNd/Pr)希土類磁石粉末▲1▼−cと堅いエポキシ樹脂▲2▼−cとを圧縮成形▲3▼−cした外径25mm以下,密度5Mg/m3以上の環状希土類ボンド磁石を多極着磁した構成の永久磁石型モ−タである。磁気的に異方性の希土類磁石粉末▲1▼−cは結合剤として堅い熱可塑性樹脂(▲2▼−b)で射出成形(▲3▼−b)したり,堅い熱硬化性樹脂(▲2▼−c)で圧縮成形(▲3▼−c)する連携に拘らず,ラジアル異方性磁石は小径化に伴って配向度が低下するため半径方向の磁気特性が低下する。したがって,ラジアル異方性磁石を使ったモ−タは環状磁石の小径化に伴って半径方向の磁気特性低下に連動してモ−タの機械出力低下が避けられなかった。すなわち,ラジアル異方性磁石では小型化に伴って次第に効率的でないモ−タとなってしまう欠点があった。しかしながら,磁気的に等方性の希土類磁石粉末であれば環状磁石の径に依存することなく,例えば磁気的に等方性のNd−Fe−B系希土類磁石粉末を圧縮成形することで(BH)max80kJ/m3に達する。この値は,フェライト系シ−ト磁石の(BH)max12kJ/m3のおよそ6.7倍である。その結果,この種の磁石は小型モ−タの高出力化,低消費電流化に効果を奏し,電気電子機器分野を主体に,所謂効率的な小型モ−タとしての認知を獲得した。例えば,フェライト系磁石粉末(▲1▼−a)/フレキシブル系(ゴム,熱可塑性エラストマ−)(▲2▼−a)/カレンダ−リングまたは押出(▲3▼−a)という連携で製造された厚さ1.55mm、幅7.2mmのシ−ト磁石を帯状に切断し,カ−リングして内径22.5mmの回転子枠の周壁内面に固着した小型モ−タの起動トルク1.5mN−mに対し,磁気的に等方性の希土類磁石粉末(▲1▼−c)と堅いエポキシ樹脂(▲2▼−c)とを圧縮成形(▲3▼−c)した外径22.5mm,厚さ1.10mm,高さ9.4mm,密度5.8Mg/m3の磁石を使った永久磁石型モ−タの起動トルクは13倍の20mN−mに達する。
【0020】
以上,本発明で対象とする代表的な磁石はフェライト系磁石粉末(▲1▼−a)/フレキシブル系(ゴム,熱可塑性エラストマ−)(▲2▼−a)/カレンダ−リングまたは押出(▲3▼−b)の連携で製造された磁石,および磁気的に等方性の希土類磁石粉末(▲1▼−c)と堅いエポキシ樹脂のような熱硬化性樹脂(▲2▼−c)とともに圧縮成形(▲3▼−c)した磁石の2つを挙げることができる。そして,それらを利用した小型モ−タ生産台数の70%,年間約30億台を占める小型直流モ−タなどを主対象として,より効率的なモ−タと,それに伴う希土類ボンド磁石製造方法の提供が本発明の目的である。
【0021】
【課題を解決するための手段】
本発明は,図1のようにボンド磁石製造における3大要素技術のひとつである結合剤▲2▼において,柔軟な熱硬化性樹脂組成物(▲2▼−d)を登場させることにより,希土類磁石粉末(▲1▼−c)と圧縮成形と圧延またはスタンピング加工(▲3▼−d)を連携させ,シ−トからフィルムに至る新形態の希土類ボンド磁石,並びにそれを利用した新規な高性能永久磁石型モ−タ▲4▼の提供を目的とする。
なお,図中の太実線の矢印が本発明に掛かる磁石製造要素の新規な連携を示す。
【0022】
例えば,磁気的に異方性の希土類磁石粉末を高充填したコンパウンドをアキシャル方向磁界中で高度に配向したグリ−ンシ−トとし,これを熱硬化,圧延したのち,環状とすれば,従来の磁気的に等方性の希土類系磁石粉末(▲1▼−c)と堅いエポキシ樹脂のような熱硬化性樹脂(▲2▼−c)とともに圧縮成形(▲3▼−d)した磁石の(BH)max80kJ/m3に比べて,例えば,半径方向で(BH)max140kJ/m3と遥かに高性能な環状磁石が,その径に影響されることなく提供できる。また,ボンド磁石製造プロセスからみて,高い生産性を有するので希土類磁石粉末の種類を選ばす適用できる利点がある。したがって,磁気的に等方性の希土類磁石粉末から(BH)max40kJ/m3程度の磁石を経済的整合性の基に作製することもでき,フェライトゴム磁石を使った効率的でない小型モ−タの効率改善にも効果を奏する。したがって,新規な形態から準備した磁石を利用した,より一層効率的な小型モ−タ▲4▼を提供することができる。
【0023】
【発明の実施の形態】
本発明は,図1の太実線矢印で示すような柔軟な熱硬化性樹脂結合剤(▲2▼−d)によって希土類磁石粉末(▲1▼−c),圧縮成形と圧延または/およびスタンピング加工(▲3▼−d)を連携させ,高度な性能と信頼性を兼備えたシ−トからフィルムに至る様々な形態の希土類ボンド磁石,およびそれを用いた新規な高性能永久磁石型モ−タ▲4▼の製造方法の提供にある。
【0024】
本発明は希土類磁石粉末(▲1▼−c)と柔軟な熱硬化性結合剤(▲2▼−d)とを主成分としたコンパウンドを圧縮成形して結合剤成分を熱硬化し,圧延または/およびスタンピング加工(▲3▼−d)するシ−トからフィルムに至る希土類ボンド磁石の製造方法が骨子となる。すなわち,従来のように,ゴムや熱可塑性エラストマ−による結合剤(▲2▼−a),更にはカレンダ−リングや押出成形(▲3▼−a)などの成型加工とも異にする新規な希土類ボンド磁石作製要素の連携に立脚した技術に関する。更に,例えば,それらを巻きつけ,固定,磁化して電気電子機器のための効率的な小型モ−タ▲4▼とするものである。
【0025】
図1の結合剤(▲2▼−d)に関し,更に詳しくは,結合剤として<少なくとも熱圧着機能と熱硬化性官能基を有する粉末状樹脂成分を必須とすること。コンパウンドは結合剤成分の粘着力によって希土類磁石粉末を統合し,圧縮成形まえの結合剤と希土類磁石粉末の機械的分離を防ぐ役割を付与すること。そのための具体的手段として,結合剤は少なくとも室温で固体のエポキシオリゴマ−と室温で粘着性を付与した熱圧着性ポリアミドまたは/およびポリアミドイミド粉末,および必要に応じて適宜加える粉末状の潜在性エポキシ硬化剤から構成することが好ましい。
【0026】
なお,本発明においてポリアミドまたは/およびポリアミドイミド粉末の粘着性と熱圧着性とは,粘着付与剤などを添加して,先ず,圧縮成形するまえの,コンパウンド状態で希土類磁石粉末と結合剤とを,その粘着力によって固定する。次に,コンパウンドを圧縮してグリ−ンシ−トを成形する際,ポリアミドまたは/およびポリアミドイミドの熱軟化による塑性変形の促進,接合面間の濡れ性を改善することによってポリアミドまたは/およびポリアミドイミド,或いはエポキシオリゴマ‐の熱圧着性を高めるものである。また,可塑剤のような他の成分は適宜本結合剤成分に使用される。可塑剤は粘着剤を含むポリアミドまたは/およびポリアミドイミドの全粘度を減少させ可撓性および湿りを促進する。使用される可塑剤は具体的にはジベンジルトルエン類,p−ヒドロキシ安息香酸エステル,ベンゼンスルホンアミド類など比較的ポリアミドまたは/およびポリアミドイミ/との相溶性の良好な化合物を挙げることができる。また,それらの可塑剤は相溶性が良好であるが,相溶性と可塑化効率,すなわち,均質な熱圧着性の観点からは,とくに下記構造のグリシジル化合物のカルボン酸付加物類を用いることが望ましい。
【0027】
【化1】
【0028】
上式中、R1、R2は同一又は異なって、脂肪族、脂環族若しくは芳香族の炭化水素基を表す。但し、R1、R2の少なくとも何れかは芳香族炭化水素基を表す。本化合物は、少なくとも1個の芳香族基を有することをその特徴とし、具体的には、以下の3群に分類される。(A)脂肪族グリシジルエーテル又は脂環族グリシジルエーテルの芳香族カルボン酸付加物、(B)芳香族グリシジルエーテルの脂肪族カルボン酸又は脂環族カルボン酸付加物、(C)芳香族グリシジルエーテルの芳香族カルボン酸付加物。前記各群に属する化合物は、例えば、夫々のグリシジルエーテルに対して所定のカルボン酸を第三級アミン、イミダゾール類、金属エステル系化合物、燐系化合物等から選ばれる反応触媒の存在下,60〜120℃の加熱攪拌しながら、常圧から減圧下で付加することにより調製することができる。
【0029】
また,希土類磁石粉末は結合剤との結合力を強固にするため,予め室温で固体のエポキシオリゴマ−で表面被覆することが望ましい。また,その平均膜厚は0.1μm以下とする。これは,異方性の希土類磁石粉末同士の2次凝集による配向度の低下を防ぐために重要である。更に,希土類磁石粉末へのエポキシオリゴマ−の被覆方法としては,先ず,当該エポキシオリゴマ‐を有機溶媒に溶解し,その後,希土類磁石粉末と湿式混合し,溶媒を除去した当該塊状混合物を解砕する。なお,エポキシオリゴマ‐の架橋密度を高めるためには分子鎖内にもエポキシ基を有するノボラック型エポキシが望ましい。また,前記エポキシオリゴマ‐と架橋する粉末エポキシ硬化剤とはジシアンジアミドおよびその誘導体,カルボン酸ジヒドラジド,ジアミノマレオニトリルおよびその誘導体のヒドラジドの群より選ばれた1種または2種以上などを挙げることができる。これ等は一般に有機溶媒に難溶の高融点化合物であるが,粒子径を数ないし数十μmに調整したものが好ましい。なお,ジシアンジアミド誘導体としては,例えばo−トリルビグアニド,α−2・5−ジメチルビクアニド,α−ω−ジフェニルビグアニド,5−ヒドロキシブチル−1−ビグアニド,フェニルビグアニド,α−,ω−ジメチルビクアニドなどがある。更に,カルボン酸ジヒドラジドとしてはコハク酸ヒドラジド,アジピン酸ヒドラジド,イソフタル酸ヒドラジド,p−アキシ安息香酸ヒドラジドなどがある。これらの硬化剤はコンパウンドに乾式混合によって添加することが望ましい。なお,コンパウンドの成形型への移着を防ぐには,成形型の設定温度よりも高融点の高級脂肪酸,高級脂肪酸アミド,高級脂肪酸金属石鹸類から選ばれる1種または2種以上を0.2wt.%以下コンパウンドに乾式混合によって添加することが望ましい。
【0030】
上記,コンパウンドの希土類磁石粉末の含有量は92wt.%から97wt.%,圧縮成形圧力は4ton/cm2以上,グリ−ンシ−トの結合剤成分の熱処理が当該エポキシオリゴマ−の反応開始温度以上とし,最終的な圧延では圧延率2%以上,巻き付け限界径8mm以下とするか,もしくは圧延率10%以上,巻き付け限界径2mm以下とすると機械強度との整合性のよい希土類ボンド磁石が得られる。なお,最終的に用いる効率的な小型モ−タのコギングトルク低減のために,グリ−ンシ−トを不等幅としたり,不等肉厚とすることは当該モ−タの設計思想に委ねるところである。しかし,本発明は通常厚さが0.5〜2.0mm程度のグリ−ンシ−トを圧縮成形するものであるから,カレンダ−リングや押出成形の成型加工時では対応できないところも,柔軟に対応できる利点がある。
【0031】
一方,短冊状のグリ−ンシ−トを例えば円弧状成形型を用いてスタンピング加工し,必要に応じて加熱処理するとシ−トからフィルムに至る円弧状の希土類ボンド磁石が準備できる。なお,スタンピング加工とは一般には熱可塑性シ−トを加熱・軟化し,プレス成形する方法で,板金プレスと同様のシステムで成型加工するためスタンパブルシ−ト成形とも呼ばれる。(斎藤進六監修,新材料成型加工辞典,P775,産業調査会材料情報センタ−,1988)。本発明に掛かる結合剤は熱硬化性エポキシ樹脂を成分とするものであるが,成形加工法から言えば,引用のスタンピング加工が最も類似な方法と考えられるので,スタンピング加工とした。
【0032】
更に,本発明では,ソフト磁性粉末を含有したグリ−ンシ−トと希土類磁石粉末を含有したグリ−ンシ−トを一体的に成形し,熱処理,圧延するソフト磁性複合フレキシブル磁石を作製することもできる。このような,ソフト磁性複合フレキシブル磁石は接着層なしでソフト磁性層が磁石と一体化するので効率のよい磁気回路を形成するのに有利である。
【0033】
次に,磁気的に等方性の希土類磁石粉末としてはスピニングカップアトマイゼ−ションによって準備されたNd−Fe−B系球状粉末(B.H.Rabin,B.M.Ma,”Recent Developments in NdFeBPowder”120th Topical Symposium of theMagnetic Society of Japan 23, 2001)。
【0034】
メルトスピニング(J.J.Croat,J.F.Herbst,R.W.Lee and F.E.Pinkerton,J.Appl.Phys.55,2078, 1984)によって準備されたNd−Fe−B系フレ−ク状粉末(R.W.Lee and J.J.Croat,US−Patent 4,902,361.1990),αFe/Nd−Fe−B系フレ−ク状粉末,Fe3B/Nd−Fe−B系フレ−ク状粉末,Sm−Fe−N系フレ−ク状粉末,αFe/Sm−Fe−N系フレ−ク状粉末,などを挙げることができる。なお,それらのフレ−ク状粉末の厚さに対する粒子径の比は4以下とすることが望ましい。
【0035】
なお,図3は上記スピニングカップアトマイゼ−ション(図3左)とメルトスピニング(図3右)の製造概念図を示す。
【0036】
次に,磁気的に異方性の希土類磁石粉末としては熱間据込加工(Die−Up−Setting)によって準備されたNd−Fe−B系粉末(例えば,M.Doser,V.Panchanathan;Pulverizing anisotropic rapidly solidified Nd−Fe−B materials for bonded magnet;J.Appl.Phys.70(10),15,1993)。HDDR処理(水素分解/再結合)によって準備された磁気的に異方性のNd−Fe−B系粉末,すなわち,Nd−Fe(Co)−B系合金のNd2(Fe,Co)14B相の水素化(Hydrogenation,Nd2[Fe,Co]14BHx)、650〜1000℃での相分解(Decomposition,NdH2+Fe+Fe2B)、脱水素(Desorpsion)、再結合(Recombination)するHDDR処理(T.Takeshita and R.Nakayama:Proc.of the 10th RE Magnets and Their Applications,Kyoto,Vol.1,551 1989)で作製した磁気的に異方性の希土類磁石粉末である。前記粉末の表面を予め光分解したZnなど不活性化処理した粉末など(例えば,K.Machida,K.Noguchi,M.Nushimura,Y.Hamaguchi,G.Adachi,Proc.9thInt.Workshop on Rare−Earth Magnets andTtheir Applications,Sendai,Japan,II,845 2000,或いは,K.Machida,Y.Hamaguchi,K.Noguchi,G.Adachi,Digests of the25th Annual conference on Magnetcs in Japan,28aC−6 2001)を挙げることができる。なお,それらの磁石粉末の4MA/mパルス着磁後の20℃における保磁力は1.1MA/m以上のものが望ましい。
【0037】
一方,磁気的に異方性の希土類磁石粉末としてはRD(酸化還元)処理によって準備された磁気的に異方性のSm−Fe−N系微粉末,前記粉末の表面を予め不活性化処理した粉末を挙げることもでき,前記粉末の4MA/mパルス着磁後の20℃における保磁力は0.6MA/m以上のものが望ましい。
【0038】
上記希土類磁石粉末は単独でも,或いは2種以上の混合系であっても差し支えない。ただし,混合した全希土類磁石粉末の4MA/mパルス着磁後の20℃における保磁力の平均値が0.6MA/m以上であることが望ましい。
【0039】
なお,最終的な圧延後,表面に溶融接着(ホツトメルト接着)型自己融着層を設けることや安定化イソシアナ−トを混合したフィルム形成能を有するポリマ−の1種または2種以上から形成した自己融着層を設けることにより,永久磁石型モ−タへの実装性を高めることも有効である。
【0040】
上記のようなフレキシブル磁石を円筒枠の内周面に巻きつけ,固定,および多極着磁した環状の磁石を永久磁石界磁とする永久磁石型直流モ−タ。円筒枠の内周面に環状の磁石を備え,半径方向空隙型回転子とする永久磁石型モ−タ。円柱枠の外周面に環状の磁石を備えた表面磁石型回転子を搭載する永久磁石型モ−タなどを挙げることができる。更に,それらは自己融着層で相手材と接合するなど,設計思想によって多様な永久磁石型モ−タに対応することができる。とくに,4MA/mパルス着磁後の室温における最大エネルギ−積(BH)maxが140kJ/m3以上のシ−トからフィルムに至る希土類ボンド磁石を搭載した永久磁石型モ−タはメルトスピニングによって準備されたNd−Fe−B系フレ−ク状粉末−堅い熱硬化性樹脂−圧縮成形から作製した永久磁石型モ−タの次世代型として,とくに小口径で有望であり,4MA/mパルス着磁後の室温における最大エネルギ−積(BH)maxが40kJ/m3以上のフレキシブル磁石を搭載した永久磁石型モ−タはフェライトゴム磁石を使った永久磁石型モ−タの次世代型として有望である。
【0041】
【実施例】
以下,本発明を実施例により更に詳しく説明する。ただし,本発明は実施例によって限定されるものではない。
【0042】
(実施例1)
1.材料
本実施例では,4種類の形態の異なる希土類磁石粉末を使用した。すなわち,HDDR処理(水素分解/再結合)によって準備された磁気的に異方性のNd−Fe−B粉末(Nd12.3Dy0.3Fe64.7Co12.3B6.0Ga0.6Zr0.1)powder−A、スピニングカップアトマイゼ−ションによって準備されたNd−Fe−B球状粉末(Nd13.3Fe62.5B6.8Ga0.3Zr0.1)powder−B,およびメルトスピニングによって準備されたNd−Fe−B系フレ−ク状粉末(Nd12Fe77Co5B6)powder−C,RD(酸化還元)したSm2Fe17N3微粉末powder−Dである。また,結合剤システムの構成成分としては室温で固体のノボラック型エポキシオリゴマ−,粒子径15μm以下の粉末状潜在性エポキシ硬化剤,粘着剤を含み予め100μm以下に冷凍粉砕したポリアミド粉末,並びに粒子径10μm以下の滑剤が,この実施例で使用された。なお,ノボラック型エポキシオリゴマ,粉末状潜在性エポキシ硬化剤の化学構造は以下の通りであった。
【0043】
【化2】
【0044】
【化3】
【0045】
なお,固体のエポキシオリゴマ−はpowder−Aの配向度向上のため2次凝集するような顆粒状にならないように調整した。なお,調整はオリゴマ−の密度,磁石粉末の平均的な比表面積から平均膜を求めると0.1μm以下に調整されるべきであった。また,硬化後の強度は平均膜厚を0.2μmまで増加しても,殆ど変化することはなかった。
【0046】
2.希土類ボンド磁石の準備
本発明はpowder−A、−B、−Cおよび−Dのような様々な希土類磁石粉末の1種または2種以上からシ−トからフィルムに至る様々な形態の希土類ボンド磁石を合理的に作製し,効率的な小型モ−タを提供するためになされた。とくに,powder−Aのようなアキシャル磁界配向した異方性を含む本発明に掛かるシ−トからフィルムに至る環状の希土類ボンド磁石は磁化の前後にシ−トからフィルムに至る磁石をフレ−ムまたはマンドレルに巻きつけることによって得られた。その結果,ラジアル磁界配向の小径に伴う配向度の低下,すなわち磁気特性低下という困難を克服する。
【0047】
図4(a)はpowder−A、−B、−C,−Dおよび固体のエポキシオリゴマ−、そして、粉末状潜在性エポキシ硬化剤,および粘着剤を含むポリアミド粉体からフレキシブルなボンド磁石を準備するための工程を示すブロック図である。また,図4(b)は従来の磁気的に等方性の希土類磁石粉末(▲1▼−c)と堅いエポキシ樹脂のような熱硬化性樹脂(▲2▼−c)とともに圧縮成形(▲3▼−d)した磁石を準備するための工程を示すブロック図である。図4(b)は,例えばF.Yamashita,Y.Sasaki,H.Fukunaga,Isotropic Nd−Fe−B Thin Arc−shaped Bonded Magnets for Small DC Motors Preparedby Powder Compacting Press with Metal Ion−implanted PunchesJ.Magn.Soc.Japan,Vol.25,No.4,PP.683−686(2001).に記載されている。図4(a),(b)のブロック図から明らかなように,本発明例は従来の方法に比較して希土類磁石粉末と結合剤成分のミキシングによってコンパウンドが準備できる。また,コンパウンドの圧縮成形と硬化は同じであり,本発明ではシ−ト状磁石を最終形態とするための圧延およびまたはスタンピング工程が必須工程として存在する。
【0048】
図4の説明を行う。(Mixing:混合, Compacting press: 粉末成形,Curing:硬化,Rolling:圧延,Stamping:スタンピング,Pre−crushing:予備粉砕,Wet−mixing:湿式混合,Evaporating:蒸発,Crushing:粉砕,Sieving:分級,Dry−blending:乾式混合,Coating:塗装)。
【0049】
図4(a)の本発明例の製造工程に従って,先ず,コンパウンドの調整を説明する。60℃に加温したΣブレイドミキサ−に所定量の希土類磁石粉末powder−A,B,CおよびDを5kg投入し,前記粉末を攪拌しながら,室温で固体のエポキシオリゴマ−の50%アセトン溶液50gを滴下した。攪拌を続けるとおよそ5minで乾燥したエポキシオリゴマ−を被覆した希土類磁石粉末が得られた。なお,希土類磁石粉末powder−A、B、CおよびDの表面被覆膜厚がおよそ0.1μm以下のとき,powder−A、B、CおよびDの被覆前後の粉末粒子径分布は殆ど変化しなかった。続いて,前記エポキシオリゴマ−を表面被覆した希土類 磁石粉末に対して3〜7wt.%の粘着剤20%含有ポリアミド粒子、粉末状の潜在性エポキシ硬化剤、および潤滑剤(粒子径10μm以下のステアリン酸カルシウム)を添加し,粉末状のコンパウンドとした。それらの粉末状のコンパウンドは潤滑剤によって粉末成形機に供することが可能な粉末流動性を持っていた。
【0050】
次に、粉末圧縮成形機のフィーダーカップに粉末状のコンパウンドを投入し,成形型キャビティに粉末状のコンパウンドを充填した。ただし,成形型の上下パンチとキャビティ周辺のみ70〜80℃に加熱されている。キャビティに充填した磁気的に異方性の希土類磁石粉末を含むコンパウンドは1.4MA/mのアキシャル磁界の中で上下パンチによって圧縮され、脱磁され,圧粉体(グリ−ンシ−ト)を得た。このグリ−ンシ−トは十分なハンドリング性を備えていた。
【0051】
図5において(Number of shots:成形回数,Weight:重量)である。
【0052】
図5は幅6.1,長さ71mm,厚さ1.25mmのPowder−Aが96wt.%からなるグリ−ンシ−トを粉末成形機で繰返し成形したときの成形回数に対するグリ−ンシ−トの重量(g)を示す特性図である。90回成形した際のグリ−ンシ−トの重量平均は1.991g,その標準偏差は0.007gであり粉末成形性が工業的に可能なコンパウンドが得られる。
【0053】
次に,上記Powder−Aが96wt.%からなるグリ−ンシ−トを180℃で20 min加熱し,熱硬化した堅いシ−トとした。図6は厚さ0.8〜2.5mmの磁気的に異方性のPowder−Aが96wt.%からなるグリ−ンシ−トを熱硬化したのち,シ−トを厚さ方向に4MA/mパルス着磁したときの磁束とシ−トの厚みの関係を示す。更に,このシ−トを直径60mm,70℃に加熱した等速ロ−ルで圧延し,圧延後の厚さと磁束の関係を示した。図中の回帰式のように観測される圧延まえの磁束はシ−ト厚さの減少に応じて低下する。また,圧延したシ−トは圧延まえのシ−ト厚さと比べると磁束の低下が大きく,とくに圧延まえのシ−ト厚さが2mm以上の場合に著しい。しかし,圧延まえのシ−ト厚みが1.3mm以下になると,圧延による磁束の低下は2mm以上の場合よりも抑制され,圧延まえのシ−ト厚さに対する磁束変化の回帰式上に沿った値が得られるようになる。これは,Powder−Aのような磁気的に異方性の希土類磁石粉末を含むシ−トでは厚さ2mm以上では圧延によって配向が乱れやすいが,1.3mm以下になると乱れにくくなるためと言える。従って,Powder−Aのような磁気的に異方性の希土類磁石粉末を含むシ−トでは1.3mm以下のものを圧延しシ−トからフィルムに至る本発明に掛かる希土類ボンド磁石とすることが望ましい。
【0054】
図6において(○:圧延まえBefore rolling,●:圧延後Rolling out,Thickness:厚み,Flux:磁束,R2:相関係数)である。
【0055】
図7において(○:圧延まえBefore rolling,●:圧延後Rolling out,Thickness:厚み,Flux:磁束,R2:相関係数)である。
【0056】
図7は95wt.%のPowder−Aの10%をPowder−Dに置換した磁気的に異方性の希土類磁石粉末を含むシ−トの厚みと圧延による磁束の変化を示す特性図である。Powder−Dは粉末粒子径が2〜3μmと小さいが,1.3mm以下のシ−トで圧延率が少ない場合には圧延によって磁束が増加する傾向も観測される。図8は95wt.%のPowder−Aの0から最大50%をPowder−Dに置換した磁気的に異方性の希土類磁石粉末を含む厚さ1.17mmのシ−ト磁石(成形圧力400MPa)において,Powder−Dの置換率に対する磁石密度を示す特性図である。Powder−Dのように粉末粒子径が2〜3μmと小さい場合,置換量が10%を越えると磁石密度は低下する。そこで,密度低下の少ないPowder−Dの置換率5,10%とした場合のシ−ト磁石の厚みと磁束の関係を図9に示す。図から明らかなように,磁石密度は同等にも拘らず,磁石の厚さが1mm以下になるとPowder−Dの置換率5,10%としたシ−トからフィルムに至る磁石の磁束はPowder−Aのみのシ−ト磁石よりも高い磁束が得られる。図から明らかなように,この傾向は薄いフィルム磁石になるほど顕著となる。したがって,Powder−Aの平均粉末粒子径は80μmと大きいため,1mm以下の薄いシ−トからフィルムに至る希土類ボンド磁石を準備する際には,Powder−Aのような粉末粒子径の大きな希土類磁石粉末を単独で使用するよりも,Powder−Dのような小さな粉末粒子径の希土類磁石粉末を磁石密度が低下しない10%以下の範囲で併用することが好ましい。
【0057】
図8において(Weight fraction of Powder−D:Powder−Dの割合,Density:密度)である。
【0058】
図10は厚さ1.3mm以下のシ−トの圧延率に対する磁束変化を示す特性図である。ただし,何れも希土類磁石粉末は96wt.%含まれている。図のように,圧延率が概ね15%以下であればシ−トに含まれる希土類磁石粉末の形状(フレ−ク状,球状など)に拘らず10%を越える磁束変化は起こらない。しかし,15%を越えるとメルトスピニングによるフレ−ク状の希土類磁石粉末であるPowder−Cでは磁束が増加に転じ,スピニングカップアトマイゼ−ションによる球状の希土類磁石粉末であるPowder−Bも磁束は増加に転じる。しかし,磁気的に異方性の希土類磁石粉末Powder−Aは磁束が増加に転じることがない。磁気的に等方性のPowder−B,−Cは圧延率の増加に伴う密度の上昇が磁束を増加に転じさせたものと言える。
【0059】
図9において(Tickness:厚さ,Increading rate of flux:磁束の増加率)である。
【0060】
図10において(□:Powder−A,●:Powder−B,×:Powder−C,Rolling rate:圧延率,Changes in flux:磁束の変化)である。
【0061】
図11(a)はPowder−Aを96wt.%含むシ−トを圧延し,厚さ200μmのフィルム磁石,図11(b)は前記フィルム磁石を直径0.8mmのマンドレルに巻きつけた様子を示す外観図である。図のように,本発明に掛かるシ−トからフィルムに至る希土類ボンド磁石は直径1mm以下のマンドレルに容易に巻きつけ固定することができる。とくに,フィルム形成能の良好な自己融着層を付与した本発明の希土類ボンド磁石を回転軸に巻きつけて焼き付け固定すると図11(b)のような直径1mm程度のラジアル異方性希土類ボンド磁石を備えた表面磁石型回転子を準備することができる。このように,本発明に掛かるフィルム磁石はスパッタリングによる薄膜の希土類磁石,研削加工によって作製した厚膜の希土類焼結磁石や密度の低い圧縮成形希土類ボンド磁石や射出成形希土類ボンド磁石よりも機械的に脆弱でなく,打抜き,巻きつけなどの加工や接着などが容易であるから,ミリサイズモ−タの磁石としても優れていると言える。
【0062】
図12はPowder−Aを97wt.%含む幅4mm,長さ15.5mm,厚さ0.9mmの短冊状グリ−ンシ−トを80℃の円弧状成形型を用いて約400MPaの圧力でスタンピング加工し,更に180℃で15minの加熱硬化処理をした最大厚さ0.9mm,内半径3.55mm,外半径3.65mmのラジアル異方性円弧状磁石の外観図である。なお,スタンピング加工とは一般には熱可塑性シ−トを加熱・軟化し,プレス成形する方法で,板金プレスと同様のシステムで成型加工するためスタンパブルシ−ト成形とも呼ばれる。(斎藤進六監修,新材料成型加工辞典,P775,産業調査会材料情報センタ−,1988)。本発明に掛かる結合剤は熱硬化性エポキシ樹脂を成分とするものであるが,成形加工法から言えば,引用のスタンピング加工が最も類似な方法と考えられるので,図12の加工をスタンピング加工とした。
【0063】
以上のように,本発明に掛かるシ−トからフィルムに至る圧延または/およびスタンピングで最終形態に変換した希土類ボンド磁石は磁気的に異方性の希土類磁石粉末,および等方性のフレ−ク状から球状に至る希土類磁石粉末powder−B,−C,Powder−Dの1種または2種以上から準備することができ,希土類ボンド磁石としての磁気特性と磁石としての形態を多様化させることができる。
【0064】
3.耐久性
準備されたそれらの磁石は張力と伸張などの力学的性質と減磁曲線から求められる磁気特性や不可逆磁束損失について調べられた。図13は希土類磁石粉末を96wt.%含む1.17mm厚シ−ト磁石の張力と伸長の温度依存性を示す特性図である。ただし,図の実線は張力,破線は伸長を表している。図のように希土類磁石粉末の種類に拘らず低温では張力が高く,高温では伸長が大きくなる。しかし,何れも室温付近の張力は希土類磁石粉末を96wt.%含むにも拘らず,フェライト磁石粉末(▲1▼−a)/フレキシブル系(ゴム,熱可塑性エラストマ−)(▲2▼−a)/カレンダ−リングまたは押出(▲3▼−a)の連携で準備された従来磁石と同等の50−100kgf/cm2の張力と2〜8%程度の伸長を備えている。
【0065】
図13において(Temperature:温度,Tensile strength:張力,Elongation:伸長)である。
【0066】
図14(a),(b)は本発明に掛かる1.17mm厚シ−ト希土類ボンド磁石を120℃,1000hrs暴露したときの張力,伸長の変化を示す特性図である。図のように,長期間高温暴露では張力は殆ど変化しないか,または次第に増加する。張力が増加する場合には,それに対応して伸長が低下する。希土類磁石粉末の形態に拘らず,本発明に掛かるシ−トからフィルムに至る希土類ボンド磁石は力学的性質耐久性からみると実用に耐える水準にある。
【0067】
図15は本発明に掛かる圧延率6〜8%で圧延した1.17mm厚のシ−ト状希土類ボンド磁石を120℃,1000hrs暴露したときの磁石の厚み変化を示す特性図である。図のように,長期間高温暴露では厚みなど磁石の寸法は殆ど変化しない。メルトスピニングによるフレ−ク状の希土類磁石粉末を含むシ−ト磁石の場合にも,寸法変化は高々1%未満である。したがって,希土類磁石粉末の形態に拘らず,本発明に掛かるシ−トからフィルムに至る希土類ボンド磁石は寸法安定性からみると小型で効率的なモ−タに実装しても実用に耐える水準にある。
【0068】
図14において(Exposure time:放置時間,Tensile strength:張力,Elongation:伸長,●:Powder−A,◯:Powder−B,◇:Powder−C)である。
【0069】
図15において(Exposure time:放置時間,Tensile strength:張力,Elongation:伸長,●:Powder−A,◯:Powder−B,◇:Powder−C)である。
【0070】
図16は本発明に掛かる70〜80℃で400MPaの圧力でスタンピングした図12に示す最大厚さ0.90mm厚のPowder−Aを97wt.%含む円弧状希土類ボンド磁石を120℃,1000hrs暴露したときの磁石の厚み変化を示す特性図である。図のように,スタンピング加工による応力緩和によって約150hrsまでの間に7%程度の厚み変化が観測される。しかし,スタンピング加工後に180℃,20minの熱処理を施すことで,応力緩和によると考えられる寸法変化はなくなり,長期間高温暴露の厚みなど磁石の寸法は殆どなくなる。したがって,本発明に掛かるシ−トからフィルムに至る希土類ボンド磁石は圧延ばかりか,スタンピング加工であっても小型で効率的なモ−タに実装しても実用に耐える寸法安定性を確保している。とくに,スタンピング加工後の熱処理は初期的な寸法安定性の確保に有効である。
【0071】
図16において(Exposure time: 暴露時間,Changesin thickness:厚さ変化,After stamping:スタンピング後,Stamping and annealing:スタンピングと熱処理)である。
【0072】
図17は6.1mm幅,25mm長,1.17mm厚の本発明に掛かる希土類ボンド磁石初期不可逆磁束損失を示す特性図である。初期不可逆磁束損失は希土類磁石粉末の保磁力と保磁力の温度係数に強く依存するが,保磁力1.1MA/m,保磁力の温度係数−0.5%/℃程度のPowder−A(異方性NdFeB系HDDR粉末)であれば,100℃程度までの減磁はメルトスピニングによるフレ−ク状の希土類磁石粉末を含むシ−ト磁石と同等の磁気安定性を示す。また,スピニングカップアトマイズドによる球状粉末はメルトスピニングによるフレ−ク状の希土類磁石粉末を含むシ−ト磁石と180℃の高温領域まで同等の磁気安定性を示す。したがって,希土類磁石粉末の形態に拘らず,本発明に掛かるシ−トからフィルムに至る希土類ボンド磁石は磁気安定性からみると小型で効率的なモ−タに実装しても実用に耐える水準にある。
【0073】
図17において(Temperature:温度,Initial irreversible flux loss:初期不可逆磁束損失,:Powder−A,○:Powder−B,◇:Powder−C)である。
【0074】
なお,本発明で対象とする殆どの電気電子機器に搭載されたときのモ−タ運転中の磁石温度は100℃以下である。したがって本発明に掛かるシ−トからフィルムに至る希土類ボンド磁石は,powder−A,B,およびCに拘らず,一般に小型DCモ−タの運転温度領域における磁気安定性を備えている。ただし,このような磁気安定性を確保するには,希土類系磁石粉末の室温で4MA/mのパルス着磁後の保磁力が600kA/m以上であることが望ましい。なお,powder−Aから準備される異方性のシ−トからフィルムに至る希土類ボンド磁石の場合は保磁力の温度係数が−0.5%/℃程度と,一般の希土類系磁石粉末−0.4%/℃よりも大きく,その分powder−Aのような異方性の希土類系磁石粉末の場合は,室温で4MA/mのパルス着磁後の保磁力が600kA/m以上であること1.1MA/m以上であることが望ましい。なお,powder−Aのような異方性の希土類系磁石粉末から準備される本発明に掛かるシ−トからフィルムに至る希土類ボンド磁石は異方性の堅いエポキシ樹脂ボンド磁石のように長期の磁束損失が問題になるかも知れない。ところが、最近,その困難がpowder−Aのような異方性の希土類磁石粉末への表面処理で克服できると報告される。例えば,K.Machida,K.Noguchi,M.Nushimura,Y.Hamaguchi,G.Adachi,Proc.9th Int.Workshop on Rare−Earth Magnets andTtheir Applications,Sendai,Japan,(II),845(2000)。或いは,K.Machida,Y.Hamaguchi,K.Noguchi,G.Adachi,Digests of the25th Annual conference on Magnetcs in Japan,28aC−6(2001)などの引用文献によれば,powder−Aのような磁気的に異方性の希土類磁石粉末を堅いエポキシボンド磁石で980MPa程度の高い圧縮圧力で成形した磁石である。引用文献と比べると、本発明は,それらの40%程度という低い380MPaの圧縮圧力でpowder−Aから準備される希土類ボンド磁石を作ることができるので、powder−Aの圧縮時の破壊,また,それに伴って発生する新生面は減少する。したがって、100℃以下の運転温度領域でpowder−Aから準備されるシ−トからフィルムに至る希土類ボンド磁石の長期磁束損失の一層の減少は期待される。
【0075】
4.磁石の磁気特性とモ−タ特性
図18はpowder−Aと−Bから準備される本発明に掛かるシ−トからフィルムに至る希土類ボンド磁石の典型的な減磁曲線、およびB−H曲線を,本発明で比較対象とする代表的な磁石であるフェライト系磁石粉末(▲1▼−a)/フレキシブル系(ゴム,熱可塑性エラストマ−)(▲2▼−a)/カレンダ−リングまたは押出成形(▲3▼−a)の連携で作製した磁石,および磁気的に等方性の希土類磁石粉末powder−C(▲1▼−c)と堅いエポキシ樹脂(▲2▼−c)とともに圧縮成形(▲3▼−d)した磁石と比較して示す特性図である。ただし,試験片はそれぞれ1.1mm厚、7.5mm幅、7.5mm長である。図中の付番1,2はpowder−A、Bから準備された本発明に掛かるシ−トからフィルムに至る典型的な希土類ボンド磁石,3および4は、従来のNd−Fe−Bボンド磁石とフェライトゴム磁石である。なお,すべての測定は4MA/mのパルス磁場の下での磁化の後に実行された。また,比較された磁石は小型直流モ−タや小型ブラシレスモ−タに一般的に適用されている磁石である。
【0076】
図から明らかなように,従来の典型的な磁石の特性3,4の領域に比べて,本発明に掛かる典型的な磁石1,2の特性領域は,明らかにモ−タの電機子鉄心との空隙への静磁界を高めることが了解される。とくに図18のように本発明に掛かるpowder−Aを97wt.%含む磁石(密度5.84Mg/m3)の(BH)maxは140kJ/m3に達し,磁気的に等方性の希土類系磁石粉末▲1▼−c(powder−C)と堅いエポキシ樹脂(▲2▼−c)とともに圧縮成形(▲3▼−d)した磁石の(BH)max80kJ/m3と比較して1.75倍高い。また本発明に掛かるpowder−Bを97wt.%含む磁石(5.45Mg/m3)の(BH)maxも40kJ/m3が得られ、従来のフェライトゴム磁石と比較して3倍以上高い。
【0077】
上記で示されたように、本発明に掛かる磁石には環状磁石を形成するための良い巻きつけ性と磁気特性がある。また,スタンピングによって例えば薄肉の円弧状形態に変換することもできる。例えば,(BH)max140kJ/m3を示したPowder−Aを97wt.%含む磁石は直径0.8mmのマンドレルに巻きつけできる。
【0078】
図19は環状磁石の直径と磁石のラジアル方向の(BH)maxの関係を示す。図において,比較例2はSm−Co系希土類磁石粉末(▲1▼−c)を堅い熱可塑性樹脂(▲2▼−b)とともに射出成形(▲3▼−c)したラジアル異方性磁石であり,環状磁石の直径とともに希土類磁石粉末の配向度が低下し,それに伴って(BH)maxが減少する。一方,比較例1のように磁気的に等方性のメルトスピニングによるフレ−ク状の希土類磁石粉末▲1▼−c(powder−C)を堅いエポキシ樹脂(▲2▼−c)とともに圧縮成形(▲3▼−d)した磁石の(BH)maxは環状磁石の直径に依存することなく60〜80kJ/m3という値が得られる。
【0079】
しかしながら,直径5mm以下の環状磁石,特に環状自社君の肉厚が200μmとフィルム状となるまで小径化することは粉末成形から困難である。これに対して,本発明例に示すように,本発明例では厚さ200μmのフィルム磁石を環状に形成することで,小口径で且つ高(BH)maxの環状磁石を提供することができる。このように,本発明は希土類ボンド磁石による効率的な小型モ−タへの代表的な提案の一つとして,本発明者らによる特公平6−87634号公報,すなわち,電機子鉄心と対向した空隙に強力な静磁界をつくるため磁気的に等方性のR−Fe−B(RはNd/Pr)希土類磁石粉末▲1▼−cと堅いエポキシ樹脂▲2▼−cとを圧縮成形▲3▼−cした外径25mm以下,密度5Mg/m3以上の環状希土類ボンド磁石を多極着磁した構成の永久磁石型モ−タの次世代型高性能モ−タを提供することができる。
【0080】
次に,磁気的に等方性のスピニングカップアトマイゼ−ションによる球状の希土類磁石粉末Powder−Bを94wt.%含む(BH)max40kJ/m3,1.17mm厚,6.1mm幅のシ−ト磁石をリング形状に変換して永久磁石界磁にしたときの直流モ−タの特性を図20に示す。なお,モ−タは図21のような外観で,直径は24mm,高さは12.5mmである。図のように(BH)max12kJ/m3,1.17mm厚,6.1mm幅のフェライトゴム磁石を界磁とした場合に比べ,消費電流が1/3削減できる効果を奏する。
【0081】
図20において(Torqeu:トルク,Current:電流,Rotating speed: 回転数,Mechanical output: 機械出力,Efficiency:効率,Conventional ferrite: 従来のフェライト)である。
【0082】
図22において(Magnedtizing field:着磁界,Improvement of flux ratio:磁束増加率,Comparison with Powder−B:Powder−Bとの比較,Comparison with conventional Nd−Fe−B:従来のNd−Fe−Bとの比較)である。
【0083】
図22は磁気的に等方性のスピニングカップアトマイゼ−ションによる球状の希土類磁石粉末Powder−Bを94wt.%含む(BH)max 40kJ/m3,1.17mm厚シ−ト磁石に対する(BH)max140kJ/m3を示したPowder−Aを97wt.%含む1.17mm厚のシ−ト磁石の着磁界に対する磁束の増加率,磁気的に等方性のR−Fe−B(RはNd/Pr)希土類磁石粉末▲1▼−cと堅いエポキシ樹脂▲2▼−cとを圧縮成形▲3▼−cした従来の典型的な(BH)max80kJ/m3,1.17mm厚の板状希土類ボンド磁石に対するする(BH)max140kJ/m3を示したPowder−Aを97wt.%含む1。17mm厚のシ−ト磁石の着磁界に対する磁束の増加率を示す特性図である。図のように,着磁界1.5MA/m以上,好ましくは2MA/m以上で本発明に掛かるシ−トからフィルムに至る希土類ボンド磁石を磁化すると,それぞれ1.6倍,1.3倍量の磁束が得られる。実際に図12に示したスタンピング加工し,更に180℃で15minの加熱硬化処理をした最大厚さ0.9mm,内半径3.55mm,外半径3.65mmのラジアル異方性円弧状磁石を永久磁石界磁とした直流モ−タの誘起電圧は,磁気的に等方性のR−Fe−B(RはNd/Pr)希土類磁石粉末▲1▼−cと堅いエポキシ樹脂▲2▼−cとを圧縮成形▲3▼−cした従来の典型的な希土類ボンド磁石を永久磁石界磁とした図23のような直流モ−タの誘起電圧0.218mV/rpmの1.36倍,0.296mV/rpmを示した。
【0084】
ところで,本発明に掛かる直流モ−タのように電機子鉄心と界磁磁石との空隙磁束密度を増加させると一般的にコギングトルクの増大を招くことがある。ここで言うコギングトルクとは界磁と対向する電機子の外周表面に電機子鉄心ティ−スとスロットが存在するため、電機子の回転に伴ってパ−ミアンス係数Pcが変化することによるトルク脈動である。本発明に掛かる磁石のように高い(BH)maxの磁石を実装したモ−タではコギングトルクが増大するため、モ−タの振動や騒音の増加要因となったり、位置制御の精度に障害が発生する原因となることがある。コギングトルクについては,当該モ−タの設計思想に委ねるところである。しかし,本発明に掛かるシ−トからフィルムに至る希土類ボンド磁石は最終的に用いる効率的なモ−タのコギングトルク低減のために,予めグリ−ンシ−トを不等幅としたり,不等肉厚とすることで,電機子鉄心と界磁との空隙をより正弦波状に近づけ,コギングトルクの増加を抑制する手段を容易に採用することができる。これは,カレンダ−リングや押出成形など,従来のシ−ト磁石の成型加工では合理的な対応ができない。しかし,本発明は粉末状のコンパウンドを通常では,厚さ0.5〜2.5mm程度のグリ−ンシ−トに圧縮成形するものであるから,モ−タの設計思想に従って柔軟な形状対応を採ることができる。
【0085】
なお,本発明に掛かる粉末状のコンパウンドにおいて,希土類磁石粉末に代えて飽和磁化1.3T以上のFe,Fe−Ni,Fe−Co,Fe−Si,Fe−N,Fe−Bの群から選ばれる1種または2種以上のソフト磁性粉末のコンパウンドを調整し,グリ−ンシ−トとしたものを成形型キャビティに装填し,然る後,本発明に掛かる粉末状のコンパウンドをキャビティに充填して圧縮成形する。或いは,結合剤成分の一部のみを先に圧縮し,然る後,本発明に掛かる粉末状のコンパウンドをキャビティに充填して圧縮成形する。すると,異種機能をもったグリ−ンシ−トの複合体が得られる。この複合体を熱処理,圧延するとバックヨ−ク付きのシ−トからフィルムに至る希土類ボンド磁石や熱溶着性をもった磁石が得られる。さらに,安定化イソシアナ−トを混合した,例えば下記構造(化3)のようなフィルム形成能を有するポリマ−の1種または2種以上の自己融着層を磁石表面に予め形成し,磁石端部や他の部材との接合に利用することもできる。
【0086】
【化4】
【0087】
【発明の効果】
以上のように,本発明は新規な概念の導入により鋭意研究した結果,高い生産性で希土類磁石粉末の種類を選ばずシ−トからフィルムに至る希土類ボンド磁石の製造方法を提供できる。とくに,本発明のシ−トからフィルムに至る希土類ボンド磁石は,従来の成形加工方法(カレンダ−リング,押出成形)などのように200℃を越える成形加工が不要で,不可逆磁束損失などの熱安定性を兼備えた希土類磁石粉末本来の高い磁気性能をモ−タ性能に反映させることができる。したがって,フェライト磁石や磁気的に等方性のNd−Fe−B系希土類ボンド磁石を搭載した従来の小型モ−タを上回る効率的な小型モ−タを高い競争力で提供することができる。よって,電気電子機器への寄与ばかりか,幅広い普及によって電力消費削減や省資源化に効果を奏することが期待される。
【図面の簡単な説明】
【図1】ボンド磁石作製における3大要素技術,すなわち磁石粉末,結合剤システム,成形加工方法の連携を示す概念図
【図2】小型モ−タの断面構成図
【図3】スピニングカップアトマイゼ−ション(左)とメルトスピニング(右)の製造概念図
【図4】磁石を準備するための工程図
【図5】粉末成形性をグリ−ンシ−トの重量変化で示す特性図
【図6】シ−トからフィルムに至る磁石の厚みと磁束の関係を示す特性図
【図7】異種希土類磁石粉末を混合したシ−トからフィルムに至る磁石の厚みと磁束の関係を示す特性図
【図8】異種粉末の混合率と密度の関係を示す特性図
【図9】厚さと磁束増加率の関係を示す特性図
【図10】圧延率と磁束変化を示す特性図
【図11】フィルム磁石と小口径磁石回転子の外観図
【図12】シ−トスタンピング後の薄肉円弧状磁石の外観図
【図13】張力,伸長の温度依存性を示す特性図
【図14】長期高温暴露における張力,伸長変化を示す特性図
【図15】シ−ト磁石の長期高温暴露における寸法変化を示す特性図
【図16】円弧状磁石の長期高温暴露における寸法変化を示す特性図
【図17】初期不可逆磁束損失を示す特性図
【図18】減磁曲線を示す特性図
【図19】環状磁石の径と(BH)maxの関係を示す特性図
【図20】直流モ−タの特性図
【図21】リング状に巻きつけた磁石を界磁とした直流モ−タの外観図
【図22】着磁界に対する磁束増加率を示す特性図
【図23】円弧状磁石を界磁とした直流モ−タの外観図
【符号の説明】
1 フィルム磁石
2 回転軸
3 電気子巻線
4 軸受[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rare earth magnet powder, a binder comprising a thermosetting resin composition, a rare earth bonded magnet ranging from a sheet whose flexibility is controlled by powder molding and rolling or / and stamping to a film having a thickness of 200 μm or less. The present invention relates to an efficient method for manufacturing a permanent magnet type motor. For example, the estimated number of small motors produced from 1992 to 2000 has already exceeded 2.4 to 4.7 billion. The increase in production of four types of DC motors, brushless motors, stepping motors, and ironless core motors was particularly remarkable, increasing 2.6 billion from 1992 to 2000. In addition, an average annual growth rate of 9% can be estimated in the future. However, the production numbers of small induction motors and small synchronous motors are gradually decreasing. This trend suggests the development of efficient small motors with high performance magnets in the small motor industry and the high demand for efficient small motors in the electrical and electronic equipment field. About 70% of the small motors produced are direct current motors. In general small DC motors, ferrite rubber magnets are used. In high performance small DC motors, Nd-Fe-B flake rare earth magnet powders prepared by melt spinning are hard like epoxy resin. Currently, annular magnets compression-molded with thermosetting resins are mainly used.
[0002]
On the other hand, according to statistics from the Ministry of Economy, Trade and Industry and the Agency for Natural Resources and Energy, the total power consumption in Japan in 2000 was approximately 950 billion kWh. Estimating from the data, it is estimated that the power consumed by the motor exceeds 50% of the total domestic demand. The power consumption of a motor is not necessarily a large capacity power motor. For example, the power consumption of a 2.5 inch HDD spindle motor exceeds 50% of the power consumption of the PC in an idle state. (J. G. W. West, Power Engineering J. April 77, 1994). That is, for small motors, their power consumption is a few tens of watts at most. However, considering the high demand in the field of advanced devices such as electrical and electronic equipment, wide use and widespread use of efficient small motors are strongly necessary from the viewpoint of environmental conservation and resource saving. The present invention provides a novel efficient small motor for use in various advanced device devices mainly composed of the above efficient small motor, and a novel rare earth bonded magnet from a sheet to a film adapted thereto. It relates to a manufacturing method.
[0003]
[Prior art]
Small motors used in various advanced devices are required to be small, high output, or highly efficient as the motor size is further reduced as the equipment becomes smaller and lighter. Permanent magnet type motors have become widespread since the 1960s because the application of magnets has led to a reduction in motor loss, which in turn has been effective in the production of efficient small motors. In the development of such a small motor, in the case of a bonded magnet in which magnet powder is hardened with a binder, the magnet powder, the binder system, and the molding method are equally important as the three major elements.
[0004]
Regarding the above-mentioned bonded magnets widely used in small motors, Hirosawa, Tomizawa et al., Recent Progress in Research and Development Related to Bonded Rare-Erth Permanent Magnets, Journal of Applied Magnetics Society of Japan, Vol. 21, no. 4-1, PP. 161-167 (1997) briefly explains. Therefore, using FIG. 1 based on the cited document, the three major element technologies in bond magnet production, that is, the cooperation of magnet powder, binder, and molding method will be described.
[0005]
First, the magnetic powder (1) is ferrite (1) -a, alnico (1) -b, rare earth (1) -c, and the binder (2) is flexible (rubber, thermoplastic elastomer). (2) -a, rigid thermoplastic resin (2) -b, rigid thermosetting resin (2) -c, processing method (3) as calendar ring / extrusion molding (3) -a, injection molding (3) ▼ -b, compression molding ▲ 3 ▼ -c. These linkages are organized as shown by the solid line in the figure. For example, rare earth magnet powder (1) -c is used as a binder (2) as a flexible system (rubber, thermoplastic elastomer) (2) -a, rigid thermoplastic resin (2) -b, rigid thermosetting resin (2). (2) and (3), such as calendaring / extrusion molding (3) -a, injection molding (3) -b, compression molding (3) -c It is linked with all elements of. However, in cooperation between compression molding (3) -c and rare earth magnet powder (1) -c, the element of binder (2) is, for example, a hard thermosetting resin (2) -c such as epoxy resin. The current situation is limited to relationships.
[0006]
For example, the relationship between the three major element technologies in the production of bonded magnets, that is, the rare earth magnet powder (1) -c, the binder (2), and the molding method (3) and the high performance of the motor are as follows: F. Yamashita, Y. et al. Sasaki, H .; Fukunaga, Isotropic Nd-Fe-B Thin Arc-shaped BondedMagnets for Small DC Motors Prepared by Powder Compacting Press with Metal Ion-Imp. 25, no. 4-2, PP. 683-686 (2001), in the production of a thin arc magnet having a maximum thickness of 0.9 mm, rare earth magnet powder (1) -c / hard thermoplastic resin (2) -b / extrusion molding (3) By changing from cooperation with -a to rare earth magnet powder (1) -c / hard thermosetting resin (2) -c / compression molding (3) -c, permanent magnet with 200mW output The maximum efficiency of field type small DC motor is improved by 8%. This suggests that even if the rare earth magnet powder is exactly the same, an efficient small motor can be provided by recombination of cooperating elements.
[0007]
By the way, the sheet magnet which has been conventionally studied as a magnet of a small motor having a machine output number of 10 W or less, which is the object of the present invention, is used from the viewpoint of cooperation of the three major element technologies in the manufacture of the bond magnet of FIG. In summary, ferrite magnet powder (1) -a or rare earth magnet powder (1) -c / flexible type (rubber, thermoplastic elastomer) (2) -a / calender ring / extrusion molding (3) -a It can be expressed by cooperation. Many ideas have been made under this cooperation.
[0008]
For example, a sheet magnet composed of rare earth magnet powder (1) -c, flexible rubber, and thermoplastic elastomer (2) -a is cut into a strip shape, and is annularly curled on the inner surface of the peripheral wall of the frame. Permanent magnet type motors are known which are fixed and face the salient pole surface of an armature core. As prior art of this magnet and motor, Japanese Patent No. 2766746 discloses (1) Nd-Fe-B type, (Ce, La) -Fe-B type rare earth magnet powder, (2) natural rubber, isoprene rubber. , Butadiene rubber, styrene butadiene rubber, butyl rubber, ethylene propylene rubber, ethylene vinyl rubber, nitrile rubber, acrylic rubber, urethane rubber, (3) chloroprene rubber, chlorosulfonated polyethylene, and chlorinated polyethylene (1) to (3) One or more of the groups are selected, and (1) is 92-96 wt. %, Density 4.9-5.8 Mg / m Three Sheet magnet. Japanese Patent No. 2528574 discloses (a) a step of kneading R-Fe-B (R is Nd / Pr) rare earth magnet powder and a resin such as rubber and thermoplastic elastomer, and (b) the kneaded product. A method for producing a sheet magnet is disclosed, comprising: crushing the sheet magnet and then calendering the sheet, and (c) heat treating the sheet magnet at 125 to 180 ° C. for 60 to 180 mun. Yes.
[0009]
However, (1). The density of the sheet magnet is 4.9 to 5.8 Mg / m Three Limit of magnetic performance from the above, (2). Flexible thermoplastic elastomers and rubbers and rare earth magnet powders have poor adhesion, and rare earth magnet powders fall off due to the magnetic attraction force of the excited armature core, causing rotational noise and rotation disturbance during motor operation. Issues related to reliability, such as causing, (3). Processes such as rubber vulcanization and reheating of the cut surface were complicated, and there were also problems in reliability such as corrosion and accelerated wear of electric sliding contacts such as brush-commutators due to residual sulfur gas from vulcanization.
[0010]
In JP-A-5-299221, Sm-Fe-N rare earth magnet powder and acid-modified styrene elastomer are calendered (kneading / rolling) and further cut strips are curled. Density 5.6 Mg / m for use in small motors Three , Maximum energy product (BH) max 35 kJ / m Three An annular magnet is disclosed. However, magnetically isotropic R-Fe-B (R is Nd / Pr) rare earth magnet powder and hard epoxy resin (BH) max ~ 80kJ / m Three Compared with magnets of this type, the magnetic performance is not as good, and a strong static magnetic field cannot be obtained in the desired gap with the armature core. In addition, Sm-Fe-N magnet powder is made of several μm of Sm. 2 Fe 17 N Three Because it is a fine powder consisting of a single magnetic phase, it is generally chemically active, and rare earth-iron-nitrogen magnet powder is exposed to the atmosphere at the cut surface, causing irreversible magnetic flux loss and thermoplastic elastomer based on permanent demagnetization due to oxidative corrosion. There was also a serious problem of partial collapse of the magnet due to a decrease in the adhesion between the magnet powder and the magnet powder, and the magnet powder falling off and scattering.
[0011]
On the other hand, a film magnet having a thickness of 200 μm or less is used for a millimeter-meter size high-performance motor, actuator, magnetic drive element, etc., which is used as a drive source in micro robots, medical treatment, space development and the like. Needless to say, thin-film rare-earth magnets are generally produced by sputtering. For example, Japanese Patent Laid-Open No. 05-21865 discloses a method of forming a thin-film rare earth magnet on a substrate such as a glass substrate, a quartz substrate, and a silicon wafer by a sputtering method. A method for forming a metal layer therebetween is disclosed. In Japanese Patent Laid-Open No. 06-151226, in a method of forming a thin-film rare earth magnet by sputtering, a metal layer having a thickness of about 1 to 40 nm and an R of less than 5 μm having anisotropy in the thickness direction. 2 Fe 14 A method for forming a thin-film rare-earth magnet in which B (R is a rare-earth element including Y) alloy layers are alternately laminated, Nd in Japanese Patent Laid-Open No. 08-83713 2 Fe 14 It has been disclosed that the optimum production conditions in the sputtering method of a rare-earth magnet of a thin film containing B as the main phase are a substrate temperature of 530 to 570 ° C., a deposition rate of 0.1 to 4 μm / hr, and a gas pressure of 0.05 to 4 Pa. ing. Further, Japanese Patent Laid-Open No. 09-162034 discloses Nd on a substrate. 2 Fe 14 B, SmCo Five , Sm (Co, Fe, Cu, Zr) 7 , SmFe 11 Ti, Sm 2 Fe 17 N 2 In a film magnet having a multilayer alloy film in which hard magnetic layers made of so-called rare earth magnets and soft magnetic layers such as Fe, Fe—Ni, Fe—Co, Fe—Si, Fe—N, and Fe—B are alternately laminated. The hard magnetic layer having a thickness of 2 to 4 nm per layer on the substrate by sputtering at a substrate temperature of 450 to 800 ° C. and having anisotropy in the thickness direction, and a substrate temperature of 150 to 650 ° C. A thin-film rare earth magnet having a multilayer structure in which the soft magnetic layers having a thickness of 6 to 12 nm per layer and magnetic anisotropy in the thickness direction are alternately laminated by the sputtering method is disclosed. Yes. Also, Japanese Patent Laid-Open No. 09-237714, Japanese Patent Laid-Open No. 11-214219 discloses the thickness of the soft magnetic layer and the hard magnetic layer adjacent to each other in the in-plane direction at a substrate temperature of 300 to 800 ° C. by, for example, sputtering. A thin-film rare earth magnet having a multilayer structure having a thickness of 0.01 to 300 μm strictly controlled at a standard is disclosed.
[0012]
However, in order to produce a thin-film rare earth magnet by the sputtering method, it is necessary to heat the substrate to 450 ° C. or higher, and the film formation rate is limited to 0.1 to 4 μm / hr. In particular, Nd 2 Fe 14 A thin-film rare earth magnet having B as the main phase is limited to a film thickness of less than 5 μm in order to suppress a decrease in coercive force due to oxidation. In addition, in the thin-film rare earth magnet having a multilayer structure of 0.01 to 300 μm, in which the thickness of the soft magnetic layer and the hard magnetic layer is strictly controlled at the nm level, the magnet production is further complicated and the economical consistency is poor. Become. Japanese Patent Application Laid-Open No. 11-288812 discloses a thin-film R—Fe—B rare earth magnet which is formed by sputtering without heating the substrate, and is heat-treated after film formation. However, this method also has a problem that the film formation rate is 4 μm / hr or less and a problem that the film thickness of the magnet is limited to tens of μm or less.
[0013]
There is a strong demand for downsizing motors and actuators. The key to miniaturization of motors and actuators is to reduce the number of components and simplify assembly. For this reason, the mover of small motors and actuators is composed of rare earth sintered magnets by powder metallurgy, and rare earth bonded magnets in which flake-shaped magnet powders by the melt span method are hardened to a specific shape with resin. It is common to do. From the positional relationship between the magnet and the armature winding, an axial gap type in which the magnet and the armature winding have a gap in the axial direction, and a radial gap type in which the magnet and the armature winding have a gap in the radial direction, Has been proposed. However, for example, in a motor or actuator having a diameter of 5 mm and a height of 1 mm as shown in FIG. 2 or an actuator (in this case, an axial gap type), the rare earth magnet constituting the mover is also 300 μm thick, or It is necessary to configure with a film magnet smaller than that. In the figure, 1 is a film magnet, 2 is a rotating shaft, 3 is an armature winding, and 4 is a bearing.
[0014]
By the way, Nd 2 Fe 14 Rare earth sintered magnets with B as the main phase generally have a crystal grain size of 6-9 μm, and there is an R-rich phase at the grain boundaries, so the surface magnetic performance from the surface to a depth of several 10 μm during grinding Causes processing deterioration. Further, since the material is brittle and difficult to process, the processing limit in consideration of the yield is estimated to be about 500 μm, making it difficult to cope with the application shown in FIG. Nd by melt span method 2 Fe 14 Rare earth bonded magnet with B as main phase is Nd of magnet 2 Fe 14 Although the B crystal grain size is relatively small at 20 to 100 nm, a decrease in magnetic performance due to a decrease in magnet density is inevitable, and the processing limit considering the maintenance of magnetic performance and the yield is still estimated to be about 500 μm.
[0015]
As described above, millimeter-meter-sized motors, actuators, and magnetic drive elements can be directly used as rare earth sintered magnets by conventional powder metallurgy techniques, or bonded magnets in which rare earth magnet powders are hardened with resin. However, the original magnetic performance of rare earth magnets could not be fully utilized as a motor or actuator.
[0016]
Further, in order to produce a thin-film rare earth magnet by the sputtering method, it is generally necessary to heat the substrate to 450 ° C. or higher, and the film formation rate is limited to 0.1 to 4 μm / hr. In particular, Nd 2 Fe 14 A thin-film rare-earth magnet having B as the main phase has a film thickness limited to less than 5 μm due to a decrease in coercive force due to oxidation during sputtering. In addition, the thin film rare earth magnets with a thickness of 0.01 to 300 μm, in which the thicknesses of the soft magnetic layer and the hard magnetic layer are strictly controlled at the nm level, are particularly complicated and economically consistent. Has the disadvantage of becoming poor. When the motor or actuator is downsized, the electromagnetic force is “L” according to the scaling law. Three (L is the physique), for example, when the mover size (magnet) becomes 1/10, the electromagnetic force decreases to 1/1000. Therefore, if a rare earth magnet with a film thickness of less than 5 μm is used as a mover, there is an essential problem that an output corresponding to a load in actual use cannot be obtained.
[0017]
[Problems to be solved by the invention]
As described above, the rare earth magnet powder (1) -c / flexible system (rubber, thermoplastic elastomer) (2) -a / calendar can be summarized from the viewpoint of cooperation among the three major elemental technologies in the bond magnet production shown in FIG. -Conventionally, many devices have been devised under the cooperation of ring or extrusion molding (3) -a. Nevertheless, the magnets produced under this cooperation have many problems and are rarely used for permanent magnet motors. And under this cooperation, ferritic magnet powder (1) -a / flexible system (rubber, thermoplastic elastomer) (2) -a / calendar ring or extrusion molding (3) -a A sheet magnet using the ferrite magnet powder prepared is applied to a small motor. However, this magnet is (BH) max ~ 12kJ / m at most Three Therefore, a strong static magnetic field cannot be obtained in the gap between the armature core and the field. Therefore, it is no exaggeration to say that it is a small motor that is not efficient for recent electrical and electronic equipment.
[0018]
Therefore, it will be described below how the magnets produced by the cooperation are the mainstream for efficient small motors with a machine output of 10 W or less.
[0019]
Japanese Patent Publication No. 6-87634 by the present inventors can be cited as one of typical proposals for an efficient small motor using a rare earth bonded magnet. That is, magnetically isotropic R-Fe-B (R is Nd / Pr) rare earth magnet powder (1) -c and hard epoxy resin (2) in order to create a strong static magnetic field in the air gap facing the armature core. ▼ -c compression molding ▲ 3 ▼ -c
[0020]
As described above, typical magnets to be used in the present invention are ferrite magnet powder (1) -a) / flexible system (rubber, thermoplastic elastomer) (2) -a) / calender ring or extrusion (▲ 3 ▼ -b) together with magnets and magnetically isotropic rare earth magnet powder (1) -c) and thermosetting resin such as hard epoxy resin (2) -c Two examples of magnets formed by compression molding (3) -c can be mentioned. And more efficient motors and associated rare earth bonded magnet manufacturing methods mainly for small DC motors that account for 70% of small motors produced using them, and about 3 billion annually. Is the object of the present invention.
[0021]
[Means for Solving the Problems]
As shown in FIG. 1, the present invention provides a rare earth element by introducing a flexible thermosetting resin composition (2) -d in the binder (2), which is one of the three major elements in bond magnet production. Magnet powder (1) -c), compression molding and rolling or stamping (3) -d), a new form of rare earth bonded magnet from sheet to film, and new high The purpose is to provide a performance permanent magnet type motor (4).
In addition, the arrow of the thick solid line in a figure shows the new cooperation of the magnet manufacturing element concerning this invention.
[0022]
For example, a highly filled compound with magnetically anisotropic rare earth magnet powder is used as a green sheet that is highly oriented in an axial magnetic field. Magnetically isotropic rare earth magnet powder (1) -c) and magnet of compression molding (3) -d) together with thermosetting resin (2) -c such as hard epoxy resin ( BH) max 80 kJ / m Three For example, in the radial direction (BH) max 140kJ / m Three A much higher performance annular magnet can be provided without being affected by its diameter. In addition, from the viewpoint of the bonded magnet manufacturing process, it has high productivity, so there is an advantage that it can be applied by selecting the type of rare earth magnet powder. Therefore, from magnetically isotropic rare earth magnet powder (BH) max 40 kJ / m Three It is also possible to produce a magnet with a degree of economic consistency, which is effective in improving the efficiency of an inefficient small motor using a ferrite rubber magnet. Therefore, it is possible to provide a more efficient small motor (4) using a magnet prepared from a new form.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a rare earth magnet powder (1) -c), compression molding and rolling, and / or stamping process is performed by using a flexible thermosetting resin binder (2) -d as shown by a thick solid arrow in FIG. In combination with (3) -d), various forms of rare earth bonded magnets ranging from sheets to films having high performance and reliability, and a new high performance permanent magnet type motor using the same. The production method of (4) is provided.
[0024]
The present invention compression-molds a compound mainly composed of rare earth magnet powder (1) -c and a soft thermosetting binder (2) -d to thermally cure the binder component, / And the manufacturing method of the rare earth bonded magnet from the sheet to be stamped ((3) -d) to the film is the main point. In other words, as in the past, a novel rare earth which is different from a binder such as a rubber or thermoplastic elastomer (2) -a, and also a molding process such as calendering or extrusion (3) -a). The present invention relates to technology based on the cooperation of bonded magnet fabrication elements. Further, for example, they are wound, fixed, and magnetized to form an efficient small motor (4) for electrical and electronic equipment.
[0025]
Regarding the binder ((2) -d) in FIG. 1, more specifically, <powdered resin component having at least a thermocompression function and a thermosetting functional group is essential as the binder. The compound is to integrate the rare earth magnet powder by the adhesive force of the binder component, and to give a role to prevent mechanical separation of the binder and the rare earth magnet powder before compression molding. As a specific means for that purpose, the binder is at least a solid epoxy oligomer at room temperature, a thermo-compressible polyamide or / and polyamide-imide powder imparted with tack at room temperature, and a powdery latent epoxy to be added as needed. It is preferable to comprise a curing agent.
[0026]
In the present invention, the tackiness and thermocompression bonding property of polyamide or / and polyamideimide powder refers to the addition of a tackifier and the like, and first the rare earth magnet powder and the binder in a compound state before compression molding. , Fix by its adhesive strength. Next, when the green sheet is formed by compressing the compound, the polyamide or / and the polyamideimide are improved by promoting the plastic deformation by thermal softening of the polyamide or / and the polyamideimide and improving the wettability between the joint surfaces. Alternatively, the thermocompression bonding property of the epoxy oligomer is enhanced. In addition, other components such as a plasticizer are appropriately used in the binder component. The plasticizer reduces the overall viscosity of the polyamide or / and polyamideimide containing the adhesive and promotes flexibility and wetting. Specific examples of the plasticizer used include dibenzyltoluenes, p-hydroxybenzoic acid esters, and benzenesulfonamides, which are compounds having relatively good compatibility with polyamides and / or polyamide imines /. In addition, these plasticizers have good compatibility. However, from the viewpoint of compatibility and plasticization efficiency, that is, homogeneous thermocompression bonding, it is particularly preferable to use carboxylic acid adducts of glycidyl compounds having the following structure. desirable.
[0027]
[Chemical 1]
[0028]
In the above formula, R 1 , R 2 Are the same or different and each represents an aliphatic, alicyclic or aromatic hydrocarbon group. However, R 1 , R 2 At least one of them represents an aromatic hydrocarbon group. This compound is characterized by having at least one aromatic group, and is specifically classified into the following three groups. (A) Aromatic carboxylic acid adduct of aliphatic glycidyl ether or alicyclic glycidyl ether, (B) Aliphatic carboxylic acid or alicyclic carboxylic acid adduct of aromatic glycidyl ether, (C) Aromatic glycidyl ether Aromatic carboxylic acid adduct. The compound belonging to each group is, for example, in the presence of a reaction catalyst selected from tertiary amines, imidazoles, metal ester compounds, phosphorus compounds, etc., with respect to each glycidyl ether as a predetermined carboxylic acid. It can be prepared by adding from normal pressure to reduced pressure while stirring at 120 ° C.
[0029]
Further, it is desirable that the rare earth magnet powder is previously coated with a solid epoxy oligomer at room temperature in order to strengthen the binding force with the binder. Moreover, the average film thickness shall be 0.1 micrometer or less. This is important for preventing a decrease in the degree of orientation due to secondary aggregation of anisotropic rare earth magnet powders. Furthermore, as a method of coating the epoxy oligomer on the rare earth magnet powder, first, the epoxy oligomer is dissolved in an organic solvent, then wet mixed with the rare earth magnet powder, and the bulk mixture from which the solvent has been removed is crushed. . In order to increase the crosslinking density of the epoxy oligomer, a novolak type epoxy having an epoxy group in the molecular chain is desirable. Examples of the powdered epoxy curing agent that crosslinks with the epoxy oligomer include one or more selected from the group of dicyandiamide and its derivatives, carboxylic acid dihydrazide, diaminomaleonitrile and its hydrazide. . These are generally high melting point compounds that are hardly soluble in organic solvents, but those having a particle diameter adjusted to several to several tens of μm are preferred. Examples of dicyandiamide derivatives include o-tolylbiguanide, α-2 · 5-dimethylbiguanide, α-ω-diphenylbiguanide, 5-hydroxybutyl-1-biguanide, phenylbiguanide, α-, ω-dimethylbivic. There are anides. Furthermore, examples of the carboxylic acid dihydrazide include succinic acid hydrazide, adipic acid hydrazide, isophthalic acid hydrazide, and p-axylbenzoic acid hydrazide. These curing agents are preferably added to the compound by dry mixing. In order to prevent transfer of the compound to the mold, 0.2 wt. Of one or more selected from higher fatty acids, higher fatty acid amides and higher fatty acid metal soaps having a melting point higher than the set temperature of the mold. . It is desirable to add to a compound of less than% by dry mixing.
[0030]
The content of the compound rare earth magnet powder was 92 wt. % To 97 wt. %, Compression molding pressure is 4 ton / cm 2 As described above, the heat treatment of the binder component of the green sheet is set to be equal to or higher than the reaction start temperature of the epoxy oligomer, and in the final rolling, the rolling rate is 2% or more and the winding limit diameter is 8 mm or less, or the rolling rate is 10%. As described above, when the winding limit diameter is 2 mm or less, a rare earth bonded magnet having good consistency with the mechanical strength can be obtained. In order to reduce the cogging torque of an efficient small motor to be used finally, it is left to the design philosophy of the motor to make the green sheet an unequal width or an unequal thickness. By the way. However, in the present invention, a green sheet having a thickness of about 0.5 to 2.0 mm is usually compression-molded. Therefore, it is possible to flexibly apply the molding process such as calendaring or extrusion molding. There is an advantage that can be accommodated.
[0031]
On the other hand, an arc-shaped rare earth bonded magnet from the sheet to the film can be prepared by stamping the strip-shaped green sheet using, for example, an arc-shaped mold and heat-treating it as necessary. The stamping process is generally a method in which a thermoplastic sheet is heated, softened and press-molded, and is also called stampable sheet molding because it is molded by a system similar to a sheet metal press. (Supervised by Shinroku Saito, New Material Molding Dictionary, P775, Material Information Center, Industrial Research Society, 1988). The binder according to the present invention contains a thermosetting epoxy resin as a component, but from the viewpoint of the molding process, the cited stamping process is considered to be the most similar method, and therefore the stamping process was performed.
[0032]
Furthermore, in the present invention, a soft magnetic composite flexible magnet may be produced in which a green sheet containing soft magnetic powder and a green sheet containing rare earth magnet powder are integrally molded, heat-treated and rolled. it can. Such a soft magnetic composite flexible magnet is advantageous in forming an efficient magnetic circuit because the soft magnetic layer is integrated with the magnet without an adhesive layer.
[0033]
Next, as a magnetically isotropic rare earth magnet powder, Nd—Fe—B spherical powder prepared by spinning cup atomization (BH Rabin, BM Ma, “Recent Developments in”). NdFeB Powder “120th Topical Symposium of the Magnetic Society of Japan 23, 2001).
[0034]
Nd-Fe-B based flare prepared by melt spinning (JJ Croat, JF Herbst, RW Lee and FE Pinkerton, J. Appl. Phys. 55, 2078, 1984). -Powdery powder (RW Lee and JJ Croat, US-Patent 4,902, 361.1990), αFe / Nd-Fe-B based flake powder, Fe Three Examples thereof include B / Nd—Fe—B based flake powder, Sm—Fe—N flake powder, αFe / Sm—Fe—N flake powder, and the like. The ratio of the particle diameter to the thickness of the flake powder is desirably 4 or less.
[0035]
FIG. 3 shows a production concept diagram of the spinning cup atomization (FIG. 3 left) and melt spinning (FIG. 3 right).
[0036]
Next, as magnetically anisotropic rare earth magnet powder, Nd-Fe-B-based powder prepared by hot upsetting (Die-Up-Setting) (for example, M. Doser, V. Panchanathan; Pulverizing) anisotropic rapidly solidified Nd-Fe-B materials for bonded magnet; J. Appl. Phys. 70 (10), 15, 1993). Magnetically anisotropic Nd—Fe—B based powder prepared by HDDR treatment (hydrogen decomposition / recombination), ie, Nd—Fe (Co) —B based alloy Nd 2 (Fe, Co) 14 Hydrogenation of phase B (Hydrogenation, Nd 2 [Fe, Co] 14 BHx), phase decomposition at 650-1000 ° C. (Decomposition, NdH 2 + Fe + Fe 2 B), HDDR processing (T. Takeshita and R. Nakayama: Proc. Of the 10) for dehydrogenation (Recombination) and recombination (Recombination). th RE Magnets and Ther Applications, Kyoto, Vol. 1,551 1989), which is a magnetically anisotropic rare earth magnet powder. Inactive powder such as Zn whose surface has been photodecomposed in advance (eg, K. Macida, K. Noguchi, M. Nashimura, Y. Hamaguchi, G. Adachi, Proc. 9th Int. Workshop on Rare-Earth) Magnets and Ttheir Applications, Sendai, Japan, II, 845 2000, or K. Macida, Y. Hamaguchi, K. Noguchi, G. Adachi, Digests of the25. th Annual conference on Magnetcs in Japan, 28aC-6 2001). The coercive force at 20 ° C. after 4 MA / m pulse magnetization of these magnet powders is desirably 1.1 MA / m or more.
[0037]
On the other hand, as magnetically anisotropic rare earth magnet powder, magnetically anisotropic Sm-Fe-N fine powder prepared by RD (oxidation reduction) treatment, the surface of the powder is previously inactivated. The coercive force at 20 ° C. after the 4 MA / m pulse magnetization of the powder is preferably 0.6 MA / m or more.
[0038]
The rare earth magnet powder may be used alone or in the form of a mixture of two or more. However, it is desirable that the average value of coercive force at 20 ° C. after 4 MA / m pulse magnetization of all the mixed rare earth magnet powders is 0.6 MA / m or more.
[0039]
In addition, after final rolling, it was formed from one or more kinds of polymers having a film-forming ability in which a melt-adhesive (hot-melt adhesive) type self-bonding layer was provided on the surface or a mixed with a mixed isocyanate. It is also effective to improve the mountability to a permanent magnet type motor by providing a self-bonding layer.
[0040]
A permanent magnet type DC motor in which a flexible magnet as described above is wound around the inner peripheral surface of a cylindrical frame, and a fixed and multipolar magnetized annular magnet is used as a permanent magnet field. A permanent magnet type motor having a circular gap rotor on the inner peripheral surface of a cylindrical frame. For example, a permanent magnet type motor having a surface magnet type rotor provided with an annular magnet on the outer peripheral surface of a cylindrical frame may be used. Furthermore, they can be used for various permanent magnet type motors depending on the design concept, such as bonding with a mating material with a self-bonding layer. In particular, the maximum energy product (BH) at room temperature after 4 MA / m pulse magnetization max 140kJ / m Three A permanent magnet type motor equipped with a rare earth bonded magnet from the above sheet to a film is manufactured from Nd-Fe-B flake powder prepared by melt spinning-hard thermosetting resin-compression molding As a next-generation type of permanent magnet type motor, it is particularly promising with a small diameter, and the maximum energy product (BH) at room temperature after 4 MA / m pulse magnetization max 40kJ / m Three Permanent magnet type motors equipped with the above flexible magnets are promising as the next generation of permanent magnet type motors using ferrite rubber magnets.
[0041]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.
[0042]
Example 1
1. material
In this example, four types of rare earth magnet powders having different forms were used. That is, magnetically anisotropic Nd—Fe—B powder (Nd prepared by HDDR treatment (hydrogen decomposition / recombination)) 12.3 Dy 0.3 Fe 64.7 Co 12.3 B 6.0 Ga 0.6 Zr 0.1 ) Powder-A, Nd-Fe-B spherical powder (Nd) prepared by spinning cup atomization 13.3 Fe 62.5 B 6.8 Ga 0.3 Zr 0.1 ) Powder-B, and Nd-Fe-B flake powder prepared by melt spinning (Nd 12 Fe 77 Co Five B 6 ) Powder-C, RD (redox) Sm 2 Fe 17 N Three Fine powder powder-D. The components of the binder system include a novolak type epoxy oligomer that is solid at room temperature, a powdery latent epoxy curing agent having a particle size of 15 μm or less, a polyamide powder that is frozen and ground to 100 μm or less in advance, and a particle size. A lubricant of 10 μm or less was used in this example. The chemical structure of the novolac epoxy oligomer and the powdery latent epoxy curing agent was as follows.
[0043]
[Chemical formula 2]
[0044]
[Chemical 3]
[0045]
The solid epoxy oligomer was adjusted so as not to form a secondary agglomerated granule in order to improve the degree of orientation of powder-A. The adjustment should be adjusted to 0.1 μm or less when the average film is obtained from the density of the oligomer and the average specific surface area of the magnet powder. The strength after curing hardly changed even when the average film thickness was increased to 0.2 μm.
[0046]
2. Preparation of rare earth bonded magnet
The present invention rationally produces rare earth bonded magnets in various forms ranging from sheet to film from one or more of various rare earth magnet powders such as powder-A, -B, -C and -D. In order to provide an efficient small motor. In particular, an annular rare earth bonded magnet from the sheet to the film according to the present invention including anisotropy oriented in an axial magnetic field such as powder-A is used to frame the magnet from the sheet to the film before and after magnetization. Or obtained by wrapping around a mandrel. As a result, the difficulty of lowering the degree of orientation accompanying the small diameter of the radial magnetic field orientation, that is, lowering the magnetic properties is overcome.
[0047]
FIG. 4 (a) shows the preparation of a flexible bonded magnet from polyamide powder containing powder-A, -B, -C, -D and solid epoxy oligomer, and powdery latent epoxy curing agent and adhesive. It is a block diagram which shows the process for doing. FIG. 4B shows compression molding (▲) together with conventional magnetically isotropic rare earth magnet powder (1) -c and thermosetting resin (2) -c such as hard epoxy resin. It is a block diagram which shows the process for preparing the 3 ▼ -d) magnet. FIG. 4B shows an example of F.R. Yamashita, Y. et al. Sasaki, H .; Fukunaga, Isotropic Nd-Fe-B Thin Arc-shaped Bonded Magnets for Small DC Motors Prepared by Powder Compacting Press Ion-Ion-Ion. Magn. Soc. Japan, Vol. 25, no. 4, PP. 683-686 (2001). It is described in. As is apparent from the block diagrams of FIGS. 4A and 4B, the compound of the present invention can be prepared by mixing rare earth magnet powder and a binder component as compared with the conventional method. In addition, the compression molding and curing of the compound are the same, and in the present invention, a rolling and / or stamping process for making the sheet magnet into the final form exists as an essential process.
[0048]
The description of FIG. 4 will be given. (Mixing: Mixing, Compacting press: Powder molding, Curing: Curing, Rolling: Rolling, Stamping: Stamping, Pre-crushing: Pre-grinding, Wet-mixing: Wet mixing, Evaporating: Evaporation, Crushing: Crushing, Classification, Drying -Blending: dry mixing, coating: painting).
[0049]
According to the manufacturing process of the embodiment of the present invention shown in FIG. 5 kg of a predetermined amount of rare earth magnet powder powder-A, B, C, and D is put into a Σ blade mixer heated to 60 ° C., and 50% acetone solution of a solid epoxy oligomer at room temperature while stirring the powder. 50 g was added dropwise. When stirring was continued, a rare earth magnet powder coated with an epoxy oligomer dried in about 5 minutes was obtained. When the surface coating thickness of the rare earth magnet powders powder-A, B, C and D is about 0.1 μm or less, the powder particle size distribution before and after the coating of powder-A, B, C and D changes little. There wasn't. Subsequently, 3 to 7 wt.% With respect to the rare earth magnet powder whose surface was coated with the epoxy oligomer. Polyamide particles containing 20% adhesive, a powdery latent epoxy curing agent, and a lubricant (calcium stearate having a particle diameter of 10 μm or less) were added to obtain a powdery compound. These powdered compounds had powder flowability that could be applied to a powder molding machine with a lubricant.
[0050]
Next, the powdery compound was put into the feeder cup of the powder compression molding machine, and the powdery compound was filled into the mold cavity. However, only the upper and lower punches of the mold and the periphery of the cavity are heated to 70 to 80 ° C. The compound containing magnetically anisotropic rare earth magnet powder filled in the cavity is compressed by the upper and lower punches in an axial magnetic field of 1.4 MA / m, demagnetized, and green compact is used. Obtained. This green sheet had sufficient handling properties.
[0051]
In FIG. 5, (Number of shots: number of moldings, Weight: weight).
[0052]
FIG. 5 shows that Powder-A having a width of 6.1, a length of 71 mm and a thickness of 1.25 mm is 96 wt. FIG. 5 is a characteristic diagram showing the weight (g) of the green sheet with respect to the number of moldings when a green sheet consisting of% is repeatedly molded by a powder molding machine. The green sheet has a weight average of 1.991 g and a standard deviation of 0.007 g when molded 90 times, and a compound capable of industrially forming powder is obtained.
[0053]
Next, the Powder-A was 96 wt. % Sheet was heated at 180 ° C. for 20 minutes to form a hardened sheet. FIG. 6 shows that a magnetically anisotropic Powder-A having a thickness of 0.8 to 2.5 mm is 96 wt. The relationship between the magnetic flux and the thickness of the sheet is shown when the sheet is heat-cured and then the sheet is magnetized with 4 MA / m pulses in the thickness direction. Furthermore, this sheet was rolled with a constant-speed roll heated to 70 mm in diameter and 70 ° C., and the relationship between the thickness after rolling and the magnetic flux was shown. The magnetic flux before rolling observed as shown in the regression equation in the figure decreases as the sheet thickness decreases. The rolled sheet has a large decrease in magnetic flux compared to the sheet thickness before rolling, and is particularly remarkable when the sheet thickness before rolling is 2 mm or more. However, when the sheet thickness before rolling is 1.3 mm or less, the decrease in magnetic flux due to rolling is suppressed as compared with the case where the sheet thickness is 2 mm or more, and it follows the regression formula of the change in magnetic flux with respect to the sheet thickness before rolling. The value comes to be obtained. This is because a sheet containing magnetically anisotropic rare earth magnet powder such as Powder-A is likely to be disturbed by rolling when the thickness is 2 mm or more, but less likely to be disturbed when the thickness is 1.3 mm or less. . Therefore, in a sheet containing magnetically anisotropic rare earth magnet powder such as Powder-A, a sheet of 1.3 mm or less is rolled to form the rare earth bonded magnet according to the present invention from the sheet to the film. Is desirable.
[0054]
In FIG. 6, (○: Before rolling before rolling, ●: Rolling out after rolling, Thickness: Thickness, Flux: Magnetic flux, R 2 : Correlation coefficient).
[0055]
In FIG. 7, (○: Before rolling before rolling, ●: Rolling out after rolling, Thickness: thickness, Flux: magnetic flux, R 2 : Correlation coefficient).
[0056]
FIG. 7 shows 95 wt. FIG. 5 is a characteristic diagram showing the thickness of a sheet containing magnetically anisotropic rare earth magnet powder in which 10% of% Powder-A is replaced by Powder-D and the change in magnetic flux due to rolling. Powder-D has a small powder particle size of 2 to 3 μm. However, when the rolling rate is small at a sheet of 1.3 mm or less, a tendency of increasing the magnetic flux by rolling is also observed. FIG. 8 shows 95 wt. Powder-D in a 1.17 mm-thick sheet magnet (
[0057]
In FIG. 8, (weight fraction of Powder-D: ratio of Powder-D, Density: density).
[0058]
FIG. 10 is a characteristic diagram showing changes in magnetic flux with respect to the rolling rate of a sheet having a thickness of 1.3 mm or less. However, 96 wt. %include. As shown in the figure, when the rolling rate is approximately 15% or less, the magnetic flux change exceeding 10% does not occur regardless of the shape (flakes, spheres, etc.) of the rare earth magnet powder contained in the sheet. However, if it exceeds 15%, the magnetic flux starts to increase in Powder-C, a flake-shaped rare earth magnet powder by melt spinning, and Powder-B, a spherical rare-earth magnet powder by spinning cup atomization, It starts to increase. However, the magnetically anisotropic rare earth magnet powder Powder-A does not increase the magnetic flux. In magnetically isotropic Powder-B and -C, it can be said that an increase in density accompanying an increase in rolling ratio has caused an increase in magnetic flux.
[0059]
In FIG. 9, (Tickness: thickness, Incending rate of flux: increase rate of magnetic flux).
[0060]
In FIG. 10, (□: Powder-A, ●: Powder-B, x: Powder-C, Rolling rate: rolling rate, Change in flux: change in magnetic flux).
[0061]
FIG. 11A shows that Powder-A is 96 wt. % Is a film magnet having a thickness of 200 μm, and FIG. 11B is an external view showing a state in which the film magnet is wound around a mandrel having a diameter of 0.8 mm. As shown in the figure, the rare earth bonded magnet from the sheet to the film according to the present invention can be easily wound and fixed on a mandrel having a diameter of 1 mm or less. In particular, when a rare earth bonded magnet of the present invention provided with a self-bonding layer having a good film forming ability is wound around a rotating shaft and fixed by baking, a radially anisotropic rare earth bonded magnet having a diameter of about 1 mm as shown in FIG. It is possible to prepare a surface magnet type rotor including As described above, the film magnet according to the present invention is mechanically less than a thin-film rare-earth magnet by sputtering, a thick-film rare-earth sintered magnet produced by grinding, a low-density compression-molded rare-earth bond magnet, or an injection-molded rare-earth bond magnet. It is not fragile, and it can be said that it is excellent as a magnet for mm size motors because it is easy to punch and wrap, and to be bonded.
[0062]
FIG. 12 shows that Powder-A was 97 wt. A strip-shaped green sheet having a width of 4 mm, a length of 15.5 mm and a thickness of 0.9 mm is stamped at a pressure of about 400 MPa using an arc-shaped mold at 80 ° C., and further at 180 ° C. for 15 min. It is an external view of a radial anisotropic arc-shaped magnet having a maximum thickness of 0.9 mm, an inner radius of 3.55 mm, and an outer radius of 3.65 mm that has been heat-cured. The stamping process is generally a method in which a thermoplastic sheet is heated, softened and press-molded, and is also called stampable sheet molding because it is molded by a system similar to a sheet metal press. (Supervised by Shinroku Saito, New Material Molding Dictionary, P775, Material Information Center, Industrial Research Society, 1988). The binder according to the present invention contains a thermosetting epoxy resin as a component, but from the viewpoint of the molding process, the stamping process cited is considered to be the most similar method. did.
[0063]
As described above, the rare earth bonded magnet converted into the final form by rolling or / and stamping from the sheet to the film according to the present invention is magnetically anisotropic rare earth magnet powder and isotropic flake. Can be prepared from one or more of rare-earth magnet powders powder-B, -C, Powder-D ranging from a spherical shape to a spherical shape, and the magnetic properties as a rare earth bonded magnet and the form as a magnet can be diversified. it can.
[0064]
3. durability
The prepared magnets were examined for their magnetic properties and irreversible magnetic flux loss obtained from mechanical properties such as tension and extension, and demagnetization curves. FIG. 13 shows that 96 wt. It is a characteristic view which shows the temperature dependence of the tension | tensile_strength of 1.17-mm thickness sheet magnet containing%, and expansion | extension. However, the solid line in the figure represents tension and the broken line represents elongation. As shown in the figure, regardless of the type of rare earth magnet powder, the tension is high at low temperatures and the elongation increases at high temperatures. However, the tension near room temperature is 96 wt. % Of ferrite magnet powder (▲ 1 ▼ -a) / flexible system (rubber, thermoplastic elastomer) (▲ 2 ▼ -a) / calendar ring or extrusion (▲ 3 ▼ -a) The tension of 50-100 kgf /
[0065]
In FIG. 13, (Temperature: temperature, Tensile strength: tension, Elongation: elongation).
[0066]
FIGS. 14A and 14B are characteristic diagrams showing changes in tension and elongation when the 1.17 mm thick sheet rare earth bonded magnet according to the present invention is exposed to 120 ° C. for 1000 hrs. As shown in the figure, the tension hardly changes or gradually increases after long-term high temperature exposure. When the tension increases, the elongation decreases correspondingly. Regardless of the form of the rare earth magnet powder, the rare earth bonded magnet from the sheet to the film according to the present invention is at a level that can withstand practical use in terms of mechanical property durability.
[0067]
FIG. 15 is a characteristic diagram showing a change in thickness of a magnet when a 1.17 mm thick sheet-like rare earth bonded magnet rolled at a rolling rate of 6 to 8% according to the present invention is exposed to 120 ° C. and 1000 hrs. As shown in the figure, the magnet dimensions, such as thickness, change little when exposed to high temperatures for long periods of time. Even in the case of a sheet magnet containing a flake-shaped rare earth magnet powder by melt spinning, the dimensional change is less than 1% at most. Therefore, regardless of the form of the rare earth magnet powder, the rare earth bonded magnets from the sheet to the film according to the present invention can be practically used even when mounted on a small and efficient motor in terms of dimensional stability. is there.
[0068]
In FIG. 14, (Exposure time: Standing time, Tensile strength: Tension, Elongation: Elongation, ●: Powder-A, ◯: Powder-B, ◇: Powder-C).
[0069]
In FIG. 15, (Exposure time: Standing time, Tensile strength: Tension, Elongation: Elongation, ●: Powder-A, ◯: Powder-B, ◇: Powder-C).
[0070]
16 shows 97 wt. Of Powder-A having a maximum thickness of 0.90 mm shown in FIG. 12 stamped at a pressure of 400 MPa at 70 to 80 ° C. according to the present invention. It is a characteristic view which shows the thickness change of the magnet when the arc-shaped rare earth bonded magnet containing% is exposed at 120 ° C. for 1000 hrs. As shown in the figure, a thickness change of about 7% is observed up to about 150 hrs due to stress relaxation by stamping. However, by performing a heat treatment at 180 ° C. for 20 minutes after stamping, the dimensional change considered to be due to stress relaxation is eliminated, and the dimensions of the magnet, such as the thickness of high-temperature exposure for a long time, are almost eliminated. Therefore, the rare earth bonded magnet from the sheet to the film according to the present invention is not only rolled, but also has a dimensional stability that can withstand practical use even if it is stamped or mounted on a small and efficient motor. Yes. In particular, heat treatment after stamping is effective in ensuring initial dimensional stability.
[0071]
In FIG. 16, (Exposure time: exposure time, Changes in thickness: thickness change, After stamping: after stamping, Stamping and annealing: stamping and annealing).
[0072]
FIG. 17 is a characteristic diagram showing the initial irreversible magnetic flux loss of a rare earth bonded magnet according to the present invention having a width of 6.1 mm, a length of 25 mm and a thickness of 1.17 mm. The initial irreversible magnetic flux loss depends strongly on the coercivity and the temperature coefficient of the coercivity of the rare earth magnet powder, but Powder-A (coefficient of coercivity 1.1 MA / m, temperature coefficient of coercivity −0.5% / ° C.) Isotropic NdFeB-based HDDR powder), the demagnetization up to about 100 ° C. shows the same magnetic stability as a sheet magnet containing a flake-shaped rare earth magnet powder by melt spinning. In addition, the spherical powder obtained by spinning cup atomization exhibits the same magnetic stability up to a high temperature region of 180 ° C. as that of a sheet magnet containing a flake-shaped rare earth magnet powder obtained by melt spinning. Therefore, regardless of the form of the rare earth magnet powder, the rare earth bonded magnet from the sheet to the film according to the present invention is practically usable even if it is mounted on a small and efficient motor in terms of magnetic stability. is there.
[0073]
In FIG. 17, (Temperature: temperature, Initial irreversible flux loss: initial irreversible magnetic flux loss ,: Powder-A, ○: Powder-B, ◇: Powder-C).
[0074]
It should be noted that the magnet temperature during motor operation when mounted on most electric and electronic devices targeted by the present invention is 100 ° C. or lower. Therefore, the rare earth bonded magnet from the sheet to the film according to the present invention is generally provided with magnetic stability in the operating temperature range of a small DC motor regardless of the powder-A, B, and C. However, in order to ensure such magnetic stability, it is desirable that the rare earth magnet powder has a coercive force of 600 kA / m or more after pulse magnetization of 4 MA / m at room temperature. In the case of a rare earth bonded magnet from anisotropic sheet prepared from powder-A to a film, the temperature coefficient of coercive force is about -0.5% / ° C. In the case of an anisotropic rare earth magnet powder larger than 4% / ° C and correspondingly powder-A, the coercive force after pulse magnetization of 4 MA / m at room temperature is 600 kA / m or more. It is desirable that it is 1.1 MA / m or more. Note that the rare earth bonded magnet from the sheet to the film according to the present invention prepared from an anisotropic rare earth magnet powder such as powder-A is a long-term magnetic flux like an anisotropic hard epoxy resin bonded magnet. Loss may be a problem. However, recently, it has been reported that this difficulty can be overcome by surface treatment of anisotropic rare earth magnet powder such as powder-A. For example, K.K. Macida, K .; Noguchi, M .; Nushimura, Y .; Hamaguchi, G .; Adachi, Proc. 9th Int. Works on Rare-Earth Magnets and Ttheir Applications, Sendai, Japan, (II), 845 (2000). Alternatively, K. Macida, Y .; Hamaguchi, K .; Noguchi, G .; Adachi, Digests of the25 th According to citations such as Annual conference on Magnetcs in Japan, 28aC-6 (2001), magnetically anisotropic rare earth magnet powder such as powder-A is used with a hard epoxy bond magnet at a high compression pressure of about 980 MPa. This is a molded magnet. Compared to the cited literature, the present invention can make rare earth bonded magnets prepared from powder-A at a compression pressure of 380 MPa, which is as low as 40% of them, so that destruction of powder-A during compression, Along with this, the new surface that occurs is reduced. Therefore, it is expected that the long-term magnetic flux loss of the rare earth bonded magnet from the sheet prepared from the powder A to the film in the operating temperature range of 100 ° C. or lower is further reduced.
[0075]
4). Magnetic and motor characteristics of magnets
FIG. 18 shows typical demagnetization curves and BH curves of rare earth bonded magnets from sheet to film according to the present invention prepared from powder-A and -B. Ferrite Magnet Powder (1) -a) / Flexible System (Rubber, Thermoplastic Elastomer) (2) -a / Calendar Ring or Extrusion Molding (3) -a) And magnets compression molded (3) -d together with magnetically isotropic rare earth magnet powder powder-C (1) -c and hard epoxy resin (2) -c It is a characteristic view shown in comparison. However, the test pieces are 1.1 mm thick, 7.5 mm wide and 7.5 mm long, respectively.
[0076]
As is apparent from the figure, the characteristic areas of the
[0077]
As indicated above, the magnet according to the present invention has good winding properties and magnetic properties for forming an annular magnet. Further, it can be converted into a thin arc shape by, for example, stamping. For example, (BH) max 140kJ / m Three Powder-A showing 97 wt. % Magnets can be wound around a mandrel with a diameter of 0.8 mm.
[0078]
FIG. 19 shows the diameter of the annular magnet and the radial direction of the magnet (BH). max The relationship is shown. In the figure, Comparative Example 2 is a radial anisotropic magnet in which Sm—Co rare earth magnet powder (1) -c is injection molded (3) -c together with a hard thermoplastic resin (2) -b. Yes, the degree of orientation of the rare earth magnet powder decreases with the diameter of the ring magnet, and accordingly (BH) max Decrease. On the other hand, as in Comparative Example 1, a flake rare earth magnet powder (1) -c (powder-C) by magnetically isotropic melt spinning is compression molded together with a hard epoxy resin ((2) -c). (▲ 3 ▼ -d) (BH) of magnet max Is 60-80 kJ / m without depending on the diameter of the annular magnet Three Is obtained.
[0079]
However, it is difficult to reduce the diameter of a ring magnet having a diameter of 5 mm or less, particularly until the thickness of the ring itself becomes 200 μm and a film shape. On the other hand, as shown in the example of the present invention, in the example of the present invention, a film magnet having a thickness of 200 μm is formed in an annular shape so that a small diameter and a high (BH) max An annular magnet can be provided. As described above, the present invention is one of typical proposals for an efficient small motor using rare earth bonded magnets, and is opposed to Japanese Patent Publication No. 6-87634, that is, an armature core. Compression molding of magnetically isotropic R-Fe-B (R is Nd / Pr) rare earth magnet powder (1) -c and hard epoxy resin (2) -c to create a strong static magnetic field in the
[0080]
Next, spherical rare earth magnet powder Powder-B by magnetically isotropic spinning cup atomization was added to 94 wt. % Included (BH) max 40 kJ / m Three FIG. 20 shows the characteristics of a DC motor when a sheet magnet having a thickness of 1.17 mm and a width of 6.1 mm is converted into a ring shape to form a permanent magnet field. The motor has an appearance as shown in FIG. 21 and has a diameter of 24 mm and a height of 12.5 mm. As shown (BH) max 12kJ / m Three Compared with the case where a ferrite rubber magnet having a thickness of 1.17 mm and a width of 6.1 mm is used as a field magnet, the current consumption can be reduced by 1/3.
[0081]
In FIG. 20, (Torque: torque, Current: current, Rotating speed: rotational speed, Mechanical output: mechanical output, Efficiency: efficiency, Conventional ferrite: conventional ferrite).
[0082]
In FIG. 22, (Magnified field: Implanted magnetic field, Improvement of flux ratio: Magnetic flux increase rate, Comparison with Powder-B: Comparison with Powder-B, Comparison with conventional Nd-Fe-B: Conventional Nd-Fe-B: Conventional Nd-Fe-B: Comparison).
[0083]
FIG. 22 shows a case where a spherical rare earth magnet powder Powder-B by magnetically isotropic spinning cup atomization is 94 wt. % Included (BH) max 40 kJ / m Three , 1.17mm thick sheet magnet (BH) max 140kJ / m Three Powder-A showing 97 wt. Increasing rate of magnetic flux with respect to the applied magnetic field of a 1.17 mm thick sheet magnet containing 1%, magnetically isotropic R-Fe-B (R is Nd / Pr) rare earth magnet powder (1) -c and hard epoxy Conventional typical (BH) obtained by compression molding of resin (2) -c (3) -
[0084]
By the way, when the gap magnetic flux density between the armature core and the field magnet is increased as in the DC motor according to the present invention, generally the cogging torque may be increased. The cogging torque referred to here is a torque pulsation caused by a change in the permeance coefficient Pc as the armature rotates because the armature core teeth and slots exist on the outer peripheral surface of the armature facing the field. It is. As high as the magnet according to the present invention (BH) max Since the cogging torque is increased in a motor on which this magnet is mounted, it may cause an increase in motor vibration and noise, or a failure in position control accuracy. The cogging torque is left to the design concept of the motor. However, the rare earth bonded magnet from the sheet to the film according to the present invention has a green sheet with an unequal width or an unequal width in advance in order to reduce the cogging torque of the motor to be finally used. By making it thick, it is possible to easily adopt a means for bringing the gap between the armature core and the field closer to a sine wave shape and suppressing the increase in cogging torque. This cannot be rationally handled by conventional sheet magnet molding processes such as calendaring and extrusion molding. However, in the present invention, since the powdered compound is usually compression molded to a green sheet having a thickness of about 0.5 to 2.5 mm, the flexible shape can be dealt with according to the motor design concept. Can be taken.
[0085]
In the powdered compound according to the present invention, it is selected from the group of Fe, Fe—Ni, Fe—Co, Fe—Si, Fe—N, and Fe—B having a saturation magnetization of 1.3 T or more instead of the rare earth magnet powder. The compound of one or more kinds of soft magnetic powders to be prepared is adjusted, and the green sheet is loaded into the mold cavity, and then the powdery compound according to the present invention is filled into the cavity. Compression molding. Alternatively, only a part of the binder component is compressed first, and then, the powdery compound according to the present invention is filled into the cavity and compression molded. As a result, a complex of green sheets having different functions is obtained. When this composite is heat-treated and rolled, a rare-earth bonded magnet ranging from a sheet with a back yoke to a film and a magnet having heat welding properties can be obtained. Further, one or two or more self-bonding layers of a polymer having a film forming ability, for example, the following structure (Chemical Formula 3) mixed with a stabilized isocyanate is formed in advance on the magnet surface. It can also be used for joining to other parts or other members.
[0086]
[Formula 4]
[0087]
【The invention's effect】
As described above, as a result of intensive studies by introducing a new concept, the present invention can provide a method for producing a rare earth bonded magnet from sheet to film with high productivity regardless of the type of rare earth magnet powder. In particular, the rare earth bonded magnet from the sheet to the film of the present invention does not require a molding process exceeding 200 ° C. as in the conventional molding process (calendering, extrusion molding) and the like, and heat such as irreversible magnetic flux loss. The high magnetic performance inherent in the rare earth magnet powder having stability can be reflected in the motor performance. Therefore, it is possible to provide an efficient small motor with high competitiveness over a conventional small motor equipped with a ferrite magnet or a magnetically isotropic Nd—Fe—B rare earth bonded magnet. Therefore, it is expected not only to contribute to electrical and electronic equipment but also to reduce power consumption and save resources by widespread use.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing the cooperation of three major element technologies in bond magnet production, namely, magnet powder, binder system, and molding method.
FIG. 2 is a cross-sectional configuration diagram of a small motor
[Fig. 3] Manufacturing concept of spinning cup atomization (left) and melt spinning (right)
FIG. 4 is a process diagram for preparing a magnet.
FIG. 5 is a characteristic diagram showing powder moldability by weight change of a green sheet.
FIG. 6 is a characteristic diagram showing the relationship between the thickness of the magnet from the sheet to the film and the magnetic flux.
FIG. 7 is a characteristic diagram showing the relationship between magnetic thickness and magnetic flux from a sheet mixed with different rare earth magnet powders to a film.
FIG. 8 is a characteristic diagram showing the relationship between the mixing ratio and density of different powders.
FIG. 9 is a characteristic diagram showing the relationship between thickness and magnetic flux increase rate.
FIG. 10 is a characteristic diagram showing a rolling rate and a change in magnetic flux.
FIG. 11 is an external view of a film magnet and a small-diameter magnet rotor.
FIG. 12: Appearance of thin arc magnet after sheet stamping
FIG. 13 is a characteristic diagram showing the temperature dependence of tension and elongation.
FIG. 14 is a characteristic diagram showing changes in tension and elongation during long-term high temperature exposure.
FIG. 15 is a characteristic diagram showing the dimensional change of a sheet magnet after long-term high-temperature exposure.
FIG. 16 is a characteristic diagram showing a dimensional change of a circular arc magnet after long-term high-temperature exposure.
FIG. 17 is a characteristic diagram showing initial irreversible magnetic flux loss.
FIG. 18 is a characteristic diagram showing a demagnetization curve.
FIG. 19 is a characteristic diagram showing the relationship between the diameter of an annular magnet and (BH) max.
FIG. 20 is a characteristic diagram of a DC motor.
FIG. 21 is an external view of a DC motor using a magnet wound in a ring shape as a magnetic field.
FIG. 22 is a characteristic diagram showing an increase rate of magnetic flux with respect to the applied magnetic field.
FIG. 23 is an external view of a DC motor using an arc magnet as a field.
[Explanation of symbols]
1 Film magnet
2 Rotating shaft
3 Electron winding
4 Bearing
Claims (46)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002205409A JP4364487B2 (en) | 2002-07-15 | 2002-07-15 | Rare earth bonded magnet from sheet to film and permanent magnet motor using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002205409A JP4364487B2 (en) | 2002-07-15 | 2002-07-15 | Rare earth bonded magnet from sheet to film and permanent magnet motor using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004047872A JP2004047872A (en) | 2004-02-12 |
JP4364487B2 true JP4364487B2 (en) | 2009-11-18 |
Family
ID=31710726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002205409A Expired - Lifetime JP4364487B2 (en) | 2002-07-15 | 2002-07-15 | Rare earth bonded magnet from sheet to film and permanent magnet motor using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4364487B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9991034B2 (en) | 2011-06-24 | 2018-06-05 | Nitto Denko Corporation | Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005124795A1 (en) * | 2004-06-17 | 2005-12-29 | Matsushita Electric Industrial Co., Ltd. | Process for producing self-assembled rare earth-iron bonded magnet and motor utilizing the same |
JP4529598B2 (en) * | 2004-09-03 | 2010-08-25 | パナソニック株式会社 | Fiber-reinforced layer integrated flexible rare earth bonded magnet |
JP2006080115A (en) * | 2004-09-07 | 2006-03-23 | Matsushita Electric Ind Co Ltd | Anisotropic rare earth/iron-based bond magnet |
JP4655651B2 (en) * | 2005-02-02 | 2011-03-23 | パナソニック株式会社 | Method for manufacturing perpendicular magnetic anisotropic thin plate magnet |
JP4710424B2 (en) * | 2005-06-08 | 2011-06-29 | パナソニック株式会社 | Manufacturing method of radial magnetic anisotropic magnet motor |
JP4552090B2 (en) * | 2007-10-12 | 2010-09-29 | ミネベア株式会社 | Rare earth bonded magnet and manufacturing method thereof |
JP6009745B2 (en) * | 2011-08-24 | 2016-10-19 | ミネベア株式会社 | Rare earth resin magnet manufacturing method |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8804062D0 (en) * | 1987-03-03 | 1988-03-23 | Ici Plc | Process & composition for producing bonded magnet |
JPH0475302A (en) * | 1990-07-18 | 1992-03-10 | Tokin Corp | R-fe-b bond magnet production method |
JP2778011B2 (en) * | 1990-07-20 | 1998-07-23 | 株式会社 三協精機製作所 | Rare earth bonded magnet |
JPH05152113A (en) * | 1991-08-16 | 1993-06-18 | Nippon Steel Corp | Manufacture of rare-earth anisotropic magnet powder |
JPH05308007A (en) * | 1992-04-30 | 1993-11-19 | Asahi Chem Ind Co Ltd | Thermosetting magnetic material resin composite material |
JPH0638415A (en) * | 1992-07-22 | 1994-02-10 | Hitachi Metals Ltd | Permanent magnet type rotor |
JPH07161516A (en) * | 1993-12-10 | 1995-06-23 | Kanegafuchi Chem Ind Co Ltd | Bond magnet and its production |
JPH07326508A (en) * | 1994-05-31 | 1995-12-12 | Tsuoisu Kk | Compose magnetic material for bond-molded magnetic body and bond-molded magnetic body |
JP2000050545A (en) * | 1998-07-31 | 2000-02-18 | Sumitomo Special Metals Co Ltd | Rotor for generator or motor |
JP2000348918A (en) * | 1999-06-02 | 2000-12-15 | Seiko Epson Corp | Rare earth bonded magnet, composition and manufacture of the same |
JP2000348919A (en) * | 1999-06-04 | 2000-12-15 | Sumitomo Special Metals Co Ltd | Nanocomposite crystalline sintered magnet and manufacture of the same |
JP2001126744A (en) * | 1999-10-28 | 2001-05-11 | Osaka Gas Co Ltd | Separator for fuel cell and fabricating method therefor |
JP4265056B2 (en) * | 1999-11-12 | 2009-05-20 | パナソニック株式会社 | Recovery and reuse of magnetic powder from rare earth bonded magnets |
JP2001230111A (en) * | 2000-02-16 | 2001-08-24 | Hitachi Metals Ltd | Rotating machine |
JP2001250706A (en) * | 2000-03-06 | 2001-09-14 | Dainippon Ink & Chem Inc | Rare earth bonded magnet composite material and its manufacturing method |
JP2002164206A (en) * | 2000-09-12 | 2002-06-07 | Hitachi Metals Ltd | Anisotropic bonded magnet, rotating machine, and magnet roll |
JP3840893B2 (en) * | 2000-11-08 | 2006-11-01 | セイコーエプソン株式会社 | Bond magnet manufacturing method and bond magnet |
JP2002198216A (en) * | 2000-12-26 | 2002-07-12 | Hitachi Metals Ltd | Sheet magnet and method of magnetizing the same |
JP3956760B2 (en) * | 2002-04-25 | 2007-08-08 | 松下電器産業株式会社 | Manufacturing method of flexible magnet and its permanent magnet type motor |
-
2002
- 2002-07-15 JP JP2002205409A patent/JP4364487B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9991034B2 (en) | 2011-06-24 | 2018-06-05 | Nitto Denko Corporation | Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet |
US9991033B2 (en) | 2011-06-24 | 2018-06-05 | Nitto Denko Corporation | Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet |
Also Published As
Publication number | Publication date |
---|---|
JP2004047872A (en) | 2004-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3956760B2 (en) | Manufacturing method of flexible magnet and its permanent magnet type motor | |
JP5169823B2 (en) | Manufacturing method of radial anisotropic magnet, permanent magnet motor and cored permanent magnet motor using radial anisotropic magnet | |
JP4525678B2 (en) | Manufacturing method of self-assembled rare earth-iron bond magnet and motor using the same | |
CN1881754A (en) | Motor | |
EP2226814B1 (en) | Rare-earth iron-based magnet with self-recoverability | |
EP1093133B1 (en) | Rare earth resin magnet, magnet rotor, magnet motor using the same, and its manufacturing method | |
JP4364487B2 (en) | Rare earth bonded magnet from sheet to film and permanent magnet motor using the same | |
US7828988B2 (en) | Anisotropic rare earth bonded magnet having self-organized network boundary phase and permanent magnet motor utilizing the same | |
KR20080092350A (en) | Permanent magnet rotor and motor using the same | |
JP4042505B2 (en) | Manufacturing method of anisotropic rare earth bonded magnet and its permanent magnet type motor | |
JP4311063B2 (en) | Anisotropic rare earth bonded magnet and motor | |
JP3933040B2 (en) | Rare earth bonded magnet manufacturing method and permanent magnet motor having the same | |
JP4203646B2 (en) | Method for manufacturing flexible hybrid rare earth bonded magnet, magnet and motor | |
JP4033112B2 (en) | Self-organized hybrid rare earth bonded magnet, method for manufacturing the same, and motor | |
JP2005116936A (en) | Method for manufacturing annular rare earth bond magnet, and motor | |
JP2002329628A (en) | Method of manufacturing annular magnet structure and motor | |
JP4710424B2 (en) | Manufacturing method of radial magnetic anisotropic magnet motor | |
JP2004296872A (en) | Method for manufacturing heat shrinkable rare earth magnet and permanent magnet motor | |
JP4635583B2 (en) | Manufacturing method of radial anisotropic magnet motor | |
JP4622536B2 (en) | Radial magnetic anisotropic magnet motor | |
JP4622767B2 (en) | Manufacturing method of radial magnetic anisotropic multipole magnet | |
JP2006180607A (en) | Sheet-shaped rare earth bond magnet, its manufacturing method, and motor | |
JP2006211802A (en) | Method for manufacturing self-organization annular anisotropic rare earth bond magnet motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040805 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050707 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20070605 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070801 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080404 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090303 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090402 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090513 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090721 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090819 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120828 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4364487 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130828 Year of fee payment: 4 |
|
EXPY | Cancellation because of completion of term |