JPH07161516A - Bond magnet and its production - Google Patents

Bond magnet and its production

Info

Publication number
JPH07161516A
JPH07161516A JP5309586A JP30958693A JPH07161516A JP H07161516 A JPH07161516 A JP H07161516A JP 5309586 A JP5309586 A JP 5309586A JP 30958693 A JP30958693 A JP 30958693A JP H07161516 A JPH07161516 A JP H07161516A
Authority
JP
Japan
Prior art keywords
bonded magnet
conductive layer
resin layer
powder
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5309586A
Other languages
Japanese (ja)
Inventor
Yasunori Matsunari
靖典 松成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP5309586A priority Critical patent/JPH07161516A/en
Publication of JPH07161516A publication Critical patent/JPH07161516A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain a bond magnet provided with an electrolytic plating film, an electroless plating film or an electrodeposition film without sacrifice of magnetic characteristics by filling pores on the surface of bond magnet with a resin layer and forming a conductive layer on there. CONSTITUTION:The bond magnet is applied with a conductive layer entirely or partially on the surface through a resin layer. The surface roughness is set such that the maximum height (Rmax) on the surface of the conductive layer is 400mum or less when the reference length is 25mm. The conductive layer is composed of a powder of an element selected from Cu, Cr, Zn, Ni, Cd, Sn, Pb, Fe, Au, Ag, Pt, Pd, Rh, Al, Nd or an aggregate of one or more kind of alloy powder principally comprising these elements. This constitution allows electrolytic plating, electroless plating or electrodeposition while inhibiting intrusion of plating liquid into the pores on the surface of a bond magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフロッピーディスクドラ
イブ用ステッピングモータやハードディスクドライブ用
スピンドルモータなどに使用されるボンド磁石およびそ
の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bond magnet used in a stepping motor for a floppy disk drive, a spindle motor for a hard disk drive and the like and a method for producing the same.

【0002】[0002]

【従来の技術】近年、電子機器の軽薄短小化を受けてそ
れを構成する電子部品も縮小化する傾向にある。この傾
向はモータにも見られ、そしてそれは内蔵される磁石の
小型化、複雑形状化を要求してくる。こうした背景の
中、小型化、複雑形状化といったニーズに対応できるボ
ンド磁石の需要が大きくなってきている。
2. Description of the Related Art In recent years, as electronic devices have become lighter, thinner, shorter, and smaller, the electronic parts constituting them have tended to become smaller. This tendency is also seen in motors, which requires smaller and more complex magnets to be built in. Against this background, there is an increasing demand for bonded magnets that can meet the needs for downsizing and complicated shapes.

【0003】以下に従来のボンド磁石およびその製造方
法について説明する。ボンド磁石は磁性粉とバインダを
主成分とする複合磁性材料であり、その製造方法は圧縮
成形、射出成形、押し出し成形、圧延成形などが一般的
である。磁性粉としてはフェライト系、SmCo系、N
dFeB系といったものが一般的であるが特に高磁気特
性が要求される用途においてはNdFeB系磁粉が主流
となっている。またバインダとしては成形加工上の優位
性から有機バインダが、特に高磁気特性が要求される用
途においては、圧縮成形に適し高密度品を作製できる熱
硬化性樹脂を主原料とするものが主流となっている。こ
のようなボンド磁石のうち、NdFeB系のものは酸化
物になりやすい鉄を多く含んでいるのでボンド磁石表面
に耐食性皮膜を形成することが不可欠である。また圧縮
成形によって成形されたボンド磁石では磁性粉の欠落防
止の意味もあってボンド磁石表面への皮膜形成が必須で
ある。さらに医療用品など装飾的な機能が要求されるボ
ンド磁石では美観を付与すべくボンド磁石表面に皮膜を
形成することが必要である。
The conventional bonded magnet and its manufacturing method will be described below. The bond magnet is a composite magnetic material containing magnetic powder and a binder as main components, and its manufacturing method is generally compression molding, injection molding, extrusion molding, or rolling molding. Ferrite, SmCo, N as magnetic powder
Although dFeB-based magnetic particles are generally used, NdFeB-based magnetic powders are mainly used in applications where high magnetic properties are required. In addition, as the binder, an organic binder is mainly used because of its superiority in molding processing, and especially in applications where high magnetic properties are required, the mainstream is a thermosetting resin that is suitable for compression molding and can produce high density products. Has become. Among such bonded magnets, NdFeB-based magnets contain a large amount of iron, which easily becomes an oxide, and therefore it is essential to form a corrosion resistant film on the surface of the bonded magnet. Further, in a bonded magnet molded by compression molding, it is essential to form a film on the surface of the bonded magnet in order to prevent the loss of magnetic powder. Furthermore, in the case of bonded magnets that require decorative functions such as medical supplies, it is necessary to form a film on the surface of the bonded magnets in order to give it a beautiful appearance.

【0004】これらの皮膜の成分は貴金属、エポキシ系
樹脂、フッ素系樹脂、シリコン系樹脂などであり、その
形成方法は金属皮膜については電解めっきや無電解めっ
きまたは真空蒸着が、樹脂皮膜については電着塗装やス
プレー塗装が一般的である。
The components of these films are noble metals, epoxy resins, fluorine resins, silicon resins, etc. The method of forming them is electrolytic plating, electroless plating or vacuum deposition for metal films, and electroplating for resin films. Coating and spray coating are common.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、電解めっきや無電解めっき、さらに電着塗
装においてはボンド磁石表面の空孔からめっき液や電着
塗装液が侵入しそれに基づく磁気特性の低下を制御する
ことができないという問題点があり、また真空蒸着にお
いては高コストのため実用的でないという問題点が、ま
たスプレー塗装においてはボンド磁石のエッジ部に実用
に耐え得る樹脂皮膜を形成できないという問題点があっ
た。本発明は上記従来の問題点のうち、特に電解めっ
き、無電解めっき及び電着塗装において、ボンド磁石表
面の空孔からめっき液や電着塗装液が侵入する問題を防
止する技術を開示せんとするものであり、具体的には、
ボンド磁石表面に樹脂層を介した導電層を形成すること
で表面の空孔へのめっき液などの侵入を抑制した状態で
電解めっきまたは無電解めっきまたは電着塗装を行うこ
とができるボンド磁石とその製造方法を提供せんとする
ものである。
However, in the above conventional structure, in electrolytic plating, electroless plating, and electrodeposition coating, the plating solution or the electrodeposition coating solution penetrates through the pores on the surface of the bond magnet, and the magnetic characteristics based on it The problem is that it is not practical to control the decrease in the temperature, and it is not practical due to the high cost in vacuum deposition. In spray coating, a resin film that can withstand practical use is formed on the edge of the bond magnet. There was a problem that it could not be done. Among the above-mentioned conventional problems, the present invention discloses a technique for preventing the problem that the plating solution or the electrodeposition coating solution enters from the holes on the surface of the bond magnet, particularly in the electrolytic plating, the electroless plating and the electrodeposition coating. And specifically,
A bond magnet capable of performing electroplating, electroless plating, or electrodeposition coating with a conductive layer formed on the surface of the bond magnet via a resin layer while suppressing the invasion of a plating solution into the pores of the surface. The manufacturing method is provided.

【0006】[0006]

【課題を解決するための手段】ボンド磁石は表面に露出
している磁粉が多く、従来はこの磁粉の導電性を利用す
ることで、めっき等の被膜形成を行っている。しかしな
がらボンド磁石表面には空孔が存在するので、従来のボ
ンド磁石ではめっき処理を施すと、図1に示すようにボ
ンド磁石表面の空孔からめっき液や電着塗装液が侵入
し、これが磁気特性の低下をもたらす原因となってい
る。また全表面に磁粉が露出していないためめっき被膜
の途切れた箇所も存在し、これが防錆性能の低下につな
がっている。本発明はこれを解決するために、図2に示
すようにボンド磁石表面の空孔を樹脂層で塞ぎ、その上
に金属粉体等よりなる導電層を形成し、表面全体に導電
性を付与する方法を提案するものである。樹脂層は、少
なくとも空孔を塞ぎ、且つ導電層はその塞いだ樹脂層の
上に少なくとも存在すれば、表面全体に導電性を付与す
る目的は達っせられるが、図3に示すように、樹脂層は
空孔を塞ぐのみならず全表面に形成してもよい。尚、こ
のような場合は樹脂層に対応して導電層も全表面に形成
する。このような着想に基づいてなされた本発明は以下
13項目より構成される。 (1) 表面の全体または一部に樹脂層を介した導電層を有
するボンド磁石。 (2) 基準長さを25mmとしたときの導電層表面の最大
高さ(Rmax )が400μm以下となるように表面粗さ
が設定された(1) 記載のボンド磁石。 (3) 導電層がCu、Cr、Zn、Ni、Cd、Sn、P
b、Fe、Au、Ag、Pt、Pd、Rh、Al、Nd
に掲げられた元素からなる単体の粉体あるいは上記元素
を主成分とする合金の粉体の一種以上の集合である(1)
または(2) 記載のボンド磁石。 (4) 粉体の長径が1mm以下である(3) 記載のボンド磁
石。 (5) 粉体が鱗片状である(4) 記載のボンド磁石。 (6) 表面の全体または一部に樹脂層を介した導電層を有
しその全表面の上に電解めっき皮膜を有するボンド磁
石。 (7) 表面の全体または一部に樹脂層を介した導電層を有
しその全表面の上に無電解めっき皮膜を有するボンド磁
石。 (8) 表面の全体または一部に樹脂層を介した導電層を有
しその全表面の上に樹脂皮膜を有するボンド磁石。 (9) 表面の全体または一部に樹脂層を形成したうえで導
電層を形成するようにしたボンド磁石の製造方法。 (10)基準長さを25mmとしたときの導電層表面の最大
高さ(Rmax )が400μm以下となるように表面粗さ
が設定された (9)記載のボンド磁石の製造方法。 (11)導電層がCu、Cr、Zn、Ni、Cd、Sn、P
b、Fe、Au、Ag、Pt、Pd、Rh、Al、Nd
に掲げられた元素からなる単体の粉体あるいは上記元素
を主成分とする合金の粉体の一種以上の集合である (9)
または(10)記載のボンド磁石の製造方法。 (12)粉体の長径が1mm以下である(11)記載のボンド磁
石の製造方法。 (13)粉体が鱗片状である(12)記載のボンド磁石の製造方
法。
[Means for Solving the Problems] Many bonded magnets have magnetic particles exposed on the surface, and conventionally, the conductivity of the magnetic particles is utilized to form a coating film such as plating. However, since there are holes on the surface of the bond magnet, when plating treatment is applied to the conventional bond magnet, as shown in FIG. 1, the plating solution or the electrodeposition coating solution penetrates through the holes on the surface of the bond magnet, which causes This is a cause of deterioration of characteristics. In addition, since the magnetic powder is not exposed on the entire surface, there are some discontinuities in the plating film, which leads to deterioration in rust prevention performance. In order to solve the above problem, the present invention solves this problem by closing the pores on the surface of the bonded magnet with a resin layer and forming a conductive layer made of metal powder or the like on it to give conductivity to the entire surface. It proposes the method to do. If the resin layer fills at least the pores and the conductive layer exists at least on the plugged resin layer, the purpose of imparting conductivity to the entire surface can be achieved, but as shown in FIG. The resin layer may be formed not only on the pores but also on the entire surface. In such a case, the conductive layer is also formed on the entire surface corresponding to the resin layer. The present invention made based on such an idea comprises the following 13 items. (1) A bonded magnet having a conductive layer with a resin layer on the whole or a part of the surface. (2) The bonded magnet according to (1), wherein the surface roughness is set so that the maximum height (R max ) of the surface of the conductive layer when the reference length is 25 mm is 400 μm or less. (3) Conductive layer is Cu, Cr, Zn, Ni, Cd, Sn, P
b, Fe, Au, Ag, Pt, Pd, Rh, Al, Nd
It is a set of one or more powders of a simple substance consisting of the elements listed in (1) or powders of an alloy containing the above-mentioned elements as the main component (1).
Alternatively, the bonded magnet according to (2). (4) The bonded magnet according to (3), wherein the major axis of the powder is 1 mm or less. (5) The bonded magnet according to (4), wherein the powder is scaly. (6) A bonded magnet having a conductive layer with a resin layer on the whole or a part of the surface and an electrolytic plating film on the entire surface. (7) A bonded magnet having a conductive layer with a resin layer on the whole or a part of the surface and an electroless plating film on the entire surface. (8) A bonded magnet having a conductive layer with a resin layer on the whole or a part of the surface and a resin film on the entire surface. (9) A method for producing a bonded magnet, in which a conductive layer is formed after forming a resin layer on the whole or a part of the surface. (10) The method for producing a bonded magnet according to (9), wherein the surface roughness is set so that the maximum height (R max ) of the surface of the conductive layer when the reference length is 25 mm is 400 μm or less. (11) Conductive layer is Cu, Cr, Zn, Ni, Cd, Sn, P
b, Fe, Au, Ag, Pt, Pd, Rh, Al, Nd
It is a set of one or more powders of a simple substance consisting of the elements listed in (1) or powders of an alloy containing the above elements as a main component (9).
Alternatively, the bonded magnet manufacturing method according to (10). (12) The method for producing a bonded magnet according to (11), wherein the major axis of the powder is 1 mm or less. (13) The method for producing a bonded magnet according to (12), wherein the powder is flaky.

【0007】[0007]

【作用】樹脂層がボンド磁石表面の空孔を封じるので電
解めっき、無電解めっきおよび電着塗装の際に不可避で
あっためっき液や電着塗装液の侵入を阻止することがで
きる。さらにこの樹脂層は接着剤層としても機能し、表
面に導電層を固定することができるため樹脂層のみでは
得られない高い導電性をボンド磁石表面に付与すること
が可能となり、電解めっき、無電解めっき、電着塗装な
どによる皮膜形成が容易となる。また導電層を表面に形
成することによりボンド磁石に導電性を付与する手法
は、樹脂と導電性物質の混合物をボンド磁石表面に塗布
したりバインダに導電性物質を含有させる従来の導電性
付与手法に比べて効率的であり、ボンド磁石表面への導
電性付与を効率的に行うことができる。このように本発
明の構成によれば、ボンド磁石表面の空孔が封じられた
状態で電解めっきまたは無電解めっきまたは電着塗装す
ることが可能となる。
Since the resin layer seals the pores on the surface of the bonded magnet, it is possible to prevent the invasion of the plating solution or the electrodeposition coating solution, which is unavoidable during the electrolytic plating, the electroless plating and the electrodeposition coating. Further, this resin layer also functions as an adhesive layer, and since the conductive layer can be fixed on the surface, it is possible to impart high conductivity to the surface of the bonded magnet, which cannot be obtained by the resin layer alone. Film formation by electrolytic plating, electrodeposition coating, etc. becomes easy. Further, the method of imparting conductivity to the bond magnet by forming a conductive layer on the surface is a conventional conductivity imparting method in which a mixture of a resin and a conductive substance is applied to the surface of the bond magnet or a binder contains a conductive substance. It is more efficient than the above, and the conductivity can be efficiently imparted to the surface of the bonded magnet. As described above, according to the configuration of the present invention, it is possible to perform electrolytic plating, electroless plating, or electrodeposition coating with the pores on the surface of the bonded magnet sealed.

【0008】[0008]

【実施例】以下本発明の詳細を具体的実施例に基づき説
明する。
EXAMPLES The details of the present invention will be described below based on specific examples.

【0009】(実施例1〜6)32メッシュパスしたN
dFeB系等方性磁粉(ゼネラルモータース社製MQP
−B)97wt%とエポキシ系接着剤3wt%からなる
磁粉コンパウンドを成形圧力5t/cm2 でプレス成形
し、アルゴン雰囲気下180℃で1時間キュアし図4に
示すような30mm×5mm×3mmの直方体のボンド
磁石を得た。このボンド磁石をエポキシ系接着剤の10
wt%MEK溶液に5分間含浸し、その後十分に液切り
してから減圧乾燥することでMEKを乾燥させた。この
ようにして作製された表面に未硬化のエポキシ系接着剤
層を持つボンド磁石1000ケと直径1mmの銅製ボー
ル200000ケと長径0.5μmのNi粉100gを
振動式ボールミルに入れ振動処理することで、未硬化の
エポキシ系接着剤の粘着性によって表面にNi粉が付着
したボンド磁石を得た。これを180℃で1時間キュア
してから水洗し過剰のNi粉を除去した。以上の手続き
により表面に樹脂層を介した導電層を有するボンド磁石
を得た。これをサンドブラストにより(表2)に示すよ
うに基準長さ25mmで導電層表面の最大高さ
(Rmax )を調整した。その後(表1)に示す条件で電
解めっきをすることにより、図5の概念図で示されるよ
うな表面に樹脂層2を介した導電層3を有しその上に電
解めっき皮膜4を有するボンド磁石1を作製した。ま
た、比較例として上記30mm×5mm×3mmの直方
体のボンド磁石に樹脂層および導電層を形成させること
なく同様に電解めっき処理を施して電解めっき皮膜を有
するボンド磁石を作製した。
(Examples 1 to 6) N passed 32 mesh
dFeB isotropic magnetic powder (MQP manufactured by General Motors)
-B) A magnetic powder compound consisting of 97 wt% and an epoxy adhesive 3 wt% was press-molded at a molding pressure of 5 t / cm 2 and cured under an argon atmosphere at 180 ° C. for 1 hour to obtain 30 mm × 5 mm × 3 mm as shown in FIG. A rectangular parallelepiped bonded magnet was obtained. Use this bond magnet with epoxy adhesive 10
The MEK solution was impregnated with the wt% MEK solution for 5 minutes, drained sufficiently and dried under reduced pressure to dry the MEK. 1000 pieces of bond magnets having an uncured epoxy adhesive layer on the surface thus produced, 200000 pieces of copper balls having a diameter of 1 mm, and 100 g of Ni powder having a long diameter of 0.5 μm are placed in a vibration type ball mill and subjected to vibration treatment. Then, a bond magnet having Ni powder adhered to the surface thereof was obtained due to the tackiness of the uncured epoxy adhesive. This was cured at 180 ° C. for 1 hour and then washed with water to remove excess Ni powder. Through the above procedure, a bonded magnet having a conductive layer with a resin layer on the surface was obtained. This was sandblasted to adjust the maximum height (R max ) of the conductive layer surface with a reference length of 25 mm as shown in (Table 2). Then, by performing electroplating under the conditions shown in (Table 1), a bond having a conductive layer 3 via a resin layer 2 on the surface and an electroplating film 4 on the surface as shown in the conceptual diagram of FIG. The magnet 1 was produced. Further, as a comparative example, the above-described 30 mm × 5 mm × 3 mm rectangular parallelepiped bond magnet was similarly subjected to electrolytic plating treatment without forming a resin layer and a conductive layer to produce a bond magnet having an electrolytic plating film.

【0010】[0010]

【表1】 得られた等方性ボンド磁石の特性を(表2)に示す。[Table 1] The properties of the obtained isotropic bonded magnet are shown in (Table 2).

【0011】[0011]

【表2】 この(表2)から明らかなように、本実施例のボンド磁
石およびその製造方法によると従来の電解めっき皮膜お
よびその形成方法では抑制できなかった磁気特性の低下
が見られず且つ高い耐食性を持つ優れたボンド磁石を得
ることができることがわかる。
[Table 2] As is clear from this (Table 2), according to the bonded magnet of the present example and the method for manufacturing the same, no deterioration in magnetic properties, which could not be suppressed by the conventional electrolytic plating film and the method for forming the same, was observed, and high corrosion resistance was obtained. It can be seen that an excellent bonded magnet can be obtained.

【0012】(実施例7)32メッシュパスしたNdF
eB系等方性磁粉(ゼネラルモータース社製MQP−
B)96wt%とエポキシ系接着剤4wt%からなる磁
粉コンパウンドを成形圧力5t/cm2 でプレス成形
し、アルゴン雰囲気下150℃で2時間キュアし図6に
示すように底面の半径が6mm、高さが12mmの円柱
型のボンド磁石を得た。このボンド磁石をエポキシ系接
着剤の10wt%MEK溶液に5分間含浸し、その後十
分に液切りしてから減圧乾燥することでMEKを乾燥さ
せた。このようにして作製された表面に未硬化のエポキ
シ系接着剤層を持つボンド磁石1000ケと直径1mm
の銅製ボール200000ケと長径0.7μmのNi粉
50gと長径0.6μmのCu粉50gを振動式ボール
ミルに入れ振動処理することで、未硬化のエポキシ系接
着剤の粘着性によって表面にNi粉とCu粉が付着した
ボンド磁石を得た。これを150℃で2時間キュアして
から水洗し過剰のNi粉とCu粉を除去した。以上の手
続きにより表面に樹脂層を介した導電層を有するボンド
磁石を得た。これを(表3)に示す条件で無電解めっき
をすることにより、図7に示すように表面に樹脂層2を
介した導電層3を有しその上に無電解めっき皮膜5を有
するボンド磁石1を作製した。また、比較例として上記
底面の半径が6mm、高さが12mmの円柱型のボンド
磁石にエポキシ系接着剤層および導電層を形成させるこ
となく同様の無電解めっき処理を施して表面に無電解め
っき皮膜を有するボンド磁石を作製した。
(Embodiment 7) NdF passed 32 mesh
eB isotropic magnetic powder (MQP-made by General Motors)
B) A magnetic powder compound consisting of 96 wt% and an epoxy adhesive 4 wt% was press-molded at a molding pressure of 5 t / cm 2 and cured at 150 ° C. for 2 hours in an argon atmosphere, and as shown in FIG. A cylindrical bonded magnet having a size of 12 mm was obtained. MEK was dried by impregnating this bonded magnet with a 10 wt% MEK solution of an epoxy adhesive for 5 minutes, then sufficiently draining and drying under reduced pressure. 1000 bond magnets having an uncured epoxy adhesive layer on the surface thus prepared and a diameter of 1 mm
20000 copper balls, 50 g of Ni powder having a long diameter of 0.7 μm and 50 g of Cu powder having a long diameter of 0.6 μm are put into a vibration type ball mill and subjected to a vibration treatment. A bonded magnet with Cu powder attached was obtained. This was cured at 150 ° C. for 2 hours and then washed with water to remove excess Ni powder and Cu powder. Through the above procedure, a bonded magnet having a conductive layer with a resin layer on the surface was obtained. By subjecting this to electroless plating under the conditions shown in (Table 3), a bond magnet having a conductive layer 3 with a resin layer 2 interposed on the surface and an electroless plating film 5 thereon as shown in FIG. 1 was produced. In addition, as a comparative example, the same electroless plating treatment was performed on the cylindrical bonded magnet having a radius of the bottom surface of 6 mm and a height of 12 mm without forming the epoxy adhesive layer and the conductive layer, and the surface was electroless plated. A bonded magnet having a coating was produced.

【0013】[0013]

【表3】 得られた等方性ボンド磁石の特性を(表4)に示す。[Table 3] The properties of the obtained isotropic bonded magnet are shown in (Table 4).

【0014】[0014]

【表4】 この(表4)から明らかなように、本実施例のボンド磁
石およびその製造方法によると従来の無電解めっき皮膜
およびその形成方法では抑制できなかった磁気特性の低
下が見られず且つ高い耐食性を持つ優れたボンド磁石を
得ることができることがわかる。
[Table 4] As is clear from this (Table 4), according to the bonded magnet of the present example and the method for manufacturing the same, no deterioration in magnetic properties, which could not be suppressed by the conventional electroless plating film and the method for forming the same, was observed and high corrosion resistance was obtained. It can be seen that an excellent bonded magnet can be obtained.

【0015】(実施例8)32メッシュパスしたNdF
eB系等方性磁粉(ゼネラルモータース社製MQP−
B)97wt%とエポキシ系接着剤3wt%からなる磁
粉コンパウンドを成形圧力5t/cm2 でプレス成形
し、アルゴン雰囲気下180℃で1時間キュアし、図8
に示すような一辺が5mmの立方体のボンド磁石を得
た。このボンド磁石をエポキシ系接着剤の10wt%M
EK溶液に5分間含浸し、その後十分に液切りしてから
180℃で1時間キュアした。さらに含浸とキュアを2
回繰り返した後、再度エポキシ系接着剤の10wt%M
EK溶液に5分間含浸し、その後十分に液切りしてから
減圧乾燥することでMEKを乾燥させた。このようにし
て作製された表面に未硬化のエポキシ系接着剤層を持つ
ボンド磁石500ケと直径2mmの銅製ボール1500
00ケと長径0.8μmのCu粉50gを振動式ボール
ミルに入れ振動処理することで、未硬化のエポキシ系接
着剤の粘着性によって表面にCu粉が付着したボンド磁
石を得た。これを180℃で1時間キュアしてから水洗
し過剰のCu粉を除去した。以上の手続きにより表面に
樹脂層を介した導電層を有するボンド磁石を得た。これ
に電着塗装用塗料(関西ペイント製エレクロン)を用い
て電着電圧140Vの条件で電着塗装をしさらに170
℃で20分間キュアすることにより、図9に示すように
表面に樹脂層2を介した導電層3を有しその上に電着塗
装皮膜6を有するボンド磁石1を作製した。また、比較
例として上記一辺が5mmの立方体のボンド磁石にエポ
キシ系接着剤層およびCu層を形成させることなく同様
の電着塗装処理を施して表面に電着塗装皮膜を有するボ
ンド磁石を作製した。得られた等方性ボンド磁石の特性
を(表5)に示す。
(Embodiment 8) NdF passed 32 mesh
eB isotropic magnetic powder (MQP-made by General Motors)
B) A magnetic powder compound consisting of 97 wt% and an epoxy adhesive of 3 wt% was press-molded at a molding pressure of 5 t / cm 2 and cured at 180 ° C. for 1 hour in an argon atmosphere, and FIG.
A cubic bonded magnet having a side of 5 mm as shown in FIG. This bond magnet is 10 wt% M of epoxy adhesive
The EK solution was impregnated for 5 minutes, drained sufficiently, and then cured at 180 ° C. for 1 hour. 2 more impregnation and cure
After repeating 10 times, 10 wt% M of epoxy adhesive again
MEK was dried by impregnating the EK solution for 5 minutes, draining the solution sufficiently, and then drying under reduced pressure. 500 bond magnets having an uncured epoxy adhesive layer on the surface thus manufactured and copper balls 1500 having a diameter of 2 mm
50 g of Cu powder having a diameter of 00 and a major axis of 0.8 μm was put into a vibration type ball mill and subjected to a vibration treatment to obtain a bonded magnet having Cu powder adhered to the surface due to the tackiness of the uncured epoxy adhesive. This was cured at 180 ° C. for 1 hour and then washed with water to remove excess Cu powder. Through the above procedure, a bonded magnet having a conductive layer with a resin layer on the surface was obtained. Electrodeposition coating was applied to this using a paint for electrodeposition coating (Elektron manufactured by Kansai Paint) under the condition of an electrodeposition voltage of 140 V, and then 170
By performing curing at 20 ° C. for 20 minutes, a bonded magnet 1 having a conductive layer 3 with a resin layer 2 interposed on the surface and having an electrodeposition coating film 6 thereon was prepared as shown in FIG. In addition, as a comparative example, the above-mentioned cubic bonded magnet having a side of 5 mm was subjected to the same electrodeposition coating treatment without forming an epoxy adhesive layer and a Cu layer, to produce a bonded magnet having an electrodeposition coating film on the surface. . The characteristics of the obtained isotropic bonded magnet are shown in (Table 5).

【0016】[0016]

【表5】 この(表5)から明らかなように、本実施例のボンド磁
石およびその製造方法によると従来の電着塗装皮膜およ
びその形成方法では抑制できなかった磁気特性の低下が
見られず且つ高い耐食性を持つ優れたボンド磁石を得る
ことができることがわかる。
[Table 5] As is clear from this (Table 5), according to the bonded magnet of the present example and the method for manufacturing the same, no deterioration in magnetic properties that could not be suppressed by the conventional electrodeposition coating film and the method for forming the same was observed, and high corrosion resistance was obtained. It can be seen that an excellent bonded magnet can be obtained.

【0017】上記各実施例では磁性粉をNdFeB系と
したが、SmFeN系、SmCo系などその他の希土類
系磁性粉、Ba系フェライト、Sr系フェライト、Mn
Zn系フェライトなどの酸化物系磁性粉といったものが
使用できる。フェライトからなるボンド磁石への上記処
理は外観が重要とされる用途において有効である。これ
ら磁粉の表面に分散性などを向上させるためにシラン
系、チタネート系のカップリング剤などによる処理をし
てもよい。磁粉含率としては50〜98wt%が良好で
ある。高磁気特性が要求される用途では高密度の成形体
が得られる97wt%がより好ましいが98wt%を越
える量だとバインダ不足となりボンド磁石自身の強度が
著しく低下する。
In each of the above embodiments, the magnetic powder was NdFeB type, but other rare earth type magnetic powder such as SmFeN type and SmCo type, Ba type ferrite, Sr type ferrite, Mn.
An oxide-based magnetic powder such as Zn-based ferrite can be used. The above-mentioned treatment of a bonded magnet made of ferrite is effective in applications where appearance is important. The surface of these magnetic particles may be treated with a silane-based or titanate-based coupling agent or the like in order to improve dispersibility. The magnetic powder content is preferably 50 to 98 wt%. For applications requiring high magnetic properties, 97 wt% is more preferable because a high-density molded body can be obtained, but if the amount exceeds 98 wt%, the binder becomes insufficient and the strength of the bond magnet itself is significantly reduced.

【0018】またバインダの主成分としてはエポキシ樹
脂、ナイロン樹脂など汎用のものが使用できる。圧縮成
形にはエポキシ樹脂を、射出成形にはナイロン樹脂を使
用することが一般的である。主成分が熱硬化性樹脂であ
る場合には硬化剤も一般的なものを使用できる。また必
要に応じ適当な硬化促進剤を添加することも有効であ
る。成形性改良のために可塑剤、滑剤を適宜添加するこ
とも可能であるがボンド磁石自身の強度を保つためにそ
れらの添加量は5〜50wt%の範囲とすることが好ま
しい。
As the main component of the binder, general-purpose ones such as epoxy resin and nylon resin can be used. Generally, an epoxy resin is used for compression molding and a nylon resin is used for injection molding. When the main component is a thermosetting resin, a general curing agent can be used. It is also effective to add an appropriate curing accelerator if necessary. It is possible to appropriately add a plasticizer and a lubricant for improving the moldability, but in order to maintain the strength of the bonded magnet itself, the addition amount thereof is preferably in the range of 5 to 50 wt%.

【0019】そしてボンド磁石表面に形成される樹脂層
であるが主成分としてエポキシ系、フェノール系、アク
リル系など通常の熱硬化性樹脂およびそれに適する硬化
剤が使用できる。また硬化促進剤を添加することも有効
である。また樹脂に粘着剤を混合することで導電性物質
層の付着を効率的に行うこともできる。またこの樹脂層
の主成分とボンド磁石のバインダの主成分が同一である
とボンド磁石と樹脂層間の接着強度が強くなり好適であ
る。またその厚さはボンド磁石表面の平滑さにもよるが
100μm以下が好ましい。100μm以上あると導電
性物質が付着するとき樹脂層内に沈み込んでしまい表面
の粗さが無視できなくなる。さらにこの樹脂層の形成方
法であるがスプレー法、ディップ法、真空含浸法など一
般の方法が使用できる。また重ね塗りは表面の平滑さを
向上するために有効であるが、樹脂層全体の厚みが10
0μm以下とすることが必要である。また必要に応じ樹
脂層を形成する前にボンド磁石表面の洗浄や研磨を実施
したりシラン系、チタネート系のカップリング剤などに
よる処理をしてもよい。
Although it is a resin layer formed on the surface of the bonded magnet, a usual thermosetting resin such as epoxy type, phenol type, acrylic type and a curing agent suitable therefor can be used as a main component. It is also effective to add a curing accelerator. In addition, the conductive material layer can be efficiently attached by mixing the resin with an adhesive. If the main component of the resin layer and the main component of the binder of the bond magnet are the same, the adhesive strength between the bond magnet and the resin layer becomes strong, which is preferable. The thickness is preferably 100 μm or less, though it depends on the smoothness of the surface of the bonded magnet. When it is 100 μm or more, when the conductive substance adheres, it sinks into the resin layer and the surface roughness cannot be ignored. Further, as the method for forming this resin layer, a general method such as a spray method, a dipping method, or a vacuum impregnation method can be used. Overcoating is effective for improving the smoothness of the surface, but the total thickness of the resin layer is 10
It is necessary that the thickness be 0 μm or less. If necessary, the surface of the bonded magnet may be washed or polished before forming the resin layer, or may be treated with a silane-based or titanate-based coupling agent.

【0020】また樹脂層の上に形成される導電層である
が、その成分は上記実施例にあるNi、Cuの他にC
u、Cr、Zn、Ni、Cd、Sn、Pb、Fe、A
u、Ag、Pt、Pd、Rh、Al、Ndに掲げられた
元素からなる単体あるいは上記元素を主成分とする合金
のうち少なくとも一種以上が使用できる。これらは粉体
の状態でボンド磁石表面に形成された樹脂層の上に付
着、固定化されるが特にエッジ部を均一に被覆できるN
i、Cu、Alなどが好適である。さらにこの粉体は長
径が1mm以下であることが好ましい。長径がこれ以上
になるとエッジ部の被覆が十分に行われなくなる。また
エッジ部の被覆の観点から粉体が鱗片状である方が一層
好適である。また導電層の厚みは用いられる粉体の性状
により異なるが100μm以下が好ましい。これより厚
いと樹脂層による固定の効果が薄くなる。より好ましく
は50μm以下がよい。また表面の粗さは基準長さ25
mmに対し最大高さ(Rmax )400μm以下であるこ
とが必要である。最大高さがこれ以上であると電解めっ
き、無電解めっき、電着塗装を実施した時にピンホール
を発生しやすくなりそこから下地磁石の腐食を招くこと
となる。特に、最大高さ(Rmax )が樹脂層と導電層と
の合計厚みよりも大きいときは、下地磁石が部分的に露
出するのであまり好ましくない。さらに導電層の表面抵
抗が小さいほど電解めっき、無電解めっき、電着塗装が
容易となるが500Ω/sq以下であることが好まし
い。より好ましくは200Ω/sq以下であることが望
ましく、さらには50Ω/sq以下であると非常に良好
な皮膜形成が可能となる。
The conductive layer is formed on the resin layer, and its component is C in addition to Ni and Cu in the above embodiment.
u, Cr, Zn, Ni, Cd, Sn, Pb, Fe, A
At least one element selected from the group consisting of the elements listed in u, Ag, Pt, Pd, Rh, Al and Nd or the alloys containing the above elements as the main component can be used. These are adhered and fixed in a powder state on the resin layer formed on the surface of the bonded magnet, but in particular, the edge portion can be uniformly coated N
i, Cu, Al and the like are preferable. Further, this powder preferably has a major axis of 1 mm or less. If the major axis exceeds this value, the edge portion will not be sufficiently covered. From the viewpoint of covering the edge portion, it is more preferable that the powder has a scaly shape. The thickness of the conductive layer depends on the properties of the powder used, but is preferably 100 μm or less. If it is thicker than this, the effect of fixing by the resin layer becomes thin. More preferably, it is 50 μm or less. The surface roughness is 25
It is necessary that the maximum height (R max ) is 400 μm or less with respect to mm. If the maximum height is higher than this, pinholes are likely to occur during electrolytic plating, electroless plating, and electrodeposition coating, which leads to corrosion of the base magnet. In particular, when the maximum height (R max ) is larger than the total thickness of the resin layer and the conductive layer, the base magnet is partially exposed, which is not preferable. Further, the smaller the surface resistance of the conductive layer, the easier the electrolytic plating, the electroless plating, and the electrodeposition coating, but it is preferably 500 Ω / sq or less. It is more preferably 200 Ω / sq or less, and if 50 Ω / sq or less, a very good film formation becomes possible.

【0021】この導電層の形成方法であるが、上記実施
例にあるように振動ボールミル内での振動処理の他、回
転バレル装置、遠心バレル装置による成形方法も使用で
きる。また電解めっき、無電解めっき、電着塗装の具体
的方法としては上記実施例の他に一般的な方法を適用し
て実施してもよい。
Regarding the method of forming the conductive layer, in addition to the vibration treatment in the vibrating ball mill as in the above embodiment, a molding method using a rotary barrel device or a centrifugal barrel device can be used. Further, as a concrete method of the electrolytic plating, the electroless plating, and the electrodeposition coating, a general method may be applied in addition to the above-mentioned embodiment.

【0022】電解めっき用水溶液としては、シアン化銅
浴、ピロりん酸銅浴、硫酸銅浴、無光沢Ni浴、ワット
浴、スルファミン酸浴、ウッドストライク浴、イマージ
ョンNi浴、6価Cr低濃度浴、6価Crサージェント
浴、6価Crふっ化物含有浴、高シアン化物アルカリZ
nめっき浴、中シアン化物アルカリZnめっき浴、低シ
アン化物アルカリZnめっき浴、ジンケート浴、シアン
化Cdめっき浴、ほうふっ化Cdめっき浴、硫酸酸性S
nめっき浴、ほうふっ酸Snめっき浴、ほうふっ酸Pb
めっき浴、スルファミン酸Pbめっき浴、メタンスルホ
ン酸Pbめっき浴、ほうふっ酸はんだめっき浴、フェノ
ールスルホン酸はんだめっき浴、アルカノールスルホン
酸はんだめっき浴、塩化物Feめっき浴、硫酸塩Feめ
っき浴、ほうふっ化物Feめっき浴、スルファミン酸塩
Feめっき浴、Sn−Co合金スタネート浴、Sn−C
o合金ピロりん酸浴、Sn−Co合金ふっ化物浴、Sn
−Ni合金ピロりん酸浴、Sn−Ni合金ふっ化物浴な
どが陽極金属種によって適宜選択でき、さらに光沢剤、
レベラー剤、ピット防止剤、梨地形成剤、アノード溶解
剤、PH緩衝剤、安定剤等の添加剤を加えることもでき
る。また後工程として水洗、湯洗、封孔処理工程等を目
的に応じて付加することもできる。
Aqueous solutions for electrolytic plating include copper cyanide bath, copper pyrophosphate bath, copper sulfate bath, matte Ni bath, Watt bath, sulfamic acid bath, wood strike bath, immersion Ni bath, and hexavalent Cr low concentration. Bath, Hexavalent Cr Sargent Bath, Hexavalent Cr Fluoride Containing Bath, High Cyanide Alkaline Z
n plating bath, medium cyanide alkali Zn plating bath, low cyanide alkali Zn plating bath, zincate bath, cyanide Cd plating bath, borofluoride Cd plating bath, sulfuric acid S
n plating bath, borofluoric acid Sn plating bath, borofluoric acid Pb
Plating bath, sulfamic acid Pb plating bath, methanesulfonic acid Pb plating bath, borofluoric acid solder plating bath, phenolsulfonic acid solder plating bath, alkanolsulfonic acid solder plating bath, chloride Fe plating bath, sulfate Fe plating bath, ho Fluoride Fe plating bath, sulfamate Fe plating bath, Sn-Co alloy stannate bath, Sn-C
o alloy pyrophosphoric acid bath, Sn-Co alloy fluoride bath, Sn
-Ni alloy pyrophosphoric acid bath, Sn-Ni alloy fluoride bath, etc. can be appropriately selected depending on the anode metal species.
Additives such as a leveler agent, an anti-pitting agent, a satin-forming agent, an anode dissolving agent, a PH buffer and a stabilizer can also be added. Further, as a post-process, a washing process with water, a washing process with hot water, a sealing treatment process and the like can be added depending on the purpose.

【0023】ついで無電解めっき液としては以下列記す
るものが、めっきする金属種に応じて適宜選択される。
硫酸Cuとロッシェル塩、ホルムアルデヒド、炭酸N
a、水酸化Na、EDTA、シアン化Na等のうちのい
くつかを含有するCuめっき浴。硫酸Ni、塩化Niま
たはこれらの混合物と、酢酸Na、乳酸、クエン酸N
a、次亜りん酸Na、ほう酸、硫酸アンモニウム、塩化
アンモニウム、エチレンジアミン、クエン酸アンモニウ
ム、ピロリン酸Naなどのうちのいくつかを含有するN
iめっき浴またはNi合金めっき浴。硫酸Coと、次亜
りん酸Na、クエン酸Na、酒石酸Na、硫酸アンモニ
ウム、ほう酸などのうちのいくつかを含有するCoめっ
き浴またはCo合金めっき浴。ジシアノ金(I)酸カリ
ウム、テトラシアノ金(III)酸カリウムまたはこれらの
混合物と、シアン化カリウム、水酸化カリウム、塩化
鉛、水酸化ほう素カリウムなどのうちのいくつかを含有
するAuめっき浴。シアン化銀と、シアン化Na、水酸
化Na、ジメチルアミンボラン、チオ尿素などのうちの
いくつかを含有するAgめっき浴。塩化パラジウムと、
水酸化アンモニウム、塩化アンモニウム、エチレンジア
ミン4酢酸Na、ホスフィン酸Na、ヒドラジン等のう
ちのいくつかを含有するパラジウムめっき浴。塩化スズ
と、クエン酸Na、エチレンジアミン4酢酸Na、ニト
ロ3酢酸Na、3塩化チタン、酢酸Na、ベンゼンスル
ホン酸などのうちのいくつかを含有するスズめっき浴。
などが使用可能である。尚、光沢剤、レベラー剤、ピッ
ト防止剤、梨地形成剤、PH緩衝剤、安定剤、錯化剤等
の添加剤をさらに加えることもできる。また、本発明で
用いられる無電解めっき法には後処理工程としてクロメ
ート処理、水洗、湯洗などを実施することもできる。本
発明で行われる無電解めっき処理によって被処理物に被
覆されるめっき金属としては、Cu、Ni、Co、S
n、Ag、Au、Pt及びNi−Co、Ni−Co−
B、Ni−Co−P、Ni−Fe−P、Ni−W−P、
Ni−P、Co−Fe−P、Co−W−P、Co−Ni
−Mn−Re−などが例示でき、目的応じて適宜選択で
きる。
Next, as the electroless plating solution, the ones listed below are appropriately selected according to the metal species to be plated.
Cu sulfate and Rochelle salt, formaldehyde, N carbonate
Cu plating bath containing some of a, Na hydroxide, EDTA, Na cyanide, etc. Ni sulphate, Ni chloride or mixtures thereof with Na acetate, lactic acid, N citrate
a, N containing some of sodium hypophosphite, boric acid, ammonium sulfate, ammonium chloride, ethylenediamine, ammonium citrate, Na pyrophosphate, etc.
i plating bath or Ni alloy plating bath. A Co plating bath or Co alloy plating bath containing Co sulfate and some of Na hypophosphite, Na citrate, Na tartrate, ammonium sulfate, boric acid, and the like. An Au plating bath containing potassium dicyanoaurate (I), potassium tetracyanoaurate (III) or a mixture thereof and some of potassium cyanide, potassium hydroxide, lead chloride, potassium borohydride and the like. An Ag plating bath containing silver cyanide and some of Na cyanide, Na hydroxide, dimethylamine borane, thiourea and the like. Palladium chloride,
A palladium plating bath containing some of ammonium hydroxide, ammonium chloride, sodium ethylenediamine tetraacetate, Na phosphinate, hydrazine and the like. A tin plating bath containing tin chloride and some of Na citrate, Na ethylenediamine tetraacetate, Na nitro triacetate, Titanium trichloride, Na acetate, benzene sulfonic acid and the like.
Etc. can be used. Incidentally, it is possible to further add additives such as a brightening agent, a leveler agent, a pit preventing agent, a satin forming agent, a PH buffer, a stabilizer and a complexing agent. Further, in the electroless plating method used in the present invention, chromate treatment, washing with water, washing with hot water or the like can be carried out as a post-treatment step. Examples of the plating metal with which the object to be processed is coated by the electroless plating process performed in the present invention include Cu, Ni, Co, and S.
n, Ag, Au, Pt and Ni-Co, Ni-Co-
B, Ni-Co-P, Ni-Fe-P, Ni-WP,
Ni-P, Co-Fe-P, Co-WP, Co-Ni
-Mn-Re- and the like can be exemplified, and can be appropriately selected according to the purpose.

【0024】最後に電着塗装であるが被塗物成形体を陽
極にしたアニオン電着塗装法、あるいは被塗物成形体を
陰極にしたカチオン電着塗装法を採用することができ
る。アニオン電着塗装に使用される樹脂としては乾性
油、ポリエステル、ポリブタジエン、エポキシエステ
ル、ポリアクリル酸エステル骨格としたポリカルボン酸
樹脂であり、通常、有機アミンあるいは苛性カリなどの
塩基で中和し水溶液化あるいは水分化されて負に帯電す
る。またカチオン電着塗装に使用される樹脂としては主
としてエポキシ系樹脂、アクリル系樹脂などを骨格にし
たポリアミノ樹脂で通常有機酸で中和し水溶液化あるい
は水分散化されて正に帯電する。さらに上記の樹脂中に
酸化亜鉛、クロム酸亜鉛、クロム酸ストロンチウム、鈴
丹などの防錆用顔料を含有してもよくあるいはベンゾト
リアゾールを含有してもよい。
Finally, as the electrodeposition coating, an anion electrodeposition coating method in which the article to be coated is used as an anode or a cationic electrodeposition coating method in which the article to be coated is used as a cathode can be adopted. The resin used for anionic electrodeposition coating is a drying oil, polyester, polybutadiene, epoxy ester, polycarboxylic acid resin having a polyacrylic acid ester skeleton, which is usually neutralized with a base such as organic amine or caustic potash to form an aqueous solution. Alternatively, it becomes water and becomes negatively charged. As a resin used for cationic electrodeposition coating, a polyamino resin mainly having an epoxy resin, an acrylic resin or the like as a skeleton is usually neutralized with an organic acid and made into an aqueous solution or water dispersion to be positively charged. Further, the above resin may contain a rust preventive pigment such as zinc oxide, zinc chromate, strontium chromate, and Suzutan, or may contain benzotriazole.

【0025】以上述べたものは、導電層の上に電解めっ
き皮膜や無電解めっき皮膜、さらに電着塗装皮膜を形成
する例であったが、これら被膜に代えて樹脂被膜を形成
することも本発明の範囲である。
The above description is an example of forming an electrolytic plating film, an electroless plating film, and an electrodeposition coating film on the conductive layer, but it is also possible to form a resin film in place of these films. It is the scope of the invention.

【0026】[0026]

【発明の効果】以上、詳述したように本発明は、ボンド
磁石表面の空孔を樹脂層によって封じ且つその樹脂層の
上に導電層を形成したので、磁気特性を低下させること
なく電解めっき皮膜または無電解めっき皮膜あるいは電
着塗装皮膜を有するボンド磁石を作製することができ、
ボンド磁石の耐食性を飛躍的に改善することが可能とな
るので工業的価値は極めて高い。
As described above in detail, according to the present invention, the holes on the surface of the bonded magnet are sealed by the resin layer and the conductive layer is formed on the resin layer, so that the electrolytic plating is performed without deteriorating the magnetic characteristics. It is possible to produce a bonded magnet having a film, an electroless plating film, or an electrodeposition coating film,
Since it becomes possible to dramatically improve the corrosion resistance of the bonded magnet, its industrial value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来のボンド磁石のめっき処理前後の表面状
態を示す説明図
FIG. 1 is an explanatory view showing a surface state of a conventional bonded magnet before and after plating treatment.

【図2】 本発明にかかるボンド磁石のめっき処理前後
の表面状態を示す説明図
FIG. 2 is an explanatory view showing a surface state of a bonded magnet according to the present invention before and after plating treatment.

【図3】 本発明にかかるボンド磁石のめっき処理前後
の表面状態を示す説明図
FIG. 3 is an explanatory view showing a surface state of a bonded magnet according to the present invention before and after plating treatment.

【図4】 実施例1〜6に用いたボンド磁石の外形状を
示す説明図
FIG. 4 is an explanatory diagram showing the outer shape of the bonded magnet used in Examples 1 to 6.

【図5】 実施例1〜6のボンド磁石表面の積層構造の
概略を示す説明図
FIG. 5 is an explanatory view showing an outline of a laminated structure of a bonded magnet surface of Examples 1 to 6.

【図6】 実施例7に用いたボンド磁石の外形状を示す
説明図
FIG. 6 is an explanatory view showing the outer shape of the bonded magnet used in Example 7.

【図7】 実施例7のボンド磁石表面の積層構造の概略
を示す説明図
FIG. 7 is an explanatory view showing an outline of a laminated structure on the surface of a bonded magnet of Example 7.

【図8】 実施例8に用いたボンド磁石の外形状を示す
説明図
FIG. 8 is an explanatory view showing the outer shape of the bonded magnet used in Example 8.

【図9】 実施例8のボンド磁石表面の積層構造の概略
を示す説明図
FIG. 9 is an explanatory view showing the outline of the laminated structure of the surface of the bonded magnet of Example 8.

【符号の説明】[Explanation of symbols]

1 ボンド磁石 2 樹脂層 3 導電層 4 電解めっき皮
膜 5 無電解めっき皮膜 6 電着塗装皮膜
1 Bonded magnet 2 Resin layer 3 Conductive layer 4 Electrolytic plating film 5 Electroless plating film 6 Electrodeposition coating film

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 表面の全体または一部に樹脂層を介した
導電層を有するボンド磁石。
1. A bond magnet having a conductive layer with a resin layer on the whole or a part of the surface.
【請求項2】 基準長さを25mmとしたときの導電層
表面の最大高さが400μm以下となるように表面粗さ
が設定された請求項1記載のボンド磁石。
2. The bond magnet according to claim 1, wherein the surface roughness is set such that the maximum height of the surface of the conductive layer is 400 μm or less when the reference length is 25 mm.
【請求項3】 導電層がCu、Cr、Zn、Ni、C
d、Sn、Pb、Fe、Au、Ag、Pt、Pd、R
h、Al、Ndに掲げられた元素からなる単体の粉体あ
るいは上記元素を主成分とする合金の粉体の一種以上の
集合である請求項1または2記載のボンド磁石。
3. The conductive layer is Cu, Cr, Zn, Ni, C
d, Sn, Pb, Fe, Au, Ag, Pt, Pd, R
The bonded magnet according to claim 1 or 2, which is a set of one or more powders of a simple substance consisting of the elements listed in h, Al and Nd or powders of an alloy containing the above element as a main component.
【請求項4】 粉体の長径が1mm以下である請求項3
記載のボンド磁石。
4. The major axis of the powder is 1 mm or less.
The bond magnet described.
【請求項5】 粉体が鱗片状である請求項4記載のボン
ド磁石。
5. The bonded magnet according to claim 4, wherein the powder is scaly.
【請求項6】 表面の全体または一部に樹脂層を介した
導電層を有しその全表面の上に電解めっき皮膜を有する
ボンド磁石。
6. A bonded magnet having a conductive layer with a resin layer on the whole or a part of the surface and an electrolytic plating film on the entire surface.
【請求項7】 表面の全体または一部に樹脂層を介した
導電層を有しその全表面の上に無電解めっき皮膜を有す
るボンド磁石。
7. A bonded magnet having a conductive layer with a resin layer on the whole or a part of the surface and an electroless plating film on the entire surface.
【請求項8】 表面の全体または一部に樹脂層を介した
導電層を有しその全表面の上に樹脂皮膜を有するボンド
磁石。
8. A bonded magnet having a conductive layer with a resin layer on the whole or a part of the surface and a resin film on the entire surface.
【請求項9】 表面の全体または一部に樹脂層を形成し
たうえで導電層を形成するようにしたボンド磁石の製造
方法。
9. A method for producing a bonded magnet, wherein a conductive layer is formed after forming a resin layer on the whole or a part of the surface.
【請求項10】 基準長さを25mmとしたときの導電
層表面の最大高さが400μm以下となるように表面粗
さが設定された請求項9記載のボンド磁石の製造方法。
10. The method for producing a bonded magnet according to claim 9, wherein the surface roughness is set so that the maximum height of the conductive layer surface is 400 μm or less when the reference length is 25 mm.
【請求項11】 導電層がCu、Cr、Zn、Ni、C
d、Sn、Pb、Fe、Au、Ag、Pt、Pd、R
h、Al、Ndに掲げられた元素からなる単体の粉体あ
るいは上記元素を主成分とする合金の粉体の一種以上の
集合である請求項9または10記載のボンド磁石の製造
方法。
11. The conductive layer is Cu, Cr, Zn, Ni, C
d, Sn, Pb, Fe, Au, Ag, Pt, Pd, R
The method for producing a bonded magnet according to claim 9 or 10, which is a set of one or more powders of a simple substance composed of the elements listed in h, Al and Nd or powders of an alloy containing the above element as a main component.
【請求項12】 粉体の長径が1mm以下である請求項
11記載のボンド磁石の製造方法。
12. The method for producing a bonded magnet according to claim 11, wherein the major axis of the powder is 1 mm or less.
【請求項13】 粉体が鱗片状である請求項12記載の
ボンド磁石の製造方法。
13. The method for producing a bonded magnet according to claim 12, wherein the powder is scaly.
JP5309586A 1993-12-10 1993-12-10 Bond magnet and its production Pending JPH07161516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5309586A JPH07161516A (en) 1993-12-10 1993-12-10 Bond magnet and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5309586A JPH07161516A (en) 1993-12-10 1993-12-10 Bond magnet and its production

Publications (1)

Publication Number Publication Date
JPH07161516A true JPH07161516A (en) 1995-06-23

Family

ID=17994822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5309586A Pending JPH07161516A (en) 1993-12-10 1993-12-10 Bond magnet and its production

Country Status (1)

Country Link
JP (1) JPH07161516A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038157A1 (en) * 2001-10-29 2003-05-08 Sumitomo Special Metals Co., Ltd. Method for forming electroplated coating on surface of article
JP2004047872A (en) * 2002-07-15 2004-02-12 Matsushita Electric Ind Co Ltd Method for manufacturing rare earth bonded magnet from sheet to film, and its permanent magnet motor
EP1455368A1 (en) * 2001-11-20 2004-09-08 Shin-Etsu Chemical Company, Ltd. CORROSION−RESISTANT RARE EARTH ELEMENT MAGNET
US7045923B2 (en) 2003-07-01 2006-05-16 Nidec Corporation Magnetizing method and permanent magnet magnetized thereby
JP2006148157A (en) * 2006-01-26 2006-06-08 Daido Electronics Co Ltd Rare-earth bonded magnet
CN100370559C (en) * 2003-11-17 2008-02-20 上海核工业第八研究所 Binding neodybium iron boron magnet surface cathode electrophoresis production technology
JP2008263208A (en) * 2001-06-14 2008-10-30 Shin Etsu Chem Co Ltd Corrosion-resistant rare earth magnet
CN113699567A (en) * 2021-08-27 2021-11-26 杭州象限科技有限公司 Ultrathin plating electroplating method applied to neodymium iron boron surface treatment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263208A (en) * 2001-06-14 2008-10-30 Shin Etsu Chem Co Ltd Corrosion-resistant rare earth magnet
WO2003038157A1 (en) * 2001-10-29 2003-05-08 Sumitomo Special Metals Co., Ltd. Method for forming electroplated coating on surface of article
US7449100B2 (en) 2001-10-29 2008-11-11 Hitachi Metals, Ltd. Method for forming electroplating film on surfaces of articles
EP1455368A1 (en) * 2001-11-20 2004-09-08 Shin-Etsu Chemical Company, Ltd. CORROSION−RESISTANT RARE EARTH ELEMENT MAGNET
EP1455368A4 (en) * 2001-11-20 2005-03-23 Shinetsu Chemical Co Corrosion-resistant rare earth element magnet
US7156928B2 (en) 2001-11-20 2007-01-02 Shin-Etsu Chemical Co., Ltd. Corrosion-resistant rare earth element magnet
JP2004047872A (en) * 2002-07-15 2004-02-12 Matsushita Electric Ind Co Ltd Method for manufacturing rare earth bonded magnet from sheet to film, and its permanent magnet motor
US7045923B2 (en) 2003-07-01 2006-05-16 Nidec Corporation Magnetizing method and permanent magnet magnetized thereby
CN100370559C (en) * 2003-11-17 2008-02-20 上海核工业第八研究所 Binding neodybium iron boron magnet surface cathode electrophoresis production technology
JP2006148157A (en) * 2006-01-26 2006-06-08 Daido Electronics Co Ltd Rare-earth bonded magnet
CN113699567A (en) * 2021-08-27 2021-11-26 杭州象限科技有限公司 Ultrathin plating electroplating method applied to neodymium iron boron surface treatment

Similar Documents

Publication Publication Date Title
EP3486925B1 (en) Ndfeb magnet with composite coating and preparation process thereof
KR100374398B1 (en) HIGH CORROSION-RESISTANT R-Fe-B BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
JPH07161516A (en) Bond magnet and its production
KR100921874B1 (en) Method for forming electroplated coating on surface of article
JPH03173106A (en) Rare earth permanent magnet with corrosion resistant film and manufacture thereof
JPH08186016A (en) Bonded magnet having plating film and manufacturing method thereof
KR100371786B1 (en) METHOD OF MANUFACTURING R-Fe-B BOND MAGNETS OF HIGH CORROSION RESISTANCE
JP2000133541A (en) Manufacture of corrosion-resistant r-fe-b bonded magnet
JP2004039917A (en) Permanent magnet and manufacturing method therefor
JP2001257112A (en) Permanent magnet material
JPH07283018A (en) Bond magnet and production thereof
KR100393680B1 (en) Multilayer coated Nd-Fe-B magnet and its manufacturing method
JP2719658B2 (en) Bond magnet plating method
KR102617340B1 (en) Rare earth magnet and method for manufacturing the magnet
JPH07249514A (en) Bond magnet and its manufacture
JPH0311714A (en) Resin-bonded type magnet and manufacture thereof
JP2631493B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH07263212A (en) Bond magnet and its production
JP2612494B2 (en) Manufacturing method of plastic magnet
JP4077572B2 (en) Rare earth bonded magnet manufacturing method
JP2001189214A (en) Bonded rare earth magnet and manufacturing method therefor
JP2631492B2 (en) Manufacturing method of corrosion resistant permanent magnet
JP2696757B2 (en) permanent magnet
JP2008078211A (en) Bond magnet, and method for manufacturing the same
JP2003249405A (en) Rare-earth permanent magnet and surface treatment method thereof