JP2002164205A - Composite bonded magnet, rotating machine, and magnet roll - Google Patents

Composite bonded magnet, rotating machine, and magnet roll

Info

Publication number
JP2002164205A
JP2002164205A JP2001273860A JP2001273860A JP2002164205A JP 2002164205 A JP2002164205 A JP 2002164205A JP 2001273860 A JP2001273860 A JP 2001273860A JP 2001273860 A JP2001273860 A JP 2001273860A JP 2002164205 A JP2002164205 A JP 2002164205A
Authority
JP
Japan
Prior art keywords
magnetic powder
bonded magnet
weight
magnet
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001273860A
Other languages
Japanese (ja)
Inventor
Masahiro Tobise
飛世  正博
Katsunori Iwasaki
克典 岩崎
Yasunobu Ogata
安伸 緒方
Yutaka Kubota
裕 久保田
Takashi Takami
崇 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001273860A priority Critical patent/JP2002164205A/en
Publication of JP2002164205A publication Critical patent/JP2002164205A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Abstract

PROBLEM TO BE SOLVED: To provide a new high-performance composite bonded magnet, which has higher maximum energy product (BH)max than that of the conventional anisotropic sintered ferrite magnet, and is improved in magnetization or heat resistance. SOLUTION: This composite bonded magnet is composed substantially of R-T-B-based magnetic powder, containing an R2T14B intermetallic compound (where R and T respectively denote at least one kind of rare-earth element including Y and Fe or Fe and Co) as a main phase and has a mean crystal grain diameter of 0.01-0.5 μm, and is a sintered ferrite magnetic powder substantially having a magnetoplumbite type crystal structure, and a binder which binds the two kinds of magnetic powder to each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、広範囲な磁石応用
製品分野、例えば自動車用または電気機器用等の各種回
転機、電子写真や静電記録等において現像ロール用に使
用するマグネットロール、音響用スピーカ、ブザー、あ
るいは吸着または磁界発生用磁石等に有用であり、従来
の異方性フェライト焼結磁石を超える最大エネルギー積
(BH)maxを有し、さらに着磁性または耐熱性を向上した
新規高性能の複合型ボンド磁石に関する。また本発明
は、前記新規高性能の複合型ボンド磁石を用いて構成さ
れる高性能の回転機およびマグネットロールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wide range of magnet-applied product fields, for example, various rotating machines for automobiles or electric equipment, magnet rolls used for developing rolls in electrophotography and electrostatic recording, etc. Useful for loudspeakers, buzzers, magnets for attracting or generating magnetic fields, etc.
The present invention relates to a novel high-performance composite bonded magnet having (BH) max and further improved magnetizability or heat resistance. The present invention also relates to a high-performance rotating machine and a magnet roll configured using the novel high-performance composite bonded magnet.

【0002】[0002]

【従来の技術】近年、着磁性が悪くかつ耐熱性の尺度で
ある例えばパーミアンス係数:Pc=1〜2(Pc=Bd/(−
Hd))で定義され、Bd,HdはB−H減磁曲線上の動作点
におけるB値およびH値である。)で評価した不可逆減
磁率が大きいNdFe14B金属間化合物を主相とす
る磁粉を用いたNd−Fe−B系ボンド磁石は最近の磁
石応用製品の小型化、高性能化の過酷なニーズに対し耐
熱性および着磁性が十分ではなく、改良が望まれてい
る。
2. Description of the Related Art In recent years, poor magnetization and a measure of heat resistance, for example, a permeance coefficient: Pc = 1 to 2 (Pc = Bd / (−
Hd)), where Bd and Hd are the B and H values at the operating point on the BH demagnetization curve. Nd-Fe-B-based bonded magnets using magnetic powder having a main phase of Nd 2 Fe 14 B intermetallic compound having a large irreversible demagnetization rate evaluated in) are severe in recent miniaturization and high performance of magnet application products. Heat resistance and magnetization are not sufficient for the needs, and improvements are desired.

【0003】国際公開;WO98/38654には、六方晶構造を
有するフェライトを主相とし、かつSr,Ba,Caお
よびPbから選択される少なくとも1種の元素であっ
て、Srを必ず含むものをAとし、希土類元素(Yを含
む)およびBiから選択される少なくとも1種の元素で
あってLaを必ず含むものをRとし、Coであるか、C
oおよびZnをMとしたとき、A,R,FeおよびMそ
れぞれの金属元素の総計の構成比率が、全金属元素量に
対し、A:1〜13原子%、R:0.05〜10原子%、Fe:
80〜95原子%、M:0.1〜5原子%である組成を有する
酸化物磁性材料を含有するフェライト粒子を用いたボン
ド磁石が記載されている。具体例として、Sr0.7
0.3Fe 2−7Co0.319(仮焼前にSi
を0.2重量%、CaCOを0.15重量%添加。)の
組成の仮焼体を乾式振動ミルで粉砕後、大気中で1000℃
×5分間アニールし、得られたボンド磁石用フェライト
粉末の固有保磁力iHcが343.0kA/m(4.31kOe)である旨
の記載がある。しかし、このフェライト粉末をバインダ
ーで結着して作製した異方性ボンド磁石の(BH)maxは異
方性フェライト焼結磁石未満である。
[0003] International Publication WO98 / 38654 discloses that at least one element selected from Sr, Ba, Ca and Pb, which contains a ferrite having a hexagonal structure as a main phase, and which always contains Sr. A, R is at least one element selected from rare earth elements (including Y) and Bi and always contains La, and is Co or C
When o and Zn are M, the total composition ratio of the metal elements of A, R, Fe and M is A: 1 to 13 at%, R: 0.05 to 10 at%, based on the total metal element amount, Fe:
A bond magnet using ferrite particles containing an oxide magnetic material having a composition of 80 to 95 atomic% and M: 0.1 to 5 atomic% is described. As a specific example, Sr 0.7 L
a 0.3 Fe 1 2-7 Co 0.3 O 19 (Si to calcination before
0.2% by weight of O 2 and 0.15% by weight of CaCO 3 were added. After calcination of the calcined body having the composition of
It is described that the specific coercive force iHc of the obtained ferrite powder for a bonded magnet is 343.0 kA / m (4.31 kOe) after annealing for 5 minutes. However, (BH) max of an anisotropic bonded magnet produced by binding this ferrite powder with a binder is smaller than that of an anisotropic ferrite sintered magnet.

【0004】特開昭60−223095号公報には、ハードフェ
ライト磁粉と希土類コバルト磁粉とバインダーとを所定
比率で配合し、混練し、成形してなり、磁束密度の温度
係数を−0.03〜−0.20%/℃にした、バブルメモリデバ
イス用磁界装置に組み込まれる界磁用ボンド磁石が記載
されている。しかし、この界磁用ボンド磁石は磁束密度
の温度係数を前記範囲に調整したものであり耐熱性およ
び着磁性が悪い。
Japanese Patent Application Laid-Open No. 60-223095 discloses that a hard ferrite magnetic powder, a rare earth cobalt magnetic powder and a binder are blended at a predetermined ratio, kneaded and molded, and the temperature coefficient of magnetic flux density is -0.03 to -0.20. A field magnet bonded to a magnetic field device for a bubble memory device at% / ° C. is described. However, the field magnet has a temperature coefficient of the magnetic flux density adjusted to the above range, and thus has poor heat resistance and poor magnetization.

【0005】[0005]

【発明が解決しようとする課題】したがって、本発明が
解決しようとする課題は、従来の異方性フェライト焼結
磁石を超える最大エネルギー積(BH)maxを有し、さらに
着磁性または耐熱性を向上した新規高性能の複合型ボン
ド磁石を提供することである。また本発明の課題は、前
記新規高性能の複合型ボンド磁石を用いて構成される高
性能の回転機およびマグネットロールを提供することで
ある。
Accordingly, an object to be solved by the present invention is to have a maximum energy product (BH) max exceeding that of the conventional sintered anisotropic ferrite magnet, and to further improve the magnetization or heat resistance. An object of the present invention is to provide an improved new high-performance composite bond magnet. Another object of the present invention is to provide a high-performance rotating machine and a magnet roll constituted by using the novel high-performance composite bond magnet.

【0006】[0006]

【課題を解決するための手段】上記課題を解決した本発
明の複合型ボンド磁石は、R14B金属間化合物
(RはYを含む希土類元素の少なくとも1種であり、T
はFeまたは、FeおよびCoである。)を主相とする
平均結晶粒径が0.01〜0.5μmのR−T−B系磁粉と、
実質的にマグネトプランバイト型結晶構造を有するフェ
ライト焼結磁粉と、前記2種の磁粉を結着するバインダ
ーとから実質的になることを特徴とする。本発明の複合
型ボンド磁石に含有されるR−T−B系磁粉の平均粒径
が1〜1000μmであり、フェライト焼結磁粉の平均粒径
が2〜1000μmでありかつFe2+含有量が0.10重量%
以下のときに高い(BH)maxおよび高いiHcが得られ、着磁
性および耐熱性を向上できる。
The composite type bonded magnet of the present invention which has solved the above-mentioned problems is an R 2 T 14 B intermetallic compound (R is at least one kind of rare earth element containing Y,
Is Fe or Fe and Co. R-T-B-based magnetic powder having an average crystal grain size of 0.01 to 0.5 µm having a main phase of
It is characterized by being substantially composed of a ferrite sintered magnetic powder having a substantially magnetoplumbite type crystal structure and a binder binding the two types of magnetic powder. The average particle size of the RTB-based magnetic powder contained in the composite bond magnet of the present invention is 1 to 1000 μm, the average particle size of the ferrite sintered magnetic powder is 2 to 1000 μm, and the Fe 2+ content is 0.10. weight%
High (BH) max and high iHc can be obtained in the following cases, and the magnetization and heat resistance can be improved.

【0007】また本発明の複合型ボンド磁石が、前記R
−T−N系磁粉と、 (A1−xR’)O・n[(Fe1−y)](原子比率) (AはSrおよび/またはBaであり、R’はYを含む希
土類元素の少なくとも1種でありかつLa,Pr,Nd
およびCeから選択される少なくとも1種を必ず含み、
MはCoまたは、CoおよびZnである。)、0.01≦x
≦0.4,0.005≦y≦0.04,および5.0≦n≦6.4で表され
る主要成分組成を有するフェライト焼結磁粉と、前記2
種の磁粉を結着するバインダーとから実質的になる場合
に高い(BH)max、良好な着磁性および際だって良好な耐
熱性を得られる。
Further, the composite type bonded magnet of the present invention is characterized in that
-TN-based magnetic powder, and (A 1-x R ' x ) On [(Fe 1- y My ) 2 O 3 ] (atomic ratio) (A is Sr and / or Ba and R ′ Is at least one of the rare earth elements containing Y and La, Pr, Nd
And at least one selected from Ce,
M is Co or Co and Zn. ), 0.01 ≦ x
Ferrite sintered magnetic powder having a main component composition represented by ≦ 0.4, 0.005 ≦ y ≦ 0.04, and 5.0 ≦ n ≦ 6.4;
A high (BH) max, good magnetizability and particularly good heat resistance can be obtained when it is substantially composed of a binder that binds the magnetic powder of the species.

【0008】また本発明の複合型ボンド磁石が、前記R
−T−N系磁粉と A’O・nFe(原子比率) (A’はSrおよび/またはBaであり、5.0≦n≦6.4
である。)で表される主要成分組成を有するフェライト
焼結磁粉と、 (A1−xR’)O・n[(Fe1−y)](原子比率) (AはSrおよび/またはBaであり、R’はYを含む希
土類元素の少なくとも1種でありかつLa,Pr,Nd
およびCeから選択される少なくとも1種を必ず含み、
MはCoまたは、CoおよびZnである。)、0.01≦x
≦0.4,0.005≦y≦0.04,および5.0≦n≦6.4で表され
る主要成分組成を有するフェライト焼結磁粉と、前記2
種の磁粉を結着するバインダーとから実質的になる場
合、着磁性が良好で、実用に耐える耐熱性を有し、安価
な複合型ボンド磁石を得られる。
Further, the composite type bonded magnet of the present invention is characterized in that
-T-N magnet powder and A'O · nFe 2 O 3 (atomic ratio) (A 'is Sr and / or Ba, 5.0 ≦ n ≦ 6.4
It is. ) And (A 1−x R ′ x ) On · ([Fe 1− y My ) 2 O 3 ] (atomic ratio) (A is Sr and And / or Ba, R ′ is at least one rare earth element including Y, and La, Pr, Nd
And at least one selected from Ce,
M is Co or Co and Zn. ), 0.01 ≦ x
Ferrite sintered magnetic powder having a main component composition represented by ≦ 0.4, 0.005 ≦ y ≦ 0.04, and 5.0 ≦ n ≦ 6.4;
When it is substantially composed of a binder that binds various magnetic powders, it is possible to obtain an inexpensive composite bond magnet that has good magnetizability, has practical heat resistance, and is inexpensive.

【0009】本発明の複合型ボンド磁石はラジアル異方
性または極異方性を有するものが実用性に富む。また、
本発明の複合型ボンド磁石を用いて構成される回転機は
高効率になり、本発明の複合型ボンド磁石を用いて構成
されるマグネットロールを搭載してなる複写機では高精
細画像が得られる。
[0009] The composite type bonded magnet of the present invention has radial anisotropy or polar anisotropy, and thus has high practicality. Also,
The rotating machine constituted by using the composite bond magnet of the present invention has high efficiency, and a high-definition image can be obtained by a copying machine equipped with a magnet roll constituted by using the composite bond magnet of the present invention. .

【0010】[0010]

【発明の実施の形態】本発明に用いるR−T−B系磁粉
(RはYを含む希土類元素の少なくとも1種であり、T
はFeまたは、FeおよびCoである。)には異方性磁
粉と等方性磁粉がある。異方性磁粉は例えば以下のよう
にして製造される。まず、溶製してなるR 14B金
属間化合物を主相とする所定組成のR−T−B系合金を
平均粒径1〜1000μm(Sympatec社製レーザー回折型粒
径分布測定装置:ヘロス・ロードスにより測定。)の粉
末に粉砕する。次いで水素吸蔵および脱水素反応を利用
した熱処理:HDDR(Hydrogenation Disproportionatio
n Desorption Recombination)処理により、R
14B金属間化合物を主相とする、配向した、平均再結
晶粒径が0.01〜0.5μmの微細結晶粒の集合体からなる異
方性ボンド磁石用R−T−B合金粉末を得る。平均再結
晶粒径が0.01μmのものは工業生産上製造が困難であり
0.5μm超ではiHc,(BH)maxが大きく低下する。このR
−T−B系異方性磁粉の主要成分組成は、有用な磁気特
性を有するために、重量%で、R:25〜35%,B:0.5
〜1.5%,Coが20%以下(より好ましくは3〜20%)およ
び残部Feとするのが好ましく、その他不可壁的不純物の
含有が許容される。また必要に応じて耐熱性や耐食性を
高めるために、Tの一部をGa,Zr,Nb,Hf,T
a,Al,SiおよびVの群から選択される少なくとも
1種で置換するのが好ましく、その置換量は異方性R−
T−B系磁粉の単位重量あたり0.05〜5重量%とするの
が好ましい。等方性磁粉は例えば以下のようにして製造
される。まず、R14B金属間化合物(RはYを含
む希土類元素の少なくとも1種であり、TはFeまた
は、FeおよびCoである。)を主相とする組成に調整
したR−T−B系合金の溶湯を超急冷し、実質的に非晶
質の薄片を作製する。次いでArガス雰囲気中の550〜8
00℃で熱処理し、平均結晶粒径を0.01〜0.5μmに調整
する。平均結晶粒径が0.01μmのものは工業生産上製造
が困難であり0.5μm超ではiHc,(BH)maxが大きく低下
する。次いで平均粒径1〜1000μm(ヘロス・ロードス
により測定。)の粉末に粉砕し、等方性磁粉とする。等
方性磁粉の主要成分組成は、有用な磁気特性を有するた
めに、重量%で、R:25〜35%,B:0.5〜1.5%,Coが
20%以下(より好ましくは3〜20%)および残部Feとす
るのが好ましく、その他不可壁的不純物を含有するのが
許容される。必要に応じて耐熱性や耐食性を高めるため
に、Tの一部をGa,Zr,Nb,W,Mo,Cu,H
f,Ta,Al,Si,およびVの群から選択される少
なくとも1種で置換するのが好ましく、その置換量は等
方性R−T−B系磁粉の単位重量あたり0.05〜5重量%
とするのが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS RTB-based magnetic powder used in the present invention
(R is at least one rare earth element including Y;
Is Fe or Fe and Co. ) Is anisotropic magnetic
There are powder and isotropic magnetic powder. Anisotropic magnetic powder is, for example, as follows
Manufactured. First, R2T 14B gold
An RTB-based alloy having a predetermined composition containing an intergeneric compound as a main phase
Average particle size 1-1000μm (Sympatec laser diffraction type particles
Diameter distribution measuring device: Measured by Heros Rhodes. ) Powder
Crush to the end. Then use hydrogen storage and dehydrogenation
Heat treatment: HDR (Hydrogenation Disproportionatio)
n Desorption Recombination)2T
14Oriented, average re-consolidation with B intermetallic compound as main phase
An aggregate composed of aggregates of fine crystal grains with a crystal grain size of 0.01 to 0.5 μm
An RTB alloy powder for an isotropic bonded magnet is obtained. Average reunion
Those with a crystal grain size of 0.01 μm are difficult to manufacture due to industrial production.
If it exceeds 0.5 μm, iHc and (BH) max significantly decrease. This R
The main component composition of the -TB based anisotropic magnetic powder is
R: 25-35%, B: 0.5% by weight to have properties
1.5%, Co 20% or less (more preferably 3-20%) and
And the remainder is preferably Fe.
Inclusion is acceptable. Also, if necessary, heat resistance and corrosion resistance
To increase T, Ga, Zr, Nb, Hf, T
at least selected from the group of a, Al, Si and V
It is preferable to substitute with one kind.
0.05 to 5% by weight per unit weight of TB magnetic powder
Is preferred. Isotropic magnetic powder is manufactured, for example, as follows
Is done. First, R2T14B intermetallic compound (R includes Y
At least one of the following rare earth elements, T is Fe or
Is Fe and Co. ) Is adjusted to the main phase composition
Rapidly quenched molten RTB-based alloy, substantially amorphous
Make quality flakes. Next, 550-8 in Ar gas atmosphere
Heat treated at 00 ° C and adjust average grain size to 0.01-0.5μm
I do. Those with an average crystal grain size of 0.01 μm are manufactured for industrial production
Is difficult, iHc and (BH) max are greatly reduced when the thickness exceeds 0.5 μm.
I do. Next, the average particle size is 1 to 1000 μm (Heros Rhodes
Measured by ) To obtain isotropic magnetic powder. etc
The main component composition of the isotropic magnetic powder has useful magnetic properties.
In terms of weight percent, R: 25-35%, B: 0.5-1.5%, Co
20% or less (more preferably 3 to 20%) and the balance Fe
And preferably contains other irreversible impurities.
Permissible. To increase heat resistance and corrosion resistance as needed
And part of T is Ga, Zr, Nb, W, Mo, Cu, H
f, Ta, Al, Si, and V
It is preferable to substitute at least one kind,
0.05 to 5% by weight per unit weight of isotropic RTB-based magnetic powder
It is preferred that

【0011】本発明の複合型ボンド磁石に用いるフェラ
イト焼結磁粉について以下に説明する。好適なフェライ
ト焼結磁粉は実質的にマグネトプランバイト型結晶構造
を有する。実質的にマグネトプランバイト型結晶構造を
有するとはマグネトプランバイト型結晶構造相を主相と
するものを包含し、磁気特性発現相がマグネトプランバ
イト型結晶構造相のみからなる場合が好ましい。
The sintered ferrite powder used for the composite bonded magnet of the present invention will be described below. Suitable sintered ferrite powders have a substantially magnetoplumbite-type crystal structure. Substantially having a magnetoplumbite-type crystal structure includes a phase having a magnetoplumbite-type crystal structure phase as a main phase, and it is preferable that the magnetic property manifesting phase comprises only the magnetoplumbite-type crystal structure phase.

【0012】主要成分組成が、 (A1−xR’)O・n[(Fe1−y)](原子比率) (AはSrおよび/またはBaであり、R’はYを含む希
土類元素の少なくとも1種であってLa,Pr,Ndお
よびCeから選択される少なくとも1種を必ず含み、M
はCoまたは、CoおよびZnである。)、0.01≦x≦
0.4,0.005≦y≦0.04,および5.0≦n≦6.4で表され、
実質的にマグネトプランバイト型結晶構造を有するフェ
ライト焼結磁粉の組成限定理由を以下に説明する。n
(モル比)は5.0〜6.4が好ましく、5.6〜6.2がより好ま
しく、5.8〜6.0が特に好ましい。nが6.4超ではマグネ
トプランバイト相以外の異相(α-Fe等)の生成
が顕著になりiHcが大きく低下し、nが5.0未満では(BH)
maxが大きく低下する。xの値は0.01〜0.4が好ましく、
0.1〜0.3がより好ましく、0.15〜0.25が特に好ましい。
xが0.4超では(BH)max,iHcが大きく低下し、xが0.01
未満では添加効果が認められない。R’にはLa,P
r,CeおよびNd以外の希土類元素(Yを含む)を不
可避的に含むことが許容される。R’原料としてLa,
Pr,CeおよびNdから選択される少なくとも2種の
混合希土類酸化物または水酸化物を用いるのが安価であ
り好ましい。飽和磁化を高めるために、R’に占めるL
a,Pr,CeおよびNdから選択される少なくとも1
種の比率を、好ましくは50原子%以上、より好ましくは
70原子%以上、さらに好ましくは95原子%以上とするの
がよい。特に不可避的に混入するR’成分を除いてR’
がLaからなる場合が最も好ましい。本発明の複合型ボ
ンド磁石において、耐熱性を重要視する場合はMとして
Coを選択するのが好ましい。MとしてCoおよびZn
を選択する場合はMに占めるCoの比率を50原子%以上
にするのが好ましく、70原子%以上にするのがより好ま
しく、90原子%以上にするのが特に好ましい。Mに占め
るCoの比率が50原子%未満ではiHcが大きく低下し耐
熱性が劣化する。本発明の複合型ボンド磁石において、
高い残留磁束密度Brおよび(BH)maxを重要視する場合は
MとしてCoおよびZnを選択し、Mに占めるCoの比
率を10〜70原子%とするのが好ましく、15〜50原子%に
するのがより好ましい。Coの比率が10原子%未満では
iHc、(BH)maxが顕著に低下し、70原子%超ではZnによ
るBr、(BH)maxの向上効果が非常に小さくなる。電荷補
償の目的を実現するために、yとxの間には理想的には
y=x/(2.0n)の関係が成り立つ必要があるが、yがx
/(2.6n)以上、x/(1.6n)以下であれば電荷補償による
効果を実質的に損なうことは無く、好ましい。例えばR
=LaでかつM=Coの場合の理想的な電荷補償はLa
3+とCo2+により相殺されるとして扱える。ところ
でyの値がx/(2.0n)からずれた場合、前記異方性フェ
ライト焼結磁粉のマグネトプランバイト相のFeサイト
のFe3+がFe2+になり電荷補償が行われるものと
判断される。さらに後述の実施例1〜3の比較から、過
剰酸素雰囲気中で熱処理するとiHcを顕著に向上できる
とともにFe2+が低減され、複合型ボンド磁石の耐熱
性を向上できるのがわかった。iHc(耐熱性)を高める
ためにFe2+の含有量を0.005〜0.10重量%にするの
が好ましく、0.01〜0.07重量%にするのがより好まし
い。Fe2+の含有量を0.005重量%未満にするのは工
業生産上困難であり、Fe2+の含有量が0.10重量%超
ではiHcの向上効果が小さくなる。典型的な例では、y
の好ましい範囲は0.005〜0.04であり、0.01〜0.03とする
のがより好ましい。前記主要成分組成を有するフェライ
ト焼結磁粉は結晶粒界のR’濃度が結晶粒内のR’濃度
よりも高い傾向が認められる。特にn=5.7〜6.2,x=
0.15〜0.3および1.0<x/2ny≦1.3,より好ましくは
1.05≦x/2ny≦1.25というR’過剰組成、およびC
aO含有量を0.5〜1.5重量%にし、SiO含有量を0.
25〜0.55重量%にしたときに高い(BH)maxおよび高いiHc
が得られ、かつ結晶粒界のR’濃度が結晶粒内のR’濃
度よりも高い傾向が顕著になる。
The main component composition is (A 1−x R ′ x ) On · ([Fe 1− y My ) 2 O 3 ] (atomic ratio) (A is Sr and / or Ba, and R ′ is Is at least one kind of rare earth element containing Y and always contains at least one kind selected from La, Pr, Nd and Ce;
Is Co or Co and Zn. ), 0.01 ≦ x ≦
0.4, 0.005 ≦ y ≦ 0.04 and 5.0 ≦ n ≦ 6.4
The reason for limiting the composition of the sintered ferrite magnetic powder having substantially the magnetoplumbite crystal structure will be described below. n
(Molar ratio) is preferably from 5.0 to 6.4, more preferably from 5.6 to 6.2, and particularly preferably from 5.8 to 6.0. When n exceeds 6.4, the formation of a different phase (such as α-Fe 2 O 3 ) other than the magnetoplumbite phase becomes remarkable, and iHc is greatly reduced. When n is less than 5.0, (BH)
max greatly decreases. The value of x is preferably 0.01 to 0.4,
0.1-0.3 is more preferable, and 0.15-0.25 is particularly preferable.
When x exceeds 0.4, (BH) max and iHc greatly decrease, and x becomes 0.01.
If it is less than the above, no addition effect is observed. R 'is La, P
Rare earth elements (including Y) other than r, Ce and Nd are allowed to be inevitably contained. La as a raw material of R ′,
It is inexpensive and preferable to use at least two kinds of mixed rare earth oxides or hydroxides selected from Pr, Ce and Nd. To increase the saturation magnetization, L occupied by R '
at least one selected from a, Pr, Ce and Nd
The proportion of the species is preferably at least 50 atomic%, more preferably
The content is preferably at least 70 at%, more preferably at least 95 at%. In particular, except for the inevitable R 'component,
Is most preferably La. In the composite bond magnet of the present invention, when importance is attached to heat resistance, it is preferable to select Co as M. Co and Zn as M
Is selected, the proportion of Co in M is preferably at least 50 at%, more preferably at least 70 at%, and particularly preferably at least 90 at%. If the ratio of Co to M is less than 50 atomic%, iHc is greatly reduced and heat resistance is deteriorated. In the composite bond magnet of the present invention,
When importance is placed on high residual magnetic flux density Br and (BH) max, Co and Zn are selected as M, and the ratio of Co in M is preferably 10 to 70 atomic%, more preferably 15 to 50 atomic%. Is more preferred. If the ratio of Co is less than 10 atomic%,
iHc and (BH) max are remarkably reduced, and if it exceeds 70 atomic%, the effect of Zn to improve Br and (BH) max is extremely small. In order to realize the purpose of the charge compensation, ideally, a relationship of y = x / (2.0n) needs to be established between y and x.
It is preferable that the ratio is not less than /(2.6n) and not more than x / (1.6n), since the effect of the charge compensation is not substantially impaired. For example, R
= La and M = Co the ideal charge compensation is La
It can be treated as being canceled by 3+ and Co 2+ . When the value of y deviates from x / (2.0 n), it is determined that the Fe 3+ of the Fe site in the magnetoplumbite phase of the anisotropic ferrite sintered magnetic powder becomes Fe 2+ and the charge compensation is performed. . Further, from a comparison of Examples 1 to 3 described later, it was found that heat treatment in an excess oxygen atmosphere can significantly improve iHc, reduce Fe 2+ , and improve heat resistance of the composite bonded magnet. In order to increase iHc (heat resistance), the content of Fe 2+ is preferably set to 0.005 to 0.10% by weight, more preferably 0.01 to 0.07% by weight. It is difficult for industrial production to reduce the content of Fe 2+ to less than 0.005% by weight, and if the content of Fe 2+ exceeds 0.10% by weight, the effect of improving iHc is reduced. In a typical example, y
Is preferably 0.005 to 0.04, and more preferably 0.01 to 0.03. In the sintered ferrite magnetic powder having the main component composition, the R ′ concentration at the crystal grain boundaries tends to be higher than the R ′ concentration in the crystal grains. In particular, n = 5.7-6.2, x =
0.15 to 0.3 and 1.0 <x / 2ny ≦ 1.3, more preferably
R ′ excess composition of 1.05 ≦ x / 2ny ≦ 1.25, and C
The aO content to 0.5 to 1.5 wt%, 0 to SiO 2 content.
High (BH) max and high iHc at 25-0.55% by weight
And the tendency that the R ′ concentration in the crystal grain boundaries is higher than the R ′ concentration in the crystal grains becomes remarkable.

【0013】また本発明に用いるフェライト焼結磁粉と
して、 主要成分組成が A’O・nFe(原子比率) (A’はSrおよび/またはBaであり、n(モル比)=
5.0〜6.4である。)で表わされる主要成分のものの実用
性が高い。
The ferrite sintered magnetic powder used in the present invention has a main component composition of A'O.nFe 2 O 3 (atomic ratio) (A 'is Sr and / or Ba, and n (molar ratio) =
5.0 to 6.4. The main components represented by ()) are highly practical.

【0014】従来の異方性フェライト焼結磁石を超える
(BH)maxを有するために、主要成分組成が(A1−xR’
)O・n[(Fe1−y)](原子比率)の
フェライト焼結磁粉と主要成分組成がA’O・nFe
(原子比率)のフェライト焼結磁粉とを50〜100:5
0〜0の重量比率で混合し、複合型ボンド磁石用磁粉と
するのが好ましい。両者を混合して用いるメリットは
A’O・nFe磁粉が(A1−xR’)O・n
[(Fe1−y)]磁粉に比べて(BH)max,iHc
は低いが安価なことである。
Beyond conventional anisotropic ferrite sintered magnets
In order to have (BH) max, the main component composition is (A 1-x R ′)
x ) On [n ((Fe 1-y M y ) 2 O 3 ] (atomic ratio) ferrite sintered magnetic powder and a main component composition of A′O.nFe 2
O 3 and sintered ferrite magnetic powder (atomic ratio) of 50 to 100: 5
It is preferable to mix them in a weight ratio of 0 to 0 to obtain a composite type magnetic powder for bonded magnets. The advantages of using them in a mixture A'O · nFe 2 O 3 magnetic powder (A 1-x R 'x ) O · n
[(Fe 1-y M y ) 2 O 3] compared to the magnetic powder (BH) max, iHc
Is low but cheap.

【0015】前記フェライト焼結磁粉の平均粒径は2〜
1000μm(ヘロス・ロードスにより測定。)とするのが
好ましく、10μm超300μm以下とするのがより好まし
く、30〜100μmとするのが特に好ましい。平均粒径が
2μm未満では充填密度の低下が顕著になり(BH)maxが
大きく低下し、平均粒径が1000μm超では複合型ボンド
磁石の表面状態が悪化し磁気ギャップの狭い用途への適
用が困難な場合を生じる。本発明に用いる異方性フェラ
イト焼結磁粉の製造は、「原料粉の混合→仮焼によるフ
ェライト化(固相反応)→粉砕→磁場中成形→焼結→粉
砕→熱処理→解砕」という製造工程によるのが実用的で
ある。あるいは「原料粉の混合→仮焼によるフェライト
化(固相反応)→粉砕→磁場中成形→粉砕→焼結→熱処
理→解砕」という製造工程も有用である。後者の製造工
程では成形体を平均粒径2〜1000μmに粉砕し、焼結す
る。「解砕」は熱処理後の凝集状態を解いて磁場配向性
を高めるために行う処理で、凝集が軽度の場合は「解
砕」を省略してもよい。仮焼条件は1150〜1300℃×1〜
5時間とするのが好ましい。仮焼条件が1150℃×1時間
未満ではフェライト化が不十分になり、1300℃×5時間
超では仮焼物が硬くなり粉砕性が劣化する。公知の粉砕
機を任意に組合せて粗粉砕および微粉砕を行う。乾式ま
たは湿式のアトライタ、ボールミル、あるいは振動ミル
等を用いるのが実用的である。複合型ボンド磁石のiHc
および(BH)maxを高めるために微粉砕紛の平均粒径を0.4
〜0.9μm(空気透過法により測定。)とするのが好ま
しく、0.6〜0.8μmにするのがより好ましい。この微粉
砕平均粒径にすることにより最終的に得られる異方性フ
ェライト焼結磁粉のc軸方向の平均結晶粒径を2μm以
下、好ましくは1μm以下にできる。次に湿式磁場中成
形または乾式磁場中成形を行う。磁場中成形は室温で39
7.9〜1193.7kA/m(5〜15kOe)の磁場を印加しつつ、0.35
〜0.45トン/cm2程度の成形圧力で行うのが好ましい。この
ようにして得られる成形体の密度は2.6〜3.2Mg/m3(g/cm
3)程度である。次に成形体を1180〜1230℃×1〜5時間
焼結する。焼結条件が1180℃×1時間未満では焼結体の
密度が十分に上がらず(BH)maxが低くなり、1230℃×5
時間超では結晶粒が粗大化してiHcの低下が顕著にな
る。次に必要に応じて焼結体を粉砕し、次いで篩分また
は風力分級し粒径分布および平均粒径を所定値に調整す
る。次に熱処理を行う。大気中熱処理でもiHcを高める
ことができるが、好ましくは酸素分圧(PO2)を0.02MPa
(0.2atm)超、より好ましくは0.03MPa(0.3atm)以上、
特に好ましくは0.05〜0.1MPa(0.5〜1atm)に調整した
過剰酸素雰囲気中で750〜950℃×0.5〜5時間熱処理す
るのがよい。酸素分圧が0.02MPa以下ではiHcの向上およ
びFe2+の低減が十分ではなく、酸素分圧が0.1MPa超
では熱処理の効果が飽和する。熱処理の加熱条件が750
℃×0.5時間未満ではiHcが事実上向上できず、950℃×
5時間超ではフェライト磁粉の凝集が顕著になりiHc、
(BH)maxが顕著に低下する。前記異方性フェライト焼結
磁粉が適量のSiOおよびCaOを含有する場合に緻
密な焼結体組織になり、有用な磁気特性が得られる。S
iOは焼結時の結晶粒成長を抑制する添加物であり、
含有量は重量%で0.05〜0.55%が好ましく、0.25〜0.55
%がより好ましい。SiO含有量が0.05%未満では焼
結時の不均一結晶粒成長が顕著になり、iHcが劣化し、
0.55%を超えると結晶粒成長が過度に抑制され、結晶粒
成長とともに進行する配向度の改善が不十分となりBr、
(BH)maxが大きく低下する。一方CaOは結晶粒成長を
促進する元素であり、CaO含有量は重量%で0.35〜1.
5%が好ましく、0.4〜1.2%がより好ましく、0.5〜1.0
%が特に好ましい。CaO含有量が1.5%を超えると焼
結時に結晶粒成長が過度に進行してiHcが大きく低下
し、0.35%未満では有用な添加効果が得られず、配向度
の改善が不十分となりBr、(BH)maxが劣化する。前記フ
ェライト焼結磁粉の室温におけるiHcを278.5kA/m(3.5k
Oe)以上、好ましくは358.1kA/m(4.5kOe)以上、特に
好ましくは437.7kA/m(5.5kOe)以上にするために、A
l含有量およびCr含有量の合計を(Al+Cr
)換算で0.1〜1重量%にするのが好ましく、0.2
〜0.5重量%とするのがより好ましい。この含有量未満
では添加効果が事実上得られず、この含有量を超えると
従来のボンド磁石用フェライト磁粉に対する優位性が消
失する。
The average particle diameter of the ferrite sintered magnetic powder is 2 to 2.
The thickness is preferably 1000 µm (measured by Herros Rhodes), more preferably more than 10 µm and 300 µm or less, particularly preferably 30 to 100 µm. If the average particle size is less than 2 μm, the packing density will decrease significantly and (BH) max will decrease significantly. If the average particle size exceeds 1000 μm, the surface condition of the composite bonded magnet will deteriorate, making it applicable to applications with narrow magnetic gaps. A difficult case arises. The production of the sintered anisotropic ferrite magnetic powder used in the present invention is a production of “mixing of raw material powder → ferrite formation by calcination (solid phase reaction) → pulverization → molding in a magnetic field → sintering → pulverization → heat treatment → crushing”. It is practical to use a process. Alternatively, a manufacturing process of “mixing of raw material powder → ferrite formation by calcination (solid phase reaction) → pulverization → molding in a magnetic field → pulverization → sintering → heat treatment → crushing” is also useful. In the latter manufacturing process, the compact is pulverized to an average particle size of 2 to 1000 μm and sintered. “Crushing” is a process performed to improve the magnetic field orientation by dissolving the aggregation state after the heat treatment. If the aggregation is mild, “crushing” may be omitted. The calcination conditions are 1150-1300 ° C x 1
Preferably, it is 5 hours. If the calcination conditions are less than 1150 ° C. × 1 hour, ferrite formation will be insufficient, and if it exceeds 1300 ° C. × 5 hours, the calcined material will be hard and the pulverizability will deteriorate. Coarse pulverization and fine pulverization are performed by arbitrarily combining known pulverizers. It is practical to use a dry or wet type attritor, ball mill, vibrating mill or the like. Composite type bonded magnet iHc
And to increase the (BH) max the average particle size of the finely ground powder is 0.4
To 0.9 μm (measured by an air permeation method), more preferably 0.6 to 0.8 μm. The average crystal grain size in the c-axis direction of the finally obtained anisotropic ferrite sintered magnetic powder can be made to be 2 μm or less, preferably 1 μm or less by making the finely pulverized average particle diameter. Next, molding in a wet magnetic field or molding in a dry magnetic field is performed. Molding in a magnetic field at room temperature 39
While applying a magnetic field of 7.9 to 1193.7 kA / m (5 to 15 kOe), 0.35
It is preferable to carry out at a molding pressure of about 0.45 ton / cm 2 . The density of the molded body thus obtained is 2.6 to 3.2 Mg / m 3 (g / cm
3 ) about. Next, the compact is sintered at 1180 to 1230 ° C. for 1 to 5 hours. If the sintering condition is less than 1180 ° C. × 1 hour, the density of the sintered body does not increase sufficiently and the (BH) max decreases, and
If the time is exceeded, the crystal grains become coarse and the decrease in iHc becomes remarkable. Next, if necessary, the sintered body is pulverized, and then sieved or air-classified to adjust the particle size distribution and the average particle size to predetermined values. Next, heat treatment is performed. Although iHc can be increased by air heat treatment, the oxygen partial pressure (PO 2 ) is preferably 0.02 MPa
(0.2atm) or more, more preferably 0.03MPa (0.3atm) or more,
Particularly preferably, heat treatment is performed at 750 to 950 ° C. for 0.5 to 5 hours in an excess oxygen atmosphere adjusted to 0.05 to 0.1 MPa (0.5 to 1 atm). When the oxygen partial pressure is 0.02 MPa or less, the improvement of iHc and the reduction of Fe 2+ are not sufficient, and when the oxygen partial pressure exceeds 0.1 MPa, the effect of the heat treatment is saturated. Heating condition of heat treatment is 750
If it is less than 0.5 ° C x 0.5 hours, iHc cannot be improved practically, and 950 ° C x
If it exceeds 5 hours, the aggregation of ferrite magnetic powder becomes remarkable and iHc,
(BH) max significantly decreases. When the anisotropic ferrite sintered magnetic powder contains an appropriate amount of SiO 2 and CaO, a dense sintered body structure is obtained, and useful magnetic properties are obtained. S
iO 2 is an additive that suppresses crystal grain growth during sintering,
The content is preferably 0.05 to 0.55% by weight, and 0.25 to 0.55%.
% Is more preferred. If the SiO 2 content is less than 0.05%, uneven crystal grain growth during sintering becomes remarkable, iHc deteriorates,
If it exceeds 0.55%, the growth of crystal grains is excessively suppressed, and the improvement of the degree of orientation that proceeds with the growth of crystal grains becomes insufficient, so that Br,
(BH) max is greatly reduced. On the other hand, CaO is an element that promotes crystal grain growth, and the CaO content is 0.35 to 1.
5% is preferred, 0.4-1.2% is more preferred, 0.5-1.0
% Is particularly preferred. If the CaO content exceeds 1.5%, the crystal grain growth proceeds excessively during sintering, and iHc is greatly reduced. If the CaO content is less than 0.35%, a useful addition effect cannot be obtained, and the degree of orientation is insufficiently improved. (BH) max deteriorates. The iHc of the sintered ferrite magnetic powder at room temperature was 278.5 kA / m (3.5 kA / m).
Oe) or more, preferably 358.1 kA / m (4.5 kOe) or more, particularly preferably 437.7 kA / m (5.5 kOe) or more.
l content and the total Cr content as (Al 2 O 3 + Cr
It is preferably 0.1 to 1% by weight in terms of 2 O 3 ),
More preferably, it is set to 0.5% by weight. When the content is less than this content, the effect of addition is practically not obtained. When the content is more than this content, the superiority to the conventional ferrite magnetic powder for bonded magnets is lost.

【0016】異方性複合型ボンド磁石を構成するR−T
−B系磁粉とフェライト焼結磁粉との配合重量比率は、
5〜95:95〜5とするのが好ましく、20〜80:80〜20と
するのがより好ましい。また等方性複合型ボンド磁石を
構成するR−T−B系磁粉とフェライト焼結磁粉の配合
重量比率は、50〜95:50〜5とするのが好ましく、60〜
90:40〜10とするのがより好ましい。これらの配合比率
を外れると異方性フェライト焼結磁石を超える(BH)max
を有し、かつ着磁性または耐熱性を向上するのが困難に
なる。
RT Constituting Anisotropic Composite Bonded Magnet
-The compounding weight ratio between the B-based magnetic powder and the ferrite sintered magnetic powder is as follows:
The ratio is preferably from 5 to 95:95 to 5, more preferably from 20 to 80:80 to 20. The compounding weight ratio of the RTB-based magnetic powder and the ferrite sintered magnetic powder constituting the isotropic composite-type bonded magnet is preferably 50 to 95:50 to 5, more preferably 60 to 95.
90:40 to 10 is more preferable. Beyond these compounding ratios exceed the anisotropic ferrite sintered magnet (BH) max
And it is difficult to improve the magnetization or heat resistance.

【0017】コンパウンドを構成するバインダーとして
公知の熱硬化性樹脂、熱可塑性樹脂またはゴム材料を用
いるのが実用的である。特にバインダーの粘性の低いも
のを選定するのが159.2〜795.8kA/m(2〜10kOe)、好
ましくは238.7〜477.5kA/m(3〜6kOe)という実用的
な強度の配向磁場を印加して得られる異方性ボンド磁石
の(BH)maxを高めるために好ましい。成形法として磁場
中圧縮成形法、磁場中押出成形法または磁場中射出成形
法を採用するのが実用性に富む。あるいはコンパウンド
を80〜300℃に加熱し、次いで平均間隔を0.01〜3mm
に調整した双ロールの間隙に通してシート状に圧延す
る。次に得られたシートを前記加熱状態に保持しつつシ
ートの所定部分の厚み方向に沿って159.2〜795.8kA/m
(2〜10kOe)の配向磁場を印加して異方性を付与し、
次いで冷却する。この操作をシートの全長にわたり行っ
て異方性のシート状ボンド磁石を作製できる。加熱温度
が80℃未満では成形性が悪く、異方性を付与するのが困
難であり、300℃超ではバインダーの熱分解を生じて(B
H)maxが大きく低下する。
It is practical to use a known thermosetting resin, thermoplastic resin or rubber material as a binder constituting the compound. Particularly, a binder having a low viscosity is selected by applying an orientation magnetic field having a practical strength of 159.2 to 795.8 kA / m (2 to 10 kOe), preferably 238.7 to 477.5 kA / m (3 to 6 kOe). It is preferable to increase (BH) max of the anisotropic bonded magnet to be obtained. It is practical to employ a compression molding method in a magnetic field, an extrusion molding method in a magnetic field, or an injection molding method in a magnetic field as a molding method. Alternatively, heat the compound to 80-300 ° C. and then adjust the average spacing to 0.01-3 mm
Rolled into a sheet through the gap between the twin rolls adjusted to the above. Next, while maintaining the obtained sheet in the heated state, 159.2 to 795.8 kA / m along the thickness direction of a predetermined portion of the sheet.
(2-10 kOe) to give anisotropy by applying an orientation magnetic field,
Then cool. By performing this operation over the entire length of the sheet, an anisotropic sheet-like bonded magnet can be produced. If the heating temperature is lower than 80 ° C, the moldability is poor and it is difficult to impart anisotropy.If the heating temperature is higher than 300 ° C, thermal decomposition of the binder occurs (B
H) max is greatly reduced.

【0018】本発明の複合型ボンド磁石の形状、寸法は
特に限定されないが、外径:5〜60mm、(外径−内
径)/2で定義する肉厚:0.3〜3mm、軸方向長さ:0.
3〜50mmのリング状の成形体(好ましくはラジアル異
方性あるいは極異方性を有するもの。)が実用性に富
む。マグネットロール用途のラジアル異方性あるいは極
異方性を有する異方性ボンド磁石の形状、寸法は特に限
定されないが、外径:10〜60mm、軸方向長さ:200〜3
50mm、および(長さ/外径)≧5の円筒状に形成する
のが実用性に富む。小型の複写機やプリンターの用途に
は外径:10〜30mm、特に外径:10〜20mmでかつ(軸
方向長さ/外径)≧5の小径とするのが好ましい。
The shape and dimensions of the composite bonded magnet of the present invention are not particularly limited, but the outer diameter is 5 to 60 mm, the thickness defined by (outer diameter−inner diameter) / 2 is 0.3 to 3 mm, and the axial length is: 0.
A ring-shaped molded product of 3 to 50 mm (preferably one having radial or polar anisotropy) is rich in practicality. The shape and dimensions of the anisotropic bonded magnet having radial or polar anisotropy for magnet roll use are not particularly limited, but the outer diameter is 10 to 60 mm, and the axial length is 200 to 3
Forming into a cylindrical shape with a length of 50 mm and (length / outer diameter) ≧ 5 is rich in practicality. For use in small copiers and printers, the outer diameter is preferably 10 to 30 mm, particularly 10 to 20 mm, and a small diameter of (axial length / outer diameter) ≧ 5 is preferred.

【0019】[0019]

【発明の実施の形態】以下、実施例により本発明を詳し
く説明するが、それら実施例により本発明が限定される
ものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0020】(実施例1) [異方性R−T−B系磁粉]NdFe14B金属間化
合物を主相とする組成に調整した合金溶湯を所定の鋳型
に鋳造した。得られた合金塊をアルゴンガス雰囲気中で
1100℃で20時間均質化処理し、HDDR処理用試料とした。
HDDR処理用熱処理炉として640リットル/分の排気能力を有す
るロータリーポンプを装備した炉を使用し、HDDR処理用
試料2kgを入炉し、次いで水素を室温で十分吸蔵させ
た。次いで0.1MPa(1atm)の水素雰囲気を保ちながら10
℃/分の昇温速度で840℃まで加熱した。続いて同温度で
3時間保持後、45分間脱水素処理した。脱水素終了後炉
内をアルゴン雰囲気に置換し室温まで冷却した。得られ
た試料を粉砕し、平均粒径が150μm(ヘロス・ロードス
により測定。)、平均再結晶粒径が0.09μmのNd
(Fe,Co)14B再結晶粒から実質的になり、主
要成分組成が原子%でNd12.5Febal.Co
1.66.0Ga1.0の異方性磁粉を得た。 [過剰酸素雰囲気中で熱処理したSrLaCo系異方性フェラ
イト焼結磁粉]SrCO粉末(不純物としてBa,C
aを含む),α−Fe粉末,La粉末及び
Co粉末を用いて、仮焼後にSr0.80La
0.20Fe11.70Co0.2018.85で表
される主要成分組成になるように配合した。次いで前記
配合物に対し重量比でSiO粉末およびCaCO
末をそれぞれ0.25重量%および0.20重量%配合し、混合
した。次いで1300℃で2時間、大気中で仮焼した。得られ
た仮焼物を粗砕後、ローラーミルで乾式粗粉砕し粗粉を
得た。次いで、アトライターにより湿式微粉砕し、平均粒
径0.6μm(空気透過法による。)の微粉砕粉を含むス
ラリーを得た。微粉砕初期に焼結助剤としてSrCO
粉末,SiO粉末,CaCO粉末,Al 粉末
およびLa粉末を微粉砕に投入した粗粉の総重量
に対し重量%でそれぞれ0.25%,0.40%,0.80%,0.25
%および0.60%添加した。得られた微粉砕スラリーによ
り795.8kA/m(10kOe)の磁場中で圧縮成形し、成形体を得
た。次いで成形体を大気雰囲気中で1200℃×2時間焼結
し、La/Co=1.2(La過剰組成)とした下記組成の
異方性フェライト焼結磁石を得た。 (Sr0.77La0.23)O・5.72[(Fe
0.983Co0.017 ] SiO含有量:0.40重量%,CaO含有量:0.57重量
%,(Al+Cr)に換算した(Al+C
r)含有量:0.32重量% 得られた焼結体を粗砕後、ローラーミルで乾式粗粉砕し
粗粉を得た。次に、粗粉を150メッシュアンダーに篩分
した。次に篩分粉末を酸素分圧:PO=0.1MPa(1at
m)の過剰酸素雰囲気中で890℃×2時間熱処理し、次い
で室温まで冷却した。次に水中に前記熱処理済み粉末を
浸漬し、次いで浸漬物を80℃に加熱して水分を蒸発させ
た。こうして得られた異方性フェライト焼結磁粉(以
後、SrLaCo系フェライト焼結磁粉-1という。)の平均粒
径は55.4μm(ヘロス・ロードスによる。)であった。
SrLaCo系フェライト焼結磁粉-1の単位重量あたりのFe
2+含有量を分析した結果0.05重量%であり、他の含有
Feは全てFe3+であった。 [異方性ボンド磁石]作製した異方性R−T−B系磁粉
とSrLaCo系フェライト焼結磁粉-1とを重量比:80/20で
攪拌機中に投入し混合した。次いで、前記混合磁粉:10
0重量部、液状エポキシ樹脂:2.8重量部、硬化剤(DD
S;ジアミノジフェニルスルフォン):0.7重量部、なら
びに有機溶媒としてメチルエチルケトン(沸点79.5
℃):2.8重量部を秤量し、攪拌機中に投入した。次い
で20r.p.m.で20分間撹拌し、スラリー化した。得られた
スラリー(コンパウンド)により、室温において配向磁
場強度:477.5kA/m(6kOe)および成形圧力:784MPa
(8トン/cm)の条件で湿式磁場中圧縮成形した。得ら
れた成形体を85℃で1時間加熱して脱溶媒し、次いで17
0℃で2時間加熱硬化して表1の異方性複合型ボンド磁
石No.1を得た。次に、前記の異方性R−T−B系磁粉と
SrLaCo系フェライト焼結磁粉-1とを50/50および20/80の
重量比でそれぞれ配合した以外はNo.1の場合と同様に
して、表1の異方性複合型ボンド磁石No.2,3を作製
した。次に、実用上の組込み着磁を想定し、No.1〜3
の各ボンド磁石を交流脱磁後、B−Hトレーサーにより
20℃、着磁磁場強度:795.8kA/m(10kOe)で着磁し、iH
c,(BH)maxを測定した。次に、No.1〜3の各ボンド磁
石の着磁性を下記式で定義し、評価した。 (着磁性)=(Br5kOe)/(Br50kOe)×100
(%) Br5kOe:着磁磁場強度が397.9kA/m(5kOe)のとき
のBr値 Br50kOe:着磁磁場強度が3979kA/m(50kOe)のと
きのBr値 次に、No.1〜3の各ボンド磁石を、パーミアンス係数
(Pc)が2;(磁化方向の厚み)/(直径)=0.7に機械
加工した。次いで、20℃において2387.4kA/m(30kOe)で
着磁し総磁束量(Φ)を測定した。次に着磁したNo.1
〜3の各ボンド磁石試料をそれぞれ40℃,45℃,50℃,
55℃,60℃,65℃,70℃,75℃,80℃,85℃,90℃,95
℃,100℃,105℃,110℃,115℃,120℃,125℃,130
℃,135℃および140℃の各温度に1時間加熱後、室温ま
で冷却した。次いで各試料の総磁束量(Φ’)を測定
し、下記式で定義する総磁束量の変化率(不可逆減磁
率)が5%に達する温度で、No.1〜3の耐熱温度を評
価した。 (不可逆減磁率)=(Φ−Φ’)/(Φ)×100(%) 以上の結果を表1に示す。
(Example 1) [Anisotropic RTB-based magnetic powder] Nd2Fe14Intermetallic B
The alloy melt adjusted to the composition with the main phase as
Cast into. The obtained alloy ingot is placed in an argon gas atmosphere.
The sample was homogenized at 1100 ° C. for 20 hours to obtain a sample for HDR treatment.
Exhaust capacity of 640 liter / min as heat treatment furnace for HDDR treatment
For processing HDR using a furnace equipped with a rotary pump
2 kg of sample was introduced into the furnace, and then hydrogen was sufficiently absorbed at room temperature.
Was. Then, while maintaining a hydrogen atmosphere of 0.1 MPa (1 atm), 10
Heated to 840 ° C at a rate of ° C / min. Then at the same temperature
After holding for 3 hours, a dehydrogenation treatment was performed for 45 minutes. Furnace after dehydrogenation
The inside was replaced with an argon atmosphere and cooled to room temperature. Obtained
Crushed sample, the average particle size is 150μm (Heros Rhodes
Measured by ), Nd having an average recrystallized grain size of 0.09 μm
2(Fe, Co)14B consists essentially of recrystallized grains,
The composition of the main components is Nd12.5Febal.Co1
1.6B6.0Ga1.0Was obtained. [SrLaCo anisotropic ferrite heat-treated in excess oxygen atmosphere
Sintered magnetic powder] SrCO3Powder (Ba, C as impurities
a), α-Fe2O3Powder, La2O3Powder and
Co3O4Sr after calcination using powder0.80La
0.20Fe11.70Co0.20O18.85In table
It was blended so as to obtain the main component composition to be obtained. Then said
SiO in weight ratio to the formulation2Powder and CaCO3powder
0.25% by weight and 0.20% by weight of powder are mixed and mixed
did. Next, it was calcined at 1300 ° C. for 2 hours in the air. Obtained
After crushing the calcined product, dry crushing with a roller mill
Obtained. Then, wet pulverization using an attritor
A powder containing finely pulverized powder having a diameter of 0.6 μm (by the air permeation method)
Got a rally. SrCO as sintering aid in the early stage of pulverization3
Powder, SiO2Powder, CaCO3Powder, Al 2O3Powder
And La2O3Total weight of coarse powder charged into fine grinding
0.25%, 0.40%, 0.80%, 0.25%
% And 0.60%. According to the obtained finely pulverized slurry
Compression molding in a magnetic field of 795.8 kA / m (10 kOe) to obtain a compact.
Was. Next, the molded body is sintered at 1200 ° C for 2 hours in the atmosphere.
And the following composition with La / Co = 1.2 (La excess composition)
An anisotropic ferrite sintered magnet was obtained. (Sr0.77La0.23) O ・ 5.72 [(Fe
0.983Co0.017) 2O3] SiO2Content: 0.40% by weight, CaO content: 0.57% by weight
%, (Al2O3+ Cr2O3(Al + C)
r) Content: 0.32% by weight The obtained sintered body was coarsely crushed and then dry coarsely crushed with a roller mill.
A coarse powder was obtained. Next, the coarse powder is sieved to 150 mesh under.
did. Next, the sieving powder is subjected to oxygen partial pressure: PO2= 0.1MPa (1at
m) in an excess oxygen atmosphere at 890 ° C for 2 hours.
And cooled to room temperature. Next, the heat-treated powder is added to water.
Immersion, then heat the immersion to 80 ℃ to evaporate moisture
Was. The thus obtained anisotropic sintered ferrite magnetic powder (hereinafter referred to as
Later, it is referred to as SrLaCo-based ferrite sintered magnetic powder-1. ) Average grain
The diameter was 55.4 μm (according to Heros Rhodes).
Fe per unit weight of SrLaCo-based ferrite sintered magnetic powder-1
2+The content was analyzed to be 0.05% by weight.
Fe is all Fe3+Met. [Anisotropic bonded magnet] Prepared anisotropic RTB-based magnetic powder
And SrLaCo-based ferrite sintered magnetic powder-1 at a weight ratio of 80/20
It was put into a stirrer and mixed. Then, the mixed magnetic powder: 10
0 parts by weight, liquid epoxy resin: 2.8 parts by weight, curing agent (DD
S; diaminodiphenylsulfone): 0.7 parts by weight
And methyl ethyl ketone (boiling point 79.5
° C): 2.8 parts by weight were weighed and charged into a stirrer. Next
And stirred at 20 rpm for 20 minutes to form a slurry. Got
Slurry (compound) allows orientation magnetism at room temperature
Field strength: 477.5 kA / m (6 kOe) and molding pressure: 784 MPa
(8 tons / cm2The compression molding was performed in a wet magnetic field under the conditions of (1). Get
The molded body was heated at 85 ° C. for 1 hour to remove the solvent,
Heat-cured at 0 ° C for 2 hours and anisotropic composite type bond magnet shown in Table 1.
Stone No.1 was obtained. Next, the anisotropic RTB-based magnetic powder
SrLaCo ferrite sintered magnetic powder-1 and 50/50 and 20/80
Same as No. 1 except that they were blended by weight ratio
To produce anisotropic composite bond magnets Nos. 2 and 3 in Table 1.
did. Next, assuming practical built-in magnetization,
After demagnetizing each bond magnet by AC, BH tracer
Magnetized at 20 ° C, magnetizing magnetic field strength: 795.8 kA / m (10 kOe), iH
c, (BH) max was measured. Next, the bond magnets of Nos.
The magnetization of the stone was defined by the following equation and evaluated. (Magnetization) = (Br5kOe) / (Br50kOe) X 100
(%) Br5kOe: When the magnetizing magnetic field strength is 397.9 kA / m (5 kOe)
Br value of Br50kOe: When the magnetizing magnetic field strength is 3979 kA / m (50 kOe)
Next, the permeance coefficient of each of the bonded magnets Nos.
(Pc) is 2; (thickness in magnetization direction) / (diameter) = 0.7 machine
processed. Then at 20 ° C at 2387.4 kA / m (30 kOe)
It was magnetized and the total magnetic flux (Φ) was measured. Next magnetized No.1
Each of the bonded magnet samples Nos. 1 to 3 was taken at 40 ° C, 45 ° C, 50 ° C,
55 ℃, 60 ℃, 65 ℃, 70 ℃, 75 ℃, 80 ℃, 85 ℃, 90 ℃, 95 ℃
℃, 100 ℃, 105 ℃, 110 ℃, 115 ℃, 120 ℃, 125 ℃, 130 ℃
℃, 135 ℃ and 140 ℃ for 1 hour, then to room temperature
And cooled. Next, measure the total magnetic flux (Φ ') of each sample
And the rate of change of the total magnetic flux defined by the following equation (irreversible demagnetization
Rate) reaches 5%, and the heat-resistant temperatures of No. 1 to 3 are evaluated.
Valued. (Irreversible demagnetization rate) = (Φ−Φ ′) / (Φ) × 100 (%) The above results are shown in Table 1.

【0021】(実施例2) [大気雰囲気中で熱処理したSrLaCo系異方性フェライト
焼結磁粉]酸素分圧:PO2=0.02MPa(0.2atm)の大気雰
囲気中で890℃×2時間熱処理した以外は実施例1と同
様にして、主要成分組成が(Sr0.77
0.23)O・5.72[(Fe0.983Co
0.017 ] であり、SiO含有量:0.41
重量%,CaO含有量:0.55重量%,(Al+C
)に換算した(Al+Cr)含有量:0.33重量
%、単位重量あたりのFe2+含有量=0.08重量%、他
の含有Feは全てFe3+であり、平均粒径57.2μmの
異方性フェライト焼結磁粉(以後、SrLaCo系フェライト
焼結磁粉-2という。)を得た。 [異方性ボンド磁石]実施例1の異方性R−T−B系磁
粉:20重量部およびSrLaCo系フェライト焼結磁粉-2:80
重量部を混合した。この混合磁粉:100重量部、液状エ
ポキシ樹脂:2.8重量部、DDS:0.7重量部、ならびにメ
チルエチルケトン:2.8重量部を攪拌機に投入し、攪拌
し、スラリーを得た。このスラリーを用いた以外は以降
実施例1と同様にして異方性ボンド磁石を作製し、評価
した。結果を表1のNo.13に示す。
Example 2 [SrLaCo-based anisotropic ferrite heat-treated in air atmosphere]
Sintered magnetic powder] Oxygen partial pressure: POTwo= 0.02MPa (0.2atm) atmosphere
Same as Example 1 except that heat treatment was performed at 890 ° C. for 2 hours in an atmosphere.
Thus, the main component composition is (Sr0.77L
a0.23) O ・ 5.72 [(Fe0.983Co
0.017) 2O3] And SiO2Content: 0.41
Wt%, CaO content: 0.55 wt%, (Al2O3+ C
r2O3(Al + Cr) content: 0.33 weight
%, Fe per unit weight2+Content = 0.08% by weight, etc.
Fe is all Fe3+Having an average particle size of 57.2 μm.
Anisotropic ferrite sintered magnetic powder (hereinafter SrLaCo-based ferrite
It is called sintered magnetic powder-2. ) Got. [Anisotropic bonded magnet] Anisotropic RTB based magnet of Example 1
Powder: 20 parts by weight and SrLaCo ferrite sintered magnetic powder-2: 80
Parts by weight were mixed. This mixed magnetic powder: 100 parts by weight, liquid
Poxy resin: 2.8 parts by weight, DDS: 0.7 parts by weight,
Til ethyl ketone: 2.8 parts by weight are put into a stirrer and stirred
Then, a slurry was obtained. Other than using this slurry
An anisotropic bonded magnet was prepared and evaluated in the same manner as in Example 1.
did. The results are shown in No. 13 of Table 1.

【0022】(実施例3) [熱処理無しのSrLaCo系異方性フェライト焼結磁粉]実
施例1で得られた150メッシュアンダーの篩分粉末を異
方性フェライト焼結磁粉(以後、SrLaCo系フェライト焼
結磁粉-3という。)とした。SrLaCo系フェライト焼結磁
粉-3のFe2+含有量は0.11重量%で、他の含有Feは
全てFe3+であった。 [異方性ボンド磁石]実施例1の異方性R−T−B系磁
粉:20重量部およびSrLaCo系フェライト焼結磁粉-3:80
重量部を混合した。この混合磁粉:100重量部、液状エ
ポキシ樹脂:2.8重量部、DDS:0.7重量部、ならびにメ
チルエチルケトン:2.8重量部を攪拌機に投入し、攪拌
し、スラリーを得た。このスラリーを用いた以外は以降
実施例1と同様にして異方性ボンド磁石を作製し、評価
した。結果を表1のNo.23に示す。
(Example 3) [SrLaCo-based anisotropic ferrite sintered magnetic powder without heat treatment] The 150-mesh under sieved powder obtained in Example 1 was anisotropic ferrite-sintered magnetic powder (hereinafter referred to as SrLaCo-based ferrite). Sintered magnetic powder-3). The SrLaCo-based ferrite sintered magnetic powder-3 had a Fe 2+ content of 0.11% by weight, and all other Fe contained were Fe 3+ . [Anisotropic bonded magnet] Anisotropic RTB-based magnetic powder of Example 1: 20 parts by weight and SrLaCo-based ferrite sintered magnetic powder-3: 80
Parts by weight were mixed. This mixed magnetic powder: 100 parts by weight, liquid epoxy resin: 2.8 parts by weight, DDS: 0.7 parts by weight, and methyl ethyl ketone: 2.8 parts by weight were charged into a stirrer and stirred to obtain a slurry. An anisotropic bonded magnet was prepared and evaluated in the same manner as in Example 1 except that this slurry was used. The results are shown in No. 23 of Table 1.

【0023】(実施例4) [過剰酸素雰囲気中で熱処理したSr系異方性フェライト
焼結磁粉]日立金属(株)製のSr系異方性フェライト
焼結磁石(商品名:YBM−6BF)のスクラップを粉
砕し、次いで150メッシュアンタ゛ーに篩分した。次に酸素分圧:
PO 2=0.1MPa(1atm)の過剰酸素雰囲気中で820℃×3
時間熱処理し、次いで室温まで冷却した。次に水中に前
記熱処理済み粉末を浸漬し、次いで浸漬物を80℃に加熱
して水分を蒸発させた後冷却した。こうして主要成分組
成がSrO・6Fe (原子比率)で表され、平均
粒径65μmの異方性フェライト焼結磁粉(以後、Sr系フ
ェライト焼結磁粉という。)を作製した。 [異方性ボンド磁石]実施例1の異方性R−T−B系磁
粉:50重量部と、SrLaCo系フェライト焼結磁粉-1:30重
量部と、Sr系フェライト焼結磁粉:20重量部とを混合し
た。この混合磁粉:100重量部、液状エポキシ樹脂:2.8
重量部、DDS:0.7重量部、ならびにメチルエチルケト
ン:2.8重量部を攪拌機に投入し、攪拌し、スラリーを
得た。このスラリーを用いた以外は以降実施例1と同様
にして異方性ボンド磁石を作製し、評価した。結果を表
1のNo.32に示す。
(Example 4) [Sr-based anisotropic ferrite heat-treated in excess oxygen atmosphere]
Sintered magnetic powder] Sr-based anisotropic ferrite manufactured by Hitachi Metals, Ltd.
Powder of sintered magnet (trade name: YBM-6BF)
Crushed and then sieved to 150 mesh ant. Then oxygen partial pressure:
PO Two820 ℃ × 3 in an atmosphere of excess oxygen of 0.1MPa (1atm)
Heat treated for an hour and then cooled to room temperature. Next to underwater
Dip the heat-treated powder, then heat the dipped material to 80 ° C
After evaporating the water, the mixture was cooled. Thus the main component set
SrO.6Fe 2O3(Atomic ratio), average
Anisotropic ferrite sintered magnetic powder with a particle size of 65 μm (hereinafter Sr-based
Ferrite sintered magnetic powder. ) Was prepared. [Anisotropic bonded magnet] Anisotropic RTB based magnet of Example 1
Powder: 50 parts by weight, SrLaCo ferrite sintered magnetic powder-1: 30
Parts and Sr-based ferrite sintered magnetic powder: 20 parts by weight
Was. This mixed magnetic powder: 100 parts by weight, liquid epoxy resin: 2.8
Parts by weight, DDS: 0.7 parts by weight, and methyl ethyl keto
: 2.8 parts by weight is put into a stirrer, stirred, and the slurry is
Obtained. Same as Example 1 except that this slurry was used
To produce an anisotropic bonded magnet and evaluated. Table of results
No. 32 of No. 1 is shown.

【0024】(比較例1)実施例1の異方性R−T−B
系磁粉:100重量部、液状エポキシ樹脂:2.8重量部、DD
S:0.7重量部、ならびにメチルエチルケトン:2.8重量
部を攪拌機に投入し、攪拌し、スラリーを得た。このス
ラリーを用いた以外は以降実施例1と同様にして異方性
ボンド磁石を作製し、評価した。結果を表1のNo.51に
示す。 (比較例2)SrCO粉末(不純物としてBa,Ca
を含む),α−Fe粉末,La粉末及びC
粉末を用いて、仮焼後に(Sr0.85La
0.15)O・5.85[(Fe0.98Co0.02
]で表される主要成分組成になるように配合し、混
合した。次いで1200℃で2時間、大気中で仮焼した。得ら
れた仮焼物を粗砕後、ローラーミルで乾式粗粉砕し粗粉
を得た。次に乾式の振動ミルにより平均粒径1.2μm(空
気透過法による。)の微粉を得た。次にPO2=0.02MPa
(0.2atm)の大気雰囲気中で820℃×3時間熱処理し、
次いで室温まで冷却した。次に水中に浸漬し、次いで乾
燥して平均粒径1.3μm(空気透過法による。)のボン
ド磁石用フェライト磁粉(以後、SrLaCo系フェライトボ
ンド磁粉という。)を得た。次に実施例1の異方性R−
T−B系磁粉とSrLaCo系フェライトボンド磁粉とを80/2
0、50/50および20/80の重量比率でそれぞれ混合し、3
種の混合磁粉を作製した。これら3種の各混合磁粉:10
0重量部、液状エポキシ樹脂:2.8重量部、DDS:0.7重量
部、およびメチルエチルケトン:2.8重量部を攪拌機に
投入し、攪拌して3種のスラリーを得た。各スラリーを
それぞれ用い、以降は実施例1と同様にして異方性ボン
ド磁石を作製し、評価した。結果を表1のNo.61〜63に
示す。
Comparative Example 1 Anisotropic RTB of Example 1
System magnetic powder: 100 parts by weight, liquid epoxy resin: 2.8 parts by weight, DD
0.7 parts by weight of S and 2.8 parts by weight of methyl ethyl ketone were charged into a stirrer and stirred to obtain a slurry. An anisotropic bonded magnet was prepared and evaluated in the same manner as in Example 1 except that this slurry was used. The results are shown in No. 51 of Table 1. (Comparative Example 2) SrCO 3 powder (Ba, Ca as impurities)
), Α-Fe 2 O 3 powder, La 2 O 3 powder and C
After calcination using o 3 O 4 powder (Sr 0.85 La
0.15 ) O · 5.85 [(Fe 0.98 Co 0.02 ) 2
O 3 ], and mixed. Next, it was calcined in the air at 1200 ° C. for 2 hours. The obtained calcined product was coarsely crushed and then dry coarsely crushed with a roller mill to obtain a coarse powder. Next, fine powder having an average particle size of 1.2 μm (by an air permeation method) was obtained by a dry vibration mill. Next, PO 2 = 0.02 MPa
Heat treatment at 820 ° C for 3 hours in the atmosphere of (0.2atm)
Then cooled to room temperature. Next, it was immersed in water and then dried to obtain a ferrite magnetic powder for a bonded magnet having an average particle diameter of 1.3 μm (by an air permeation method) (hereinafter, referred to as an SrLaCo-based ferrite bonded magnetic powder). Next, the anisotropic R-
80/2 of TB magnetic powder and SrLaCo ferrite bond magnetic powder
Mix at 0, 50/50 and 20/80 weight ratio respectively,
Seed mixed magnetic powder was produced. Each of these three types of mixed magnetic powder: 10
0 parts by weight, liquid epoxy resin: 2.8 parts by weight, DDS: 0.7 parts by weight, and methyl ethyl ketone: 2.8 parts by weight were charged into a stirrer and stirred to obtain three kinds of slurries. Using each of the slurries, an anisotropic bonded magnet was manufactured and evaluated in the same manner as in Example 1 thereafter. The results are shown in Table 1 Nos. 61 to 63.

【0025】[0025]

【表1】 ・SrLaCo系フェライト焼結磁粉-1のFe2+含有量:0.05重
量% ・SrLaCo系フェライト焼結磁粉-2のFe2+含有量:0.08重
量% ・SrLaCo系フェライト焼結磁粉-3のFe2+含有量:0.11重
量%
[Table 1] · SrLaCo system Fe 2+ content of the ferrite sintered magnet powder -1: Fe 2+ content of 0.05 wt% · SrLaCo ferrite sintered magnet powder -2: Fe 2+ content of 0.08 wt% · SrLaCo ferrite sintered magnet powder -3 : 0.11% by weight

【0026】表1より以下の知見が得られた。 (1)実施例1のNo.3、実施例2、3、比較例2のNo.63
の比較から、過剰酸素雰囲気で熱処理したSrLaCo系フェ
ライト焼結磁粉-1を配合したNo.3が(BH)max、iHc、着
磁性および耐熱温度が最も高いことがわかる。また実施
例2、3の比較から大気中熱処理を施したSrLaCo系フェ
ライト焼結磁粉-2を配合した場合に(BH)max、iHcおよび
耐熱温度が向上することがわかる。すなわち、フェライ
ト焼結磁粉に熱処理を施すことにより異方性ボンド磁石
の(BH)maxを落とさずにiHcを高められ、着磁性が向上す
るので着磁磁場強度が低く制限される場合でも高出力で
耐熱性に富む回転機を構成できる。フェライト焼結磁粉
に熱処理を施すことにより異方性ボンド磁石の(BH)ma
x、iHcが向上するのはフェライト焼結磁粉の(BH)max、i
Hcが向上するからである。この熱処理の効果はフェライ
ト焼結磁粉の粉砕時に導入された歪や微小欠陥が熱処理
により減少あるいは消滅することに加え、Fe2+含有
量が低減されることが効いていると判断される。 (2)実施例1および比較例2においてR−T−B系磁粉
とフェライト磁粉との同一配合比率で比較した場合、N
o.1はNo.61に比べ、No.2はNo.62に比べ、No.3はNo.6
3に比べ、いずれも(BH)max、iHcおよび耐熱温度が高い
ことがわかる。 (3)実施例1のNo.2、実施例4、および比較例2のNo.6
2の比較から、実施例1のR−T−B系磁粉と、過剰酸
素雰囲気中で熱処理したSrLaCo系フェライト焼結磁粉-1
と、過剰酸素雰囲気中で熱処理したSr系フェライト焼結
磁粉とを所定比率で配合して作製した異方性ボンド磁石
No.32で比較例2のNo.62を超える(BH)maxが得られてお
り安価な異方性ボンド磁石として有用なことがわかる。 (4)実施例1〜4の各異方性ボンド磁石は比較例1の従
来のNd−Fe−B系異方性ボンド磁石に比べて着磁性
が良好でかつ耐熱温度が高いので実用性に富むことがわ
かる。
From Table 1, the following findings were obtained. (1) No. 3 of Example 1, Examples 2, 3 and No. 63 of Comparative Example 2
From the comparison, it can be seen that No. 3 containing SrLaCo-based ferrite sintered magnetic powder-1 heat-treated in an excess oxygen atmosphere has the highest (BH) max, iHc, magnetization and heat resistance temperature. In addition, from the comparison between Examples 2 and 3, it can be seen that (BH) max, iHc and heat resistance temperature are improved when the SrLaCo-based ferrite sintered magnetic powder-2 subjected to the heat treatment in the air is blended. In other words, heat treatment of sintered ferrite magnetic powder increases iHc without lowering the (BH) max of the anisotropic bonded magnet, and improves magnetizability. Thus, a rotating machine having high heat resistance can be formed. (BH) ma of anisotropic bonded magnet by heat treatment of ferrite sintered magnetic powder
x and iHc are improved by (BH) max, i of sintered ferrite magnetic powder.
This is because Hc is improved. It is considered that the effect of this heat treatment is effective in that the strain and micro defects introduced during the pulverization of the ferrite sintered magnetic powder are reduced or eliminated by the heat treatment, and that the Fe 2+ content is reduced. (2) In Example 1 and Comparative Example 2, when the RTB-based magnetic powder and the ferrite magnetic powder were compared at the same compounding ratio, N
o.1 is No.61, No.2 is No.62, No.3 is No.6
It can be seen that (BH) max, iHc, and heat-resistant temperature are all higher than those of 3. (3) No. 2 of Example 1, Example 4, and No. 6 of Comparative Example 2
From the comparison of 2, the RTB-based magnetic powder of Example 1 and the SrLaCo-based ferrite sintered magnetic powder-1 heat-treated in an excess oxygen atmosphere-1
And an Sr-based ferrite sintered magnetic powder heat-treated in an excess oxygen atmosphere at a specified ratio to produce an anisotropic bonded magnet
(BH) max exceeding No. 62 of Comparative Example 2 was obtained in No. 32, indicating that it is useful as an inexpensive anisotropic bonded magnet. (4) Each of the anisotropic bonded magnets of Examples 1 to 4 has better magnetizability and a higher heat resistance temperature than the conventional Nd-Fe-B based anisotropic bonded magnet of Comparative Example 1 and is therefore practical. It turns out that we are rich.

【0027】(実施例5)実施例1のNo.2のスラリー
を、圧縮成形機に設置された室温の外径:25mm、内径
(金型のコア外径):22mmの成形用金型キャビティに
充填した。次いでラジアル配向磁場:318.3kA/m(4kO
e)を印加しながら、成形圧力:784MPa(8トン/cm)で
湿式磁場中成形した。得られた成形体を80℃に加熱して
脱溶媒し、次いで加熱硬化して外径:25mm、内径:22
mm、軸方向長さ:15mmのリング状ラジアル異方性ボ
ンド磁石を得た。このボンド磁石の外径面周方向に総磁
束量が飽和する条件で対称8極着磁を施した。次いで軸
方向の中心位置でかつ外径面周方向の表面磁束密度波形
を測定した。得られた表面磁束密度波形の各磁極のピー
クの平均値は0.21T(2.1kG)であった。 (比較例3)比較例1のスラリーを用いた以外は実施例
5と同様にしてラジアル異方性を有し、対称8極着磁を
施してなるリング状ボンド磁石(外径:25mm、内径:
22mm、軸方向長さ:15mm)を作製した。このリング
状ボンド磁石の各磁極のピークの平均値は0.19T(1.9k
G)であり、実施例5より低かった。
(Example 5) A No. 2 slurry of Example 1 was placed in a compression molding machine at room temperature, and a molding cavity having an outside diameter of 25 mm and an inside diameter (outer diameter of a mold core) of 22 mm was used. Was filled. Next, radial orientation magnetic field: 318.3 kA / m (4 kO
While applying e), molding was performed in a wet magnetic field at a molding pressure of 784 MPa (8 tons / cm 2 ). The obtained molded body was heated to 80 ° C. to remove the solvent, and then heat-cured to obtain an outer diameter: 25 mm and an inner diameter: 22
mm, a ring-shaped radially anisotropic bonded magnet having an axial length of 15 mm was obtained. Symmetrical 8-pole magnetization was performed under the condition that the total magnetic flux was saturated in the circumferential direction of the outer diameter surface of the bonded magnet. Next, the surface magnetic flux density waveform in the center position in the axial direction and in the circumferential direction of the outer diameter surface was measured. The average value of the peak of each magnetic pole of the obtained surface magnetic flux density waveform was 0.21 T (2.1 kG). Comparative Example 3 A ring-shaped bonded magnet having radial anisotropy and subjected to symmetrical 8-pole magnetization (outer diameter: 25 mm, inner diameter) except that the slurry of Comparative Example 1 was used. :
22 mm, axial length: 15 mm). The average value of the peak of each magnetic pole of this ring-shaped bonded magnet is 0.19T (1.9kT).
G), which was lower than that of Example 5.

【0028】(実施例6)実施例1のNo.2のスラリー
を、圧縮成形機に設置された室温の外径:25mm、内径
(金型のコア外径):22mmの成形用金型キャビティに
充填した。次いで極異方性配向磁場(対称8極):318.
3kA/m(4kOe)を印加しながら、成形圧力:784MPa(8
トン/cm)で湿式磁場中成形した。得られた成形体を80
℃に加熱して脱溶媒し、次いで加熱硬化して外径:25m
m、内径:22mm、軸方向長さ:15mmのリング状極異
方性ボンド磁石を得た。このボンド磁石の異方性付与方
向に沿って総磁束量が飽和する条件で対称8極着磁を施
した。次いで軸方向の中心位置でかつ外径面周方向の表
面磁束密度波形を測定した。得られた表面磁束密度波形
の各磁極のピークの平均値は0.206T(2.06kG)であっ
た。 (比較例4)比較例1のスラリーを用いた以外は実施例
6と同様にして、対称8極の極異方性を有し、着磁して
なるリング状ボンド磁石(外径:25mm、内径:22m
m、軸方向長さ:15mm)を作製した。このリング状ボ
ンド磁石の各磁極ピークの平均値は0.188T(1.88kG)
であり、実施例6より低かった。
(Example 6) A No. 2 slurry of Example 1 was placed in a compression molding machine, and a molding die cavity having an outer diameter of 25 mm at room temperature and an inner diameter (outer diameter of the core of the die) of 22 mm was used. Was filled. Next, the polar anisotropic orientation magnetic field (symmetric 8 poles): 318.
While applying 3 kA / m (4 kOe), molding pressure: 784 MPa (8
Ton / cm 2 ) in a wet magnetic field. 80
Deheated by heating to ℃, then heat-cured and outer diameter: 25m
Thus, a ring-shaped polar anisotropic bonded magnet having an inner diameter of 22 mm and an axial length of 15 mm was obtained. Symmetrical 8-pole magnetization was performed under the condition that the total magnetic flux was saturated along the anisotropy imparting direction of the bonded magnet. Next, the surface magnetic flux density waveform in the center position in the axial direction and in the circumferential direction of the outer diameter surface was measured. The average value of the peak of each magnetic pole in the obtained surface magnetic flux density waveform was 0.206 T (2.06 kG). (Comparative Example 4) In the same manner as in Example 6 except that the slurry of Comparative Example 1 was used, a ring-shaped bonded magnet having symmetrical 8-pole polar anisotropy and magnetized (outer diameter: 25 mm, Inner diameter: 22m
m, axial length: 15 mm). The average of each magnetic pole peak of this ring-shaped bonded magnet is 0.188T (1.88kG)
Which was lower than that of Example 6.

【0029】実施例5、6および比較例3、4で作製し
たリング状ボンド磁石をそれぞれ用いてブラシレスモー
タの回転子側に組み込み、ブラシレスモータを構成し
た。これらモータの各々の最高効率を測定した結果、相
対的に実施例5、6のリング状ボンド磁石を組み込んだ
モータの最高効率がほぼ同等で高く、これに対して比較
例3、4のリング状ボンド磁石を組み込んだモータの最
高効率が低いことがわかった。各ブラシレスモータの回
転子と固定子との間の平均エアギャップ間隔を0.3mm
とした。
Using the ring-shaped bonded magnets produced in Examples 5 and 6 and Comparative Examples 3 and 4, each was assembled on the rotor side of a brushless motor to form a brushless motor. As a result of measuring the maximum efficiencies of each of these motors, the maximum efficiencies of the motors incorporating the ring-shaped bonded magnets of Examples 5 and 6 were almost the same and high, whereas those of Comparative Examples 3 and 4 were relatively high. It was found that the maximum efficiency of the motor incorporating the bonded magnet was low. 0.3mm average air gap between rotor and stator of each brushless motor
And

【0030】(実施例7、比較例5) [シート状ボンド磁石]表2に示す4種の混合磁粉をそ
れぞれ用い、各混合磁粉:92.5重量部,EEA樹脂(MB-
870):5.2重量部,分散剤(DH-37):1重量部,滑剤
(スリパックスE):0.5重量部、およびシリコーンオ
イル(KF968,信越化学工業製):0.8重量部を加熱・加
圧型ニーダに投入し、混練し、整粒して4種のコンパウ
ンドを作製した。表2の各R−T−N系磁粉はいずれも
実施例1で作製したものである。表2のNo.101のSrLaCo
Zn系フェライト焼結磁粉は、仮焼後にSr0.80La
0.20Fe11.70Co0.10Zn0.10
18.8 で表される主要成分組成になるように配合
し、また微粉砕時にAlを添加しなかった以外は
実施例1のSrLaCo系フェライト焼結磁粉-1と同様にして
作製した平均粒径62.9μmの異方性フェライト焼結磁粉
である。SrLaCoZn系フェライト焼結磁粉は(Sr
0.77La0.23)O・5.72[(Fe0.983Co
0.0085Zn .0085)]で示される主要
成分組成を有し、SiO含有量:0.42重量%,CaO
含有量:0.59重量%,(Al+Cr)に換
算した(Al+Cr)含有量:0.04重量%,Fe2+
0.05重量%であり他の含有Feは全てFe3+であっ
た。表2の*SrLaCo系フェライト焼結磁粉は微粉砕時に
Alを添加しなかった以外は実施例1と同様にし
て作製した。*SrLaCo系フェライト焼結磁粉は、(Sr
0.77La0.23)O・5.72[(Fe0.983Co
0.017)]で示される主要成分組成を有し、S
iO含有量:0.41重量%,CaO含有量:0.58重量
%、(Al+Cr)に換算した(Al+C
r)含有量:0.05重量%、平均粒径70.3μm、Fe2+
=0.05重量%であり他の含有Feは全てFe3+であっ
た。次に4種のコンパウンドを順次加熱した押出成形機
(図示省略;混練、押出ゾーンの設定温度:150〜230
℃。)に投入し、押出成形機の押出口近傍に設けた平行
配向磁場ゾーン(印加磁場強度:397.9kA/m(5kOe))
を通過させて押出し、固化した。次いで軸方向長さ:32
0mmに切断し、図1に示すように断面が略コの字状で
厚みtが2mmのシート状異方性ボンド磁石16を得た。 [マグネットロール]図1のマグネットロール23を以下
のようにして作製し、評価した。シャフト22に固着され
た円筒状の等方性フェライト焼結磁石17の現像磁極部に
軸方向に延在する凹溝13を形成した。次いで、作製した
各シート状異方性ボンド磁石16をそれぞれ凹溝13に固着
し、マグネットロール23(表2のNo.101〜104)を形成
した。シート状異方性ボンド磁石16の軸方向に凹部14が
延びて貫通しているので、現像磁極直上の空隙磁束密度
分布波形が2山ピークになっている。マグネットロール
23の軸方向に沿うN極直上の表面磁束密度Boを測定
し、表2の結果を得た。表2のBo(平均値)は相対値で
示してある。Bo測定は、シート状異方性ボンド磁石16の
軸方向両端部から軸方向中心に向かって10mmまでの部
分は除外し、軸方向長さ300mm(軸方向中心から±150
mm)の範囲で行った。その結果、実施例7のNo.101〜
103の各マグネットロールはいずれも比較例5(No.11
1)のマグネットロールに比べて高いBo(平均値)を有
し、高性能であることがわかった。なお、円筒状磁石17
を従来の等方性フェライトボンド磁石または異方性フェ
ライトボンド磁石で構成した場合にも高性能のマグネッ
トロールを構成できる。
(Example 7, Comparative Example 5) [Sheet bonded magnet] Each of the four types of mixed magnetic powders shown in Table 2 was used, each mixed magnetic powder: 92.5 parts by weight, EEA resin (MB-
870): 5.2 parts by weight, dispersant (DH-37): 1 part by weight, lubricant (Slipax E): 0.5 part by weight, and silicone oil (KF968, manufactured by Shin-Etsu Chemical): 0.8 part by weight , Kneaded, and sized to prepare four types of compounds. Each of the RTN-based magnetic powders in Table 2 was produced in Example 1. No.101 SrLaCo in Table 2
Zn-based ferrite sintered magnetic powder is Sr 0.80 La after calcining.
0.20 Fe 11.70 Co 0.10 Zn 0.10 O
18.8 represented formulated to become the main component composition at 5, also prepared in the same manner as SrLaCo ferrite sintered magnet powder -1 of Example 1 except for not adding the Al 2 O 3 during milling This is an anisotropic ferrite sintered magnetic powder having an average particle size of 62.9 μm. SrLaCoZn ferrite sintered magnetic powder is (Sr
0.77 La 0.23 ) O.5.72 [(Fe 0.983 Co
0.0085 Zn 0 . 0085 ) 2 O 3 ], a SiO 2 content: 0.42% by weight, CaO
Content: 0.59% by weight, (Al + Cr) converted to (Al 2 O 3 + Cr 2 O 3 ) Content: 0.04% by weight, Fe 2+ =
The content of Fe was 0.05% by weight, and all other Fe was Fe 3+ . * SrLaCo-based ferrite sintered magnetic powder in Table 2 was produced in the same manner as in Example 1 except that Al 2 O 3 was not added at the time of pulverization. * SrLaCo ferrite sintered magnetic powder is (Sr
0.77 La 0.23 ) O.5.72 [(Fe 0.983 Co
0.017 ) 2 O 3 ].
iO 2 content: 0.41% by weight, CaO content: 0.58% by weight, converted to (Al 2 O 3 + Cr 2 O 3 ) (Al + C)
r) Content: 0.05% by weight, average particle size 70.3 μm, Fe 2+
= 0.05% by weight, and all other Fe contained was Fe 3+ . Next, an extruder (not shown; kneading, set temperature of extrusion zone: 150 to 230) in which four compounds were sequentially heated
° C. ), And a parallel alignment magnetic field zone (applied magnetic field strength: 397.9 kA / m (5 kOe)) provided near the extrusion port of the extrusion molding machine
To extrude and solidify. Then axial length: 32
The sheet-like anisotropic bonded magnet 16 having a substantially U-shaped cross section and a thickness t of 2 mm was obtained as shown in FIG. [Magnet Roll] The magnet roll 23 shown in FIG. 1 was prepared and evaluated as follows. A concave groove 13 extending in the axial direction was formed in the developing magnetic pole portion of the cylindrical isotropic ferrite sintered magnet 17 fixed to the shaft 22. Next, the produced sheet-like anisotropic bonded magnets 16 were fixed to the grooves 13, respectively, to form magnet rolls 23 (Nos. 101 to 104 in Table 2). Since the concave portion 14 extends and penetrates in the axial direction of the sheet-like anisotropic bonded magnet 16, the air gap magnetic flux density distribution waveform immediately above the developing magnetic pole has two peaks. Magnet roll
The surface magnetic flux density Bo immediately above N 1 pole along the axial direction of 23 was measured to obtain the results shown in Table 2. Bo (average value) in Table 2 is shown as a relative value. In the Bo measurement, a portion extending from both ends in the axial direction of the sheet-like anisotropic bonded magnet 16 to 10 mm toward the center in the axial direction was excluded, and the axial length was 300 mm (± 150 mm from the axial center).
mm). As a result, No. 101 of Example 7
Each of the 103 magnet rolls was a comparative example 5 (No. 11
It has a higher Bo (average value) than the magnet roll of 1), indicating high performance. The cylindrical magnet 17
Can be constituted by a conventional isotropic ferrite bonded magnet or anisotropic ferrite bonded magnet.

【0031】実施例7のシート状異方性ボンド磁石の厚
みtは2mmであるが、159,2〜795.8kA/m(2〜10kO
e)という実用的な配向磁場強度を印加しつつ押出成形
またはカレンダーロール成形すれば、従来の異方性フェ
ライト焼結磁石を超える(BH)maxを有する厚み:0.01〜
3mmのシート状異方性ボンド磁石を作製できる。
Although the thickness t of the sheet-like anisotropic bonded magnet of Example 7 is 2 mm, it is 159,2 to 795.8 kA / m (2 to 10 kO
e) If extrusion molding or calender roll molding is performed while applying a practical orientation magnetic field strength, a thickness having a (BH) max exceeding that of a conventional anisotropic ferrite sintered magnet: 0.01 to
A 3 mm sheet-like anisotropic bonded magnet can be produced.

【0032】[0032]

【表2】 [Table 2]

【0033】(実施例8)平均結晶粒径0.11μmのNd
Fe14B金属間化合物を主相とする平均粒径210μ
m(ヘロス・ロードスによる。)のNd−Fe−B系等
方性磁粉と実施例1で作製したSrLaCo系フェライト焼結
磁粉-1とを50/50の重量比率で混合した。この混合磁
粉:92.5重量部,EEA樹脂(MB-870):5.2重量部,分
散剤(DH-37):1重量部,滑剤(スリパックスE):
0.5重量部、およびシリコーンオイル(KF968,信越化学
工業製):0.8重量部を加熱・加圧型ニーダに投入し、
混練し、整粒してコンパウンドを得た。このコンパウン
ドを加熱した押出成形機(図示省略;混練、押出ゾーン
の設定温度:150〜230℃。)に投入し、無磁場で押出成
形し、固化した。次いで切断して幅:3mm、厚み:3
mm:軸方向長さ:300mmの等方性シート状ボンド磁
石を得た。 (比較例6)平均結晶粒径0.11μmのNdFe14
金属間化合物を主相とする平均粒径210μmのNd−F
e−B系等方性磁粉と比較例2で作製したSrLaCo系フェ
ライトボンド磁粉とを50/50の重量比率で混合した。こ
の混合磁粉を用いて以降実施例8と同様にしてコンパウ
ンドを作製し、押出成形し、切断して幅:3mm、厚
み:3mm:軸方向長さ:300mmの等方性シート状ボ
ンド磁石を得た。この比較例の等方性シート状ボンドは
実施例8の等方性シート状ボンド磁石に比べて表面磁束
密度の平均値が約0.003T(30G)低いことがわかった。
Example 8 Nd having an average crystal grain size of 0.11 μm
2 Fe 14 B intermetallic compound as main phase, average particle size 210 μm
m (by Heros Rhodes) Nd-Fe-B-based isotropic magnetic powder and SrLaCo-based ferrite sintered magnetic powder-1 prepared in Example 1 were mixed at a weight ratio of 50/50. This mixed magnetic powder: 92.5 parts by weight, EEA resin (MB-870): 5.2 parts by weight, dispersant (DH-37): 1 part by weight, lubricant (Slipax E):
0.5 part by weight and silicone oil (KF968, manufactured by Shin-Etsu Chemical Co., Ltd.): 0.8 part by weight is charged into a heating / pressing type kneader,
The mixture was kneaded and sized to obtain a compound. The compound was put into a heated extruder (not shown; kneading, set temperature of extrusion zone: 150 to 230 ° C.), extruded without a magnetic field, and solidified. Then cut to width: 3mm, thickness: 3
mm: an isotropic sheet-like bonded magnet having a length in the axial direction of 300 mm was obtained. (Comparative Example 6) Nd 2 Fe 14 B having an average crystal grain size of 0.11 μm
Nd-F having an average particle size of 210 μm containing an intermetallic compound as a main phase
The EB-based isotropic magnetic powder and the SrLaCo-based ferrite bond magnetic powder prepared in Comparative Example 2 were mixed at a weight ratio of 50/50. Using this mixed magnetic powder, a compound was prepared in the same manner as in Example 8, extruded, and cut to obtain an isotropic sheet-like bonded magnet having a width of 3 mm, a thickness of 3 mm and an axial length of 300 mm. Was. The average value of the surface magnetic flux density of the isotropic sheet-like bond of this comparative example was lower than that of the isotropic sheet-like bond magnet of Example 8 by about 0.003 T (30 G).

【0034】上記実施例に記載の各異方性フェライト焼
結磁粉をX線回折したところ、いずれもマグネトプラン
バイト型結晶構造相のX線回折ピークのみが観察され、
マグネトプランバイト型結晶構造を有することがわかっ
た。
When each of the anisotropic ferrite sintered magnetic powders described in the above examples was subjected to X-ray diffraction, only the X-ray diffraction peak of the magnetoplumbite type crystal structure phase was observed.
It was found to have a magnetoplumbite type crystal structure.

【0035】実施例1〜6ではバインダーに液状エポキ
シ樹脂を採用してスラリーを作製し、磁場中圧縮成形し
た場合を記載したが本発明はこれに限定されない。例え
ばポリアミド樹脂等の熱可塑性樹脂をバインダーに採用
してコンパウンドを作製し、温間で磁場中圧縮成形また
は磁場中射出成形を行えば高性能の複合型ボンド磁石を
作製できるとともにコンパウンドおよび複合型ボンド磁
石のリサイクルが可能になりコストを低減することがで
きる。
In Examples 1 to 6, a case was described in which a slurry was prepared by using a liquid epoxy resin as a binder and compression-molded in a magnetic field, but the present invention is not limited to this. For example, if a compound is manufactured by using a thermoplastic resin such as polyamide resin as a binder, compression molding in a magnetic field or injection molding in a magnetic field can be performed at a high temperature to produce a high-performance composite bonded magnet, as well as compound and composite bonding. The magnets can be recycled, and the cost can be reduced.

【0036】本発明に用いるコンパウンドには磁粉およ
びバインダー以外に磁粉の分散剤(例えばフェノール
系。)、カップリング剤(シラン系カップリング剤
等。)、滑剤(例えばワックス類。)、可塑剤(例えば
DOP,DBP等)、酸化防止剤などを単独または複合で添加
して成形性、耐酸化性、強度、磁気特性等を向上するの
が好ましい。これらの添加量は合計で3重量%以下が好
ましく、0.1〜2重量%がより好ましい。
In the compound used in the present invention, in addition to the magnetic powder and the binder, a dispersant (for example, a phenol type), a coupling agent (for example, a silane type coupling agent), a lubricant (for example, a wax), a plasticizer (for example, a magnetic powder). For example
DOP, DBP, etc.), an antioxidant or the like is added alone or in combination to improve moldability, oxidation resistance, strength, magnetic properties and the like. The total amount of these additives is preferably 3% by weight or less, more preferably 0.1 to 2% by weight.

【0037】[0037]

【発明の効果】以上記述の通り、本発明によれば、従来
の異方性フェライト焼結磁石を超える最大エネルギー積
(BH)maxを有し、さらに着磁性または耐熱性を向上した
新規高性能の複合型ボンド磁石を提供するができる。ま
た前記新規高性能の複合型ボンド磁石を用いて構成され
る高性能の回転機およびマグネットロールを提供するこ
とができる。
As described above, according to the present invention, the maximum energy product exceeding the conventional sintered anisotropic ferrite magnet is obtained.
It is possible to provide a new high-performance composite bonded magnet having (BH) max and further improved magnetizability or heat resistance. Further, it is possible to provide a high-performance rotating machine and a magnet roll configured by using the novel high-performance composite bond magnet.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のマグネットロールの一例を示す要部断
面図である。
FIG. 1 is a sectional view of a main part showing an example of a magnet roll of the present invention.

【符号の説明】[Explanation of symbols]

13 軸方向に平行に設けた溝部、14 凹部、15 凸部、
16 シート状ボンド磁石、17 マグネットロール基体
部、22 シャフト、23 マグネットロール。
13 grooves provided in parallel with the axial direction, 14 concave parts, 15 convex parts,
16 sheet-like bonded magnets, 17 magnet roll base, 22 shafts, 23 magnet rolls.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 33/02 C22C 33/02 G 38/00 303 38/00 303D H01F 1/08 H01F 1/08 B (72)発明者 久保田 裕 埼玉県熊谷市三ヶ尻5200番地 日立金属株 式会社磁性材料研究所内 (72)発明者 高見 崇 埼玉県熊谷市三ヶ尻5200番地 日立金属株 式会社磁性材料研究所内 Fターム(参考) 4K018 AA27 AB01 AC01 BA11 BA18 BB04 BD01 GA04 JA16 KA46 4K020 AA22 AC07 BB29 5E040 AA04 AA09 AB04 BB04 BB05 BD01 CA01 HB01 HB03 HB06 HB11 HB15 HB17 NN01 NN06 NN18 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 33/02 C22C 33/02 G 38/00 303 38/00 303D H01F 1/08 H01F 1/08 B ( 72) Inventor Hiroshi Kubota 5200, Sankajiri, Kumagaya-shi, Saitama Prefecture, Hitachi Metals, Ltd. Magnetic Materials Research Laboratory (72) Inventor Takashi Takami 5200, Sankajiri, Kumagaya-shi, Saitama Prefecture, Hitachi Metals, Ltd. Magnetic Materials Research Laboratory F-term (reference) 4K018 AA27 AB01 AC01 BA11 BA18 BB04 BD01 GA04 JA16 KA46 4K020 AA22 AC07 BB29 5E040 AA04 AA09 AB04 BB04 BB05 BD01 CA01 HB01 HB03 HB06 HB11 HB15 HB17 NN01 NN06 NN18

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 R14B金属間化合物(RはYを含
む希土類元素の少なくとも1種であり、TはFeまた
は、FeおよびCoである。)を主相とする平均結晶粒
径が0.01〜0.5μmのR−T−B系磁粉と、実質的にマ
グネトプランバイト型結晶構造を有するフェライト焼結
磁粉と、前記2種の磁粉を結着するバインダーとから実
質的になることを特徴とする複合型ボンド磁石。
1. An average crystal grain size having a main phase of R 2 T 14 B intermetallic compound (R is at least one kind of rare earth element including Y and T is Fe or Fe and Co). It is characterized by substantially comprising an RTB-based magnetic powder of 0.01 to 0.5 μm, a ferrite sintered magnetic powder having a substantially magnetoplumbite type crystal structure, and a binder binding the two types of magnetic powder. Composite type bonded magnet.
【請求項2】 R−T−B系磁粉の平均粒径が1〜1000
μmであり、フェライト焼結磁粉の平均粒径が2〜1000
μmでありかつFe2+含有量が0.10重量%以下である
請求項1に記載の複合型ボンド磁石。
2. The average particle size of the RTB-based magnetic powder is 1 to 1000.
μm, and the average particle diameter of the ferrite sintered magnetic powder is 2 to 1000
2. The composite bonded magnet according to claim 1, wherein the composite bonded magnet has a particle size of μm and an Fe 2+ content of 0.10% by weight or less.
【請求項3】 前記フェライト焼結磁粉が、 (A1−xR’)O・n[(Fe1−y)](原子比率) (AはSrおよび/またはBaであり、R’はYを含む希
土類元素の少なくとも1種でありかつLa,Pr,Nd
およびCeから選択される少なくとも1種を必ず含み、
MはCoまたは、CoおよびZnである。)、0.01≦x
≦0.4,0.005≦y≦0.04,および5.0≦n≦6.4 で表さ
れる主要成分組成を有する請求項1または2に記載の複
合型ボンド磁石。
3. The ferrite sintered magnetic powder according to claim 1, wherein (A 1−x R ′ x ) On · ([Fe 1− y My ) 2 O 3 ] (atomic ratio) (A is Sr and / or Ba. R ′ is at least one of rare earth elements including Y and La, Pr, Nd
And at least one selected from Ce,
M is Co or Co and Zn. ), 0.01 ≦ x
3. The composite bonded magnet according to claim 1, having a main component composition represented by ≤0.4, 0.005≤y≤0.04, and 5.0≤n≤6.4.
【請求項4】 前記フェライト焼結磁粉が、 A’O・nFe(原子比率) (A’はSrおよび/またはBaであり、5.0≦n≦6.4
である。)で表される主要成分組成を有するフェライト
焼結磁粉と、 (A1−xR’)O・n[(Fe1−y)](原子比率) (AはSrおよび/またはBaであり、R’はYを含む希
土類元素の少なくとも1種でありかつLa,Pr,Nd
およびCeから選択される少なくとも1種を必ず含み、
MはCoまたは、CoおよびZnである。)、0.01≦x
≦0.4,0.005≦y≦0.04,および5.0≦n≦6.4で表され
る主要成分組成を有するフェライト焼結磁粉とからなる
請求項1または2に記載の複合型ボンド磁石。
4. The ferrite sintered magnetic powder according to claim 1, wherein A′O.nFe 2 O 3 (atomic ratio) (A ′ is Sr and / or Ba and 5.0 ≦ n ≦ 6.4
It is. ) And (A 1−x R ′ x ) On · ([Fe 1− y My ) 2 O 3 ] (atomic ratio) (A is Sr and And / or Ba, R ′ is at least one rare earth element including Y, and La, Pr, Nd
And at least one selected from Ce,
M is Co or Co and Zn. ), 0.01 ≦ x
3. The composite type bonded magnet according to claim 1, comprising a ferrite sintered magnetic powder having a main component composition represented by ≤0.4, 0.005≤y≤0.04, and 5.0≤n≤6.4.
【請求項5】 複合型ボンド磁石に含有される磁粉全体
に占める前記R−T−B系磁粉の比率が5〜95重量%で
ありかつ前記フェライト焼結磁粉の比率が95〜5重量%
である請求項1乃至4のいずれかに記載の複合型ボンド
磁石。
5. The ratio of the RTB-based magnetic powder to the entire magnetic powder contained in the composite bonded magnet is 5 to 95% by weight, and the ratio of the ferrite sintered magnetic powder is 95 to 5% by weight.
The composite bonded magnet according to any one of claims 1 to 4, wherein
【請求項6】 ラジアル異方性または極異方性が付与さ
れている請求項1乃至5のいずれかに記載の複合型ボン
ド磁石。
6. The composite bonded magnet according to claim 1, wherein radial or polar anisotropy is provided.
【請求項7】 厚みが0.01〜3mmのシート形状を有す
る請求項1乃至5のいずれかに記載の複合型ボンド磁
石。
7. The composite bonded magnet according to claim 1, which has a sheet shape having a thickness of 0.01 to 3 mm.
【請求項8】 請求項1乃至7のいずれかに記載の複合
型ボンド磁石を用いて構成されることを特徴とする回転
機。
8. A rotating machine comprising the composite bonded magnet according to claim 1. Description:
【請求項9】 請求項1乃至7のいずれかに記載の複合
型ボンド磁石を用いて構成されることを特徴とするマグ
ネットロール。
9. A magnet roll comprising the composite bonded magnet according to any one of claims 1 to 7.
JP2001273860A 2000-09-12 2001-09-10 Composite bonded magnet, rotating machine, and magnet roll Pending JP2002164205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001273860A JP2002164205A (en) 2000-09-12 2001-09-10 Composite bonded magnet, rotating machine, and magnet roll

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-276862 2000-09-12
JP2000276862 2000-09-12
JP2001273860A JP2002164205A (en) 2000-09-12 2001-09-10 Composite bonded magnet, rotating machine, and magnet roll

Publications (1)

Publication Number Publication Date
JP2002164205A true JP2002164205A (en) 2002-06-07

Family

ID=26599779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001273860A Pending JP2002164205A (en) 2000-09-12 2001-09-10 Composite bonded magnet, rotating machine, and magnet roll

Country Status (1)

Country Link
JP (1) JP2002164205A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250897A (en) * 2006-03-16 2007-09-27 Tdk Corp Bond magnet, magnet roll, and development roll
EP2436016A1 (en) * 2009-05-27 2012-04-04 BYD Company Limited Nd-fe-b permanent magnetic material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250897A (en) * 2006-03-16 2007-09-27 Tdk Corp Bond magnet, magnet roll, and development roll
EP2436016A1 (en) * 2009-05-27 2012-04-04 BYD Company Limited Nd-fe-b permanent magnetic material and preparation method thereof
EP2436016A4 (en) * 2009-05-27 2012-10-31 Byd Co Ltd Nd-fe-b permanent magnetic material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4540076B2 (en) Bond magnet, compound, magnet roll, ferrite powder used therefor, and method for producing the same
TWI433433B (en) A bonded magnet and magnetic roll
EP1377691B1 (en) Method of making a rare earth alloy sintered compact
JPS63232301A (en) Magnetic anisotropic bond magnet, magnetic powder used therefor, and manufacture thereof
US6537463B2 (en) Resin-bonded magnet, its product, and ferrite magnet powder and compound used therefor
JP2004146713A (en) Manufacturing methods of r-t-n-based magnetic powder and r-t-n-based bond magnet
JP2000357606A (en) Compound isotropic bonded magnet and rotary machine using the magnet
JP2001135509A (en) Isotropic rare earth magnet material, isotropic bond magnet, rotating machine and magnet roll
JP2002164205A (en) Composite bonded magnet, rotating machine, and magnet roll
JP2002164206A (en) Anisotropic bonded magnet, rotating machine, and magnet roll
JP2003217918A (en) Alloy powder for rare earth sintered magnet superior in magnetization, the rare earth sintered magnet and its manufacturing method
JP2002217010A (en) Anisotropic magnetic powder improved in magnetization factor and anisotropic bonded magnet
JP3652751B2 (en) Anisotropic bonded magnet
JP3682850B2 (en) Rotating machine
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2001093714A (en) Composite anisotropic bonded magnet
JP2002110408A (en) Magnet roll
JP2002164204A (en) Anisotropic bonded magnet, rotating machine, and magnet roll
JP3652752B2 (en) Anisotropic bonded magnet
JP2000260614A (en) Composite anisotropic bonded magnet
JP2514155B2 (en) Method for manufacturing permanent magnet alloy
JP2925840B2 (en) Fe-BR bonded magnet
JP2003133120A (en) Bonded magnet and its manufacturing method
JP3623583B2 (en) Anisotropic bonded magnet
JP4645336B2 (en) Rare earth sintered magnet and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050609