JP2612494B2 - Manufacturing method of plastic magnet - Google Patents

Manufacturing method of plastic magnet

Info

Publication number
JP2612494B2
JP2612494B2 JP1147381A JP14738189A JP2612494B2 JP 2612494 B2 JP2612494 B2 JP 2612494B2 JP 1147381 A JP1147381 A JP 1147381A JP 14738189 A JP14738189 A JP 14738189A JP 2612494 B2 JP2612494 B2 JP 2612494B2
Authority
JP
Japan
Prior art keywords
bath
plating
comparative example
plastic magnet
corners
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1147381A
Other languages
Japanese (ja)
Other versions
JPH0311712A (en
Inventor
卓司 野村
祐輔 本間
章伍 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP1147381A priority Critical patent/JP2612494B2/en
Publication of JPH0311712A publication Critical patent/JPH0311712A/en
Application granted granted Critical
Publication of JP2612494B2 publication Critical patent/JP2612494B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
    • H01F41/34Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film in patterns, e.g. by lithography

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はボンド磁石の製造方法に関し、更に詳しく
は、優れた防錆性能を有するプラスチック磁石の製造方
法に関するものである。
The present invention relates to a method for producing a bonded magnet, and more particularly, to a method for producing a plastic magnet having excellent rust prevention performance.

「従来技術と問題点」 希土類金属と遷移金属とを主成分とする合金磁石(以
下、希土類磁石という)は、従来のフェライト系、アル
ニコ系磁石と比べて優れた磁気特性を有しているため、
近年多方面に利用されているが、酸化され易い欠点を有
しており、特にNd−Fe−B系磁石ではその傾向が著し
い。かかる希土類磁性粉体を合成樹脂結合剤で固着せし
めたプラスチック磁石は、使用環境が高湿雰囲気である
場合には酸化による磁気特性の経時劣化が生じる問題を
孕んでいる。
"Prior art and problems" Alloy magnets containing rare earth metals and transition metals as main components (hereinafter referred to as rare earth magnets) have superior magnetic properties compared to conventional ferrite-based and alnico-based magnets. ,
Although it has been used in various fields in recent years, it has a disadvantage that it is easily oxidized, and the tendency is particularly remarkable in Nd—Fe—B magnets. A plastic magnet in which such a rare earth magnetic powder is fixed with a synthetic resin binder has a problem that when used in a highly humid atmosphere, magnetic properties deteriorate with time due to oxidation.

かかる問題を克服するために、表面に樹脂塗膜又は金
属被膜を形成する方法が考えられる。しかし乍ら、樹脂
塗膜や金属被膜を形成させても、工程中のハンドリン
グ、運搬中、及び組み立て工程中においせ、上記プラス
チック磁石の角部に上記樹脂塗膜及び上記金属被膜の欠
陥が生じ、優れた防錆性能を有するプラスチック磁石を
得ることは極めて困難である。
In order to overcome such a problem, a method of forming a resin coating or a metal coating on the surface is considered. However, even when a resin coating or a metal coating is formed, the resin coating or the metal coating may be defective at corners of the plastic magnet during handling, transportation, and during the assembly process. It is extremely difficult to obtain a plastic magnet having excellent rust prevention performance.

塗膜欠陥の原因は、(1)樹脂塗膜の場合は、プラス
チック磁石の角部の樹脂被膜の膜厚が他の部位に比べ著
しく薄く、また(2)プラスチック磁石同士及びプラス
チック磁石と梱包材、プラスチック磁石と他の組み立て
部品との間における衝突、接触により、プラスチック磁
石の角部が集中的にダメージを受けるためである。
The causes of coating defects are (1) in the case of a resin coating, the thickness of the resin coating at the corners of the plastic magnet is significantly thinner than other portions, and (2) the plastic magnets and the plastic magnet and the packaging material This is because corners of the plastic magnet are intensively damaged by collision and contact between the plastic magnet and other assembled parts.

そこで、かかる問題を解消するために、例えば特開昭
62−206806号には面取を施した表面をフッ素系ポリアミ
ドイミド樹脂で被覆した合金磁石が提案されている。ま
た特公昭43−8338号には研磨により角を丸くし金属層を
設けたMn−Bi磁性体が提案されている。
To solve such a problem, for example,
62-206806 proposes an alloy magnet in which a chamfered surface is coated with a fluorine-based polyamideimide resin. Japanese Patent Publication No. 43-8338 proposes a Mn-Bi magnetic material having rounded corners and a metal layer provided by polishing.

しかし乍ら、上記した焼結磁石は、磁力は優れている
ものの、例えばHDD、FDDに代表される情報機器に使用さ
れる小型精密モーターに実装上要求される小型且つ薄肉
リング状に加工するためには、焼結後に切削加工が必要
となり、工程が煩雑であるばかりでなく、材質的にも脆
いという欠点を有し、実用的ではない。
However, although the above-mentioned sintered magnet has excellent magnetic force, it is processed into a small and thin ring shape required for mounting on small precision motors used for information equipment represented by, for example, HDDs and FDDs. Requires a cutting process after sintering, which involves not only a complicated process but also a brittle material, which is not practical.

また、特開昭62−206806号の如く樹脂で被覆する場合
は、前述の如く塗料や塗膜が表面張力や重力により他の
部位へ移動するためその部分の塗膜が薄くなり、満足す
べき防錆性能を付与することができない。
In the case of coating with a resin as disclosed in Japanese Patent Application Laid-Open No. 62-206806, as described above, the paint or the coating film moves to other parts due to surface tension or gravity, so that the coating film in that part becomes thinner and satisfactory. Rust prevention performance cannot be imparted.

「問題点を解決するための手段」 本発明者らは上記問題を解決するために鋭意研究の結
果、プラスチック磁石の角部を除去することによって衝
突や接触時の接触面積を大きくしてダメージを軽減する
とともに、電解メッキにより金属被膜を形成することに
より、樹脂塗装の場合に生じる塗料、塗膜の他の部位へ
の流動を回避し、その結果、製造が容易で、優れた防錆
性能を有し、小型精密モーターにも実装可能な小型且つ
薄肉リング形状のプラスチック磁石が得られることを見
出し、本発明を完成したものである。
"Means for Solving the Problems" The present inventors have conducted intensive studies to solve the above problems, and as a result, by removing the corners of the plastic magnet, the contact area at the time of collision or contact was increased, and the damage was reduced. By forming a metal coating by electrolytic plating, it avoids the flow of paint and other coatings that occur in the case of resin coating to other parts of the coating, resulting in easy manufacturing and excellent rust prevention performance. It has been found that a small and thin ring-shaped plastic magnet which can be mounted on a small precision motor can be obtained, and the present invention has been completed.

即ち、本発明は、R−T−B(RはNd又はその一部を
希土類元素で置換したもの、TはFe又はその一部を遷移
金属で置換したもの)で表される磁性粉体と、結合剤で
ある合成樹脂とを主たる構成成分としてなる成形体の角
部の一部又は全部を除去した後、該成形体の表面に電解
メッキにより金属被膜を形成することを特徴とするプラ
スチック磁石の製造方法を内容とするものである。
That is, the present invention relates to a magnetic powder represented by R-T-B (R is Nd or a part thereof substituted with a rare earth element, T is Fe or a part thereof substituted with a transition metal). A plastic magnet characterized by forming a metal film by electrolytic plating on the surface of a molded article after removing part or all of the corners of the molded article mainly comprising a synthetic resin as a binder. The manufacturing method is described as a content.

本発明で用いられる磁性粉体は、R−T−B(RはNd
又はその一部を希土類元素で置換したものの、TはFe又
はその一部を遷移金属で置換したもの)で表される合金
及び不可避的不純物からなり、粒度は大部分が1〜500
μmの範囲にあるものが好ましい。1μm未満では製造
工程中に発火したり、酸化により磁気特性が劣化し易
く、一方、500μmを越えると充填率が低下し、十分な
磁気特性が得られ難い。
The magnetic powder used in the present invention is RTB (R is Nd
Or a part of which is replaced by a rare earth element, but T is an alloy or an unavoidable impurity represented by Fe or a part of which is replaced by a transition metal), and the particle size is mostly 1 to 500.
Those having a range of μm are preferred. If it is less than 1 μm, it will easily ignite during the manufacturing process or its magnetic properties will be easily degraded by oxidation, while if it exceeds 500 μm, the filling rate will be reduced and it will be difficult to obtain sufficient magnetic properties.

本発明で用いられる結合剤としての合成樹脂は、汎用
される熱可塑性樹脂や熱硬化性樹脂あるいはゴムから成
形法を考慮し適宜選択して使用される。本発明で使用す
る結合剤の熱硬化性樹脂としてはフェノール樹脂、エポ
キシ樹脂、メラミン樹脂等が例示でき、また熱可塑性樹
脂としてはナイロン6、ナイロン12等のポリアミド、ポ
リエチレン、ポリプロピレン等のポリオレフィン、ポリ
塩化ビニル、ポリエステル、ポリフェニレンサルファイ
ド等が例示される。
The synthetic resin as the binder used in the present invention is appropriately selected and used from widely used thermoplastic resins, thermosetting resins or rubbers in consideration of a molding method. Examples of the thermosetting resin of the binder used in the present invention include phenol resins, epoxy resins, and melamine resins. Examples of the thermoplastic resins include polyamides such as nylon 6 and nylon 12, polyolefins such as polyethylene and polypropylene, and polyolefins such as polypropylene. Examples thereof include vinyl chloride, polyester, and polyphenylene sulfide.

本発明に用いられる磁性粉末と樹脂結合剤配合物の成
形方法は、圧縮成形、射出成形、押し出し成形、カレン
ダー成形などが例示できる。
The molding method of the magnetic powder and the resin binder compound used in the present invention can be exemplified by compression molding, injection molding, extrusion molding, calendar molding and the like.

本発明に用いられる角部除去の方法としては、(1)
多数のプラスチック磁石を容器に入れ振動を加える方
法、さらには同時に研磨材を入れる方法、(2)多数の
プラスチック磁石を容器に入れ回転を加える方法、さら
には同時に研磨材を入れる方法、(3)切削を行い角部
を除去する方法、(4)研磨を行い角部を除去する方
法、などが例示できる。
The corner removal method used in the present invention includes (1)
A method in which a large number of plastic magnets are placed in a container and a vibration is applied thereto, and a method in which an abrasive is added at the same time; (2) A method in which a large number of plastic magnets are charged in a container and a rotation is applied; Examples of the method include a method of removing corners by cutting, and (4) a method of removing corners by polishing.

更に、角部除去後の形状としては、曲面、平面などが
例示できるが、曲面が好適であり、その曲率半径が100
μm以上であることが最も好適である。
Further, as the shape after removing the corners, a curved surface, a flat surface, etc. can be exemplified, but a curved surface is preferable, and the radius of curvature thereof is 100.
Most preferably, it is not less than μm.

本発明における金属被膜の成分としてはNi,Cr,Zn,Cu,
Fe,Cd,Sn,Pb,Al,Au,Ag,Pd,Pt,Rh等が例示され、これら
の1種又は2種以上である。
Ni, Cr, Zn, Cu, as components of the metal coating in the present invention
Examples thereof include Fe, Cd, Sn, Pb, Al, Au, Ag, Pd, Pt, and Rh, and one or more of these.

本発明で用いられる金属被膜形成方法は、電解メッキ
が防錆性能及びコストの点で好適である。
In the metal film forming method used in the present invention, electrolytic plating is suitable in terms of rust prevention performance and cost.

本発明で用いられる電解メッキ浴はメッキする金属種
によって適宜選択でき、シアン化銅浴、ピロ燐酸銅浴、
硫酸銅浴、無光沢Ni浴、ワット浴、スルファミン酸浴、
ウッドストライク浴、イマージョンNi浴、6価Crサージ
ェント浴、6価Cr低濃度浴、6価Crふっ化物含有浴、高
シアン化物アルカリZnメッキ浴、中シアン化物アルカリ
Znメッキ浴、低シアン化物アルカリZnメッキ浴、ジンケ
ート浴、シアン化Cdメッキ浴、硼弗化Cdメッキ浴、硫酸
酸性Snメッキ浴、硼弗酸Snメッキ浴、硼弗酸Pbメッキ
浴、スルファミン酸Pbメッキ浴、メタンスルホン酸Pbメ
ッキ浴、硼弗酸はんだメッキ浴、フェノールスルホン酸
はんだメッキ浴、アルカノールスルホン酸はんだメッキ
浴、塩化物Feメッキ浴、硫酸塩Feメッキ浴、硼弗化物Fe
メッキ浴、スルフェミン酸塩Feメッキ浴、Sn−Co合金ス
タネート浴、Sn−Co合金ピロ燐酸浴、Sn−Co合金弗化物
浴、Sn−Ni合金ピロ燐酸浴、Sn−Ni合金弗化物浴等が例
示でき、更に光沢剤、レベラー剤、ピット防止剤、梨地
形成剤、アノード溶解剤、PH緩衝剤、安定剤等の添加剤
を加えることもできる。
The electrolytic plating bath used in the present invention can be appropriately selected depending on the type of metal to be plated, and includes a copper cyanide bath, a copper pyrophosphate bath,
Copper sulfate bath, matte Ni bath, watt bath, sulfamic acid bath,
Wood strike bath, Immersion Ni bath, Hexavalent Cr surge bath, Hexavalent Cr low concentration bath, Hexavalent Cr fluoride containing bath, High cyanide alkali Zn plating bath, Medium cyanide alkali
Zn plating bath, low cyanide alkali Zn plating bath, zincate bath, Cyanide cyanide plating bath, borofluoride Cd plating bath, sulfuric acid Sn plating bath, borofluoric acid Sn plating bath, borofluoric acid Pb plating bath, sulfamic acid Pb plating bath, methanesulfonic acid Pb plating bath, borofluoric acid solder plating bath, phenolsulfonic acid solder plating bath, alkanolsulfonic acid solder plating bath, chloride Fe plating bath, sulfate Fe plating bath, borofluoride Fe
Plating bath, sulfamate Fe plating bath, Sn-Co alloy stannate bath, Sn-Co alloy pyrophosphate bath, Sn-Co alloy fluoride bath, Sn-Ni alloy pyrophosphate bath, Sn-Ni alloy fluoride bath, etc. For example, additives such as a brightener, a leveler, a pit inhibitor, a satin forming agent, an anode dissolving agent, a PH buffer, and a stabilizer can be added.

本発明における電解メッキ工程には、前処理工程、後
処理工程を設けることもでき、前処理工程には、浸漬脱
脂、電解脱脂、溶剤脱脂、酸処理、アルカリ処理、パラ
ジウム処理、水洗等が例示でき、後処理工程にはクロメ
ート処理、水洗等が例示できる。
The electrolytic plating step in the present invention may include a pre-treatment step and a post-treatment step. Examples of the pre-treatment step include immersion degreasing, electrolytic degreasing, solvent degreasing, acid treatment, alkali treatment, palladium treatment, and water washing. Examples of the post-treatment process include chromate treatment and water washing.

本発明で行われる電解メッキ法には通常行われるひっ
かけ治具を用いる方法の他にバレルメッキ法も好適であ
り、更にはパルスメッキ法、ストライク下地メッキ法も
採用することができる。
A barrel plating method is also suitable for the electrolytic plating method performed in the present invention, in addition to a method using a hooking jig which is usually performed, and further, a pulse plating method and a strike base plating method can be adopted.

上記金属被膜の膜厚は、4〜50μmが好適である。4
μm未満では十分な耐食性が得られず、50μmを越える
と磁石表面からの距離が大となる為、有効に利用できる
磁力が減少し十分な磁気特性が得られない。
The thickness of the metal coating is preferably 4 to 50 μm. 4
If it is less than μm, sufficient corrosion resistance cannot be obtained, and if it exceeds 50 μm, the distance from the magnet surface becomes large, so that the magnetic force that can be used effectively decreases and sufficient magnetic characteristics cannot be obtained.

〔実施例〕〔Example〕

以下、本発明を実施例及び比較例を挙げて説明する
が、本発明はこれらにより何ら制限されない。
Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

比較例1 Nd−Fe−B系磁性粉体(ゼネラルモータス製)を80体
積%、レゾール型フェノール樹脂を20体積%の割合で配
合、撹拌した混合物を常温に於いて5ton/cm2の圧力で成
形した後、190℃×2時間の温度下で合成樹脂を硬化せ
しめ、外径8mm、内径6mm、高さ4mmのリング状成形体A
を得た。
Comparative Example 1 An Nd-Fe-B-based magnetic powder (manufactured by General Motors) was blended at a ratio of 80% by volume and a resol-type phenol resin at a ratio of 20% by volume, and the mixture was stirred at room temperature under a pressure of 5 ton / cm 2 . After molding, the synthetic resin is cured at a temperature of 190 ° C for 2 hours, and a ring-shaped molded product A having an outer diameter of 8 mm, an inner diameter of 6 mm, and a height of 4 mm
I got

比較例2 上記比較例1で得た成形体表面に、浸漬法によりエポ
キシ樹脂を塗装(膜厚40μm)し、成形体Bを得た。
Comparative Example 2 An epoxy resin was applied to the surface of the molded body obtained in Comparative Example 1 by a dipping method (film thickness: 40 μm) to obtain a molded body B.

比較例3 上記比較例1で得た成形体に電着塗装(膜厚40μm)
を施し、成形体Cを得た。電着塗装条件を第1表に示
す。
Comparative Example 3 Electrodeposition coating (film thickness 40 μm) on the molded article obtained in Comparative Example 1 above
To obtain a molded body C. Table 1 shows the electrodeposition coating conditions.

比較例4 上記比較例1で得られた成形体に電解Cuメッキを施し
た後、電解Niメッキ(膜厚40μm)を施し、成形体Dを
得た。電解Cuメッキ条件を第2表に、電解Niメッキ条件
を第3表にそれぞれ示す。
Comparative Example 4 The compact obtained in Comparative Example 1 was subjected to electrolytic Cu plating, and then subjected to electrolytic Ni plating (film thickness: 40 μm) to obtain a compact D. Table 2 shows the electrolytic Cu plating conditions and Table 3 shows the electrolytic Ni plating conditions.

比較例5 上記比較例1で得られた成形体の角部を除去した後成
形体表面に、比較例2と同一条件で浸漬法によりエポキ
シ樹脂を塗装し、成形体Eを得た。尚、角部除去は、金
網篭に上記成形体1000個を入れ、1回/1秒の振動数、振
幅15cmの条件で金網篭を10分間振動させることによって
行った。角部除去後の形状は、曲率半径が100μm以上
であった。
Comparative Example 5 After removing the corners of the molded body obtained in Comparative Example 1, the surface of the molded body was coated with an epoxy resin by a dipping method under the same conditions as in Comparative Example 2 to obtain a molded body E. The corners were removed by putting 1000 molded bodies in a wire mesh basket and vibrating the wire mesh basket for 10 minutes at a frequency of once per second and an amplitude of 15 cm. The shape after the corner removal had a radius of curvature of 100 μm or more.

比較例6 上記比較例1で得られた成形体の角部を比較例5と同
様にして除去した後、比較例3と同一条件で電着塗装を
施し成形体Fを得た。電着塗装条件を第1表に示す。
Comparative Example 6 After removing the corners of the molded article obtained in Comparative Example 1 in the same manner as in Comparative Example 5, electrodeposition coating was performed under the same conditions as in Comparative Example 3 to obtain a molded article F. Table 1 shows the electrodeposition coating conditions.

比較例7 上記比較例1で得られた成形体の角部を比較例5と同
様にして除去した後、無電解Niメッキ(膜厚6μm)を
施し、成形体Gを得た。無電解Niメッキ条件を第4表に
示す。
Comparative Example 7 After removing the corners of the molded article obtained in Comparative Example 1 in the same manner as in Comparative Example 5, the molded article G was obtained by electroless Ni plating (6 μm in thickness). Table 4 shows the electroless Ni plating conditions.

実施例1 上記比較例1で得られた成形体の角部を比較例5と同
様にして除去した後、比較例4と同一条件で電解Cuメッ
キ後、電解Niメッキを施し成形体Hを得た。電解Cuメッ
キ条件を第2表に、電解Niメッキを第3表にそれぞれ示
す。
Example 1 After removing the corners of the molded body obtained in Comparative Example 1 in the same manner as in Comparative Example 5, electrolytic Cu plating was performed under the same conditions as in Comparative Example 4, followed by electrolytic Ni plating to obtain a molded body H. Was. Table 2 shows the electrolytic Cu plating conditions, and Table 3 shows the electrolytic Ni plating.

評価試験 以上の操作によって得られた成形体A〜Hの防錆性能
と、成形体B〜Hをそれぞれ1000個金網篭に入れ、1回
/1秒の振動数、振幅15cm条件で金網篭を10分間振動させ
プラスチック磁石に模擬的ダメージを与えた後、これら
の防錆性能を次の方法によって評価した。
Evaluation Test Rust prevention performance of the molded articles A to H obtained by the above operation and 1000 molded articles B to H were respectively put in a wire netting basket, and once.
After a wire mesh basket was vibrated for 10 minutes at a frequency of / 1 second and an amplitude of 15 cm to simulate damage to plastic magnets, their rust prevention performance was evaluated by the following method.

上記のダメージを与える操作は、工程中、運搬中、組
み立て中にプラスチック磁石が受けるダメージをシミュ
レーションする目的でおこなった。B〜Gの成形体に上
記ダメージを与える操作を行った試料を以下B′〜G′
と記する。
The above-described operation of causing damage was performed for the purpose of simulating the damage to the plastic magnet during the process, transportation, and assembly. The samples subjected to the above-described operation of giving the damage to the molded bodies of BG are referred to as B ′ to G ′ below.
It is written.

防錆性能は下記の環境試験により評価した。 The rust prevention performance was evaluated by the following environmental test.

環境試験 高温高湿試験器を用いて80℃×95%RH雰囲気中に上記
成形体を静置し、24時間毎に外観観察を行った。
Environmental test Using a high-temperature and high-humidity tester, the molded body was allowed to stand in an atmosphere of 80 ° C and 95% RH, and the appearance was observed every 24 hours.

尚、第5表中の評価基準は下記の通りである; 〔作用・効果〕 上述の通り、本発明によれば、防錆性能に優れ、HD
D、FDDに代表される小型精密モーター等に有用な樹脂結
合型永久磁石を提供することができ、その有用性は頗る
大である。
The evaluation criteria in Table 5 are as follows: [Actions and Effects] As described above, according to the present invention, excellent rust prevention performance, HD
Resin-bonded permanent magnets useful for small precision motors represented by D and FDD can be provided, and their usefulness is extremely large.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−206806(JP,A) 特開 昭61−130453(JP,A) 特開 平2−46710(JP,A) 特公 昭43−8338(JP,B1) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-206806 (JP, A) JP-A-61-130453 (JP, A) JP-A-2-46710 (JP, A) JP-B-43 8338 (JP, B1)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】R−T−B(RはNd又はその一部を希土類
元素で置換したもの、TはFe又はその一部を遷移金属で
置換したもの)で表される磁性粉体と、結合剤である合
成樹脂とを主たる構成成分としてなる成形体の角部の一
部又は全部を除去した後、該成形体の表面に電解メッキ
により金属被膜を形成することを特徴とするプラスチッ
ク磁石の製造方法。
1. A magnetic powder represented by RTB (R is Nd or a part thereof substituted with a rare earth element, T is a part of Fe or a part thereof substituted with a transition metal), After removing a part or all of the corners of the molded body mainly composed of a synthetic resin as a binder, a plastic magnet characterized by forming a metal coating on the surface of the molded body by electrolytic plating. Production method.
JP1147381A 1989-06-09 1989-06-09 Manufacturing method of plastic magnet Expired - Fee Related JP2612494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1147381A JP2612494B2 (en) 1989-06-09 1989-06-09 Manufacturing method of plastic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1147381A JP2612494B2 (en) 1989-06-09 1989-06-09 Manufacturing method of plastic magnet

Publications (2)

Publication Number Publication Date
JPH0311712A JPH0311712A (en) 1991-01-21
JP2612494B2 true JP2612494B2 (en) 1997-05-21

Family

ID=15428961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1147381A Expired - Fee Related JP2612494B2 (en) 1989-06-09 1989-06-09 Manufacturing method of plastic magnet

Country Status (1)

Country Link
JP (1) JP2612494B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100641A1 (en) * 2004-04-15 2005-10-27 Neomax Co., Ltd. Method for imparting excellent resistance to hydrogen to article and article exhibiting excellent resistance to hydrogen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102322013B (en) * 2011-07-04 2013-04-17 鞍山森远路桥股份有限公司 Mixing device used on asphalt road surface site heat regeneration compound mixer
JP6630314B2 (en) 2017-06-05 2020-01-15 矢崎総業株式会社 Liquid level detector

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721842B2 (en) * 1972-12-26 1982-05-10
JPS5752779B2 (en) * 1975-01-14 1982-11-09
DE2613904A1 (en) * 1976-03-31 1977-10-06 Siemens Ag RESIN-BONDED PERMANENT MAGNETS
JPS5358608A (en) * 1976-11-05 1978-05-26 Seiko Epson Corp Rotor for electronic clock motor
JPS59219904A (en) * 1983-05-30 1984-12-11 Sumitomo Special Metals Co Ltd Permanent magnet material
JPS6054406A (en) * 1983-09-03 1985-03-28 Sumitomo Special Metals Co Ltd Permanent magnet having excellent oxidation resistance characteristic
JPS60153109A (en) * 1984-01-21 1985-08-12 Sumitomo Special Metals Co Ltd Permanent magnet
US4558077A (en) * 1984-03-08 1985-12-10 General Motors Corporation Epoxy bonded rare earth-iron magnets
JPS61130453A (en) * 1984-11-28 1986-06-18 Sumitomo Special Metals Co Ltd Permanent magnet material having superior corrosion resistance and its manufacture
JPS62206806A (en) * 1986-03-07 1987-09-11 Tohoku Metal Ind Ltd Alloy magnet with oxidation-resistant film and manufacture thereof
JPS63244712A (en) * 1987-03-31 1988-10-12 Seiko Epson Corp Resin-bonded rare earth/iron magnet
JPH0246710A (en) * 1988-08-08 1990-02-16 Fukuda Shigeo Surface treatment for rare earth magnet material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100641A1 (en) * 2004-04-15 2005-10-27 Neomax Co., Ltd. Method for imparting excellent resistance to hydrogen to article and article exhibiting excellent resistance to hydrogen
JPWO2005100641A1 (en) * 2004-04-15 2008-03-06 日立金属株式会社 Method for imparting hydrogen resistance to articles
US7972491B2 (en) 2004-04-15 2011-07-05 Hitachi Metals, Ltd. Method for imparting hydrogen resistance to articles

Also Published As

Publication number Publication date
JPH0311712A (en) 1991-01-21

Similar Documents

Publication Publication Date Title
EP0502475B1 (en) Method of plating a bonded magnet and a bonded magnet carrying a metal coating
US4917778A (en) Process for the corrosion protection of neodymium-iron-boron group sintered magnets
US5275891A (en) R-TM-B permanent magnet member having improved corrosion resistance and method of producing same
KR100374398B1 (en) HIGH CORROSION-RESISTANT R-Fe-B BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
JP2006158012A (en) Method of manufacturing permanent magnet for use in ipm-type motor for automobile
JP2612494B2 (en) Manufacturing method of plastic magnet
KR100921874B1 (en) Method for forming electroplated coating on surface of article
JPH03173106A (en) Rare earth permanent magnet with corrosion resistant film and manufacture thereof
JPH08186016A (en) Bonded magnet having plating film and manufacturing method thereof
JP2612494C (en)
JPH07161516A (en) Bond magnet and its production
JP2719658B2 (en) Bond magnet plating method
JP2004039917A (en) Permanent magnet and manufacturing method therefor
US5062981A (en) Magnet and method for manufacturing the same
JP2631493B2 (en) Manufacturing method of corrosion resistant permanent magnet
JP2001250707A (en) Permanent magnet material
JP3724739B2 (en) Rare earth magnet manufacturing method
JP4582848B2 (en) Magnetic circuit yoke
JP2001257112A (en) Permanent magnet material
JPH0311714A (en) Resin-bonded type magnet and manufacture thereof
JP3236815B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JP2631492B2 (en) Manufacturing method of corrosion resistant permanent magnet
JP2000049007A (en) Rare earth bond magnet
JP2001176709A (en) High anticorrosion magnet superior in magnetic characteristics and manufacturing method therefor
JPH07283018A (en) Bond magnet and production thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees