JPH07249514A - Bond magnet and its manufacture - Google Patents

Bond magnet and its manufacture

Info

Publication number
JPH07249514A
JPH07249514A JP4025894A JP4025894A JPH07249514A JP H07249514 A JPH07249514 A JP H07249514A JP 4025894 A JP4025894 A JP 4025894A JP 4025894 A JP4025894 A JP 4025894A JP H07249514 A JPH07249514 A JP H07249514A
Authority
JP
Japan
Prior art keywords
bath
plating
tin
bonded magnet
underlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4025894A
Other languages
Japanese (ja)
Inventor
Yasunori Matsunari
靖典 松成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP4025894A priority Critical patent/JPH07249514A/en
Publication of JPH07249514A publication Critical patent/JPH07249514A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To provide a bond magnet which is free from deterioration in magnetic characteristic and is coated with a plated film that can be mass-produced in a relatively short time. CONSTITUTION:A bond magnet is coated with a surface layer 4 composed of a electroplated film deposited in an acidic plating bath of <=4.0 in pH on a surface base layer 3 which is deposited in a plating bath of <=80 deg.C in temperature and >=6.0 in pH.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフロッピーディスクドラ
イブ用ステッピングモータやハードディスクドライブ用
スピンドルモータなどに使用されるボンド磁石とその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bond magnet used in a stepping motor for a floppy disk drive, a spindle motor for a hard disk drive, etc., and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、電子機器の軽薄短小化を受けてそ
れを構成する電子部品も縮小化する傾向にある。この傾
向はモータにも見られ、そしてそれは内蔵される磁石の
小型化、複雑形状化を要求してくる。こうした背景の
中、小型化、複雑形状化といったニーズに対応できるボ
ンド磁石の需要が大きくなってきている。以下に従来の
ボンド磁石およびその製造方法について説明する。ボン
ド磁石は磁性粉とバインダを主成分とする複合磁性材料
であり、その製造方法は圧縮成形、射出成形、押し出し
成形、圧延成形などが一般的である。磁性粉としてはフ
ェライト系、SmCo系、NdFeB系といったものが
一般的であるが特に高磁気特性が要求される用途におい
てはNdFeB系磁性粉が主流となっている。またバイ
ンダとしては成形加工上の優位性から有機バインダが、
特に高磁気特性が要求される用途においては、圧縮成形
に適し高密度品を作製できる熱硬化性樹脂を主原料とす
るものが主流となっている。
2. Description of the Related Art In recent years, as electronic devices have become lighter, thinner, shorter, and smaller, the electronic parts constituting them have tended to become smaller. This tendency is also seen in motors, which requires smaller and more complex magnets to be built in. Against this background, there is an increasing demand for bonded magnets that can meet the needs for downsizing and complicated shapes. The conventional bonded magnet and its manufacturing method will be described below. The bond magnet is a composite magnetic material containing magnetic powder and a binder as main components, and its manufacturing method is generally compression molding, injection molding, extrusion molding, or rolling molding. Ferrite-based, SmCo-based, and NdFeB-based magnetic powders are generally used as magnetic powders, but NdFeB-based magnetic powders are predominant in applications that require particularly high magnetic properties. Also, as a binder, an organic binder is advantageous because of its superiority in molding processing.
Particularly in applications where high magnetic properties are required, thermosetting resins, which are suitable for compression molding and capable of producing high-density products, are mainly used.

【0003】このようなボンド磁石のうち、NdFeB
系のものは酸化物になりやすい鉄を多く含んでいるので
ボンド磁石表面に耐食性皮膜を形成することが不可欠で
ある。また圧縮成形によって成形されたボンド磁石では
磁性粉の欠落防止の意味もあってボンド磁石表面への皮
膜形成が必須である。さらに医療用品など装飾的な機能
が要求されるボンド磁石では美観を付与すべくボンド磁
石表面に皮膜を形成することが必要である。これらの皮
膜の成分は貴金属、エポキシ系樹脂、フッ素系樹脂、シ
リコン系樹脂などであり、その成形方法は金属皮膜につ
いては電解めっきや無電解めっきまたは真空蒸着が、樹
脂皮膜については電着塗装やスプレー塗装が一般的であ
る。
Among such bonded magnets, NdFeB
It is essential to form a corrosion-resistant coating on the surface of the bonded magnet, since many of them contain iron, which easily becomes an oxide. Further, in a bonded magnet molded by compression molding, it is essential to form a film on the surface of the bonded magnet in order to prevent the loss of magnetic powder. Furthermore, in the case of bonded magnets that require decorative functions such as medical supplies, it is necessary to form a film on the surface of the bonded magnets in order to give it a beautiful appearance. The components of these coatings are precious metals, epoxy-based resins, fluorine-based resins, silicone-based resins, etc., and the forming method is electrolytic plating, electroless plating or vacuum deposition for metal coatings, and electrodeposition coating or resin coating for resin coatings. Spray painting is common.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
の構成ではそれぞれ問題があった。先ず無電解めっきや
真空蒸着や電着塗装は高コストのため実用的でないとい
う問題点があり、またスプレー塗装はボンド磁石のエッ
ジ部に実用に耐え得る樹脂皮膜を形成できないという問
題点がある。これらに対して電解めっきは低コストであ
るとともにボンド磁石のエッジ部にも十分な皮膜を形成
できることから、ボンド磁石への皮膜形成法としては現
時点で最も適していると思われるが、いまだ改善すべき
課題も残っている。先ず酸性めっき浴を用いた電解めっ
きにおいては、十分な厚みのめっき皮膜を得ることがで
きるもののボンド磁石表面の空孔から侵入しためっき液
が磁性金属を酸化劣化させるため磁気特性の低下を招く
問題がある。他方、アルカリ性めっき浴を用いた場合に
はめっき液による磁性金属を酸化劣化は軽微であるもの
の実用に耐え得る膜厚を得るには処理時間がかかりすぎ
るという問題がある。
However, there are problems in each of the above conventional configurations. First, there is a problem that electroless plating, vacuum deposition and electrodeposition coating are not practical because of high cost, and spray coating has a problem that a practically durable resin film cannot be formed on the edge portion of the bond magnet. On the other hand, electroplating is low cost and can form a sufficient film on the edge of the bond magnet, so it seems to be the most suitable method for forming a film on the bond magnet at this time, but it is still improving. There are still issues to be solved. First, in electroplating using an acid plating bath, a plating film having a sufficient thickness can be obtained, but the plating solution that has entered through the pores on the surface of the bonded magnet oxidatively deteriorates the magnetic metal, resulting in deterioration of magnetic properties. There is. On the other hand, when an alkaline plating bath is used, there is a problem that the oxidation deterioration of the magnetic metal by the plating solution is slight, but it takes too much processing time to obtain a film thickness that can be practically used.

【0005】本発明は上記従来の問題点を解決するもの
で、ボンド磁石の磁気特性の劣化がないとともに皮膜形
成に要する処理時間も比較的短く量産性に優れためっき
方法を適用したボンド磁石とその製造方法を提供せんと
するものである。
The present invention solves the above-mentioned conventional problems and provides a bond magnet to which a plating method which is excellent in mass productivity without deteriorating the magnetic characteristics of the bond magnet and relatively short treatment time required for film formation. The manufacturing method is provided.

【0006】[0006]

【課題を解決するための手段】本発明は上記従来の問題
点を解決する方法を検討した結果、先ず比較的低温で且
つ中性からアルカリ性の範囲にあるめっき浴によりボン
ド磁石表面に下地層となる電解めっき皮膜を形成し、こ
の下地層によってボンド磁石表面の空孔を塞いだ状態で
その上に皮膜成長速度の速い酸性めっき浴による電解め
っき皮膜を形成する方法を着想した。このような着想に
基づく本発明のボンド磁石およびその製造方法は以下の
8項目より構成される。 表面層としてpH4.0以下の酸性めっき浴によって
析出された電解めっき皮膜を、表面の下地層としてめっ
き浴温度が80℃以下、めっき浴pHが6.0以上の条
件で析出された電解めっき皮膜を持つボンド磁石。 表面層の厚みと表面の下地層の厚みの合計が30〜7
0μmである記載のボンド磁石。 表面の下地層の厚みが1〜30μmである又は記
載のボンド磁石。 表面の下地層の析出に用いられるめっき浴がシアン化
銅浴、ピロりん酸銅浴、高シアン化亜鉛浴、中シアン化
亜鉛浴、低シアン化亜鉛浴、ジンケート浴、シアン化カ
ドミウム浴、カリウム低濃度すず浴、カリウム高濃度す
ず浴、ナトリウム系すず浴、すず−コバルト合金スタネ
ート浴、すず−コバルト合金ピロりん酸浴、すず−ニッ
ケル合金ピロりん酸浴のうち少なくとも一種以上である
、又は記載のボンド磁石。 めっき浴温度が80℃以下、めっき浴pHが6.0以
上の条件で表面層の下地となる電解めっき皮膜を形成し
たうえで、表面層となる電解めっきをpH4.0以下の
酸性めっき浴によって形成するようにしたボンド磁石の
製造方法。 表面層の厚みと表面の下地層の厚みの合計が30〜7
0μmとなるようにした記載のボンド磁石の製造方
法。 表面の下地層の厚みが1〜30μmとなるようにした
又は記載のボンド磁石の製造方法。 表面の下地層の析出に用いられるめっき浴がシアン化
銅浴、ピロりん酸銅浴、高シアン化亜鉛浴、中シアン化
亜鉛浴、低シアン化亜鉛浴、ジンケート浴、シアン化カ
ドミウム浴、カリウム低濃度すず浴、カリウム高濃度す
ず浴、ナトリウム系すず浴、すず−コバルト合金スタネ
ート浴、すず−コバルト合金ピロりん酸浴、すず−ニッ
ケル合金ピロりん酸浴のうち少なくとも一種以上となる
ようにした、又は記載のボンド磁石の製造方法。
According to the present invention, as a result of studying a method for solving the above-mentioned conventional problems, first, an underlayer was formed on the surface of the bonded magnet by a plating bath at a relatively low temperature and in a neutral to alkaline range. The inventors conceived a method of forming an electrolytic plating film of the following, and forming an electrolytic plating film by an acidic plating bath having a high film growth rate on the bonded magnet surface with the underlying layer closing the pores. The bonded magnet of the present invention and the manufacturing method thereof based on such an idea are composed of the following eight items. An electrolytic plating film deposited as a surface layer by an acidic plating bath having a pH of 4.0 or less, and an electrolytic plating film deposited as a surface underlayer at a plating bath temperature of 80 ° C. or less and a plating bath pH of 6.0 or more Bond magnet with. The total thickness of the surface layer and the surface underlayer is 30 to 7
The bonded magnet as described, which is 0 μm. The bonded magnet according to the above, wherein the underlayer on the surface has a thickness of 1 to 30 μm. The plating bath used for the deposition of the surface underlayer is a copper cyanide bath, copper pyrophosphate bath, high zinc cyanide bath, medium zinc cyanide bath, low zinc cyanide bath, zincate bath, cadmium cyanide bath, potassium At least one or more of a low concentration tin bath, a potassium high concentration tin bath, a sodium tin bath, a tin-cobalt alloy stannate bath, a tin-cobalt alloy pyrophosphoric acid bath, and a tin-nickel alloy pyrophosphoric acid bath, or a description Bond magnet. After forming the electrolytic plating film as the base of the surface layer under the conditions that the plating bath temperature is 80 ° C. or lower and the plating bath pH is 6.0 or higher, the electrolytic plating serving as the surface layer is subjected to an acidic plating bath of pH 4.0 or lower. A method for producing a bonded magnet which is formed. The total thickness of the surface layer and the surface underlayer is 30 to 7
The method for producing a bonded magnet as described above, wherein the bonded magnet has a thickness of 0 μm. The method for producing a bonded magnet as described above, wherein the surface underlayer has a thickness of 1 to 30 μm. The plating bath used for the deposition of the surface underlayer is a copper cyanide bath, copper pyrophosphate bath, high zinc cyanide bath, medium zinc cyanide bath, low zinc cyanide bath, zincate bath, cadmium cyanide bath, potassium At least one of a low-concentration tin bath, a high-potassium tin bath, a sodium-based tin bath, a tin-cobalt alloy stannous bath, a tin-cobalt alloy pyrophosphate bath, and a tin-nickel alloy pyrophosphate bath was prepared. Or a method for producing the bonded magnet as described above.

【0007】[0007]

【作用】この構成によれば、ボンド磁石の空孔は浴温度
が80℃以下である中性からアルカリ性の範囲にあるめ
っき浴によって析出される電解めっき皮膜によって封鎖
され、この封鎖された下地層としての電解めっき皮膜の
うえに酸性めっき浴による表面層が形成される。下地層
形成に使用するめっき浴は浴温度が80℃以下であり且
つpHが6.0以上であるから、ボンド磁石表面の空孔
に侵入して残留したとしても磁性金属を酸化劣化させる
程度は軽微である。他方、表面層形成に使用するpH
4.0以下の酸性めっき浴は皮膜成長速度が速いので短
時間で充分な厚みの電解めっき皮膜を形成できる。
According to this structure, the pores of the bonded magnet are blocked by the electrolytic plating film deposited by the plating bath having a bath temperature of 80 ° C. or less and in the neutral to alkaline range, and the blocked underlayer. A surface layer formed by an acidic plating bath is formed on the electrolytic plating film. Since the plating bath used for forming the underlayer has a bath temperature of 80 ° C. or lower and a pH of 6.0 or higher, even if the plating bath penetrates into the pores on the surface of the bonded magnet and remains, it does not cause oxidative deterioration of the magnetic metal. It is minor. On the other hand, the pH used to form the surface layer
Since an acidic plating bath having a pH of 4.0 or less has a high film growth rate, an electrolytic plating film having a sufficient thickness can be formed in a short time.

【0008】[0008]

【実施例】以下本発明の詳細を実施例に基づき説明す
る。図1はボンド磁石の表面付近の断面構造を示す説明
図である。ボンド磁石は磁性粉1をバインダー樹脂で結
合させたものであり、その表面には無数の空孔2が存在
している。このようなボンド磁石をめっき浴に浸漬して
電解めっき皮膜を形成する処理を行うと、空孔2にめっ
き液が侵入して残留することになる。めっき浴が酸性め
っき浴である場合には、残留めっき液による磁性粉1の
酸化劣化は著しく、ボンド磁石の磁気特性への影響が無
視できない。本発明は空孔2に酸性めっき液が侵入する
ことを防止するために、図2に示すようにボンド磁石表
面に浴温度が80℃以下、めっき浴pHが6.0以上の
条件で析出された電解めっき皮膜を形成してこれを下地
層3となし、次いで図3に示すように下地層3の上にp
H4.0以下の酸性めっき浴によって析出された電解め
っき皮膜を形成して表面層4となすものである。下地層
形成に使用する中性又はアルカリ性めっき浴はボンド磁
石表面の空孔に侵入残留したとしても磁性金属を酸化劣
化させる程度が軽微であり、他方、表面層形成に使用す
る酸性めっき浴は皮膜成長速度が速いので、磁気特性の
低下を最小限に抑制しつつ、しかも工業的量産性も満足
するボンド磁石が提供できるのである。
EXAMPLES The details of the present invention will be described below based on examples. FIG. 1 is an explanatory diagram showing a cross-sectional structure near the surface of a bonded magnet. The bonded magnet is obtained by binding magnetic powder 1 with a binder resin, and numerous voids 2 are present on the surface thereof. When such a bonded magnet is immersed in a plating bath to form an electrolytic plating film, the plating solution enters the pores 2 and remains. When the plating bath is an acid plating bath, the residual plating solution causes significant oxidative deterioration of the magnetic powder 1, and the effect on the magnetic properties of the bonded magnet cannot be ignored. In order to prevent the acidic plating solution from entering the pores 2, the present invention deposits on the surface of the bonded magnet at a bath temperature of 80 ° C. or lower and a plating bath pH of 6.0 or higher as shown in FIG. Electroplated film is formed to form the underlayer 3, and then p is formed on the underlayer 3 as shown in FIG.
The surface layer 4 is formed by forming an electrolytic plating film deposited by an acidic plating bath of H4.0 or less. The neutral or alkaline plating bath used to form the underlayer has a slight degree of oxidative deterioration of the magnetic metal even if it penetrates and remains in the pores on the surface of the bonded magnet, while the acidic plating bath used to form the surface layer forms a film. Since the growth rate is high, it is possible to provide a bonded magnet that suppresses deterioration of magnetic properties to a minimum and that also satisfies industrial mass productivity.

【0009】このように表面の下地層としてめっき浴温
度が80℃以下、めっき浴pHが6.0以上の条件で析
出された電解めっき皮膜によってボンド磁石表面の空孔
を封じることにより、実用的な膜厚を得る際に使用せざ
るを得ない酸性めっき液の侵入を阻止することが本発明
の特徴である。またこの下地層を形成することによっ
て、酸性めっき浴による厚膜の表面層形成に先立ってボ
ンド磁石表面全体にわたり導電性を付与できるので、従
来の酸性めっき浴による電解めっき皮膜形成の際に問題
となっていたところの、ボンド磁石表面のバインダ部位
や空孔部位といった導電性の悪い部分に集中発生してい
たピンホールを著しく減少させることができる。
As described above, the pores on the surface of the bonded magnet are practically sealed by the electrolytic plating film deposited under the conditions of the plating bath temperature of 80 ° C. or lower and the plating bath pH of 6.0 or higher as the underlayer on the surface. It is a feature of the present invention that the invasion of the acidic plating solution, which must be used to obtain a uniform film thickness, is prevented. In addition, by forming this underlayer, conductivity can be imparted to the entire surface of the bonded magnet prior to the formation of the thick film surface layer by the acid plating bath, which causes problems when forming an electrolytic plating film by the conventional acid plating bath. However, it is possible to remarkably reduce the number of pinholes that are concentrated in a portion having poor conductivity such as a binder portion or a void portion on the surface of the bonded magnet.

【0010】本発明のめっき手法が適用されるボンド磁
石としては、酸性めっき浴との接触により酸化劣化しや
すい磁性粉を含むものが主として対象となり、例えばN
dFeB系磁性粉が代表的なものとして挙げられる。N
dFeB系以外ではSmFeN系、SmCo系などその
他の希土類系磁性粉を含むものが挙げられる。また、電
解めっきを行うことから磁性粉は導電性を有するもので
あることが前提であるが、導電性ペースト塗布や無電解
めっきなど表面に導電性を付与する処理を施すとBa系
フェライト、Sr系フェライト、MnZn系フェライト
などの酸化物系磁性粉といったものも使用できる。フェ
ライトからなるボンド磁石への上記処理は外観が重要と
される用途において有効である。これら磁粉の表面に分
散性などを向上させるためにシラン系、チタネート系の
カップリング剤などによる処理をしてもよい。磁粉含率
としては50〜98wt%が良好である。高磁気特性が
要求される用途では高密度の成形体が得られる97wt
%以上がより好ましいが98wt%を越える量だとバイ
ンダ不足となりボンド磁石自身の強度が著しく低下す
る。
The bonded magnets to which the plating method of the present invention is applied are mainly those containing magnetic powder that is easily oxidized and deteriorated by contact with an acidic plating bath.
A typical example is dFeB magnetic powder. N
Other than the dFeB system, those containing other rare earth system magnetic powder such as SmFeN system and SmCo system can be mentioned. Further, since electrolytic plating is performed, it is premised that the magnetic powder has conductivity. However, when a treatment for imparting conductivity to the surface is performed, such as applying a conductive paste or electroless plating, Ba-based ferrite, Sr It is also possible to use oxide-based magnetic powders such as system-based ferrite and MnZn-based ferrite. The above-mentioned treatment of a bonded magnet made of ferrite is effective in applications where appearance is important. The surface of these magnetic particles may be treated with a silane-based or titanate-based coupling agent or the like in order to improve dispersibility. The magnetic powder content is preferably 50 to 98 wt%. 97wt which can obtain a high-density molded product for applications requiring high magnetic properties
% Or more is more preferable, but if the amount exceeds 98 wt%, the binder becomes insufficient and the strength of the bonded magnet itself is significantly reduced.

【0011】またバインダの主成分としてはエポキシ樹
脂、ナイロン樹脂など汎用のものが使用できる。圧縮成
形にはエポキシ樹脂を、射出成形、押し出し成形、圧延
成形にはナイロン樹脂を使用することが一般的である。
主成分が熱硬化性樹脂である場合には硬化剤も一般的な
ものを使用できる。また必要に応じ適当な硬化促進剤を
添加することも有効である。成形性改良のために可塑
剤、滑剤を適宜添加することも可能であるがボンド磁石
自身の強度を保つためにそれらの添加量は5〜50wt
%の範囲とすることが好ましい。
As the main component of the binder, general-purpose ones such as epoxy resin and nylon resin can be used. Generally, an epoxy resin is used for compression molding, and a nylon resin is used for injection molding, extrusion molding, and roll molding.
When the main component is a thermosetting resin, a general curing agent can be used. It is also effective to add an appropriate curing accelerator if necessary. It is possible to add a plasticizer and a lubricant as appropriate for improving the moldability, but in order to maintain the strength of the bonded magnet itself, the addition amount thereof is 5 to 50 wt.
It is preferably in the range of%.

【0012】そしてボンド磁石表面に形成される下地層
となる電解めっき皮膜であるがその処理条件は、めっき
浴温度が80℃以下、めっき浴pHが6.0以上の条件
であることが必要となる。銅皮膜を形成させる場合には
シアン化銅浴、ピロりん酸銅浴などが、亜鉛皮膜を形成
させる場合には高シアン化亜鉛浴、中シアン化亜鉛浴、
低シアン化亜鉛浴、ジンケート浴などが、カドミウム皮
膜を形成させるためにはシアン化カドミウム浴などが、
すず皮膜を形成させるためにはカリウム低濃度すず浴、
カリウム高濃度すず浴、ナトリウム系すず浴などが、す
ず−コバルト合金皮膜を形成させるためにはすず−コバ
ルト合金スタネート浴、すず−コバルト合金ピロりん酸
浴などが、すず−ニッケル合金皮膜を形成させるために
はすず−ニッケル合金ピロりん酸浴などが使用できる。
特に亜鉛浴は形成されためっき皮膜自身が犠牲腐食の効
果を持つことより本発明において好適である。また処理
温度は80℃以下であればよいが磁気特性の劣化を抑制
するためには50℃以下であることが望ましい。より好
ましくは45℃以下であることが好適である。処理pH
は温度との兼ね合いもあるがpH=6.0以上であるこ
とが必要である。好ましくはpH=6.5以上がよい。
処理温度が50℃以上である場合にはpH=7.0以上
が好ましい。またその厚みは、引き続き実施される酸性
浴などでの電解めっきによる磁気特性の劣化を抑制する
ために1μm以上が必要となるが30μm以上となると
量産性の点で問題がある。磁気特性の劣化抑制及び量産
性を勘案すると5〜10μmの範囲が好ましい。また必
要に応じ下地層となる電解めっき皮膜を形成する前にボ
ンド磁石表面の洗浄や研磨を実施したりシラン系、チタ
ネート系のカップリング剤などによる処理をしてもよ
い。
The electrolytic plating film serving as an underlayer formed on the surface of the bonded magnet must be treated under the conditions of a plating bath temperature of 80 ° C. or lower and a plating bath pH of 6.0 or higher. Become. When forming a copper film, a copper cyanide bath, copper pyrophosphate bath, or the like, when forming a zinc film, a high-zinc cyanide bath, medium zinc cyanide bath,
A low-zinc cyanide bath, a zincate bath, etc., and a cadmium cyanide bath, etc., to form a cadmium film,
In order to form a tin film, a low-potassium tin bath,
In order to form a tin-cobalt alloy film, a high-concentration potassium bath, a sodium-based tin bath, etc. forms a tin-nickel alloy film by a tin-cobalt alloy stannate bath, a tin-cobalt alloy pyrophosphate bath, etc. For this purpose, a tin-nickel alloy pyrophosphate bath or the like can be used.
In particular, a zinc bath is suitable in the present invention because the formed plating film itself has a sacrificial corrosion effect. The treatment temperature may be 80 ° C. or lower, but it is preferably 50 ° C. or lower in order to suppress deterioration of magnetic properties. More preferably, the temperature is 45 ° C. or lower. Treatment pH
Has a tradeoff with temperature, but it is necessary that pH is 6.0 or higher. The pH is preferably 6.5 or higher.
When the treatment temperature is 50 ° C. or higher, pH = 7.0 or higher is preferable. Further, the thickness thereof needs to be 1 μm or more in order to suppress the deterioration of the magnetic properties due to electrolytic plating in an acid bath or the like to be subsequently performed, but if it is 30 μm or more, there is a problem in mass productivity. Considering suppression of deterioration of magnetic properties and mass productivity, the range of 5 to 10 μm is preferable. If necessary, the surface of the bonded magnet may be washed or polished or treated with a silane-based or titanate-based coupling agent before forming the electrolytic plating film as the underlayer.

【0013】次いで下地層の上に形成される電解めっき
皮膜であるが、量産性の観点からpH4.0以下の酸性
めっき浴が選択される。例えば硫酸銅浴、無光沢Ni
浴、ワット浴、スルファミン酸浴、ウッドストライク
浴、イマージョンNi浴、6価Cr低濃度浴、6価Cr
サージェント浴、6価Crふっ化物含有浴、ほうふっ化
Cdめっき浴、硫酸酸性Snめっき浴、ほうふっ酸Sn
めっき浴、ほうふっ酸Pbめっき浴、スルファミン酸P
bめっき浴、メタンスルホン酸Pbめっき浴、ほうふっ
酸はんだめっき浴、フェノールスルホン酸はんだめっき
浴、アルカノールスルホン酸はんだめっき浴、塩化物F
eめっき浴、硫酸塩Feめっき浴、ほうふっ化物Feめ
っき浴、スルファミン酸塩Feめっき浴、Sn−Co合
金ふっ化物浴、Sn−Ni合金ふっ化物浴などが陽極金
属種によって適宜選択でき、さらに光沢剤、レベラー
剤、ピット防止剤、梨地形成剤、アノード溶解剤、PH
緩衝剤、安定剤等の添加剤を加えることもできる。
Next, regarding the electrolytic plating film formed on the underlayer, an acidic plating bath having a pH of 4.0 or less is selected from the viewpoint of mass productivity. For example, copper sulfate bath, matte Ni
Bath, Watt bath, Sulfamic acid bath, Wood strike bath, Immersion Ni bath, Hexavalent Cr low concentration bath, Hexavalent Cr
Sargent bath, hexavalent Cr fluoride containing bath, fluorinated Cd plating bath, sulfuric acid Sn plating bath, borofluoride Sn
Plating bath, Borofluoride Pb plating bath, Sulfamic acid P
b plating bath, methanesulfonic acid Pb plating bath, borofluoric acid solder plating bath, phenolsulfonic acid solder plating bath, alkanol sulfonic acid solder plating bath, chloride F
e plating bath, sulfate Fe plating bath, borofluoride Fe plating bath, sulfamate Fe plating bath, Sn-Co alloy fluoride bath, Sn-Ni alloy fluoride bath, etc. can be appropriately selected depending on the anode metal species. Brightening agent, leveler agent, anti-pitting agent, satin forming agent, anode dissolving agent, PH
Additives such as buffers and stabilizers can also be added.

【0014】酸性めっき浴による電解めっき皮膜の厚み
は、下地層を加えた合計厚みが30μm以上となること
が必要である。それ以下では実用的な防錆特性、機械強
度を得ることができない。また後工程として水洗、湯
洗、封孔処理工程等を目的に応じて付加することもでき
る。
Regarding the thickness of the electrolytic plating film formed by the acidic plating bath, it is necessary that the total thickness including the underlayer is 30 μm or more. Below that, practical rust preventive properties and mechanical strength cannot be obtained. Further, as a post-process, a washing process with water, a washing process with hot water, a sealing treatment process and the like can be added depending on the purpose.

【0015】次に本実施例のボンド磁石およびその製造
方法の例を示す。 (実施例1〜4)32メッシュパスしたNdFeB系等
方性磁粉(ゼネラルモータース社製MQP−B)97w
t%とエポキシ系接着剤3wt%からなる磁粉コンパウ
ンドを成形圧力5t/cm2 でプレス成形し、アルゴン
雰囲気下180℃で1時間キュアし30mm×5mm×
3mmの直方体のボンド磁石を得た。このボンド磁石に
(表1)〜(表4)に示す中性又はアルカリ性めっき浴
を用いて電解めっきを施し、更にその電解めっき皮膜の
上に(表5)に示す酸性めっき浴を用いて電解ニッケル
めっきを施した。このようにして表面層としてpH4.
0以下の酸性めっき浴によって析出された電解ニッケル
めっき皮膜を、表面の下地層としてめっき浴温度が80
℃以下、めっき浴pHが6.0以上の条件で析出された
電解めっき皮膜を持つボンド磁石を作製した。また、比
較例として上記30mm×5mm×3mmの直方体のボ
ンド磁石に、下地層を形成することなく(表5)の酸性
めっき浴を用いて単層の電解めっき皮膜を形成し、下地
層を有しないボンド磁石を作製した。
Next, an example of the bonded magnet of this embodiment and a method of manufacturing the same will be described. (Examples 1 to 4) 32 mesh NdFeB-based isotropic magnetic powder (MQP-B manufactured by General Motors) 97w
A magnetic powder compound consisting of t% and an epoxy adhesive of 3 wt% was press-molded at a molding pressure of 5 t / cm 2 and cured at 180 ° C. for 1 hour in an argon atmosphere and 30 mm × 5 mm ×
A 3 mm rectangular parallelepiped bonded magnet was obtained. This bonded magnet is electroplated by using the neutral or alkaline plating baths shown in (Table 1) to (Table 4), and further electrolyzed on the electrolytic plating film by using the acidic plating bath shown in (Table 5). Nickel plated. In this way, the surface layer has a pH of 4.
The electrolytic nickel plating film deposited by an acidic plating bath of 0 or less is used as a surface underlayer at a plating bath temperature of 80.
A bonded magnet having an electrolytic plating film deposited at a temperature of ℃ or less and a plating bath pH of 6.0 or more was produced. As a comparative example, a single-layer electrolytic plating film was formed on the above-mentioned 30 mm × 5 mm × 3 mm rectangular parallelepiped bonded magnet by using the acidic plating bath shown in Table 5 without forming an underlayer, and the underlayer was formed. A bonded magnet was prepared.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】[0020]

【表5】 得られた等方性ボンド磁石の特性を(表6)に示す。[Table 5] The characteristics of the obtained isotropic bonded magnet are shown in (Table 6).

【0021】[0021]

【表6】 この(表6)から明らかなように、実施例1〜4のボン
ド磁石は、酸性めっき浴による単層皮膜のみを有する比
較例のボンド磁石に比べて磁気特性の低下が見られず且
つ高い耐食性も有していることがわかる。尚、本発明者
は下地層と表面層よりなるめっき皮膜を有するボンド磁
石において、下地層形成用のめっき浴pHを変化させて
調べたところ、pHが6.0未満となったりめっき浴温
度が80℃を越えると錆の発生が抑制しにくくなること
を確認した。
[Table 6] As is clear from this (Table 6), the bonded magnets of Examples 1 to 4 showed no deterioration in magnetic properties and higher corrosion resistance than the bonded magnets of Comparative Examples having only a single-layer coating by an acidic plating bath. You can see that you also have. The inventors of the present invention have conducted a study on a bonded magnet having a plating film composed of an underlayer and a surface layer by changing the pH of the plating bath for forming the underlayer. As a result, the pH is less than 6.0 and the plating bath temperature is It was confirmed that if the temperature exceeds 80 ° C, it becomes difficult to suppress the generation of rust.

【0022】(実施例5〜13)32メッシュパスした
NdFeB系等方性磁粉(ゼネラルモータース社製MQ
P−B)97wt%とエポキシ系接着剤3wt%からな
る磁粉コンパウンドを成形圧力5t/cm2 でプレス成
形し、アルゴン雰囲気下180℃で1時間キュアし一辺
が5mmの立方体のボンド磁石を得た。このボンド磁石
に(表1)に示すアルカリ性めっき浴を用いて電解めっ
きを施し、更にその上に(表5)に示す酸性めっき浴を
用いて電解ニッケルめっきを施した。このようにして、
表面層としてpH4.0以下の酸性めっき浴によって析
出された電解めっき皮膜を、表面層の下地層としてめっ
き浴温度が80℃以下、めっき浴pHが6.0以上の条
件で析出された電解めっき皮膜を持つボンド磁石を作製
し、下地層及び表面層の膜厚の異なるものを数種類得
た。また、比較例として上記一辺が5mmの立方体のボ
ンド磁石に下地層を形成することなく(表5)の酸性め
っき浴を用いて単層の電解めっき皮膜を形成し、下地層
を有しないボンド磁石を作製した。得られた等方性ボン
ド磁石の特性を(表7)に示す。
(Examples 5 to 13) NdFeB type isotropic magnetic powder (MQ manufactured by General Motors) that passed 32 mesh
P-B) A magnetic powder compound consisting of 97 wt% of epoxy adhesive and 3 wt% of epoxy adhesive was press-molded at a molding pressure of 5 t / cm 2 and cured under an argon atmosphere at 180 ° C. for 1 hour to obtain a cubic bond magnet having a side of 5 mm. . This bonded magnet was subjected to electrolytic plating using the alkaline plating bath shown in (Table 1), and further electrolytic nickel plating was performed thereon using the acidic plating bath shown in (Table 5). In this way
An electrolytic plating film deposited as a surface layer by an acidic plating bath having a pH of 4.0 or less, and an electrolytic plating film deposited as a base layer of the surface layer at a plating bath temperature of 80 ° C. or less and a plating bath pH of 6.0 or more A bonded magnet having a film was prepared, and several kinds of underlayer and surface layer having different film thicknesses were obtained. As a comparative example, a bonded magnet without a base layer was prepared by forming a single-layer electrolytic plating film using the acidic plating bath (Table 5) without forming a base layer on the above cubic bonded magnet with a side of 5 mm. Was produced. The characteristics of the obtained isotropic bonded magnet are shown in (Table 7).

【0023】[0023]

【表7】 この(表7)から明らかなように、実施例5〜13のボ
ンド磁石は、酸性めっき浴による単層皮膜のみを有する
比較例のボンド磁石に比べて磁気特性の低下が見られず
且つ高い耐食性も有していることがわかり、特に下地層
の厚みが1μm以上であり、且つ表面層の厚みと表面の
下地層の厚みの合計が30μm以上である実施例5,
6,9,10,11,12は耐食性が極めて優れている
ことがわかる。
[Table 7] As is clear from this (Table 7), the bonded magnets of Examples 5 to 13 showed no deterioration in magnetic properties and higher corrosion resistance than the bonded magnets of Comparative Examples having only the single-layer coating by the acidic plating bath. Example 5, in which the thickness of the underlayer is 1 μm or more, and the total thickness of the surface layer and the underlayer on the surface is 30 μm or more.
It can be seen that 6, 9, 10, 11, and 12 have extremely excellent corrosion resistance.

【0024】[0024]

【発明の効果】以上、詳述したように本発明によれば、
磁気特性を低下させることなく電解めっき皮膜を有し、
且つ量産性にも優れたボンド磁石を得ることが可能とな
り、ボンド磁石の耐食性が飛躍的に改善されるため、本
発明の工業的価値は極めて高い。
As described above in detail, according to the present invention,
Has an electrolytic plating film without deteriorating magnetic properties,
Further, it becomes possible to obtain a bonded magnet which is excellent in mass productivity, and the corrosion resistance of the bonded magnet is dramatically improved, so that the industrial value of the present invention is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】 ボンド磁石の表面付近の断面構造を示す説明
FIG. 1 is an explanatory diagram showing a cross-sectional structure near the surface of a bonded magnet.

【図2】 ボンド磁石表面に下地層となる電解めっき皮
膜を形成した様子を示す説明図
FIG. 2 is an explanatory view showing a state in which an electrolytic plating film serving as an underlayer is formed on the surface of the bonded magnet.

【図3】 ボンド磁石表面に形成した下地層の上に表面
層となる電解めっき皮膜を形成した様子を示す説明図
FIG. 3 is an explanatory view showing a state in which an electrolytic plating film serving as a surface layer is formed on a base layer formed on the surface of a bonded magnet.

【符号の説明】[Explanation of symbols]

1 磁性粉 2 空孔 3 下地層 4 表面層 1 Magnetic powder 2 Porosity 3 Underlayer 4 Surface layer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 表面層としてpH4.0以下の酸性めっ
き浴によって析出された電解めっき皮膜を、表面の下地
層としてめっき浴温度が80℃以下、めっき浴pHが
6.0以上の条件で析出された電解めっき皮膜を持つボ
ンド磁石。
1. An electrolytic plating film deposited as a surface layer by an acidic plating bath having a pH of 4.0 or less, and a surface plating layer having a plating bath temperature of 80 ° C. or less and a plating bath pH of 6.0 or more. Bonded magnet with electroplated film.
【請求項2】 表面層の厚みと表面の下地層の厚みの合
計が30〜70μmである請求項1記載のボンド磁石。
2. The bonded magnet according to claim 1, wherein the total thickness of the surface layer and the surface underlayer is 30 to 70 μm.
【請求項3】 表面の下地層の厚みが1〜30μmであ
る請求項1又は2記載のボンド磁石。
3. The bonded magnet according to claim 1, wherein the surface underlayer has a thickness of 1 to 30 μm.
【請求項4】 表面の下地層の析出に用いられるめっき
浴がシアン化銅浴、ピロりん酸銅浴、高シアン化亜鉛
浴、中シアン化亜鉛浴、低シアン化亜鉛浴、ジンケート
浴、シアン化カドミウム浴、カリウム低濃度すず浴、カ
リウム高濃度すず浴、ナトリウム系すず浴、すず−コバ
ルト合金スタネート浴、すず−コバルト合金ピロりん酸
浴、すず−ニッケル合金ピロりん酸浴のうち少なくとも
一種以上である請求項1、2又は3記載のボンド磁石。
4. A plating bath used for depositing a surface underlayer is a copper cyanide bath, copper pyrophosphate bath, high zinc cyanide bath, medium zinc cyanide bath, low cyanide zinc bath, zincate bath, cyan. At least one or more of a cadmium bromide bath, a low potassium tin bath, a high potassium tin bath, a sodium tin bath, a tin-cobalt alloy stannate bath, a tin-cobalt alloy pyrophosphate bath, and a tin-nickel alloy pyrophosphate bath. The bonded magnet according to claim 1, 2, or 3.
【請求項5】 めっき浴温度が80℃以下、めっき浴p
Hが6.0以上の条件で表面層の下地となる電解めっき
皮膜を形成したうえで、表面層となる電解めっきをpH
4.0以下の酸性めっき浴によって形成するようにした
ボンド磁石の製造方法。
5. A plating bath temperature of 80 ° C. or lower, a plating bath p
Under the condition that H is 6.0 or more, after forming the electrolytic plating film which becomes the base of the surface layer, the electrolytic plating which becomes the surface layer is adjusted to pH.
A method for producing a bonded magnet, which is formed by an acidic plating bath of 4.0 or less.
【請求項6】 表面層の厚みと表面の下地層の厚みの合
計が30〜70μmとなるようにした請求項5記載のボ
ンド磁石の製造方法。
6. The method for producing a bonded magnet according to claim 5, wherein the total thickness of the surface layer and the surface underlayer is 30 to 70 μm.
【請求項7】 表面の下地層の厚みが1〜30μmとな
るようにした請求項5又は6記載のボンド磁石の製造方
法。
7. The method for producing a bonded magnet according to claim 5, wherein the thickness of the underlayer on the surface is set to 1 to 30 μm.
【請求項8】 表面の下地層の析出に用いられるめっき
浴がシアン化銅浴、ピロりん酸銅浴、高シアン化亜鉛
浴、中シアン化亜鉛浴、低シアン化亜鉛浴、ジンケート
浴、シアン化カドミウム浴、カリウム低濃度すず浴、カ
リウム高濃度すず浴、ナトリウム系すず浴、すず−コバ
ルト合金スタネート浴、すず−コバルト合金ピロりん酸
浴、すず−ニッケル合金ピロりん酸浴のうち少なくとも
一種以上となるようにした請求項5、6又は7記載のボ
ンド磁石の製造方法。
8. A plating bath used for depositing a surface underlayer is a copper cyanide bath, a copper pyrophosphate bath, a high zinc cyanide bath, a medium zinc cyanide bath, a low zinc cyanide bath, a zincate bath, and a cyanide bath. At least one or more of a cadmium bromide bath, a low potassium tin bath, a high potassium tin bath, a sodium tin bath, a tin-cobalt alloy stannate bath, a tin-cobalt alloy pyrophosphate bath, and a tin-nickel alloy pyrophosphate bath. The method for producing a bonded magnet according to claim 5, 6 or 7, wherein
JP4025894A 1994-03-11 1994-03-11 Bond magnet and its manufacture Pending JPH07249514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4025894A JPH07249514A (en) 1994-03-11 1994-03-11 Bond magnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4025894A JPH07249514A (en) 1994-03-11 1994-03-11 Bond magnet and its manufacture

Publications (1)

Publication Number Publication Date
JPH07249514A true JPH07249514A (en) 1995-09-26

Family

ID=12575657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4025894A Pending JPH07249514A (en) 1994-03-11 1994-03-11 Bond magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPH07249514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229360A (en) * 2012-04-24 2013-11-07 Tdk Corp Ferrite magnet and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229360A (en) * 2012-04-24 2013-11-07 Tdk Corp Ferrite magnet and method for producing the same

Similar Documents

Publication Publication Date Title
EP3486925B1 (en) Ndfeb magnet with composite coating and preparation process thereof
EP0345092A1 (en) A method for producing a corrosion resistant rare earth- containing magnet
US5275891A (en) R-TM-B permanent magnet member having improved corrosion resistance and method of producing same
KR20110021890A (en) Rare-earth-based permanent magnet
US7473343B2 (en) Method of manufacturing rare-earth magnet, and plating bath
JP4033241B2 (en) Method for producing rare earth based permanent magnet having copper plating film on its surface
JPH03173106A (en) Rare earth permanent magnet with corrosion resistant film and manufacture thereof
JPH07161516A (en) Bond magnet and its production
JPH07249514A (en) Bond magnet and its manufacture
CN111270280A (en) Coating structure of sintered neodymium-iron-boron magnet and preparation method thereof
JPH08186016A (en) Bonded magnet having plating film and manufacturing method thereof
KR930006103B1 (en) Printed circuit for electrolysis copper foil &amp; method
JPH07283018A (en) Bond magnet and production thereof
JP2004039917A (en) Permanent magnet and manufacturing method therefor
JP3337558B2 (en) Corrosion resistant magnetic alloy
JP2612494B2 (en) Manufacturing method of plastic magnet
KR100393680B1 (en) Multilayer coated Nd-Fe-B magnet and its manufacturing method
JP2719658B2 (en) Bond magnet plating method
JPH01223712A (en) Manufacture of corrosion-resistant permanent magnet
JP2001257112A (en) Permanent magnet material
JP3650141B2 (en) permanent magnet
JPH0311714A (en) Resin-bonded type magnet and manufacture thereof
JPH07263212A (en) Bond magnet and its production
JPH0613218A (en) Surface processing method of fe-b-r base sintered magnet
KR930001934B1 (en) Electrolysis copper foil &amp; making method for printed circuit