JPH0475302A - R-fe-b bond magnet production method - Google Patents

R-fe-b bond magnet production method

Info

Publication number
JPH0475302A
JPH0475302A JP2187848A JP18784890A JPH0475302A JP H0475302 A JPH0475302 A JP H0475302A JP 2187848 A JP2187848 A JP 2187848A JP 18784890 A JP18784890 A JP 18784890A JP H0475302 A JPH0475302 A JP H0475302A
Authority
JP
Japan
Prior art keywords
powder
heat treatment
binder
magnetic
bonded magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2187848A
Other languages
Japanese (ja)
Inventor
Yuuichi Tatsuya
雄一 立谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2187848A priority Critical patent/JPH0475302A/en
Publication of JPH0475302A publication Critical patent/JPH0475302A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Abstract

PURPOSE:To establish a method for reducing or eliminating the strain that occurs when an R.Fe.B based isotropic or anisotropic powder is mixed with a binding material by using a metal or alloy powder as the binding material and thereby attaining excellent magnetic characteristics. CONSTITUTION:A base alloy, which consists (wt.%) of Fe:65.8, Nd:29.8, Co:2.65, Pr:0.8, B:0.95 and is combined through the high-frequency induction melting method, is formed into a liquid quench thin sheet using a single roller in an Ar atmosphere. Next, a vibration mill is used to produce particles with an average size of 150mum. After this, vacuum heat treatment is performed for 1 hour at 700 deg.C to obtain an isotropic base powder. After 15vol% of annealed, 99.9% pure Cu powder (-500 mesh) is added to this base powder and mixed, the resulting mixed powder is placed in a die and formed under a pressure of 7ton/cm<2>. Heat treatment follows for 30 minutes in an Ar atmosphere at a temperature between 200 deg.C--950 deg.C. Changes in magnetic and strength characteristics are examined before and after this heat treatment.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、R−Fe−B系(但し1RはYを含む希土類
元素)ボンド磁石の製造方法に関し、更に詳しくはボン
ド磁石化した状態で特性改善のため任意に熱処理を可能
とする方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an R-Fe-B bonded magnet (where 1R is a rare earth element containing Y), and more specifically, relates to a method for producing an R-Fe-B bonded magnet (where 1R is a rare earth element containing Y), and more specifically, in a bonded state. The present invention relates to a method that allows arbitrary heat treatment to improve characteristics.

[従来の技術] 近年、希土類元素(特に、Nd)、Fe、Bを主成分と
する母合金を急速凝固して得られる薄帯を粉砕した粉末
に適度な熱処理を施した物質が磁気的に等方性を有し、
高いエネルギー積を示すことが知られており、その粉砕
粉末は、一般にR・Fe−B系等方性粉末と称されてい
る。
[Prior Art] In recent years, a material obtained by subjecting a powder obtained by subjecting a thin ribbon obtained by rapid solidification of a master alloy containing rare earth elements (particularly Nd), Fe, and B as main components to a suitable heat treatment to magnetically Has isotropy,
It is known to exhibit a high energy product, and its pulverized powder is generally referred to as R.Fe-B isotropic powder.

一方、急速凝固した粉末を原料として熱間成形後熱間据
込加工を施した積層体を解砕した粉末が極めて強い磁気
−釣具方性を示し、前述の等方性粉末に比較して、より
高い最大エネルギー積(BH)MAXを示すことが見い
出された。
On the other hand, a powder obtained by crushing a laminate made of rapidly solidified powder and hot-formed and then hot-upgraded exhibits extremely strong magnetic-fishing properties, compared to the isotropic powder described above. It was found to exhibit a higher maximum energy product (BH) MAX.

その応用製品として、同粉末と小量の結着材との混合物
を任意形状に成形固化して得られる所謂異方性ボンド磁
石としての用途が開発されつつあり、この2種類の粉末
はそれぞれの持つ特徴及び性能を生かし様々な分野での
使用が開始されている。
As an applied product, so-called anisotropic bonded magnets, which are obtained by molding and solidifying a mixture of the same powder and a small amount of a binder into an arbitrary shape, are being developed, and these two types of powder have different characteristics. Taking advantage of its characteristics and performance, it has begun to be used in various fields.

一方、更に高性能を有するボンド磁石の開発も盛んであ
り、以下に示す観点での検討が進められている。
On the other hand, the development of bonded magnets with even higher performance is also active, and studies are underway from the following viewpoints.

(1)使用する磁性粉末の高性能化。(1) Improving the performance of the magnetic powder used.

(2)成形時に不可避的に生ずる配向乱れによる磁気特
性劣化の低減及び防止。
(2) Reducing and preventing deterioration of magnetic properties due to orientation disturbance that inevitably occurs during molding.

り3)成形時下可避的に生ずる歪による磁気特性劣化の
低減及び防止。
3) Reducing and preventing deterioration of magnetic properties due to distortion that inevitably occurs during molding.

尚、ここで上記(1)に関しては1例えば、添加物を含
めた合金組成、急速凝固薄帯の作製条件。
Regarding (1) above, for example, the alloy composition including additives, and the conditions for producing the rapidly solidified ribbon.

据込加工条件等の改良によって更に向上が図られている
Further improvements are being made through improvements in upsetting processing conditions, etc.

又、上記(2)に関しては異方性粉末にのみ関係する問
題があるが、熱間据込後のバルクから粉末を作製する際
に成形時の配向性をも考慮した粉砕方法、具体的には球
形状を呈する粉末の作製方法の確立および特願平1−3
36379号に開示された様な造粒粉末の作製が試みら
れており着実に改善が図られている。
Regarding (2) above, there is a problem related only to anisotropic powder, but when producing powder from the bulk after hot upsetting, a pulverization method that also takes into account the orientation during compaction, specifically, Establishment of a method for producing powder exhibiting a spherical shape and patent application No. 1-3
Attempts have been made to produce granulated powder as disclosed in No. 36379, and improvements have been steadily made.

しかしながら上記(3)の歪による特性劣化の防止対策
としては、歪を受けにくくする為の粉末形状の制御およ
び潤滑剤の添加等の成形方式の検討が行なわれているが
、基本的にボンド磁石の様に高圧力によって成形体の充
填率を高めるプロセスにおいては歪の発生は不可避的で
あり根本的な防止対策は見い出せない状況となっている
。ところでこの歪の問題は、先に開発されたSm−C。
However, as a measure to prevent characteristic deterioration due to strain as described in (3) above, studies are being conducted on molding methods such as controlling the powder shape and adding lubricant to make it less susceptible to strain. In the process of increasing the filling rate of a molded body using high pressure, the occurrence of distortion is inevitable, and no fundamental preventive measures have been found. By the way, this distortion problem occurs with Sm-C, which was developed earlier.

系ボンド磁石においても共通の問題でありその対策とし
ては1例えば、特開昭64−69002号公報に開示さ
れている様に磁性粉末間の結着として水ガラス等の高耐
熱性を有する材質を使用してボンド磁石を作製しその後
高温で熱処理を施すことで歪を除去し、特性を回復させ
る方法がある。
This is a common problem in bonded magnets as well, and the countermeasures are 1. For example, as disclosed in Japanese Patent Application Laid-Open No. 64-69002, a material with high heat resistance such as water glass is used as a binder between magnetic powders. There is a method in which a bonded magnet is manufactured using a bonded magnet and then subjected to heat treatment at a high temperature to remove distortion and restore characteristics.

[発明が解決しようとする課題] 本発明者も同様の方法がR−Fe−B系(RはNd等の
Yを含む希土類元素)ボンド磁石においても適応出来る
か否かの検討を行なう為に(i)結着材を添加しない磁
性粉末のみの成形体(if)磁性粉末に結着材として水
ガラスを添加した成形体の2種類を作製後歪取りの熱処
理を行なった結果。
[Problems to be Solved by the Invention] The present inventor also investigated whether a similar method could be applied to R-Fe-B type (R is a rare earth element containing Y such as Nd) bonded magnets. Results of two types of molded bodies: (i) a molded body containing only magnetic powder without the addition of a binder (if) a molded body in which water glass was added as a binder to magnetic powder; after fabrication, heat treatment was performed to remove distortion.

(i)の結着材を添加しない成形体においては成形後の
磁気特性に著しい改善が見られたものの。
Although a marked improvement in the magnetic properties after molding was observed in the molded product (i) to which no binder was added.

(if)の結着材を有する成形体においては結着材と磁
性粉末の反応が著しく磁気特性を逆に劣化させる問題点
および薄肉形状の成形体では反り。
In molded bodies having a binder (if), there is a problem in that the reaction between the binder and the magnetic powder significantly deteriorates the magnetic properties, and in the case of thin-walled molded bodies, warpage occurs.

方厚肉形状の成形体では割れの発生の問題が見られ、こ
れらの結果は水ガラス以外の高耐熱性を有する結着材に
おいても同様に発生する問題点が見られ、結果として成
形時に生ずる歪の対策は未だ確立されていない状況とな
っている。
Problems with the occurrence of cracks have been observed in molded bodies with a square thick-walled shape, and similar problems have been observed in binders with high heat resistance other than water glass, resulting in the occurrence of cracks during molding. Measures against distortion have not yet been established.

そこで1本発明の技術的課題はR−Fe−B系の等方性
もしくは異方性粉末と結着材との混合物を成形する際に
生ずる歪を低減もしくは除去する方法を確立し優れた磁
気特性を示すR−Fe−B系ボンド磁石を製造する方法
を提供することにある。
Therefore, one technical problem of the present invention is to establish a method for reducing or eliminating the strain that occurs when molding a mixture of R-Fe-B-based isotropic or anisotropic powder and a binder, and to achieve excellent magnetic properties. It is an object of the present invention to provide a method for manufacturing an R-Fe-B bonded magnet exhibiting characteristics.

[課題を解決するための手段] 本発明は前述した熱処理による成形体の歪除去の試験結
果より鑑みて(i)結着材との反応性。
[Means for Solving the Problems] The present invention has been developed based on the above-mentioned test results for removing strain from molded bodies through heat treatment.(i) Reactivity with binder.

(11)成形体の反り1割れの問題点が克服出来れば確
実に磁気特性の向上効果が期待出来る点をふまえ、新た
な結着材を種々の間怠から検討、試験を行なった結果見
い出されたものである。
(11) Based on the fact that if the problem of warping and single cracking of molded objects can be overcome, it is possible to definitely expect the effect of improving magnetic properties, this was discovered as a result of various studies and tests of new binding materials. It is something that

本発明によれば、R−Fe−B系(但し、RはYを含む
希土類元素)粉末と結着材とを混合した混合物を圧縮成
形して、R−Fe−B系ボンド磁石を製造する方法にお
いて、前記結着材として金属又は合金粉末を用いること
を特徴とするR・Fe−B系ボンド磁石の製造方法が得
られる。
According to the present invention, a mixture of R-Fe-B (where R is a rare earth element containing Y) powder and a binder is compression molded to produce an R-Fe-B bonded magnet. In the method, a method for producing an R.Fe-B bonded magnet is obtained, characterized in that a metal or alloy powder is used as the binder.

また2本発明によれば、前記R−Fe−B系ボンド磁石
の製造方法において、前記結着材としての金属または合
金粉末が超微粉末であることを特徴とするR−Fe−B
系ボンド磁石の製造方法が得られる。
According to the second aspect of the present invention, in the method for manufacturing an R-Fe-B bonded magnet, the metal or alloy powder as the binder is an ultrafine powder.
A method for manufacturing a bonded magnet is obtained.

更に2本発明によれば、前記したいずれかのR・Fe−
B系ボンド磁石の製造方法において、圧縮成形後、30
0℃〜900℃の温度範囲内て熱処理することを特徴と
するR−Fe−B系ボンド磁石の製造方法が得られる。
Furthermore, according to the present invention, any of the above-mentioned R.Fe-
In the method for manufacturing B-based bonded magnets, after compression molding, 30
A method for manufacturing an R-Fe-B bonded magnet is obtained, which is characterized in that heat treatment is performed within a temperature range of 0°C to 900°C.

即ち1本発明の最大の特徴は磁性粉末間の結着材として
超微粉末金属、軟質の金属もしくは合金粉末を用いるこ
とにあり、結果として (i)高温領域での磁性粉末との反応性がなく。
That is, 1. The greatest feature of the present invention is that ultrafine metal powder, soft metal powder, or alloy powder is used as a binder between magnetic powders, and as a result, (i) reactivity with magnetic powder in high temperature regions is reduced. Without.

たとえ反応が生じても僅かであれば磁気特性上の劣化は
歪の除去による特性の回復効果に比較し極僅かとなる。
Even if a reaction occurs, if it is small, the deterioration in magnetic properties will be extremely small compared to the effect of restoring the properties by removing strain.

(11)結着材も磁性粉末と同じ金属であることより膨
張率がほぼ同等であり2反り1割れ等の発生が見られず
熱処理後の急冷においても十分耐え得ると同時に僅かな
ゆがみ等は熱処理後の急冷においても十分耐え得ると同
時に僅かなゆがみ等は熱処理後のサイジングによって修
正が可能な程度の柔軟性を有することが確認出来た。
(11) Since the binder is the same metal as the magnetic powder, the expansion coefficient is almost the same, and there is no occurrence of warping, cracking, etc., and it can sufficiently withstand rapid cooling after heat treatment, and at the same time, there is no slight distortion etc. It was confirmed that it could sufficiently withstand rapid cooling after heat treatment, and at the same time had enough flexibility that slight distortions could be corrected by sizing after heat treatment.

尚、結着材として超微粉末金属を用いる際に最も懸念さ
れたのは成形体の強度であったが、超微粉末金属は一般
に、 (イ)比表面積が大きい。
In addition, when using ultrafine powder metal as a binder, the greatest concern was the strength of the compact, but ultrafine powder metal generally has (a) a large specific surface area.

(ロ)粉末の結着が200℃程度の低温域で容易に進行
する等の特徴を有しており、その結果、成形時における
磁性粉末とのからみ合いおよびその後の熱処理時の磁性
粉末との結着効果が絶大であり1従来の有機結着材と同
等の成形体強度の実現が可能となった。
(b) It has the characteristics that powder binding progresses easily in a low temperature range of about 200°C, and as a result, there is entanglement with magnetic powder during molding and during subsequent heat treatment. It has a tremendous binding effect, making it possible to achieve molded body strength equivalent to that of conventional organic binders.

なお、超微粉末金属の作製法としては蒸発法が一般的で
あり2粒径20rv程度の粉末の量産化は既に確立され
ている。
Incidentally, the evaporation method is a common method for producing ultrafine metal powder, and mass production of powder with a particle size of about 20 rv has already been established.

本発明において、超微粉末とは2粒径が数十nm(ナノ
メータ)程度の大きさで、透過型電子顕微鏡で観察可能
な粉末であり且つ物性に物質固有の特性が支配し始める
オーダーの粉末を呼ぶ。
In the present invention, an ultrafine powder is a powder with a particle size of several tens of nanometers (nanometers), which can be observed with a transmission electron microscope, and whose physical properties are of an order in which properties unique to the substance begin to dominate. call.

又、現在、具体的に使用出来る超微粉末金属としては(
:u、Fe、Ag、Ni等がある。
In addition, the ultrafine powder metal that can be specifically used at present is (
: There are u, Fe, Ag, Ni, etc.

一方、結着材として金属もしくは金属粉末を採用する際
に最も懸念されたのは、成形体の強度であり、従来の有
機結着材なみの性能を何に確保するかで本発明の意義が
決定する問題であったが。
On the other hand, when using metal or metal powder as a binder, the greatest concern was the strength of the compact, and the significance of the present invention depends on how to ensure performance comparable to conventional organic binders. It was a matter to be decided.

磁性−粉末に比較して軟質性を有する金属および合金の
粉末を採用することによりその解決策が見い出され、具
体的には焼鈍により軟化されたCu。
A solution was found by employing powders of metals and alloys that have soft properties compared to magnetic powders, specifically Cu softened by annealing.

Ag、Al、Fe、Ni、Co、Cu−Zn合金、Fe
−Ni合金、ジュラルミン等の粉末を結着材とした際に
従来の有機質結着材と同等もしくはそれ以上の強度を有
する成形体が得られた。
Ag, Al, Fe, Ni, Co, Cu-Zn alloy, Fe
When powders such as -Ni alloy and duralumin were used as a binder, molded bodies having strength equal to or higher than conventional organic binders were obtained.

次に、成形体の熱処理温度は実際に歪が回復可能な温度
領域でなおかつ磁性粉末の結晶構造を変化させない領域
で実施する必要があり、係る観点から300℃以上90
0℃以下の範囲が最適条件となり、それより低い温度で
は歪除去の効果が見られず又それを越える温度では粉末
自体の持つ特性を劣化させる結果となる。
Next, the heat treatment temperature of the molded body needs to be carried out in a temperature range where strain can actually be recovered and which does not change the crystal structure of the magnetic powder.
The optimum condition is a range of 0° C. or lower; at temperatures lower than this, no strain removal effect is observed, and at temperatures exceeding this, the properties of the powder itself deteriorate.

なお1本発明ではR−Fe−B系(但し、RはYを含む
希土類元素)等方性および異方性粉末の効果を示したが
、たとえばRとしてNdを用い。
In the present invention, the effects of isotropic and anisotropic powders of the R-Fe-B system (where R is a rare earth element containing Y) have been shown, but for example, Nd is used as R.

このNdをDy、Pr等の希土類で置換する場合。When this Nd is replaced with a rare earth element such as Dy or Pr.

Feの一部をCoに置換する場合、その他各種添加物を
加えた合金系においても本発明を実施する上での制約条
件ならないことは言うまでもなく。
Needless to say, when a part of Fe is replaced with Co, alloy systems in which various other additives are added are not a constraint for carrying out the present invention.

又使用する超微粉末金属も結着材としての機能を満足す
るものであれば同様に制約条件とはなり得ない。
Similarly, the ultrafine powder metal used should not be a constraint as long as it satisfies the function as a binder.

[実施例コ 次に、実施例をもって本発明の有効性を示す。[Example code] Next, the effectiveness of the present invention will be shown with examples.

実施例1゜ 高周波誘導溶解法により組成(vt%)がFe:65.
8. Nd :29.8. Co ;2.85.  P
r :0.8 、  B :0.95に調整した母合金
をAr雰囲気中で単ロール装置を用いて液体急冷薄帯を
作製し2次に振動ミルを用いて平均粒径を150μ直と
なる様に調整後、700℃X1hrで真空熱処理を施し
2等方性原料粉末を作製した。
Example 1 Composition (vt%) of Fe: 65.
8. Nd: 29.8. Co; 2.85. P
A mother alloy adjusted to r: 0.8 and B: 0.95 was prepared into a liquid quenched ribbon using a single roll device in an Ar atmosphere, and then a vibration mill was used to make the average grain size 150μ. After adjusting as described above, vacuum heat treatment was performed at 700° C. for 1 hr to produce a 2-isotropic raw material powder.

次に同粉末に焼鈍された純度99.9%以上のCu粉末
(−500mesh)を15vo!%添加し混合後。
Next, 15vo! % after addition and mixing.

同混合粉末を金型内に挿入後成形圧カフ ton/c−
で成形を行なった。その後の熱処理は、Ar雰囲気下で
200℃〜950℃の範囲で30分間行ない。
After inserting the mixed powder into the mold, molding pressure cuff ton/c-
The molding was done with. The subsequent heat treatment is performed at a temperature of 200° C. to 950° C. for 30 minutes in an Ar atmosphere.

熱処理前後の特性変化の評価を磁気特性1強度に関して
行なった。なお、比較材には結着材として従来の有機質
を使用したボンド磁石および結着材を使用しない成形体
を採用した。その一連の結果を第1表に示す。
Characteristic changes before and after heat treatment were evaluated for magnetic property 1 strength. As comparative materials, a bonded magnet using a conventional organic material as a binder and a molded article without using a binder were used. A series of results are shown in Table 1.

実施例2゜ 実施例1の組成で作製した液体急冷薄帯を原料として熱
開成形および熱間据込加工を施したバルク体をディスク
ミルによって粉砕し平均粒径170μ■の異方性粉末を
作製した。次に同粉末と焼鈍された純度99.9%以上
のCu + A g + A I rF e 、 N 
1 + CO+粉末の各一種ずつを15vo1%添加混
合し、同混合粉末の夫々を金型内に挿入後、印加磁場1
5 kOe 、成形圧カフ ton / cdの平行磁
場成形を行ない6種類の異方性ボンド磁石を作製した。
Example 2゜A bulk body made from the liquid quenched ribbon produced with the composition of Example 1 and subjected to hot opening molding and hot upsetting was pulverized using a disk mill to obtain an anisotropic powder with an average particle size of 170μ. Created. Next, Cu + A g + A I rF e , N with a purity of 99.9% or more was annealed with the same powder.
1 + CO + powder was added at 15vol% and mixed, and after inserting each of the mixed powders into a mold, an applied magnetic field of 1 was applied.
Parallel magnetic field molding was performed at a molding pressure of 5 kOe and a molding pressure of ton/cd to produce six types of anisotropic bonded magnets.

又、各ボンド磁石を300℃〜900℃の温度範囲内で
所定時間の熱処理を行なった。
Further, each bonded magnet was heat treated within a temperature range of 300°C to 900°C for a predetermined time.

その結果1本発明の実施例2のボンド磁石は、抵抗力強
度が従来の有機結着材使用時に比較し同等以上でなおか
つ、磁気特性上最高値を示した。
As a result 1, the bonded magnet of Example 2 of the present invention had a resistance strength equal to or higher than that when a conventional organic binder was used, and also exhibited the highest value in terms of magnetic properties.

実施例3゜ 実施例1の条件に添って作製した等方性粉末とCu粉末
の混合物を原料として、外径20++++s内径18龍
高さ15m+*の寸法からなるリングおよび直径40r
ara高さ20關の寸法からなる肉厚の円板を作製し、
熱処理を行なった際の成形体の外観に反り1割れ等の不
良は見られないことを確認した。
Example 3゜ Using a mixture of isotropic powder and Cu powder produced according to the conditions of Example 1 as raw materials, a ring with an outer diameter of 20 + + + s, an inner diameter of 18, and a height of 15 m + * and a diameter of 40 r.
A thick disk with a height of 20 degrees was prepared,
It was confirmed that no defects such as warping or cracking were observed in the appearance of the molded product after heat treatment.

実施例4゜ 高周波誘導溶解法により組成(wt%、)がFe85.
8.  Nd :29.8.  Co :2.65. 
 P r :0.8 、  B 二〇、95に調整した
母合金をAr雰囲気に置換が可能な単ロール装置を用い
て液体急冷薄帯を作製し。
Example 4 Composition (wt%) of Fe85.
8. Nd: 29.8. Co:2.65.
A liquid quenched ribbon was produced using a single roll device capable of replacing a master alloy with P r :0.8 and B20.95 in an Ar atmosphere.

次に振動ミルを用いて平均粒径を150μ匝となる様に
調整後700℃X1hrで真空熱処理を施し等方性原料
粉末を作製した。
Next, the average particle size was adjusted to 150 μm using a vibration mill, and then vacuum heat treatment was performed at 700° C. for 1 hr to produce an isotropic raw material powder.

次に同粉末に、低圧ガス中蒸発法によって作製された平
均粒径20naからなる純Cu超微粉末金属を10vo
1%添加しAr雰囲気下の型混合機で撹拌後間粉末を金
型内に挿入し、成形圧カフ ton/ cdで成形体を
作製した。次に同成形体の熱処理をAr雰囲気下200
℃〜950℃の範囲で30分間行ない、熱処理前後での
特性評価を磁気特性および強度に関して行なった。なお
比較材には結着材として従来の有機質を使用したボンド
磁石、および結着材を使用しない成形体を採用した。
Next, 10 vol of pure Cu ultrafine metal powder with an average particle size of 20 na produced by low-pressure gas evaporation method was added to the same powder.
After adding 1% and stirring with a mold mixer under an Ar atmosphere, the powder was inserted into a mold and a molded body was produced using a molding pressure cuff of ton/cd. Next, the molded body was heat treated for 200 min in an Ar atmosphere.
The heat treatment was carried out for 30 minutes at a temperature in the range of .degree. C. to 950.degree. C., and the characteristics before and after the heat treatment were evaluated in terms of magnetic properties and strength. As comparison materials, a bonded magnet using a conventional organic material as a binder and a molded body without using a binder were used.

一連の測定結果を第3表に示す。A series of measurement results are shown in Table 3.

実施例5゜ 実施例4の組成で作製した液体急冷薄帯を原料として、
熱開成形および熱間据込加工を施したバルク体をディス
クミルで粉砕し平均粒径170μ匝の異方性粉末を作製
した。
Example 5゜Using the liquid quenched ribbon produced with the composition of Example 4 as a raw material,
The bulk body subjected to hot open molding and hot upsetting was pulverized using a disk mill to produce anisotropic powder with an average particle size of 170 μm.

次に同粉末と抵抗加熱法によって作製されたAg(平均
粒径20 rv)と、プラズマジェット法によって作製
されたFe、Ni (平均粒径20 nm)等の超微粉
末金属を10vo1%添加後、上述の方法と同様に混合
後、同混合粉末を金型内に挿入し。
Next, 10vol.1% of the same powder was added with Ag (average particle size 20 rv) prepared by the resistance heating method, and ultrafine powder metals such as Fe and Ni (average particle size 20 nm) prepared by the plasma jet method. After mixing in the same manner as described above, the mixed powder was inserted into a mold.

印加磁場15kOe成形圧カフ ton / cjの平
行磁場成形を行ない異方性ボンド磁石を作製した。又。
Parallel magnetic field molding was performed with an applied magnetic field of 15 kOe and a molding pressure of cuff ton/cj to produce an anisotropic bonded magnet. or.

熱処理は300℃〜900℃の間で所定時間行なった。The heat treatment was performed at a temperature of 300°C to 900°C for a predetermined time.

その結果として抵抗力強度が従来の有機結着材使用時に
比較し同等以上でなおがっ磁気特性上最高値が得られた
。このときの熱処理条件および特性値を第4表に示す。
As a result, the resistance strength remained at the same level or higher than when conventional organic binders were used, and the highest value in terms of magnetic properties was obtained. The heat treatment conditions and characteristic values at this time are shown in Table 4.

実施例6゜ 実施例4と同様な条件で作製した等方性粉末と純Cu超
微粉末からなる混合物を原料として外径20mm、内径
18m+s、高さ15II11の寸法からなる薄肉状リ
ングおよび直径40關高さ20mmの寸法からなる厚肉
状円板を作製し熱処理を行なった際の成形体の外観に反
り8割れ等の不良箇所は見られないことを確認した。
Example 6゜A thin-walled ring with an outer diameter of 20 mm, an inner diameter of 18 m+s, and a height of 15 II 11 and a diameter of 40 mm was made using a mixture of isotropic powder and pure Cu ultrafine powder produced under the same conditions as in Example 4 as raw materials. When a thick-walled disc having a height of 20 mm was produced and heat treated, it was confirmed that no defects such as warping and cracking were observed in the appearance of the molded product.

以   下   余   白 〔発明の効果コ 以上の説明から明らかな様に1本発明によるR・Fe5
B系ボンド磁石の製造方法によれば 磁性粉末の成形時
に不可避的に生ずる歪を除去する方法が確立されその結
果として、高磁気特性、高強度を示すボンド磁石の製造
が容易かつ安価に製造することが可能となり工業上の寄
与には大なるものがある。
Below is the margin [Effects of the invention] As is clear from the above explanation, 1.
According to the method for manufacturing B-series bonded magnets, a method has been established to remove the strain that inevitably occurs during molding of magnetic powder, and as a result, bonded magnets that exhibit high magnetic properties and high strength can be easily and inexpensively manufactured. This makes it possible to make a significant contribution to industry.

*は成形直径後のデータ*Data after forming diameter

Claims (3)

【特許請求の範囲】[Claims] 1.R.Fe・B系(但し,RはYを含む希土類元素)
粉末と結着材とを混合した混合物を圧縮成形して,R・
Fe・B系ボンド磁石を製造する方法において,前記結
着材として金属又は合金粉末を用いることを特徴とする
R・Fe・B系ボンド磁石の製造方法。
1. R. Fe/B system (however, R is a rare earth element containing Y)
A mixture of powder and binder is compression molded to form an R.
A method for manufacturing an R/Fe/B bonded magnet, characterized in that a metal or alloy powder is used as the binder.
2.第1の請求項記載のR・Fe・B系ボンド磁石の製
造方法において,前記結着材としての金属または合金粉
末が超微粉末であることを特徴とするR・Fe・B系ボ
ンド磁石の製造方法。
2. The method for manufacturing an R.Fe.B bonded magnet according to the first claim, wherein the metal or alloy powder as the binder is an ultrafine powder. Production method.
3.第1又は第2の請求項記載のR・Fe・B系ボンド
磁石の製造方法において,圧縮成形後,300℃〜90
0℃の温度範囲内で熱処理することを特徴とするR・F
e・B系ボンド磁石の製造方法。
3. In the method for manufacturing an R.Fe.B bonded magnet according to the first or second claim, after compression molding,
R・F characterized by heat treatment within a temperature range of 0°C
A method for producing an e/B bonded magnet.
JP2187848A 1990-07-18 1990-07-18 R-fe-b bond magnet production method Pending JPH0475302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2187848A JPH0475302A (en) 1990-07-18 1990-07-18 R-fe-b bond magnet production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2187848A JPH0475302A (en) 1990-07-18 1990-07-18 R-fe-b bond magnet production method

Publications (1)

Publication Number Publication Date
JPH0475302A true JPH0475302A (en) 1992-03-10

Family

ID=16213279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2187848A Pending JPH0475302A (en) 1990-07-18 1990-07-18 R-fe-b bond magnet production method

Country Status (1)

Country Link
JP (1) JPH0475302A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000014040A (en) * 1998-08-17 2000-03-06 밍 루 method FOR MANUFACTURING RARE-EARTH PERMANENT MAGNET
JP2004047872A (en) * 2002-07-15 2004-02-12 Matsushita Electric Ind Co Ltd Method for manufacturing rare earth bonded magnet from sheet to film, and its permanent magnet motor
US7087185B2 (en) 1999-07-22 2006-08-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
JP5527434B2 (en) * 2010-12-27 2014-06-18 Tdk株式会社 Magnetic material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000014040A (en) * 1998-08-17 2000-03-06 밍 루 method FOR MANUFACTURING RARE-EARTH PERMANENT MAGNET
US7087185B2 (en) 1999-07-22 2006-08-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
JP2004047872A (en) * 2002-07-15 2004-02-12 Matsushita Electric Ind Co Ltd Method for manufacturing rare earth bonded magnet from sheet to film, and its permanent magnet motor
JP5527434B2 (en) * 2010-12-27 2014-06-18 Tdk株式会社 Magnetic material

Similar Documents

Publication Publication Date Title
US4801340A (en) Method for manufacturing permanent magnets
JP2898173B2 (en) Production of fine-grained anisotropic powder from melt-spun ribbon
JPH044387B2 (en)
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
EP0626703A2 (en) Magnetically anisotropic spherical powder
JP2002249802A (en) Amorphous soft magnetic alloy compact, and dust core using it
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPH0475302A (en) R-fe-b bond magnet production method
KR101562830B1 (en) composition comprising Fe based nanocrystalline phase and method for preparing the same
JPH03129703A (en) Rare-earth-fe-co-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPH08181009A (en) Permanent magnet and its manufacturing method
JPS6320411A (en) Production of material for permanent magnet
JPH04141502A (en) Manufacture of alloy powder for rare earth metal bond magnet
JPH07109504A (en) Production of raw powder for anisotropic bond magnet
KR20050066465A (en) The soft magnetic fe-based nano-alloy powder having superior to br/bs and the method there of
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
KR100625834B1 (en) A METHOD OF POWDER FOR Fe-Cr-Co BOND MAGNETIC BY MELT DRAGGING
JPS61270316A (en) Production of raw material powder for resin bonded permanent alloy
JPH0417604A (en) Manufacture of rare earth element magnet alloy powder having excellent magnetic characteristic
JPS62208609A (en) Resin-bonded permanent magnet and manufacture of its magnetic powder
CN115637394A (en) Cobalt-reinforced iron-nickel-based hard magnetic alloy and preparation method thereof
JPH01179304A (en) Manufacture of permanent magnet
JPH05152113A (en) Manufacture of rare-earth anisotropic magnet powder
JPH04216601A (en) Material of permanent magnet, manufacture thereof and bonded magnet
JPH04179102A (en) Manufacture of anisotropic r-fe-b magnetic powder