JP2002164206A - Anisotropic bonded magnet, rotating machine, and magnet roll - Google Patents

Anisotropic bonded magnet, rotating machine, and magnet roll

Info

Publication number
JP2002164206A
JP2002164206A JP2001273861A JP2001273861A JP2002164206A JP 2002164206 A JP2002164206 A JP 2002164206A JP 2001273861 A JP2001273861 A JP 2001273861A JP 2001273861 A JP2001273861 A JP 2001273861A JP 2002164206 A JP2002164206 A JP 2002164206A
Authority
JP
Japan
Prior art keywords
magnetic powder
bonded magnet
anisotropic
anisotropic bonded
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001273861A
Other languages
Japanese (ja)
Inventor
Katsunori Iwasaki
克典 岩崎
Masahiro Tobise
飛世  正博
Yasunobu Ogata
安伸 緒方
Yutaka Kubota
裕 久保田
Takashi Takami
崇 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001273861A priority Critical patent/JP2002164206A/en
Publication of JP2002164206A publication Critical patent/JP2002164206A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new high-performance anisotropic bonded magnet, which has maximum energy product (BH)max equivalent to or higher than that of the conventional anisotropic ferrite bonded magnet or anisotropic sintered ferrite magnet, and in addition, is improved in magnetization and heat resistance. SOLUTION: This anisotropic bonded magnet is composed substantially of R-T-N-based magnetic powder the main component expressed by RαT100-α-βNβ (where R and T respectively denote at least one kind of rare-earth element, including Y and Fe or Fe and Co and α and β respectively denote atomic % meeting 5<=α<=20 and 5<=β<=30), sintered ferrite magnetic powder, substantially having a magnetoplumbite type crystal structure and a mean particle diameter of 10-1,000 μm, and a binder which binds the two kinds of magnetic powder to each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、広範囲な磁石応用
製品分野、例えば自動車用または電気機器用等の各種回
転機、電子写真や静電記録等において現像ロール用に使
用するマグネットロール、音響用スピーカ、ブザー、あ
るいは吸着または磁界発生用磁石等に有用であり、従来
の異方性フェライト焼結磁石を超える最大エネルギー積
(BH)maxを有し、さらに着磁性または耐熱性を向上した
新規高性能の異方性ボンド磁石に関する。また本発明
は、前記の高性能異方性ボンド磁石を用いて構成される
高性能の回転機およびマグネットロールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wide range of magnet-applied product fields, for example, various rotating machines for automobiles or electric equipment, magnet rolls used for developing rolls in electrophotography and electrostatic recording, etc. Useful for loudspeakers, buzzers, magnets for attracting or generating magnetic fields, etc.
The present invention relates to a novel high-performance anisotropic bonded magnet having (BH) max and further improved magnetizability or heat resistance. The present invention also relates to a high-performance rotating machine and a magnet roll configured using the high-performance anisotropic bonded magnet.

【0002】[0002]

【従来の技術】近年、着磁性が悪くかつ耐熱性の尺度で
ある例えばパーミアンス係数:Pc=1〜2(Pc=Bd/(−
Hd))で定義され、Bd,HdはB−H減磁曲線上の動作点
におけるB値およびH値である。)で評価した不可逆減
磁率が大きいNdFe14B金属間化合物を主相とす
る磁粉を用いた希土類ボンド磁石を代替可能なものとし
て、SmFe17(x=2〜6)系ボンド磁石
(特許第2703281号等)の実用化が進められている。し
かし、SmFe17系ボンド磁石は最近の磁石応
用製品の小型化、高性能化の過酷なニーズに対し耐熱性
および着磁性が十分ではなく、改良が望まれている。
2. Description of the Related Art In recent years, poor magnetization and a measure of heat resistance, for example, a permeance coefficient: Pc = 1 to 2 (Pc = Bd / (−
Hd)), where Bd and Hd are the B and H values at the operating point on the BH demagnetization curve. The Sm 2 Fe 17 N x (x = 2 to 6) system can be used as a substitute for a rare-earth bonded magnet using magnetic powder having a main phase of Nd 2 Fe 14 B intermetallic compound having a large irreversible demagnetization rate evaluated in (1). Practical use of bonded magnets (Patent No. 2703281 and the like) has been promoted. However, Sm 2 Fe 17 N x system bonded magnets miniaturization of recent magnet applied products, no heat resistance and magnetizability is sufficient to severe needs for high performance, improvements are desired.

【0003】国際公開;WO98/38654には、六方晶構造を
有するフェライトを主相とし、かつSr,Ba,Caお
よびPbから選択される少なくとも1種の元素であっ
て、Srを必ず含むものをAとし、希土類元素(Yを含
む)およびBiから選択される少なくとも1種の元素で
あってLaを必ず含むものをRとし、Coであるか、C
oおよびZnをMとしたとき、A,R,FeおよびMそ
れぞれの金属元素の総計の構成比率が、全金属元素量に
対し、A:1〜13原子%、R:0.05〜10原子%、Fe:
80〜95原子%、M:0.1〜5原子%である組成を有する
酸化物磁性材料を含有するフェライト粒子を用いたボン
ド磁石が記載されている。この具体例として、最終組成
がSr0.7La0.3Fe12−7Co0.319
(仮焼前にSiOを0.2重量%、CaCOを0.15重
量%添加。)の仮焼体を乾式振動ミルで粉砕後、大気中
で1000℃×5分間アニールし、得られたボンド磁石用フ
ェライト粉末の固有保磁力iHcが343.0kA/m(4.31kOe)
である旨の記載がある。しかし、このフェライト粉末を
バインダーで結着して作製した異方性ボンド磁石の(BH)
maxは異方性フェライト焼結磁石未満である。
[0003] International Publication WO98 / 38654 discloses that at least one element selected from Sr, Ba, Ca and Pb, which contains a ferrite having a hexagonal structure as a main phase, and which always contains Sr. A, R is at least one element selected from rare earth elements (including Y) and Bi and always contains La, and is Co or C
When o and Zn are M, the total composition ratio of the metal elements of A, R, Fe and M is A: 1 to 13 at%, R: 0.05 to 10 at%, based on the total metal element amount, Fe:
A bond magnet using ferrite particles containing an oxide magnetic material having a composition of 80 to 95 atomic% and M: 0.1 to 5 atomic% is described. As a specific example, the final composition is Sr 0.7 La 0.3 Fe 12-7 Co 0.3 O 19
The calcined body (adding 0.2% by weight of SiO 2 and 0.15% by weight of CaCO 3 before calcining) was pulverized by a dry vibration mill, and then annealed in the air at 1000 ° C. for 5 minutes to obtain a bonded magnet. The specific coercive force iHc of ferrite powder is 343.0kA / m (4.31kOe)
There is a statement that it is. However, (BH) of an anisotropic bonded magnet produced by binding this ferrite powder with a binder
max is less than the sintered anisotropic ferrite magnet.

【0004】特開昭60−223095号公報には、ハードフェ
ライト磁粉と希土類コバルト磁粉とバインダーとを所定
比率で配合し、混練し、成形してなり、磁束密度の温度
係数を−0.03〜−0.20%/℃にした、バブルメモリデバ
イス用磁界装置に組み込まれる界磁用ボンド磁石が記載
されている。しかし、この界磁用ボンド磁石は磁束密度
の温度係数を前記範囲に調整したものであり耐熱性およ
び着磁性が悪い。
Japanese Patent Application Laid-Open No. 60-223095 discloses that a hard ferrite magnetic powder, a rare earth cobalt magnetic powder and a binder are blended at a predetermined ratio, kneaded and molded, and the temperature coefficient of magnetic flux density is -0.03 to -0.20. A field magnet bonded to a magnetic field device for a bubble memory device at% / ° C. is described. However, the field magnet has a temperature coefficient of the magnetic flux density adjusted to the above range, and thus has poor heat resistance and poor magnetization.

【0005】レアメタル・ニュース、No.1936(刊行
日:1999年2月8日)にはSm−Fe−N系磁粉とフェラ
イト磁粉とバインダーとを所定比率で配合し、混練し、
磁場中成形して得られる異方性ボンド磁石の(BH)maxは
フェライト焼結磁石の高性能材に相当する31.8〜39.8kJ
/m(4〜5MGOe)になり得るとの示唆がある。しかし
本発明者らの検討から、従来のSm−Fe−N系磁粉と
フェライト磁粉とバインダーとを所定比率で配合し、作
製されるボンド磁石は着磁性および耐熱性が十分ではな
く、実用性が低いことがわかった。
In Rare Metal News, No. 1936 (published on Feb. 8, 1999), Sm—Fe—N-based magnetic powder, ferrite magnetic powder, and a binder are blended at a predetermined ratio and kneaded.
(BH) max of anisotropic bonded magnet obtained by molding in a magnetic field is 31.8 to 39.8 kJ, which is equivalent to high-performance material of sintered ferrite magnet
There is a suggestion that it can be / m 3 (4-5 MGOe). However, from the study of the present inventors, the bond magnet produced by mixing the conventional Sm-Fe-N-based magnetic powder, the ferrite magnetic powder, and the binder at a predetermined ratio, has insufficient magnetizability and heat resistance, and is not practical. It turned out to be low.

【0006】[0006]

【発明が解決しようとする課題】したがって、本発明の
課題は、従来の異方性フェライト焼結磁石を超える最大
エネルギー積(BH)maxを有し、さらに着磁性または耐熱
性を改善した新規高性能の異方性ボンド磁石を提供する
ことである。また本発明の課題は、前記の高性能異方性
ボンド磁石を用いて構成される高性能の回転機およびマ
グネットロールを提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a new high-performance magnet having a maximum energy product (BH) max exceeding that of a conventional anisotropic ferrite sintered magnet and further having improved magnetization or heat resistance. It is to provide a high performance anisotropic bonded magnet. Another object of the present invention is to provide a high-performance rotating machine and a magnet roll configured using the high-performance anisotropic bonded magnet.

【0007】[0007]

【課題を解決するための手段】上記課題を解決した本発
明の異方性ボンド磁石は、主要成分組成がRα10
0-α-ββ(RはYを含む希土類元素の少なくとも1
種であり、TはFeまたは、FeおよびCoであり、
α、βはそれぞれ原子%で5≦α≦20,5≦β≦30であ
る。)で表されるR−T−N系磁粉と、実質的にマグネ
トプランバイト型結晶構造を有する平均粒径10μm超10
00μm以下のフェライト焼結磁粉と、前記2種の磁粉を
結着するバインダーとから実質的になることを特徴とす
る。また本発明の異方性ボンド磁石は、主要成分組成が
α100-α-ββ(RはYを含む希土類元素の少
なくとも1種であり、TはFeまたは、FeおよびCo
であり、α、βはそれぞれ原子%で5≦α≦20,5≦β
≦30である。)で表されるR−T−N系磁粉と、実質的
にマグネトプランバイト型結晶構造を有するとともにF
2+含有量が0.10重量%以下のフェライト焼結磁粉
と、前記2種の磁粉を結着するバインダーとから実質的
になることを特徴とする。本発明の異方性ボンド磁石
は、異方性フェライト焼結磁石を超える(BH)maxを有
し、さらに従来の希土類ボンド磁石に比べて良好な着磁
性または良好な耐熱性を有する。
The anisotropic bonded magnet of the present invention which has solved the above-mentioned problems has a main component composition of R α T 10.
0-α-β N β (R is at least one of the rare earth elements including Y
T is Fe or Fe and Co;
α and β are 5% α ≦ 20 and 5 ≦ β ≦ 30 in atomic%, respectively. ) And an average particle size of more than 10 μm having a substantially magnetoplumbite type crystal structure.
It is characterized by being substantially composed of a ferrite sintered magnetic powder having a size of 00 μm or less and a binder binding the two types of magnetic powder. In the anisotropic bonded magnet of the present invention, the main component composition is R α T 100-α-β N β (R is at least one rare earth element including Y, and T is Fe or Fe and Co
Where α and β are each atomic% and 5 ≦ α ≦ 20, 5 ≦ β
≦ 30. ) And an RTN-based magnetic powder represented by the following formula:
e It is characterized by being substantially composed of a ferrite sintered magnetic powder having an e 2+ content of 0.10% by weight or less and a binder binding the two magnetic powders. The anisotropic bonded magnet of the present invention has a (BH) max exceeding that of an anisotropic ferrite sintered magnet, and has better magnetizability or better heat resistance than conventional rare earth bonded magnets.

【0008】本発明の異方性ボンド磁石を構成するフェ
ライト焼結磁粉が、主要成分組成が(A1−xR’)O
・n[(Fe1−y)](原子比率) (AはSrおよび/またはBaであり、R’はYを含む希
土類元素の少なくとも1種であってLa,Pr,Ndお
よびCeから選択される少なくとも1種を必ず含み、M
はCoまたは、CoおよびZnである。)、0.01≦x≦
0.4,0.005≦y≦0.04,および5.0≦n≦6.4で表され、
実質的にマグネトプランバイト型結晶構造を有する異方
性フェライト焼結磁石粉末からなる場合、本発明のボン
ド磁石は異方性フェライト焼結磁石を超える(BH)maxを
有しかつ良好な着磁性および際だって良好な耐熱性を有
する。
[0008] The ferrite sintered magnetic powder constituting the anisotropic bonded magnet of the present invention has a main component composition of (A1 - xR'x ) O.
· N is [(Fe 1-y M y ) 2 O 3] ( atomic ratio) (A is Sr and / or Ba, R 'is at least one of rare earth elements including Y La, Pr, Nd And at least one selected from Ce
Is Co or Co and Zn. ), 0.01 ≦ x ≦
0.4, 0.005 ≦ y ≦ 0.04 and 5.0 ≦ n ≦ 6.4
When substantially consisting of an anisotropic ferrite sintered magnet powder having a magnetoplumbite type crystal structure, the bonded magnet of the present invention has a (BH) max exceeding that of the anisotropic ferrite sintered magnet and has good magnetism. And has remarkably good heat resistance.

【0009】また本発明の異方性ボンド磁石を構成する
フェライト焼結磁粉が、A’O・nFe(原子比
率)(A’はSrおよび/またはBaであり、5.0≦n≦
6.4である。)で表される主要成分組成を有するフェラ
イト焼結磁粉と、 (A1−xR’)O・n[(Fe1−y)](原子比率) (AはSrおよび/またはBaであり、R’はYを含む希
土類元素の少なくとも1種であってLa,Pr,Ndお
よびCeから選択される少なくとも1種を必ず含み、M
はCoまたは、CoおよびZnである。)、0.01≦x≦
0.4,0.005≦y≦0.04,および5.0≦n≦6.4で表される
主要成分組成を有するフェライト焼結磁粉とからなる場
合、着磁性が良好で、実用に耐える耐熱性を有し、安価
な異方性ボンド磁石を得られる。
Further, the ferrite sintered magnetic powder constituting the anisotropic bonded magnet of the present invention is A′O.nFe 2 O 3 (atomic ratio) (A ′ is Sr and / or Ba, and 5.0 ≦ n ≦
6.4. ) And (A 1−x R ′ x ) On · ([Fe 1− y My ) 2 O 3 ] (atomic ratio) (A is Sr and And / or Ba; R ′ is at least one kind of rare earth element containing Y and always contains at least one kind selected from La, Pr, Nd and Ce;
Is Co or Co and Zn. ), 0.01 ≦ x ≦
When it is made of sintered ferrite magnetic powder having a main component composition represented by 0.4, 0.005 ≦ y ≦ 0.04, and 5.0 ≦ n ≦ 6.4, it has good magnetizability, has heat resistance enough for practical use, and is inexpensive. An isotropic bonded magnet can be obtained.

【0010】本発明の異方性ボンド磁石はラジアル異方
性または極異方性を有するものが実用性に富む。また、
本発明の異方性ボンド磁石を用いて構成される回転機は
高効率になり、本発明のボンド磁石を用いて構成される
マグネットロールを搭載してなる複写機では高精細画像
が得られる。
The anisotropic bonded magnet of the present invention has radial anisotropy or polar anisotropy, and thus has high practicality. Also,
The rotating machine using the anisotropic bonded magnet of the present invention has high efficiency, and a high-definition image can be obtained in a copying machine equipped with a magnet roll using the bonded magnet of the present invention.

【0011】[0011]

【発明の実施の形態】本発明の異方性ボンド磁石に用い
るR−T−N系磁粉について以下に説明する。R−T−
N系磁粉の平均粒径は1〜10μm(Sympatec社製レーザ
ー回折型粒径分布測定装置:ヘロス・ロードスにより測
定。)にするのが好ましく、2〜5μmにするのがより
好ましい。平均粒径が1μm未満では酸化劣化が顕著に
なり、また充填密度が顕著に小さくなり異方性ボンド磁
石の(BH)maxが大きく低下する。平均粒径が10μm超で
は異方性ボンド磁石の(BH)maxが大きく低下する。R−
T−N系磁粉としてThZn17型またはThNi
17型の結晶構造相を主相とするSm−T−N系磁粉
(TはFeまたは、FeおよびCoである。)を用いる
のが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The RTN-based magnetic powder used for the anisotropic bonded magnet of the present invention will be described below. RT-
The average particle size of the N-based magnetic powder is preferably 1 to 10 μm (measured by a laser diffraction type particle size distribution analyzer manufactured by Sympatec: Herros Rhodes), and more preferably 2 to 5 μm. If the average particle size is less than 1 μm, oxidative deterioration becomes remarkable, the packing density becomes remarkably small, and (BH) max of the anisotropic bonded magnet is greatly reduced. If the average particle size exceeds 10 μm, the (BH) max of the anisotropic bonded magnet is greatly reduced. R-
T-N magnet powder as Th 2 Zn 17 type or Th 2 Ni
It is preferable to use Sm-TN-based magnetic powder (T is Fe or Fe and Co) having a 17- type crystal structure phase as a main phase.

【0012】R含有量は原子%で5〜20%とするのが好
ましい。R含有量が5%未満ではiHcが大きく低下し、2
0%超では残留磁束密度Brが大きく低下する。RにはS
m以外の希土類元素(Yを含む)の少なくとも1種を含
むのが許容できるが、室温で397.9kA/m(5kOe)以上の
iHcを得るためにRに占めるSm比率を原子%で50%以
上、より好ましくは90%以上、特に好ましくは不可避的
に混入するR成分を除いてR=Smとするのがよい。窒
素含有量は原子%で5〜30%とするのが好ましく、10〜
20%とするのがより好ましい。窒素含有量が5%未満で
は実用に耐えるiHc,(BH)maxが得られず、30%を超えて
もiHc,(BH)maxが大きく低下する。
The R content is preferably 5 to 20% in atomic%. If the R content is less than 5%, iHc is greatly reduced,
If it exceeds 0%, the residual magnetic flux density Br is greatly reduced. R for S
It is acceptable to contain at least one rare earth element (including Y) other than m, but at room temperature, it is 397.9 kA / m (5 kOe) or more.
In order to obtain iHc, the ratio of Sm to R in atomic% is 50% or more in atomic%, more preferably 90% or more, and particularly preferably R = Sm excluding the inevitable R component. The nitrogen content is preferably 5 to 30% in atomic%, and 10 to
More preferably, it is set to 20%. If the nitrogen content is less than 5%, iHc and (BH) max that can be used practically cannot be obtained, and if it exceeds 30%, iHc and (BH) max are greatly reduced.

【0013】SmやFeの一部をCo,Ni,Ti,C
r,Mn,Zn,Cu,Zr,Nb,Mo,Ta,W,
Ru,Rh,Hf,Re,OeおよびIrから選択され
る少なくとも1種で置換できる。これらの置換量はCo
を除いてSmとFeの合計量に対し10原子%以下とする
のがよい。これより多くなると(BH)maxが顕著に低下す
る。Co置換の場合は(BH)maxの低下が小さいのでFe
含有量に対し0.1〜70原子%の範囲で置換可能でありキ
ュリー温度を高めることができる。窒素の一部をC,
P,Si,SおよびAlから選択される少なくとも1種
で置換可能であり、その置換量は窒素含有量に対し10原
子%以下が好ましい。これより多い置換量ではiHcの低
下が顕著になり好ましくない。
Some of Sm and Fe are replaced with Co, Ni, Ti, C
r, Mn, Zn, Cu, Zr, Nb, Mo, Ta, W,
It can be substituted with at least one selected from Ru, Rh, Hf, Re, Oe and Ir. These substitution amounts are Co
It is preferred that the content be 10 atomic% or less based on the total amount of Sm and Fe except for the above. If it is more than this, (BH) max is significantly reduced. In the case of Co substitution, the decrease in (BH) max is small,
Substitution is possible in the range of 0.1 to 70 atomic% with respect to the content, and the Curie temperature can be increased. Part of nitrogen is C,
Substitution is possible with at least one selected from P, Si, S and Al, and the substitution amount is preferably 10 atomic% or less based on the nitrogen content. If the substitution amount is larger than this, the decrease in iHc becomes remarkable, which is not preferable.

【0014】またR−T−N系磁粉として、ThMn
12型の結晶構造相を主相とし、原子%表示でR”
5〜10bal3〜20(R”はYを含む希土類元
素の少なくとも1種であってNdおよび/またはPrを
含み、TはFeまたは、FeおよびCoである。)の主
要成分組成を有し、かつ平均粒径が1〜10μm(ヘロス
・ロードスによる。)のものが好ましい。(BH)maxを高
めるために、全R”含有量を100原子%としてNdおよ
び/またはPr含有量を50原子%以上にするのが好まし
く、90原子%以上とするのがより好ましく、不可避的
R”成分を除いてR”がNdおよび/またはPrからな
る場合が特に好ましい。N含有量は3〜20原子%にする
のが好ましく、5〜15原子%にするのがより好ましい。
R”含有量が5〜10原子%、およびN含有量が3〜20原
子%を外れると実用に耐える異方性ボンド磁石を作製す
るのが困難になる。
As the RTN-based magnetic powder, ThMn is used.
The main phase is a 12- type crystal structure phase, and R ″ in atomic%.
The main component composition of 5 to 10 T bal N 3 to 20 (R ″ is at least one rare earth element including Y and includes Nd and / or Pr, and T is Fe or Fe and Co) And an average particle size of 1 to 10 μm (according to Herros Rhodes) .To increase (BH) max, the total R ″ content is set to 100 atomic% and the Nd and / or Pr content is set to The content is preferably at least 50 at%, more preferably at least 90 at%, and particularly preferably the case where R ″ comprises Nd and / or Pr except for the inevitable R ″ component. The N content is preferably from 3 to 20 at%, more preferably from 5 to 15 at%.
If the R ″ content is outside the range of 5 to 10 atomic% and the N content is outside the range of 3 to 20 atomic%, it becomes difficult to produce an anisotropic bonded magnet that can withstand practical use.

【0015】R−T−N系磁粉の原料合金として、スト
リップキャスト法、鋳型鋳造法またはR/D(還元/拡散)
法によりR−T−N系磁粉の対応組成に調整したR−T
系母合金を用いるのが好ましい。次に前記R−T系母合
金を窒素を含まない不活性ガス雰囲気中で1010〜1280℃
×1〜40時間加熱し、室温まで冷却する均質化熱処理を
施す。均質化熱処理によりα−Fe等の偏析相が素地に
固溶する。均質化熱処理の条件が1010℃×1時間未満で
は工業生産上有益な固溶効果を得られず、1280℃×40時
間超では均質化熱処理の効果が飽和する。
As a raw material alloy of the RTN-based magnetic powder, a strip casting method, a mold casting method or R / D (reduction / diffusion)
Adjusted to the corresponding composition of RTN-based magnetic powder by the method
It is preferable to use a system mother alloy. Next, the RT-based master alloy is heated to 1010 to 1280 ° C. in an inert gas atmosphere containing no nitrogen.
Heat for 1 to 40 hours and cool to room temperature. By the homogenization heat treatment, a segregated phase such as α-Fe forms a solid solution in the substrate. If the homogenizing heat treatment condition is less than 1010 ° C. × 1 hour, a solid solution effect useful for industrial production cannot be obtained, and if it exceeds 1280 ° C. × 40 hours, the effect of the homogenizing heat treatment is saturated.

【0016】次に粉砕する。窒化処理に供するR−T系
母合金の粉砕、あるいは窒化処理後のR−T−N系合金
の粉砕は不活性ガス雰囲気に保持したハンマーミル、デ
ィスクミル、振動ミル、アトライターあるいはジェット
ミル等で行うのが好ましい。窒化処理は、窒化用母合金
の粉末を窒素ガス、窒素と水素との混合ガス、アンモニ
アガス、あるいはアンモニアと水素との混合ガス、アン
モニアと窒素との混合ガスまたはアンモニアとアルゴン
との混合還元性ガス雰囲気(気流)中に300〜650℃×0.
1〜30時間加熱し行うのが好ましい。窒化の加熱条件が3
00℃×0.1時間未満および650℃×30時間超では有用な磁
気特性を得るのが困難になる。窒化用母合金の粉末は不
可避的に水素を含むが、水素を含む窒化ガス中で窒化し
て得られるR−T−N系磁粉には0.01〜10原子%の水素
の含有が許容される。
Next, pulverization is performed. Grinding of the RT master alloy to be subjected to the nitriding treatment, or grinding of the RTN based alloy after the nitriding treatment is performed by a hammer mill, a disc mill, a vibration mill, an attritor, a jet mill, or the like maintained in an inert gas atmosphere. It is preferable to carry out. Nitriding is performed by reducing the powder of the nitriding master alloy with nitrogen gas, mixed gas of nitrogen and hydrogen, ammonia gas, mixed gas of ammonia and hydrogen, mixed gas of ammonia and nitrogen, or mixed reduction of ammonia and argon. 300 ~ 650 ℃ × 0 in gas atmosphere (air flow).
It is preferable to heat for 1 to 30 hours. Heating conditions for nitriding are 3
If the temperature is less than 00 ° C. × 0.1 hour or more than 650 ° C. × 30 hours, it becomes difficult to obtain useful magnetic properties. Although the mother alloy powder for nitriding inevitably contains hydrogen, the RTN-based magnetic powder obtained by nitriding in a nitriding gas containing hydrogen is allowed to contain 0.01 to 10 atomic% of hydrogen.

【0017】本発明の異方性ボンド磁石に用いるフェラ
イト焼結磁粉について以下に説明する。好適な異方性フ
ェライト焼結磁末は実質的にマグネトプランバイト型結
晶構造を有する。実質的にマグネトプランバイト型結晶
構造を有するとはマグネトプランバイト型結晶構造相を
主相とするものを包含し、磁気特性発現相がマグネトプ
ランバイト型結晶構造相のみからなる場合が好ましい。
The ferrite sintered magnetic powder used for the anisotropic bonded magnet of the present invention will be described below. Suitable anisotropic ferrite sintered magnetic powders have a substantially magnetoplumbite crystal structure. Substantially having a magnetoplumbite-type crystal structure includes a phase having a magnetoplumbite-type crystal structure phase as a main phase, and it is preferable that the magnetic property manifesting phase comprises only the magnetoplumbite-type crystal structure phase.

【0018】主要成分組成が、 (A1−xR’)O・n[(Fe1−y)](原子比率) (AはSrおよび/またはBaであり、R’はYを含む希
土類元素の少なくとも1種であってLa,Pr,Ndお
よびCeから選択される少なくとも1種を必ず含み、M
はCoまたは、CoおよびZnである。)、0.01≦x≦
0.4,0.005≦y≦0.04,および5.0≦n≦6.4で表され、
実質的にマグネトプランバイト型結晶構造を有する異方
性フェライト焼結磁粉の組成限定理由を以下に説明す
る。n(モル比)は5.0〜6.4が好ましく、5.6〜6.2がよ
り好ましく、5.8〜6.0が特に好ましい。nが6.4超では
マグネトプランバイト相以外の異相(α-Fe等)
の生成が顕著になりiHcが大きく低下し、nが5.0未満で
は(BH)maxが大きく低下する。
The main component composition is (A 1−x R ′ x ) On · ([Fe 1− y My ) 2 O 3 ] (atomic ratio) (A is Sr and / or Ba, and R ′ is Is at least one kind of rare earth element containing Y and always contains at least one kind selected from La, Pr, Nd and Ce;
Is Co or Co and Zn. ), 0.01 ≦ x ≦
0.4, 0.005 ≦ y ≦ 0.04 and 5.0 ≦ n ≦ 6.4
The reasons for limiting the composition of the sintered anisotropic ferrite magnetic powder having a substantially magnetoplumbite crystal structure will be described below. n (molar ratio) is preferably from 5.0 to 6.4, more preferably from 5.6 to 6.2, and particularly preferably from 5.8 to 6.0. When n exceeds 6.4, a different phase other than the magnetoplumbite phase (α-Fe 2 O 3 etc.)
Is remarkable, iHc is greatly reduced, and when n is less than 5.0, (BH) max is greatly reduced.

【0019】xの値は0.01〜0.4が好ましく、0.1〜0.3
がより好ましく、0.15〜0.25が特に好ましい。xが0.4
超では(BH)max,iHcが大きく低下し、xが0.01未満では
添加効果が認められない。R’にはLa,Pr,Ceお
よびNd以外の希土類元素(Yを含む)を不可避的に含
むことが許容される。R’原料としてLa,Pr,Ce
およびNdから選択される少なくとも2種の混合希土類
酸化物または水酸化物を用いるのが安価であり好まし
い。飽和磁化を高めるために、R’に占めるLa,P
r,CeおよびNdから選択される少なくとも1種の比
率を、好ましくは50原子%以上、より好ましくは70原子
%以上、さらに好ましくは95原子%以上とするのがよ
い。特に不可避的に混入するR’成分を除いてR’がL
aからなる場合が最も好ましい。
The value of x is preferably 0.01 to 0.4, and 0.1 to 0.3.
Is more preferable, and 0.15 to 0.25 is particularly preferable. x is 0.4
If it is more than (BH) max and iHc, the addition effect is not recognized when x is less than 0.01. R 'is allowed to inevitably contain rare earth elements (including Y) other than La, Pr, Ce and Nd. La, Pr, Ce as R 'raw material
It is inexpensive and preferable to use at least two kinds of mixed rare earth oxides or hydroxides selected from Nd and Nd. To increase the saturation magnetization, La, P occupying R '
The ratio of at least one selected from r, Ce and Nd is preferably at least 50 at%, more preferably at least 70 at%, and even more preferably at least 95 at%. R ′ is L except for the R ′ component which is unavoidably mixed.
Most preferably, it consists of a.

【0020】本発明の異方性ボンド磁石の耐熱性を向上
するためにMとしてCoを選択するのが好ましい。また
MとしてCoおよびZnを選択する場合はMに占めるC
oの比率を50原子%以上にするのが好ましく、70原子%
以上にするのがより好ましく、90原子%以上にするのが
特に好ましい。Mに占めるCoの比率が50原子%未満で
はiHcが大きく低下し耐熱性が劣化する。
It is preferable to select Co as M in order to improve the heat resistance of the anisotropic bonded magnet of the present invention. When Co and Zn are selected as M, C occupying M
The ratio of o is preferably at least 50 atomic%, and 70 atomic%
More preferably, it is more preferably at least 90 atomic%. If the ratio of Co to M is less than 50 atomic%, iHc is greatly reduced and heat resistance is deteriorated.

【0021】電荷補償の目的を実現するために、yとx
の間には理想的にはy=x/(2.0n)の関係が成り立つ必
要があるが、yがx/(2.6n)以上、x/(1.6n)以下であ
れば電荷補償による効果を実質的に損なうことは無く、
好ましい。例えばR=LaでかつM=Coの場合の理想
的な電荷補償はLa3+とCo2+により相殺されると
して扱える。ところでyの値がx/(2.0n)からずれた場
合、前記異方性フェライト焼結磁粉のマグネトプランバ
イト相のFeサイトのFe3+がFe2+になり電荷補
償が行われるものと判断される。さらに後述の実施例1
〜3の比較から、過剰酸素雰囲気中で熱処理するとiHc
を顕著に向上できるとともにFe2+が低減され、異方
性ボンド磁石の耐熱性を大きく向上できるのがわかっ
た。iHc(耐熱性)を高めるためにFe2+の含有量を
0.005〜0.10重量%にするのが好ましく、0.01〜0.07重
量%にするのがより好ましい。Fe2+の含有量を0.00
5重量%未満にするのは工業生産上困難であり、Fe
2+の含有量が0.10重量%超ではiHcの向上効果が小さ
くなる。典型的な例では、yの好ましい範囲は0.005〜
0.04であり、0.01〜0.03とするのがより好ましい。
To realize the purpose of charge compensation, y and x
Ideally, the relationship of y = x / (2.0n) needs to be established. However, if y is not less than x / (2.6n) and not more than x / (1.6n), the effect of the charge compensation can be reduced. Without any substantial damage,
preferable. For example, ideal charge compensation when R = La and M = Co can be treated as being canceled by La 3+ and Co 2+ . When the value of y deviates from x / (2.0 n), it is determined that the Fe 3+ of the Fe site in the magnetoplumbite phase of the anisotropic ferrite sintered magnetic powder becomes Fe 2+ and the charge compensation is performed. . Example 1 to be described later
From the comparison of ~ 3, it was found that heat treatment in an excess oxygen atmosphere resulted in iHc
Significantly the Fe 2+ reduction is possible to improve, it has been found can greatly improve the heat resistance of the anisotropic bonded magnet. Fe2 + content to increase iHc (heat resistance)
It is preferably 0.005 to 0.10% by weight, more preferably 0.01 to 0.07% by weight. Fe 2+ content 0.00
It is difficult for industrial production to make the content less than 5% by weight.
When the content of 2+ exceeds 0.10% by weight, the effect of improving iHc is reduced. In a typical example, the preferred range of y is 0.005 to
0.04, and more preferably 0.01 to 0.03.

【0022】前記主要成分組成を有する異方性フェライ
ト焼結磁粉は結晶粒界のR’濃度が結晶粒内のR’濃度
よりも高い傾向が認められる。特にn=5.7〜6.2,x=
0.15〜0.3および1.0<x/2ny≦1.3,より好ましくは
1.05≦x/2ny≦1.25というR’過剰組成、およびC
aO含有量を0.5〜1.5重量%にし、SiO含有量を0.
25〜0.55重量%にしたときに高い(BH)maxおよび高いiHc
が得られ、かつ結晶粒界のR’濃度が結晶粒内のR’濃
度よりも高い傾向が顕著になる。
In the anisotropic ferrite sintered magnetic powder having the above-mentioned main component composition, it is recognized that the R 'concentration in the crystal grain boundaries tends to be higher than the R' concentration in the crystal grains. In particular, n = 5.7-6.2, x =
0.15 to 0.3 and 1.0 <x / 2ny ≦ 1.3, more preferably
R ′ excess composition of 1.05 ≦ x / 2ny ≦ 1.25, and C
The aO content to 0.5 to 1.5 wt%, 0 to SiO 2 content.
High (BH) max and high iHc at 25-0.55% by weight
And the tendency that the R ′ concentration in the crystal grain boundaries is higher than the R ′ concentration in the crystal grains becomes remarkable.

【0023】また本発明に用いる異方性フェライト焼結
磁粉として、 主要成分組成が A’O・nFe(原子比率) (A’はSrおよび/またはBaであり、n(モル比)=
5.0〜6.4である。)で表わされる主要成分のものの実用
性が高い。
The anisotropic ferrite sintered magnetic powder used in the present invention has a main component composition of A'O.nFe 2 O 3 (atomic ratio) (A 'is Sr and / or Ba, and n (molar ratio) =
5.0 to 6.4. The main components represented by ()) are highly practical.

【0024】従来の異方性フェライト焼結磁石を超える
(BH)maxを有するために、主要成分組成が(A1−xR’
)O・n[(Fe1−y)](原子比率)の
異方性フェライト焼結磁粉と主要成分組成がA’O・n
Fe(原子比率)の異方性フェライト焼結磁粉と
を50〜100:50〜0の重量比率で混合し、異方性ボンド
磁石用磁粉とするのが好ましい。両者を混合して用いる
メリットはA’O・nFe磁粉が(A1−xR’
)O・n[(Fe1−y)]磁粉に比べて(B
H)max,iHcは低いが安価なことである。
Exceeds conventional anisotropic sintered ferrite magnets
In order to have (BH) max, the main component composition is (A 1-x R ′)
x) O · n [(Fe 1-y M y) 2 O 3] ( Anisotropic sintered ferrite magnet powder and the main component composition A'O · n of atomic ratio)
It is preferable to mix the anisotropic ferrite sintered magnetic powder of Fe 2 O 3 (atomic ratio) at a weight ratio of 50 to 100: 50 to 0 to obtain an anisotropic bonded magnet magnetic powder. The advantages of using them in a mixture A'O · nFe 2 O 3 magnetic powder (A 1-x R '
x ) On · n [(Fe 1- y My ) 2 O 3 ] (B
H) max and iHc are low but inexpensive.

【0025】前記異方性フェライト焼結磁粉の平均粒径
は2〜1000μm(Sympatec社製レーザー回折型粒径分布
測定装置:ヘロス・ロードスにより測定。)とするのが
好ましく、10μm超300μm以下がより好ましく、30〜1
00μmが特に好ましい。平均粒径が2μm未満では充填
密度の低下が顕著になり(BH)maxが大きく低下し、平均
粒径が1000μm超では異方性ボンド磁石の表面状態が悪
化し磁気ギャップの狭い用途への適用が困難な場合を生
じる。
The average particle size of the anisotropic ferrite sintered magnetic powder is preferably 2 to 1000 μm (measured by a laser diffraction type particle size distribution measuring device manufactured by Sympatec: Heros Rhodes), and more than 10 μm and 300 μm or less. More preferably, 30-1
00 μm is particularly preferred. If the average particle size is less than 2 μm, the packing density will decrease significantly and (BH) max will drop significantly. If the average particle size exceeds 1000 μm, the surface condition of the anisotropic bonded magnet will deteriorate, and it will be applied to applications with a narrow magnetic gap. May be difficult.

【0026】本発明に用いる異方性フェライト焼結磁粉
の製造は、「原料粉の混合→仮焼によるフェライト化
(固相反応)→粉砕→磁場中成形→焼結→粉砕→熱処理
→解砕」という製造工程によるのが実用的である。ある
いは「原料粉の混合→仮焼によるフェライト化(固相反
応)→粉砕→磁場中成形→粉砕→焼結→熱処理→解砕」
という製造工程も有用である。後者の製造工程では成形
体を平均粒径2〜1000μmに粉砕し、焼結する。「解
砕」は熱処理後の凝集状態を解いて磁場配向性を高める
ために行う処理で、凝集が軽度の場合は「解砕」を省略
してもよい。仮焼の加熱条件は1150〜1300℃×1〜5時
間とするのが好ましい。仮焼の加熱条件が1150℃×1時
間未満ではフェライト化が不十分になり、1300℃×5時
間超では仮焼物が硬くなり粉砕性が劣化する。
The production of the sintered anisotropic ferrite magnetic powder used in the present invention is carried out by the following steps: mixing of raw material powder → ferrite formation by calcination (solid phase reaction) → pulverization → forming in a magnetic field → sintering → pulverization → heat treatment → crushing "Is practical. Or “mixing of raw material powder → ferrite formation by calcination (solid-state reaction) → grinding → molding in a magnetic field → grinding → sintering → heat treatment → disintegration”
Is also useful. In the latter manufacturing process, the compact is pulverized to an average particle size of 2 to 1000 μm and sintered. “Crushing” is a process performed to improve the magnetic field orientation by dissolving the aggregation state after the heat treatment. If the aggregation is mild, “crushing” may be omitted. The heating conditions for calcination are preferably 1150-1300 ° C. × 1-5 hours. If the heating conditions for the calcination are less than 1150 ° C. × 1 hour, ferrite formation will be insufficient, and if it exceeds 1300 ° C. × 5 hours, the calcined material will be hardened and the grindability will deteriorate.

【0027】公知の粉砕機を任意に組合せて粗粉砕およ
び微粉砕を行う。乾式または湿式のアトライター、ボー
ルミル、あるいは振動ミル等を用いるのが実用的であ
る。異方性ボンド磁石のiHcおよび(BH)maxを高めるため
に微粉砕紛の平均粒径を0.4〜0.9μm(空気透過法によ
り測定。)とするのが好ましく、0.6〜0.8μmにするの
がより好ましい。この微粉砕平均粒径にすることにより
最終的に得られる異方性フェライト焼結磁粉のc軸方向
の平均結晶粒径を2μm以下、好ましくは1μm以下に
できる。
Coarse pulverization and fine pulverization are performed by arbitrarily combining known pulverizers. It is practical to use a dry or wet type attritor, ball mill, vibrating mill or the like. In order to increase iHc and (BH) max of the anisotropic bonded magnet, the average particle size of the finely ground powder is preferably 0.4 to 0.9 μm (measured by an air permeation method), more preferably 0.6 to 0.8 μm. More preferred. The average crystal grain size in the c-axis direction of the finally obtained anisotropic ferrite sintered magnetic powder can be made to be 2 μm or less, preferably 1 μm or less by making the finely pulverized average particle diameter.

【0028】次に湿式磁場中成形または乾式磁場中成形
を行う。磁場中成形は室温で397.9〜1193.7kA/m(5〜15
kOe)の磁場を印加しつつ、0.35〜0.45トン/cm2程度の成形
圧力で行うのが好ましい。このようにして得られる成形
体の密度は2.6〜3.2Mg/m3(g/cm3)程度である。次に成形
体を1180〜1230℃×1〜5時間の加熱条件で焼結する。
加熱条件が1180℃×1時間未満では焼結体の密度が十分
に上がらず(BH)maxが低くなり、1230℃×5時間超では
結晶粒が粗大化してiHcの低下が顕著になる。次に必要
に応じて焼結体を粉砕し、次いで篩分または風力分級し
粒径分布および平均粒径を所定値に調整する。次に熱処
理を行う。大気中熱処理でもiHcを高めることができる
が、好ましくは酸素分圧(PO2)を0.02MPa(0.2atm)超、
より好ましくは0.03MPa(0.3atm)以上、特に好ましくは
0.05〜0.1MPa(0.5〜1atm)に調整した過剰酸素雰囲気
中で750〜950℃×0.5〜5時間熱処理するのがよい。酸
素分圧が0.02MPa以下ではiHcの向上およびFe2+の低
減が十分ではなく、酸素分圧が0.1MPa超では熱処理の効
果が飽和する。熱処理の加熱条件が750℃×0.5時間未満
ではiHcが事実上向上できず、950℃×5時間超ではフェ
ライト磁粉の凝集が顕著になりiHc、(BH)maxが顕著に低
下する。
Next, molding in a wet magnetic field or dry magnetic field is performed. Molding in a magnetic field is 397.9 to 1193.7 kA / m (5 to 15
It is preferable to carry out at a molding pressure of about 0.35 to 0.45 ton / cm 2 while applying a magnetic field of kOe). The density of the molded body thus obtained is about 2.6 to 3.2 Mg / m 3 (g / cm 3 ). Next, the compact is sintered under heating conditions of 1180 to 1230 ° C. × 1 to 5 hours.
If the heating condition is less than 1180 ° C. × 1 hour, the density of the sintered body does not increase sufficiently and (BH) max decreases, and if the heating condition exceeds 1230 ° C. × 5 hours, the crystal grains become coarse and the decrease in iHc becomes remarkable. Next, if necessary, the sintered body is pulverized, and then sieved or air-classified to adjust the particle size distribution and the average particle size to predetermined values. Next, heat treatment is performed. Although iHc can be increased by air heat treatment, it is preferable that the oxygen partial pressure (PO 2 ) be more than 0.02 MPa (0.2 atm),
More preferably 0.03MPa (0.3atm) or more, particularly preferably
Heat treatment is preferably performed at 750 to 950 ° C. for 0.5 to 5 hours in an excess oxygen atmosphere adjusted to 0.05 to 0.1 MPa (0.5 to 1 atm). When the oxygen partial pressure is 0.02 MPa or less, the improvement of iHc and the reduction of Fe 2+ are not sufficient, and when the oxygen partial pressure exceeds 0.1 MPa, the effect of the heat treatment is saturated. If the heating condition of the heat treatment is less than 750 ° C. × 0.5 hours, iHc cannot be practically improved, and if it exceeds 950 ° C. × 5 hours, the aggregation of ferrite magnetic powder becomes remarkable, and iHc and (BH) max decrease remarkably.

【0029】前記異方性フェライト焼結磁粉が適量のS
iOおよびCaOを含有する場合に緻密な焼結体組織
になり、有用な磁気特性が得られる。SiOは焼結時
の結晶粒成長を抑制する添加物であり、含有量は重量%
で0.05〜0.55%が好ましく、0.25〜0.55%がより好まし
い。SiO含有量が0.05%未満では焼結時の不均一結
晶粒成長が顕著になり、iHcが劣化し、0.55%を超える
と結晶粒成長が過度に抑制され、結晶粒成長とともに進
行する配向度の改善が不十分となりBr、(BH)maxが大き
く低下する。一方CaOは結晶粒成長を促進する元素で
あり、CaO含有量は重量%で0.35〜1.5%が好まし
く、0.4〜1.2%がより好ましく、0.5〜1.0%が特に好ま
しい。CaO含有量が1.5%を超えると焼結時に結晶粒
成長が過度に進行してiHcが大きく低下し、0.35%未満
では有用な添加効果が得られず、配向度の改善が不十分
となりBr、(BH)maxが劣化する。
When the anisotropic ferrite sintered magnetic powder has an appropriate amount of S
When iO 2 and CaO are contained, a dense sintered body structure is obtained, and useful magnetic properties are obtained. SiO 2 is an additive that suppresses the growth of crystal grains during sintering.
Is preferably 0.05 to 0.55%, more preferably 0.25 to 0.55%. When the content of SiO 2 is less than 0.05%, uneven crystal growth during sintering becomes remarkable, and iHc deteriorates. When the content exceeds 0.55%, the growth of crystal grains is excessively suppressed, and the degree of orientation progresses along with the growth of crystal grains. Is insufficiently improved, and Br and (BH) max are greatly reduced. On the other hand, CaO is an element that promotes crystal grain growth, and the CaO content is preferably 0.35 to 1.5% by weight, more preferably 0.4 to 1.2%, and particularly preferably 0.5 to 1.0%. If the CaO content exceeds 1.5%, the crystal grain growth proceeds excessively during sintering, and iHc is greatly reduced. If the CaO content is less than 0.35%, a useful addition effect cannot be obtained, and the degree of orientation is insufficiently improved. (BH) max deteriorates.

【0030】前記フェライト焼結磁粉の室温におけるiH
cを278.5kA/m(3.5kOe)以上、好ましくは358.1kA/m
(4.5kOe)以上、特に好ましくは437.7kA/m(5.5kOe)
以上にするために、Al含有量およびCr含有量の合計
を(Al+Cr)換算で0.1〜1重量%に
するのが好ましく、0.2〜0.5重量%とするのがより好ま
しい。この含有量未満では添加効果が事実上得られず、
この含有量を超えると従来のボンド磁石用フェライト磁
粉に対する優位性が消失する。
IH of the sintered ferrite magnetic powder at room temperature
c is 278.5 kA / m (3.5 kOe) or more, preferably 358.1 kA / m
(4.5 kOe) or more, particularly preferably 437.7 kA / m (5.5 kOe)
To above it is preferably to 0.1 to 1 wt% of the total Al content and the Cr content in the (Al 2 O 3 + Cr 2 O 3) in terms of, and more preferably, 0.2 to 0.5 wt% . If the content is less than this, the effect of addition is virtually not obtained,
If the content exceeds this, the superiority to the conventional ferrite magnetic powder for bonded magnets is lost.

【0031】R−T−N系磁粉と焼結フェライト磁粉と
の配合重量比率は、5〜95%:95〜5%とするのが好ま
しく、20〜80%:80〜20%とするのがより好ましい。こ
の比率を外れると異方性フェライト焼結磁石を超える(B
H)maxを有し、かつ着磁性および耐熱性を改善するのが
困難になる。
The compounding weight ratio of the RTN-based magnetic powder and the sintered ferrite magnetic powder is preferably 5 to 95%: 95 to 5%, more preferably 20 to 80%: 80 to 20%. More preferred. If the ratio is out of this range, it exceeds the anisotropic ferrite sintered magnet (B
H) max and it is difficult to improve the magnetization and heat resistance.

【0032】コンパウンドを構成するバインダーとして
公知の熱硬化性樹脂、熱可塑性樹脂またはゴム材料を用
いるのが実用的である。特にバインダーの粘性の低いも
のを選定するのが159.2〜795.8kA/m(2〜10kOe)、好
ましくは238.7〜477.5kA/m(3〜6kOe)という実用的
な強度の配向磁場を印加して得られる異方性ボンド磁石
の(BH)maxを高めるために好ましい。
It is practical to use a known thermosetting resin, thermoplastic resin or rubber material as a binder constituting the compound. Particularly, a binder having a low viscosity is selected by applying an orientation magnetic field having a practical strength of 159.2 to 795.8 kA / m (2 to 10 kOe), preferably 238.7 to 477.5 kA / m (3 to 6 kOe). It is preferable to increase (BH) max of the anisotropic bonded magnet to be obtained.

【0033】成形法として磁場中圧縮成形法、磁場中押
出成形法または磁場中射出成形法を採用するのが実用性
に富む。あるいはコンパウンドを80〜300℃に加熱し、
次いで平均間隔を0.01〜3mmに調整した双ロールの間
隙に通してシート状に圧延する。次に得られたシートを
前記加熱状態に保持しつつシートの所定部分の厚み方向
に沿って159.2〜795.8kA/m(2〜10kOe)の配向磁場を
印加して異方性を付与し、次いで冷却する。この操作を
シートの全長にわたり行って異方性のシート状ボンド磁
石を作製できる。加熱温度が80℃未満では成形性が悪
く、異方性を付与するのが困難であり、300℃超ではバ
インダーの熱分解を生じて(BH)maxが大きく低下する。
It is practical to employ a compression molding method in a magnetic field, an extrusion molding method in a magnetic field, or an injection molding method in a magnetic field as a molding method. Alternatively, heat the compound to 80-300 ° C,
Next, it is rolled into a sheet through a gap between twin rolls whose average interval is adjusted to 0.01 to 3 mm. Next, while maintaining the obtained sheet in the heating state, an orientation magnetic field of 159.2 to 795.8 kA / m (2 to 10 kOe) is applied along the thickness direction of a predetermined portion of the sheet to impart anisotropy, and then Cooling. By performing this operation over the entire length of the sheet, an anisotropic sheet-like bonded magnet can be produced. If the heating temperature is lower than 80 ° C, the moldability is poor and it is difficult to impart anisotropy. If the heating temperature is higher than 300 ° C, the binder is thermally decomposed and (BH) max is greatly reduced.

【0034】本発明の異方性ボンド磁石の形状、寸法は
特に限定されないが、外径:5〜60mm、(外径−内
径)/2で定義する肉厚:0.3〜3mm、軸方向長さ:0.
3〜50mmのリング状の成形体(好ましくはラジアル異
方性あるいは極異方性を有するもの。)が実用性に富
む。マグネットロール用途のラジアル異方性あるいは極
異方性を有する異方性ボンド磁石の形状、寸法は特に限
定されないが、外径:10〜60mm、軸方向長さ:200〜3
50mm、および(長さ/外径)≧5の円筒状に形成する
のが実用性に富む。小型の複写機やプリンターの用途に
は外径:10〜30mm、特に外径:10〜20mmでかつ(軸
方向長さ/外径)≧5の小径とするのが好ましい。
The shape and dimensions of the anisotropic bonded magnet of the present invention are not particularly limited, but the outer diameter is 5 to 60 mm, the thickness defined by (outer diameter−inner diameter) / 2 is 0.3 to 3 mm, and the axial length. : 0.
A ring-shaped molded product of 3 to 50 mm (preferably one having radial or polar anisotropy) is rich in practicality. The shape and dimensions of the anisotropic bonded magnet having radial or polar anisotropy for magnet roll use are not particularly limited, but the outer diameter is 10 to 60 mm, and the axial length is 200 to 3
Forming into a cylindrical shape with a length of 50 mm and (length / outer diameter) ≧ 5 is rich in practicality. For use in small copiers and printers, the outer diameter is preferably 10 to 30 mm, particularly 10 to 20 mm, and a small diameter of (axial length / outer diameter) ≧ 5 is preferred.

【0035】[0035]

【発明の実施の形態】以下、実施例により本発明を詳し
く説明するが、それら実施例により本発明が限定される
ものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0036】(実施例1) [R−T−N系磁粉]原子%でSm9.1Fe76.8
0.513.6で表される主要成分組成を有するR−
T−N系磁粉をジェットミルにより平均粒径4.0μmに
微粉砕した。次いでヘキサンを用いた湿式ボールミルに
より微粉砕し、平均粒径が2.1μm、粒径分布が0.5〜28
μmであり、磁気特性発現相がThZn17型結晶構
造相である異方性R−T−N系磁粉を得た。平均粒径お
よび粒径分布はSympatec社製レーザー回折型粒径分布測
定装置(商品名:ヘロス・ロードス)により測定した。
(Example 1) [RTN magnetic powder] Sm 9.1 Fe 76.8 M in atomic%
R- having a main component composition represented by n 0.5 N 13.6
The TN magnetic powder was finely pulverized by a jet mill to an average particle size of 4.0 μm. Next, finely pulverized by a wet ball mill using hexane, the average particle size is 2.1 μm, the particle size distribution is 0.5 to 28.
Anisotropic R-T-N-based magnetic powder having a thickness of μm and a magnetic property exhibiting phase of a Th 2 Zn 17 type crystal structure phase was obtained. The average particle size and the particle size distribution were measured by a laser diffraction type particle size distribution measuring device (trade name: Heros Rhodes) manufactured by Sympatec.

【0037】[酸素過剰雰囲気中で熱処理したSrLaCo系
異方性フェライト焼結磁粉]SrCO粉末(不純物と
してBa,Caを含む),α−Fe粉末,La
粉末及びCo粉末を用いて、仮焼後にSr
0.80La0.20Fe11.70Co0.20
18.85で表される主要成分組成になるように配合
し、さらに前記配合物に対しSiO粉末およびCaC
粉末をそれぞれ0.25重量%および0.2重量%添加
し、混合した。次いで1300℃で2時間、大気中で仮焼し
た。得られた仮焼物を粗砕後、ローラーミルで乾式粗粉
砕し粗粉を得た。次いで、アトライターにより湿式微粉砕
し、平均粒径0.6μm(空気透過法による。)の微粉砕粉
を含むスラリーを得た。微粉砕初期に焼結助剤としてS
rCO粉末,SiO粉末,CaCO粉末,Al
粉末およびLa粉末を微粉砕に投入した粗粉
の総重量に対しそれぞれ0.25重量%,0.40重量%,0.8
重量%,0.25重量%および0.6重量%添加した。得られた
微粉砕スラリーにより795.8kA/m(10kOe)の磁場中で圧縮
成形し、成形体を得た。次に成形体を大気雰囲気中で12
00℃×2時間焼結し、La/Co=1.2(La過剰組成)
の下記異方性フェライト焼結磁石を得た。 (Sr0.77La0.23)O・5.72[(Fe
0.983Co0.017] SiO含有量:0.40重量%,CaO含有量:0.57重量
%,(Al+Cr)に換算した(Al+C
r)含有量:0.32重量%得られた焼結体をジョークラッ
シャで粗砕後、ローラーミルで乾式粗粉砕し粗粉を得
た。次に200メッシュアンダーに篩分した。次にこの粉
末を酸素分圧:PO=0.1MPa(1atm)の過剰酸素雰
囲気中で870℃×2時間熱処理し、次いで室温まで冷却
した。次に水中に前記熱処理済み粉末を浸漬し、次いで
浸漬物を80℃に加熱して水分を蒸発させた。得られた異
方性フェライト焼結磁粉(以後、SrLaCo系フェライト焼
結磁粉-1という。)の平均粒径は55.4μm(ヘロス・ロ
ードスによる。)であった。SrLaCo系フェライト焼結磁
粉-1の単位重量あたりのFe 含有量を分析した結果
0.05重量%であり、他の含有Feは全てFe3+であっ
た。
[SrLaCo-based anisotropic ferrite sintered magnetic powder heat-treated in an oxygen-excess atmosphere] SrCO 3 powder (containing Ba and Ca as impurities), α-Fe 2 O 3 powder, La 2
Using O 3 powder and Co 3 O 4 powder, Sr after calcination
0.80 La 0.20 Fe 11.70 Co 0.20 O
18.85 , and a SiO 2 powder and CaC were added to the mixture.
O 3 powder was added 0.25 wt% and 0.2 wt%, and mixed. Next, it was calcined at 1300 ° C. for 2 hours in the air. The obtained calcined product was coarsely crushed and then dry coarsely crushed with a roller mill to obtain a coarse powder. Next, the resultant was finely wet-pulverized by an attritor to obtain a slurry containing finely pulverized powder having an average particle diameter of 0.6 μm (by an air permeation method). S as a sintering aid in the early stage of fine grinding
rCO 3 powder, SiO 2 powder, CaCO 3 powder, Al 2
O 3 powder and La 2 O 3 powder, respectively 0.25 wt% based on the total weight of the coarse powder was charged into milled, 0.40 wt%, 0.8
%, 0.25% and 0.6% by weight. The obtained finely pulverized slurry was compression-molded in a magnetic field of 795.8 kA / m (10 kOe) to obtain a molded body. Next, the molded body is
Sintered at 00 ° C for 2 hours, La / Co = 1.2 (La excess composition)
The following anisotropic ferrite sintered magnet was obtained. (Sr 0.77 La 0.23 ) O.5.72 [(Fe
0.983 Co 0.017 ) 2 O 3 ] SiO 2 content: 0.40% by weight, CaO content: 0.57% by weight, converted to (Al 2 O 3 + Cr 2 O 3 ) (Al + C)
r) Content: 0.32% by weight The obtained sintered body was coarsely crushed by a jaw crusher and then dry coarsely ground by a roller mill to obtain a coarse powder. Next, it was sieved to 200 mesh under. Next, this powder was heat-treated at 870 ° C. × 2 hours in an excess oxygen atmosphere of oxygen partial pressure: PO 2 = 0.1 MPa (1 atm), and then cooled to room temperature. Next, the heat-treated powder was immersed in water, and the immersion was heated to 80 ° C. to evaporate water. The average particle size of the obtained anisotropic ferrite sintered magnetic powder (hereinafter referred to as SrLaCo-based ferrite sintered magnetic powder-1) was 55.4 μm (according to Heros Rhodes). Analysis of Fe 2 + content per unit weight of SrLaCo ferrite sintered magnetic powder-1
The content of Fe was 0.05% by weight, and all other Fe was Fe 3+ .

【0038】[異方性ボンド磁石]作製したR−T−N
系磁粉とSrLaCo系フェライト焼結磁粉-1とを80/20の重
量比で攪拌機に投入し混合した。次に前記混合磁粉:10
0重量部、液状エポキシ樹脂:2.8重量部、硬化剤(DD
S;ジアミノジフェニルスルフォン):0.7重量部、およ
びメチルエチルケトン(沸点79.5℃):2.8重量部を攪
拌機に投入し、次いで20r.p.m.で20分間攪拌してスラリ
ー化した。得られたスラリー(コンパウンド)により、
室温において配向磁場強度:477.5kA/m(6kOe)および
成形圧力:784MPa(8トン/cm)の条件で湿式磁場中
圧縮成形した。得られた成形体を85℃で1時間加熱して
脱溶媒(脱メチルエチルケトン)し、次いで170℃で2
時間加熱硬化し表1の異方性ボンド磁石No.1を得た。
[Anisotropic Bonded Magnet] Prepared RTN
The magnetic powder and the SrLaCo ferrite sintered magnetic powder-1 were put into a stirrer at a weight ratio of 80/20 and mixed. Next, the mixed magnetic powder: 10
0 parts by weight, liquid epoxy resin: 2.8 parts by weight, curing agent (DD
S; diaminodiphenylsulfone): 0.7 parts by weight and methyl ethyl ketone (boiling point: 79.5 ° C.): 2.8 parts by weight were charged into a stirrer, and then stirred at 20 rpm for 20 minutes to form a slurry. According to the obtained slurry (compound),
At room temperature, compression molding was performed in a wet magnetic field under the conditions of an orientation magnetic field strength of 477.5 kA / m (6 kOe) and a molding pressure of 784 MPa (8 tons / cm 2 ). The obtained molded body was heated at 85 ° C. for 1 hour to remove the solvent (demethyl ethyl ketone), and then heated at 170 ° C. for 2 hours.
After heating and curing for an hour, No. 1 anisotropic bonded magnet shown in Table 1 was obtained.

【0039】次にR−T−N系磁粉とSrLaCo系フェライ
ト焼結磁粉-1とを50/50および20/80の重量比で配合した
以外はNo.1のものと同様にして表1に示すNo.2,3の
異方性ボンド磁石を作製した。次に、実用上の組込み着
磁を想定し、No.1〜3の各ボンド磁石を交流脱磁後、
B−Hトレーサーにより20℃、着磁磁場強度795.8kA/m
(10kOe)で着磁し減磁曲線を描き、iHc,(BH)maxを測
定した。次に、No.1〜3の各ボンド磁石の着磁性を下
記式で定義し、評価した。 (着磁性)=(Br5kOe)/(Br50kOe)×100
(%) Br5kOe:着磁磁場強度が397.9kA/m(5kOe)のとき
のBr値 Br50kOe:着磁磁場強度が3979kA/m(50kOe)のと
きのBr値 次に、No.1〜3の各ボンド磁石を、パーミアンス係数
(Pc)が2;(磁化方向の厚み)/(直径)=0.7に機械
加工した。次いで、20℃において2387.4kA/m(30kOe)で
着磁し総磁束量(Φ)を測定した。次に着磁したNo.1
〜3の各ボンド磁石試料をそれぞれ40℃,45℃,50℃,
55℃,60℃,65℃,70℃,75℃,80℃,85℃,90℃,95
℃,100℃,105℃,110℃,115℃,120℃,125℃,130
℃,135℃および140℃の各温度に1時間加熱後、室温ま
で冷却した。次いで冷却後の各試料の総磁束量(Φ’)
を測定し、下記式で定義する総磁束量の変化率(不可逆
減磁率)が5%に達する温度で、No.1〜3の試料の耐
熱温度を評価した。 (不可逆減磁率)=(Φ−Φ’)/(Φ)×100(%) 以上の結果を表1に示す。
Next, Table 1 was prepared in the same manner as in No. 1 except that the RTN-based magnetic powder and the SrLaCo-based ferrite sintered magnetic powder-1 were blended in a weight ratio of 50/50 and 20/80. Nos. 2 and 3 anisotropic bonded magnets shown were produced. Next, assuming practical built-in magnetization, after demagnetizing each of the bonded magnets No. 1 to 3,
20 ℃ by BH tracer, magnetizing magnetic field intensity 795.8kA / m
The magnet was magnetized at (10 kOe), a demagnetization curve was drawn, and iHc and (BH) max were measured. Next, the magnetism of each of the bonded magnets Nos. 1 to 3 was defined by the following equation and evaluated. (Magnetization) = (Br 5 kOe ) / (Br 50 kOe ) × 100
(%) Br 5 kOe : Br value when the magnetizing magnetic field strength is 397.9 kA / m (5 kOe) Br 50 kOe : Br value when the magnetizing magnetic field strength is 3979 kA / m (50 kOe) Were machined to have a permeance coefficient (Pc) of 2; (thickness in the magnetization direction) / (diameter) = 0.7. Next, it was magnetized at 2387.4 kA / m (30 kOe) at 20 ° C., and the total magnetic flux (Φ) was measured. Next magnetized No.1
Each of the bonded magnet samples Nos. 1 to 3 was taken at 40 ° C, 45 ° C, 50 ° C,
55 ℃, 60 ℃, 65 ℃, 70 ℃, 75 ℃, 80 ℃, 85 ℃, 90 ℃, 95 ℃
℃, 100 ℃, 105 ℃, 110 ℃, 115 ℃, 120 ℃, 125 ℃, 130 ℃
After heating for 1 hour to each temperature of 135 ° C., 135 ° C. and 140 ° C., it was cooled to room temperature. Next, the total magnetic flux of each sample after cooling (Φ ')
At the temperature at which the rate of change of the total magnetic flux (irreversible demagnetization rate) defined by the following formula reached 5%, the heat-resistant temperatures of the samples Nos. 1 to 3 were evaluated. (Irreversible demagnetization rate) = (Φ−Φ ′) / (Φ) × 100 (%) The above results are shown in Table 1.

【0040】(実施例2) [大気雰囲気中で熱処理したSrLaCo系異方性フェライト
焼結磁粉]酸素分圧:PO2=0.02MPa(0.2atm)の大気雰
囲気中で870℃×2時間熱処理した以外は実施例1と同
様にして、主要成分組成が (Sr0.77La0.23)O・5.72[(Fe
0.983Co0.017 ] であり、SiO含有量:0.41重量%,Ca
O含有量:0.55重量%,(Al+Cr)に
換算した(Al+Cr)含有量:0.33重量%、単位重量
あたりのFe2+含有量=0.08重量%、他の含有Feは
全てFe3+であり、平均粒径58.4μmの異方性フェラ
イト焼結磁粉(以後、SrLaCo系フェライト焼結磁粉-2と
いう。)を得た。
(Example 2) [SrLaCo-based anisotropic ferrite heat-treated in air atmosphere]
Sintered magnetic powder] Oxygen partial pressure: POTwo= 0.02MPa (0.2atm) atmosphere
Same as Example 1 except that the heat treatment was performed at 870 ° C. for 2 hours in an atmosphere.
Thus, the main component composition is (Sr0.77La0.23) O ・ 5.72 [(Fe
0.983Co0.017) 2 O3] And SiO2Content: 0.41% by weight, Ca
O content: 0.55% by weight, (Al2O3+ Cr2O3)
(Al + Cr) content converted: 0.33% by weight, unit weight
Fe per2+Content = 0.08 wt%, other Fe
All Fe3+With an average particle size of 58.4μm
Sintered magnetic powder (hereinafter referred to as SrLaCo-based ferrite sintered magnetic powder-2)
Say. ) Got.

【0041】[異方性ボンド磁石]実施例1のR−T−
N系磁粉:20重量部およびSrLaCo系フェライト焼結磁粉
-2:80重量部を混合し、この混合磁粉を用いた以外は以
降実施例1と同様にしてスラリー化し、異方性ボンド磁
石を作製し評価した。結果を表1のNo.13に示す。
[Anisotropic bonded magnet] R-T- of Example 1
N-based magnetic powder: 20 parts by weight and SrLaCo-based ferrite sintered magnetic powder
-2: 80 parts by weight were mixed, and a slurry was prepared in the same manner as in Example 1 except that this mixed magnetic powder was used, and an anisotropic bonded magnet was prepared and evaluated. The results are shown in No. 13 of Table 1.

【0042】(実施例3) [熱処理無しのSrLaCo系異方性フェライト焼結磁粉]実
施例1で得られた200メッシュアンダーの篩分粉末を異
方性フェライト焼結磁粉(以後、SrLaCo系フェライト焼
結磁粉-3という。)とした。SrLaCo系フェライト焼結磁
粉-3のFe2+含有量は0.11重量%で、他の含有Feは
全てFe3+であった。
(Example 3) [SrLaCo-based anisotropic ferrite sintered magnetic powder without heat treatment] The 200-mesh-under sieved powder obtained in Example 1 was anisotropic ferrite-sintered magnetic powder (hereinafter referred to as SrLaCo-based ferrite). Sintered magnetic powder-3). The SrLaCo-based ferrite sintered magnetic powder-3 had a Fe 2+ content of 0.11% by weight, and all other Fe contained were Fe 3+ .

【0043】[異方性ボンド磁石]実施例1のR−T−
N系磁粉:20重量部およびSrLaCo系フェライト焼結磁粉
-3:80重量部を混合し、この混合磁粉を用いた以外は以
降実施例1と同様にしてスラリー化し、異方性ボンド磁
石を作製し評価した。結果を表1のNo.23に示す。
[Anisotropic bonded magnet] R-T- of Example 1
N-based magnetic powder: 20 parts by weight and SrLaCo-based ferrite sintered magnetic powder
-3: 80 parts by weight were mixed, and a slurry was prepared in the same manner as in Example 1 except that this mixed magnetic powder was used, and an anisotropic bonded magnet was prepared and evaluated. The results are shown in No. 23 of Table 1.

【0044】(実施例4) [酸素過剰雰囲気中で熱処理したSr系異方性フェライト
焼結磁粉]日立金属(株)製のSr系異方性フェライト
焼結磁石(商品名:YBM−6BF)のスクラップを粉
砕し、次いで200メッシュアンダーに篩分した。次に酸
素分圧:PO2=0.1MPa(1atm)の酸素過剰雰囲気中で82
0℃×3時間熱処理し、次いで室温まで冷却した。次に
水中に前記熱処理済み粉末を浸漬し、次いで浸漬物を80
℃に加熱して水分を蒸発させた後冷却した。こうして主
要成分組成がSrO・6Fe(原子比率)で表さ
れ、平均粒径60μmの異方性フェライト焼結磁粉(以
後、Sr系フェライト焼結磁粉という。)を作製した。
(Example 4) [Sr-based anisotropic ferrite sintered magnetic powder heat-treated in oxygen-excess atmosphere] Sr-based anisotropic ferrite sintered magnet manufactured by Hitachi Metals, Ltd. (trade name: YBM-6BF) Was crushed and then sieved to 200 mesh under. Then, in an oxygen-excess atmosphere of oxygen partial pressure: PO 2 = 0.1 MPa (1 atm),
Heat treatment was performed at 0 ° C. × 3 hours, and then cooled to room temperature. Next, the heat-treated powder is immersed in water, and
The mixture was heated to ℃ to evaporate water, and then cooled. Thus, an anisotropic ferrite sintered magnetic powder (hereinafter, referred to as Sr-based ferrite sintered magnetic powder) having a main component composition represented by SrO.6Fe 2 O 3 (atomic ratio) and having an average particle size of 60 μm was prepared.

【0045】[異方性ボンド磁石]実施例1のR−T−
N系磁粉:50重量部と、SrLaCo系フェライト焼結磁粉-
1:30重量部と、Sr系フェライト焼結磁粉:20重量部と
を混合した。この混合磁粉を用いた以外は以降実施例1
と同様にしてスラリー化し、異方性ボンド磁石を作製し
評価した。結果を表1のNo.32に示す。
[Anisotropic Bonded Magnet] R-T- of Example 1
N-based magnetic powder: 50 parts by weight, SrLaCo-based ferrite sintered magnetic powder
1:30 parts by weight and Sr-based ferrite sintered magnetic powder: 20 parts by weight were mixed. Example 1 was followed except that this mixed magnetic powder was used.
A slurry was prepared in the same manner as described above to prepare and evaluate an anisotropic bonded magnet. The results are shown in No. 32 of Table 1.

【0046】(比較例1)実施例1のR−T−N系磁
粉:100重量部、液状エポキシ樹脂:2.8重量部、硬化剤
(DDS):0.7重量部、およびメチルエチルケトン:2.8
重量部を攪拌機に投入し、攪拌してスラリーを得た。こ
のスラリーにより以降は実施例1と同様にして異方性ボ
ンド磁石を作製し評価した。結果を表1のNo.51に示
す。
Comparative Example 1 RTN magnetic powder of Example 1: 100 parts by weight, liquid epoxy resin: 2.8 parts by weight, curing agent (DDS): 0.7 parts by weight, and methyl ethyl ketone: 2.8 parts
A part by weight was put into a stirrer and stirred to obtain a slurry. From this slurry, an anisotropic bonded magnet was prepared and evaluated in the same manner as in Example 1. The results are shown in No. 51 of Table 1.

【0047】(比較例2)MQI(マグネクエンチインタ
ーナショナル)社製のNd−Fe−B系異方性磁粉(商
品名:MQA−T材):100重量部、液状エポキシ樹
脂:2.8重量部、硬化剤(DDS):0.7重量部、およびメ
チルエチルケトン:2.8重量部を攪拌機に投入し、攪拌
してスラリーを得た。このスラリーにより以降は実施例
1と同様にして異方性ボンド磁石を作製し評価した。結
果を表1のNo.61に示す。
(Comparative Example 2) Nd-Fe-B-based anisotropic magnetic powder (trade name: MQA-T material) manufactured by MQI (Magnequench International), 100 parts by weight, liquid epoxy resin: 2.8 parts by weight, cured 0.7 parts by weight of the agent (DDS) and 2.8 parts by weight of methyl ethyl ketone were charged into a stirrer and stirred to obtain a slurry. From this slurry, an anisotropic bonded magnet was prepared and evaluated in the same manner as in Example 1. The results are shown in No. 61 of Table 1.

【0048】(比較例3)MQI(マグネクエンチインタ
ーナショナル)社製のNd−Fe−B系等方性磁粉(商
品名:MQP−B材):100重量部、液状エポキシ樹
脂:2.8重量部、硬化剤(DDS):0.7重量部、およびメ
チルエチルケトン:2.8重量部を攪拌機に投入し、攪拌
してスラリーを得た。このスラリーにより以降は実施例
1と同様にして異方性ボンド磁石を作製し評価した。結
果を表1のNo.71に示す。
Comparative Example 3 Nd-Fe-B based isotropic magnetic powder (trade name: MQP-B material) manufactured by MQI (Magnequench International), 100 parts by weight, liquid epoxy resin: 2.8 parts by weight, cured 0.7 parts by weight of the agent (DDS) and 2.8 parts by weight of methyl ethyl ketone were charged into a stirrer and stirred to obtain a slurry. From this slurry, an anisotropic bonded magnet was prepared and evaluated in the same manner as in Example 1. The results are shown in No. 71 of Table 1.

【0049】(比較例4)SrCO粉末(不純物とし
てBa,Caを含む),α−Fe粉末,La
粉末及びCo粉末を用いて、仮焼後に(Sr
0.85La0.15)O・5.85[(Fe0.98Co
0.02]で表される主要成分組成になるよう
に配合し、混合した。次いで1200℃で2時間、大気中で
仮焼した。得られた仮焼物を粗砕後、ローラーミルで乾
式粗粉砕し粗粉を得た。次に乾式の振動ミルにより平均
粒径1.15μm(空気透過法による。)の微粉を得た。次
にPO2=0.02MPa(0.2atm)の大気雰囲気中で820℃×2
時間熱処理し、次いで室温まで冷却した。次に水中に浸
漬し、次いで乾燥して平均粒径1.20μm(空気透過法に
よる。)のボンド磁石用フェライト粉末(以後、SrLaCo
系フェライトボンド磁粉という。)を得た。
Comparative Example 4 SrCO 3 powder (containing Ba and Ca as impurities), α-Fe 2 O 3 powder, La 2 O
3 powder and Co 3 O 4 powder, after calcination (Sr
0.85 La 0.15 ) O.5.85 [(Fe 0.98 Co
0.02 ) 2 O 3 ]. Next, it was calcined in the air at 1200 ° C. for 2 hours. The obtained calcined product was coarsely crushed and then dry coarsely crushed with a roller mill to obtain a coarse powder. Next, fine powder having an average particle size of 1.15 μm (by the air permeation method) was obtained by a dry vibration mill. Next, at 820 ° C x 2 in an atmosphere of PO 2 = 0.02 MPa (0.2 atm).
Heat treated for an hour and then cooled to room temperature. Next, it is immersed in water and then dried to obtain a ferrite powder for bond magnet having an average particle size of 1.20 μm (by the air permeation method) (hereinafter referred to as SrLaCo
This is called a ferrite-bonded magnetic powder. ) Got.

【0050】次に実施例1のR−T−N系磁粉とSrLaCo
系フェライトボンド磁粉とを80/20、50/50および20/80
の重量比率で混合し、3種の混合磁粉を作製した。これ
ら3種の各混合磁粉:100重量部、液状エポキシ樹脂:
2.8重量部、硬化剤(DDS):0.7重量部、およびメチル
エチルケトン:2.8重量部を配合し、攪拌機に投入し
た。次いで攪拌して3種のスラリーを得た。これら3種
の各スラリーにより、以降は実施例1と同様にして異方
性ボンド磁石を作製し評価した。結果を表1のNo.81〜8
3に示す。
Next, the RTN-based magnetic powder of Example 1 and SrLaCo
80/20, 50/50 and 20/80 with ferrite bonded magnetic powder
To obtain three types of mixed magnetic powder. Each of these three types of mixed magnetic powder: 100 parts by weight, liquid epoxy resin:
2.8 parts by weight, 0.7 parts by weight of a curing agent (DDS), and 2.8 parts by weight of methyl ethyl ketone were mixed and charged into a stirrer. Then, stirring was performed to obtain three kinds of slurries. From these three types of slurries, anisotropic bonded magnets were prepared and evaluated in the same manner as in Example 1 thereafter. The results are shown in Table 1 Nos. 81 to 8
See Figure 3.

【0051】[0051]

【表1】 ・SrLaCo系フェライト焼結磁粉-1のFe2+含有量:0.
05重量% ・SrLaCo系フェライト焼結磁粉-2のFe2+含有量:0.
08重量% ・SrLaCo系フェライト焼結磁粉-3のFe2+含有量:0.
11重量%
[Table 1] ・ Fe 2+ content of SrLaCo ferrite sintered magnetic powder-1: 0.
05% by weight ・ Fe 2+ content of SrLaCo ferrite sintered magnetic powder-2: 0.
08% by weight ・ Fe 2+ content of SrLaCo ferrite sintered magnetic powder-3: 0.
11% by weight

【0052】表1より以下の知見が得られた。 (1)実施例1のNo.3、実施例2、3、比較例4のNo.83
の比較から、過剰酸素中で熱処理したSrLaCo系フェライ
ト焼結磁粉-1を配合したNo.3で(BH)max、iHc、着磁性
および耐熱温度が最も高いことがわかる。また実施例
2、3の比較からSrLaCo系異方性フェライト焼結磁粉に
大気中熱処理を施すと(BH)max、iHcおよび耐熱温度が向
上することがわかる。すなわち、異方性フェライト焼結
磁粉に熱処理を施すことにより異方性ボンド磁石の(BH)
maxを落とさずにiHcを高められ、着磁性が向上するので
着磁磁場強度が低く制限される場合でも高出力で耐熱性
に富む回転機を構成できる。熱処理により異方性ボンド
磁石の(BH)max、iHcが向上するのはフェライト焼結磁粉
の粉砕時に導入された歪や微小欠陥が減少あるいは消滅
する効果に加え、Fe2+含有量が低減されることが効
いていると判断される。 (2)実施例1および比較例4においてR−T−N系磁粉
とフェライト磁粉との同一配合比率で比較した場合、N
o.1はNo.81に比べ、No.2はNo.82に比べ、No.3はNo.8
3に比べ、いずれも(BH)max、iHcおよび耐熱温度が高い
ことがわかる。 (3)実施例1のNo.2、実施例4、および比較例4のNo.8
2の比較から、実施例1のR−T−N系磁粉と、過剰酸
素中で熱処理したSrLaCo系フェライト焼結磁粉-1と、過
剰酸素中で熱処理したSr系フェライト焼結磁粉とを所定
比率で配合して作製した異方性ボンド磁石No.32で比較
例4のNo.82を超える(BH)maxが得られており安価な異方
性ボンド磁石として有用なことがわかる。 (4)上記各実施例の異方性ボンド磁石は比較例1〜3の
従来の希土類ボンド磁石に比べて着磁性が良好で、耐熱
温度が高いので実用性に富むことがわかる。
From Table 1, the following findings were obtained. (1) No. 3 of Example 1, Examples 2 and 3 and No. 83 of Comparative Example 4
It can be seen from the comparison that No. 3 containing SrLaCo-based ferrite sintered magnetic powder-1 heat-treated in excess oxygen had the highest (BH) max, iHc, magnetization and heat resistance temperature. Further, from a comparison between Examples 2 and 3, it can be seen that when the SrLaCo-based anisotropic ferrite sintered magnetic powder is subjected to a heat treatment in the air, (BH) max, iHc, and the heat resistance temperature are improved. That is, heat treatment is performed on the anisotropic ferrite sintered magnetic powder to obtain the (BH) of the anisotropic bonded magnet.
Since the iHc can be increased without lowering the max and the magnetization is improved, a rotating machine with high output and high heat resistance can be constructed even when the strength of the magnetization magnetic field is limited to a low level. The (BH) max and iHc of the anisotropic bonded magnet are improved by the heat treatment because the strain and minute defects introduced during the pulverization of the sintered ferrite magnetic powder are reduced or eliminated, and the Fe 2+ content is reduced. Is judged to be effective. (2) In Example 1 and Comparative Example 4, when the RTN-based magnetic powder and the ferrite magnetic powder were compared at the same compounding ratio, N
o.1 is No.81, No.2 is No.82, No.3 is No.8
It can be seen that (BH) max, iHc, and heat-resistant temperature are all higher than those of 3. (3) No. 2 of Example 1, Example 4 and No. 8 of Comparative Example 4
From the comparison of 2, a predetermined ratio of the RTN-based magnetic powder of Example 1, the SrLaCo-based ferrite sintered magnetic powder-1 heat-treated in excess oxygen, and the Sr-based ferrite sintered magnetic powder heat-treated in excess oxygen was obtained. (BH) max exceeding No. 82 of Comparative Example 4 was obtained in the anisotropic bonded magnet No. 32 produced by blending with the above, which proves to be useful as an inexpensive anisotropic bonded magnet. (4) It can be seen that the anisotropic bonded magnets of each of the above examples have better magnetizability and higher heat resistance temperature than the conventional rare earth bonded magnets of Comparative Examples 1 to 3, and are therefore more practical.

【0053】(実施例5)実施例1のNo.2のスラリー
を圧縮成形機に設置された室温の外径:25mm、内径
(金型のコア外径):22mmの成形用金型キャビティに
充填した。次いでラジアル配向磁場:318.3kA/m(4kO
e)を印加しながら、成形圧力:784MPa(8トン/cm)で
湿式磁場中成形し、成形体を得た。得られた成形体を80
℃に加熱して脱溶媒し、次いで加熱硬化して外径:25m
m、内径:22mm、軸方向長さ:15mmのリング状ラジ
アル異方性ボンド磁石を得た。このボンド磁石の外径面
周方向に総磁束量が飽和する条件で対称8極着磁を施
し、次いで外径面周方向の表面磁束密度波形を測定した
結果を図1に示す。図1より表面磁束密度の最大値は0.
275〜0.28T(2.75〜2.8kG)という高い値が得られた。
また、着磁したリング状ボンド磁石の外径面N極の軸
方向に沿う表面磁束密度(Bo)を測定した。このBo測定
は、両端部の影響を除外するために、軸方向の両端部か
ら中心に向かって3mmまでの部分は除外し、軸方向長
さ9mm(軸方向中心から±4.5mm)にわたり行っ
た。その結果、Boの最大値(Bo.max.)と最小値(Bo.mi
n.)との差:dBoは0.004T(40G)未満でありBoばらつ
きは小さかった。
(Example 5) The slurry No. 2 of Example 1 was placed in a molding cavity having an outer diameter of 25 mm at room temperature and an inner diameter (outer diameter of the core of the die) of 22 mm, which was installed in a compression molding machine. Filled. Next, radial orientation magnetic field: 318.3 kA / m (4 kO
While applying e), molding was performed in a wet magnetic field at a molding pressure of 784 MPa (8 tons / cm 2 ) to obtain a molded body. 80
Deheated by heating to ℃, then heat-cured and outer diameter: 25m
m, an inner diameter: 22 mm, and a length in the axial direction: 15 mm were obtained. FIG. 1 shows the result of performing symmetrical 8-pole magnetization under the condition that the total magnetic flux amount is saturated in the circumferential direction of the outer diameter surface of the bonded magnet, and then measuring the surface magnetic flux density waveform in the circumferential direction of the outer diameter surface. From Fig. 1, the maximum value of the surface magnetic flux density is 0.
High values of 275 to 0.28 T (2.75 to 2.8 kG) were obtained.
It was also measured surface magnetic flux density (Bo) along the axial direction of the outer diameter surface N 1 pole magnetized ring-like bonded magnet. This Bo measurement was performed over an axial length of 9 mm (± 4.5 mm from the axial center) excluding the portion from the axial ends to 3 mm toward the center in order to exclude the influence of both ends. . As a result, the maximum (Bo.max.) And minimum (Bo.mi.)
Difference from n.): dBo was less than 0.004 T (40 G), and the variation in Bo was small.

【0054】(比較例5)比較例2のスラリーを用いた
以外は実施例5と同様にして、ラジアル異方性を有し、
対称8極着磁を施してなるリング状ボンド磁石(外径:
25mm、内径:22mm、軸方向長さ:15mm)を作製
し、外径面周方向の表面磁束密度波形およびdBoを測定
した。図1に外径面周方向の表面磁束密度波形を示す
が、表面磁束密度の最大値は約0.190T(1900G)であ
り低かった。また、dBoは0.005T(50G)超でありBoば
らつきが大きいことがわかった。
(Comparative Example 5) Radial anisotropy was obtained in the same manner as in Example 5 except that the slurry of Comparative Example 2 was used.
Ring-shaped bonded magnet with symmetric 8-pole magnetization (outer diameter:
(25 mm, inner diameter: 22 mm, axial length: 15 mm), and the surface magnetic flux density waveform and dBo in the outer diameter surface circumferential direction were measured. FIG. 1 shows the surface magnetic flux density waveform in the circumferential direction of the outer diameter surface. The maximum value of the surface magnetic flux density was as low as about 0.190 T (1900 G). In addition, dBo exceeded 0.005 T (50 G), and it was found that the variation in Bo was large.

【0055】(実施例6)実施例1のNo.2のスラリー
を圧縮成形機に設置された室温の外径:25mm、内径
(金型のコア外径):22mmの成形用金型キャビティに
充填した。次いで極異方性配向磁場(対称8極):318.
3kA/m(4kOe)を印加しながら、成形圧力:784MPa(8
トン/cm)で湿式磁場中成形し、成形体を得た。得られ
た成形体を80℃に加熱して脱溶媒し、次いで加熱硬化し
て外径:25mm、内径:22mm、軸方向長さ:15mmの
リング状極異方性ボンド磁石を得た。このボンド磁石の
異方性付与方向に沿って総磁束量が飽和する条件で対称
8極着磁を施した。以降は実施例5と同様にして外径面
周方向の表面磁束密度波形およびdBoを測定した。その
結果、表面磁束密度の最大値は0.27〜0.28T(2.7〜2.8
kG)という高い値を得られた。また、dBoは0.005T(50
G)未満でありBoばらつきは小さかった。
(Example 6) The slurry of No. 2 of Example 1 was placed in a molding die cavity having an outer diameter of 25 mm at room temperature and an inner diameter (outer diameter of the core of the die) of 22 mm, which was installed in a compression molding machine. Filled. Next, the polar anisotropic orientation magnetic field (symmetric 8 poles): 318.
While applying 3 kA / m (4 kOe), molding pressure: 784 MPa (8
Ton / cm 2 ) in a wet magnetic field to obtain a molded body. The obtained molded body was heated to 80 ° C. to remove the solvent, and then heat-cured to obtain a ring-shaped polar anisotropic bonded magnet having an outer diameter of 25 mm, an inner diameter of 22 mm, and an axial length of 15 mm. Symmetrical 8-pole magnetization was performed under the condition that the total magnetic flux was saturated along the anisotropy imparting direction of the bonded magnet. Thereafter, the surface magnetic flux density waveform and dBo in the circumferential direction of the outer diameter surface were measured in the same manner as in Example 5. As a result, the maximum value of the surface magnetic flux density is 0.27 to 0.28 T (2.7 to 2.8
kG). DBo is 0.005T (50
G) and the variation in Bo was small.

【0056】(比較例6)比較例2のスラリーを用いた
以外は実施例6と同様にして、対称8極の極異方性を有
し、着磁してなるリング状ボンド磁石(外径:25mm、
内径:22mm、軸方向長さ:15mm)を作製し、外径面
周方向の表面磁束密度波形およびdBoを測定した。その
結果、表面磁束密度の最大値は約0.195T(1.95kG)で
あり低く、またdBoは0.005T(50G)超でありBoばらつ
きが大きかった。
Comparative Example 6 A ring-shaped bonded magnet (outer diameter) having symmetric 8-pole polar anisotropy and magnetized in the same manner as in Example 6 except that the slurry of Comparative Example 2 was used. : 25mm,
(Inner diameter: 22 mm, axial length: 15 mm), and the surface magnetic flux density waveform and dBo in the outer peripheral surface circumferential direction were measured. As a result, the maximum value of the surface magnetic flux density was as low as about 0.195 T (1.95 kG), and dBo was more than 0.005 T (50 G), and the variation in Bo was large.

【0057】実施例5、6および比較例5、6で作製し
た各リング状ボンド磁石をそれぞれ用いて、ブラシレス
モータの回転子側に組込み、ブラシレスモータを構成し
た。これらブラシレスモータの各々の最高効率を測定し
た結果、相対的に実施例5および実施例6のリング状ボ
ンド磁石を組み込んだモータの最高効率が高く、比較例
5および比較例6のリング状ボンド磁石を組み込んだモ
ータの最高効率が低いことがわかった。各ブラシレスモ
ータの回転子と固定子との間の平均エアギャップ間隔を
0.3mmとした。
Each of the ring-shaped bonded magnets produced in Examples 5 and 6 and Comparative Examples 5 and 6 was assembled on the rotor side of a brushless motor to form a brushless motor. As a result of measuring the maximum efficiency of each of these brushless motors, the maximum efficiency of the motor incorporating the ring-shaped bonded magnets of Example 5 and Example 6 was relatively high, and the ring-shaped bonded magnets of Comparative Examples 5 and 6 were compared. It has been found that the maximum efficiency of the motor incorporating the A is low. The average air gap spacing between the rotor and stator of each brushless motor is
0.3 mm.

【0058】(実施例7、比較例7) [シート状ボンド磁石]表2に記載の3種の各磁粉:9
1.5重量部,EEA樹脂(MB-870):6.2重量部,分散剤
(DH-37):1.0重量部,滑剤(スリパックスE):0.5
重量部、およびシリコーンオイル(KF968,信越化学工
業製):0.8重量部を加熱・加圧型ニーダに投入して混
練し、3種のコンパウンドを作製した。表2に記載の各
R−T−N系磁粉はいずれも実施例1で作製したもので
ある。また表2のSrLaCoZn系フェライト焼結磁粉は、仮
焼後にSr0.80La0.20Fe11.70Co
0.10Zn0.1018. 85 で表される主要成
分組成になるように配合し、また微粉砕時にAl
を添加しなかった以外は実施例1のSrLaCo系フェライト
焼結磁粉-1と同様にして作製した平均粒径62.9μmの異
方性フェライト焼結磁粉である。SrLaCoZn系フェライト
焼結磁粉は主要成分組成が下記組成式で示され、 (Sr0.77La0.23)O・5.72[(Fe0.983
Co0.0085Zn .0085)]、 SiO含有量:0.42重量%、CaO含有量:0.59重量
%、(Al+Cr)に換算した(Al+C
r)含有量:0.04重量%、Fe2+=0.05重量%であり
他の含有Feは全てFe3+であった。次に各コンパウ
ンドを順次加熱した押出成形機に投入し、押出成形機の
押出口近傍に設けた平行配向磁場ゾーン(印加磁場強
度:397.9kA/m(5kOe))を通過させて押出した。次い
で軸方向長さ320mmに切断し、図2の断面図に示すよ
うに厚みtが2mmのシート状異方性ボンド磁石16を得
た。
(Example 7, Comparative Example 7) [Sheet-shaped bonded magnet] Three types of magnetic powders listed in Table 2: 9
1.5 parts by weight, EEA resin (MB-870): 6.2 parts by weight, dispersant (DH-37): 1.0 part by weight, lubricant (Slipax E): 0.5
Parts by weight and silicone oil (KF968, manufactured by Shin-Etsu Chemical Co., Ltd.): 0.8 parts by weight were put into a heating / pressing type kneader and kneaded to prepare three types of compounds. Each of the RTN-based magnetic powders described in Table 2 was produced in Example 1. Further, the SrLaCoZn-based ferrite sintered magnetic powder shown in Table 2 is obtained by calcining Sr 0.80 La 0.20 Fe 11.70 Co.
0.10 Zn 0.10 O 18. 85 , and Al 2 O 3 at the time of pulverization.
This is an anisotropic ferrite sintered magnetic powder having an average particle diameter of 62.9 μm prepared in the same manner as the SrLaCo-based ferrite sintered magnetic powder-1 of Example 1 except that no was added. The main component composition of the SrLaCoZn-based ferrite sintered magnetic powder is represented by the following composition formula: (Sr 0.77 La 0.23 ) O.5.72 [(Fe 0.983
Co 0.0085 Zn 0 . 0085) 2 O 3], SiO 2 content: 0.42 wt%, CaO content: 0.59 wt%, in terms of (Al 2 O 3 + Cr 2 O 3) (Al + C
r) Content: 0.04% by weight, Fe 2+ = 0.05% by weight, and all other Fe contained were Fe 3+ . Next, each of the compounds was put into an extruder that was sequentially heated, and extruded by passing through a parallel orientation magnetic field zone (applied magnetic field intensity: 397.9 kA / m (5 kOe)) provided near the extrusion port of the extruder. Next, the sheet was cut to a length of 320 mm in the axial direction to obtain a sheet-like anisotropic bonded magnet 16 having a thickness t of 2 mm as shown in the sectional view of FIG.

【0059】[マグネットロール]図2のマグネットロ
ール23を以下のようにして作製し、評価した。まず、シ
ャフト22に固着された円筒状の等方性フェライト焼結磁
石17の現像磁極部に軸方向に貫通する凹溝13を形成し
た。次いで、作製した各シート状異方性ボンド磁石16を
それぞれ凹溝13に固着し、マグネットロール23を形成し
た。シート状異方性ボンド磁石16の軸方向には凹部14が
延びて形成されているので、現像磁極直上の空隙磁束密
度分布波形が2山ピークになるように構成されている。
このマグネットロール23の軸方向に沿うN極直上の表
面磁束密度Boを測定し、表2の結果を得た。表2のBo
(平均値)は相対値で示してある。このBo測定は、両端
部の影響を除外するために、軸方向の両端部から中心に
向かって10mmまでの部分は除外し、軸方向長さ300m
m(軸方向中心から±150mm)にわたり行った。その
結果、No.106,107のマグネットロールは比較例7のNo.1
11のマグネットロールに比べて高いBo(平均値)を有
し、高性能であることがわかる。なお、円筒状磁石17を
従来の等方性ボンド磁石または異方性フェライトボンド
磁石で構成した場合にも高性能のマグネットロールを構
成することができる。
[Magnet Roll] The magnet roll 23 shown in FIG. 2 was manufactured and evaluated as follows. First, the groove 13 penetrating in the axial direction was formed in the developing magnetic pole portion of the cylindrical isotropic ferrite sintered magnet 17 fixed to the shaft 22. Next, the produced sheet-like anisotropic bonded magnets 16 were fixed to the grooves 13, respectively, to form magnet rolls 23. Since the concave portion 14 is formed to extend in the axial direction of the sheet-like anisotropic bonded magnet 16, the air gap magnetic flux distribution waveform immediately above the developing magnetic pole is configured to have two peaks.
The surface magnetic flux density Bo immediately above N 1 pole along the axial direction of the magnet roll 23 is measured to obtain the results shown in Table 2. Bo in Table 2
(Average value) is shown as a relative value. In this Bo measurement, in order to exclude the influence of both ends, the portion from the both ends in the axial direction to 10 mm toward the center is excluded, and the axial length is 300 m
m (± 150 mm from the axial center). As a result, the magnet rolls of Nos. 106 and 107 were No. 1 of Comparative Example 7.
It has a higher Bo (average value) than the 11 magnet rolls, indicating that it has high performance. It should be noted that even when the cylindrical magnet 17 is made of a conventional isotropic bonded magnet or anisotropic ferrite bonded magnet, a high-performance magnet roll can be formed.

【0060】実施例7はシート状異方性ボンド磁石の厚
みtが2mmの場合であるが、159.2〜795.8kA/m(2〜
10kOe)という実用的な配向磁場強度を印加しつつ押出
成形またはカレンダーロール成形すれば、従来の異方性
フェライト焼結磁石を超える(BH)maxを有する厚み:0.0
1〜3mmのシート状異方性ボンド磁石を作製できる。
Example 7 is a case where the thickness t of the sheet-like anisotropic bonded magnet is 2 mm, and is 159.2 to 795.8 kA / m (2 to
Extrusion molding or calender roll molding while applying a practical orientation magnetic field strength of 10 kOe) yields a thickness with a (BH) max exceeding that of a conventional anisotropic ferrite sintered magnet: 0.0
A sheet-like anisotropic bonded magnet of 1 to 3 mm can be produced.

【0061】[0061]

【表2】 [Table 2]

【0062】表2より、SrLaCoZn系フェライト焼結磁粉
を配合し作製したシート状異方性ボンド磁石を用いて構
成したNo.106のマグネットロールの(Bo平均値)が最も
高くなることがわかった。またSrLaCo系フェライト焼結
磁粉-1を用いたNo.107の場合に比較例7よりも高い(Bo
平均値)が得られることがわかった。
From Table 2, it was found that the No. 106 magnet roll formed using a sheet-like anisotropic bonded magnet prepared by blending SrLaCoZn-based ferrite sintered magnetic powder had the highest (average Bo value). . In the case of No. 107 using SrLaCo-based ferrite sintered magnetic powder-1, it was higher than Comparative Example 7 (Bo
Average value).

【0063】上記実施例に記載の各異方性フェライト焼
結磁粉をX線回折したところ、いずれもマグネトプラン
バイト型結晶構造相のX線回折ピークのみが観察され、
マグネトプランバイト型結晶構造を有することがわかっ
た。
When each of the anisotropic ferrite sintered magnetic powders described in the above examples was subjected to X-ray diffraction, only the X-ray diffraction peak of the magnetoplumbite type crystal structure phase was observed.
It was found to have a magnetoplumbite type crystal structure.

【0064】実施例1〜6ではバインダーに液状エポキ
シ樹脂を採用してスラリーを作製し、磁場中圧縮成形し
た場合を記載したが本発明はこれに限定されない。例え
ばポリアミド樹脂等の熱可塑性樹脂をバインダーに採用
してコンパウンドを作製し、温間で磁場中圧縮成形また
は磁場中射出成形を行えば高性能の異方性ボンド磁石を
作製できるとともにコンパウンドおよび異方性ボンド磁
石のリサイクルが可能になりコストを低減することがで
きる。
In Examples 1 to 6, a case was described in which a slurry was prepared using a liquid epoxy resin as a binder and compression-molded in a magnetic field, but the present invention is not limited to this. For example, if a compound is manufactured by using a thermoplastic resin such as polyamide resin as the binder, and compression molding in a magnetic field or injection molding in a magnetic field is performed in a warm state, a high-performance anisotropic bonded magnet can be manufactured, and the compound and anisotropic material can be formed. It is possible to recycle the bonded magnet and to reduce the cost.

【0065】本発明に用いるコンパウンドには磁粉およ
びバインダー以外に磁粉の分散剤(例えばフェノール
系。)、カップリング剤(シラン系カップリング剤
等。)、滑剤(例えばワックス類。)、可塑剤(例えば
DOP,DBP等)、酸化防止剤などを単独または複合で添加
して成形性、耐酸化性、強度、磁気特性等を向上するの
が好ましい。これらの添加量は合計で3重量%以下が好
ましく、0.1〜2重量%がより好ましい。
In the compound used in the present invention, in addition to the magnetic powder and the binder, a dispersant of the magnetic powder (for example, phenol type), a coupling agent (for example, a silane type coupling agent), a lubricant (for example, waxes), and a plasticizer (for example, wax). For example
DOP, DBP, etc.), an antioxidant or the like is added alone or in combination to improve moldability, oxidation resistance, strength, magnetic properties and the like. The total amount of these additives is preferably 3% by weight or less, more preferably 0.1 to 2% by weight.

【0066】[0066]

【発明の効果】以上記述の通り、本発明によれば、従来
の異方性フェライト焼結磁石を超える最大エネルギー積
(BH)maxを有し、さらに着磁性または耐熱性を改善した
新規高性能の異方性ボンド磁石を提供することができ
る。また高性能の回転機およびマグネットロールを提供
することができる。
As described above, according to the present invention, the maximum energy product exceeding the conventional sintered anisotropic ferrite magnet is obtained.
It is possible to provide a new high-performance anisotropic bonded magnet having (BH) max and further improved magnetization or heat resistance. Further, a high-performance rotating machine and a magnet roll can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の異方性ボンド磁石の表面磁束密度波形
の一例を示す図である。
FIG. 1 is a diagram showing an example of a surface magnetic flux density waveform of an anisotropic bonded magnet of the present invention.

【図2】本発明のマグネットロールの一例を示す要部断
面図である。
FIG. 2 is a sectional view of a main part showing an example of a magnet roll of the present invention.

【符号の説明】[Explanation of symbols]

13 軸方向に平行に設けた溝部、14 凹部、15 凸部、
16 シート状ボンド磁石、17 マグネットロール基体
部、22 シャフト、23 マグネットロール。
13 grooves provided in parallel with the axial direction, 14 concave parts, 15 convex parts,
16 sheet-like bonded magnets, 17 magnet roll base, 22 shafts, 23 magnet rolls.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保田 裕 埼玉県熊谷市三ヶ尻5200番地 日立金属株 式会社磁性材料研究所内 (72)発明者 高見 崇 埼玉県熊谷市三ヶ尻5200番地 日立金属株 式会社磁性材料研究所内 Fターム(参考) 4K018 AA27 AB01 AC01 BA11 BA18 BC12 BD01 GA02 JA01 KA46 5E040 AA04 AA09 AB04 BB04 BB05 BD01 HB01 HB03 HB06 HB11 HB15 HB17 NN01 NN06 NN18 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Kubota 5200 Sankajiri, Kumagaya-shi, Saitama Hitachi Metals, Ltd. Inside Magnetic Materials Research Laboratories (72) Takashi Takami 5200 Sankajiri, Kumagaya-shi, Saitama Magnet Hitachi Metals, Ltd. F-term in Materials Research Laboratory (reference) 4K018 AA27 AB01 AC01 BA11 BA18 BC12 BD01 GA02 JA01 KA46 5E040 AA04 AA09 AB04 BB04 BB05 BD01 HB01 HB03 HB06 HB11 HB15 HB17 NN01 NN06 NN18

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 主要成分組成がRα100ーαーβ
β (RはYを含む希土類元素の少なくとも1種であ
り、TはFeまたは、FeおよびCoであり、α、βは
それぞれ原子%で5≦α≦20,5≦β≦30である。)で
表されるR−T−N系磁粉と、実質的にマグネトプラン
バイト型結晶構造を有する平均粒径10μm超1000μm以
下のフェライト焼結磁粉と、前記2種の磁粉を結着する
バインダーとから実質的になることを特徴とする異方性
ボンド磁石。
1. The composition of the main component is R α T 100-α-β N
β (R is at least one kind of rare earth element including Y, T is Fe or Fe and Co, and α and β are respectively 5% α ≦ 20 and 5 ≦ β ≦ 30 in atomic%.) From an RTN-based magnetic powder represented by the following formula, a ferrite sintered magnetic powder having a magnetoplumbite-type crystal structure and having an average particle diameter of more than 10 μm and not more than 1000 μm, and a binder binding the two types of magnetic powder. An anisotropic bonded magnet, which is substantially obtained.
【請求項2】 主要成分組成がRα100ーαーβ
β (RはYを含む希土類元素の少なくとも1種であ
り、TはFeまたは、FeおよびCoであり、α、βは
それぞれ原子%で5≦α≦20,5≦β≦30である。)で
表されるR−T−N系磁粉と、実質的にマグネトプラン
バイト型結晶構造を有するとともにFe 2+含有量が0.
10重量%以下のフェライト焼結磁粉と、前記2種の磁粉
を結着するバインダーとから実質的になることを特徴と
する異方性ボンド磁石。
2. The main component composition is RαT100-α-βN
β(R is at least one rare earth element including Y
T is Fe or Fe and Co, and α and β are
In atomic%, 5 ≦ α ≦ 20 and 5 ≦ β ≦ 30. )so
R-T-N-based magnetic powder and substantially magnetoplan
It has a bite type crystal structure and Fe 2+Content is 0.
10% by weight or less of ferrite sintered magnetic powder and the above two types of magnetic powder
And a binder that binds substantially.
Anisotropic bonded magnet.
【請求項3】 実質的にマグネトプランバイト型結晶構
造を有する前記フェライト焼結磁粉が、 (A1−xR’)O・n[(Fe1−y)](原子比率) (AはSrおよび/またはBaであり、R’はYを含む希
土類元素の少なくとも1種であってLa,Pr,Ndお
よびCeから選択される少なくとも1種を必ず含み、M
はCoまたは、CoおよびZnである。)、0.01≦x≦
0.4,0.005≦y≦0.04,および5.0≦n≦6.4で表される
主要成分組成を有する請求項1または2に記載の異方性
ボンド磁石。
3. The ferrite sintered magnetic powder having a substantially magnetoplumbite type crystal structure comprises: (A 1-x R ′ x ) On · ([Fe 1- y My ) 2 O 3 ] (atom (A is Sr and / or Ba, R ′ is at least one kind of rare earth element including Y, and always contains at least one kind selected from La, Pr, Nd and Ce, and M ′
Is Co or Co and Zn. ), 0.01 ≦ x ≦
3. The anisotropic bonded magnet according to claim 1, having a main component composition represented by 0.4, 0.005≤y≤0.04, and 5.0≤n≤6.4.
【請求項4】 実質的にマグネトプランバイト型結晶構
造を有する前記フェライト焼結磁粉が、 A’O・nFe(原子比率)(A’はSrおよび
/またはBaであり、5.0≦n≦6.4である。)で表され
る主要成分組成を有するフェライト焼結磁粉と、 (A1−xR’)O・n[(Fe1−y)](原子比率) (AはSrおよび/またはBaであり、R’はYを含む希
土類元素の少なくとも1種であってLa,Pr,Ndお
よびCeから選択される少なくとも1種を必ず含み、M
はCoまたは、CoおよびZnである。)、0.01≦x≦
0.4,0.005≦y≦0.04,および5.0≦n≦6.4で表される
主要成分組成を有するフェライト焼結磁粉とからなる請
求項1または2に記載の異方性ボンド磁石。
4. The ferrite sintered magnetic powder having substantially a magnetoplumbite type crystal structure, wherein A′O.nFe 2 O 3 (atomic ratio) (A ′ is Sr and
/ Or Ba, and 5.0 ≦ n ≦ 6.4. ) And (A 1−x R ′ x ) On · ([Fe 1− y My ) 2 O 3 ] (atomic ratio) (A is Sr and And / or Ba; R ′ is at least one kind of rare earth element containing Y and always contains at least one kind selected from La, Pr, Nd and Ce;
Is Co or Co and Zn. ), 0.01 ≦ x ≦
3. The anisotropic bonded magnet according to claim 1, comprising sintered ferrite magnetic powder having a main component composition represented by 0.4, 0.005≤y≤0.04, and 5.0≤n≤6.4.
【請求項5】 異方性ボンド磁石に含有される磁粉全体
に占めるR−T−N系磁粉の比率が5〜95重量%であり
かつフェライト焼結磁粉の比率が95〜5重量%である請
求項1乃至4のいずれかに記載の異方性ボンド磁石。
5. The ratio of the RTN-based magnetic powder to the whole magnetic powder contained in the anisotropic bonded magnet is 5 to 95% by weight, and the ratio of the sintered ferrite magnetic powder is 95 to 5% by weight. The anisotropic bonded magnet according to claim 1.
【請求項6】 ラジアル異方性または極異方性を有する
請求項1乃至5のいずれかに記載の異方性ボンド磁石。
6. The anisotropic bonded magnet according to claim 1, which has radial anisotropy or polar anisotropy.
【請求項7】 厚みが0.01〜3mmのシート形状を有す
る請求項1乃至5のいずれかに記載の異方性ボンド磁
石。
7. The anisotropic bonded magnet according to claim 1, which has a sheet shape having a thickness of 0.01 to 3 mm.
【請求項8】 請求項1乃至7のいずれかに記載の異方
性ボンド磁石を用いて構成されることを特徴とする回転
機。
8. A rotating machine comprising the anisotropic bonded magnet according to any one of claims 1 to 7.
【請求項9】 請求項1乃至7のいずれかに記載の異方
性ボンド磁石を用いて構成されることを特徴とするマグ
ネットロール。
9. A magnet roll comprising the anisotropic bonded magnet according to any one of claims 1 to 7.
JP2001273861A 2000-09-12 2001-09-10 Anisotropic bonded magnet, rotating machine, and magnet roll Pending JP2002164206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001273861A JP2002164206A (en) 2000-09-12 2001-09-10 Anisotropic bonded magnet, rotating machine, and magnet roll

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000276861 2000-09-12
JP2000-276861 2000-09-12
JP2001273861A JP2002164206A (en) 2000-09-12 2001-09-10 Anisotropic bonded magnet, rotating machine, and magnet roll

Publications (1)

Publication Number Publication Date
JP2002164206A true JP2002164206A (en) 2002-06-07

Family

ID=26599778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001273861A Pending JP2002164206A (en) 2000-09-12 2001-09-10 Anisotropic bonded magnet, rotating machine, and magnet roll

Country Status (1)

Country Link
JP (1) JP2002164206A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047872A (en) * 2002-07-15 2004-02-12 Matsushita Electric Ind Co Ltd Method for manufacturing rare earth bonded magnet from sheet to film, and its permanent magnet motor
JP2005072553A (en) * 2003-08-05 2005-03-17 Ricoh Co Ltd Magnet compound material, magnet molding, developing magnet roller, developer, process cartridge, and image forming device
JP2009147101A (en) * 2007-12-14 2009-07-02 Nichia Corp Composition for bond magnet and bond magnet using the same
US8021788B2 (en) 2006-05-22 2011-09-20 Lg Chem, Ltd. Secondary battery having electrode for improvement of stability during overcharge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047872A (en) * 2002-07-15 2004-02-12 Matsushita Electric Ind Co Ltd Method for manufacturing rare earth bonded magnet from sheet to film, and its permanent magnet motor
JP2005072553A (en) * 2003-08-05 2005-03-17 Ricoh Co Ltd Magnet compound material, magnet molding, developing magnet roller, developer, process cartridge, and image forming device
JP4491251B2 (en) * 2003-08-05 2010-06-30 株式会社リコー Magnet compound material, magnet molding, developing magnet roller, developing device, process cartridge, and image forming apparatus
US8021788B2 (en) 2006-05-22 2011-09-20 Lg Chem, Ltd. Secondary battery having electrode for improvement of stability during overcharge
JP2009147101A (en) * 2007-12-14 2009-07-02 Nichia Corp Composition for bond magnet and bond magnet using the same

Similar Documents

Publication Publication Date Title
JP4540076B2 (en) Bond magnet, compound, magnet roll, ferrite powder used therefor, and method for producing the same
TWI433433B (en) A bonded magnet and magnetic roll
EP1377691B1 (en) Method of making a rare earth alloy sintered compact
EP1808422A1 (en) Oxide magnetic material and sintered magnet
JP2009188420A (en) Method of manufacturing sintered ferrite magnet
JP2006104050A (en) Oxide magnetic material and sintered magnet
US6537463B2 (en) Resin-bonded magnet, its product, and ferrite magnet powder and compound used therefor
JP2004146713A (en) Manufacturing methods of r-t-n-based magnetic powder and r-t-n-based bond magnet
JP3262109B2 (en) Magnet powder and method for producing the same
JP2000357606A (en) Compound isotropic bonded magnet and rotary machine using the magnet
JP2002164206A (en) Anisotropic bonded magnet, rotating machine, and magnet roll
JP2001052912A (en) Ferrite magnet material, sintered magnet and bonded magnet
JP3835729B2 (en) Ferrite sintered magnet and manufacturing method thereof
JP2002164205A (en) Composite bonded magnet, rotating machine, and magnet roll
JP2006203260A (en) Ferrite magnet
JP2002164204A (en) Anisotropic bonded magnet, rotating machine, and magnet roll
JP2002110408A (en) Magnet roll
JP3682850B2 (en) Rotating machine
JP2003282313A (en) Bonded magnet ferrite magnetic powder, compound, and the bonded magnet
JP2003133120A (en) Bonded magnet and its manufacturing method
JP3652751B2 (en) Anisotropic bonded magnet
JP6988563B2 (en) Ferrite sintered magnets and rotating machines
JP2001093714A (en) Composite anisotropic bonded magnet
JP2000260614A (en) Composite anisotropic bonded magnet
JP2002217010A (en) Anisotropic magnetic powder improved in magnetization factor and anisotropic bonded magnet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050609