JPS6320411A - Production of material for permanent magnet - Google Patents

Production of material for permanent magnet

Info

Publication number
JPS6320411A
JPS6320411A JP16454786A JP16454786A JPS6320411A JP S6320411 A JPS6320411 A JP S6320411A JP 16454786 A JP16454786 A JP 16454786A JP 16454786 A JP16454786 A JP 16454786A JP S6320411 A JPS6320411 A JP S6320411A
Authority
JP
Japan
Prior art keywords
phase
permanent magnet
raw material
atomic percent
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16454786A
Other languages
Japanese (ja)
Inventor
Takuhiko Nishida
西田 卓彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16454786A priority Critical patent/JPS6320411A/en
Publication of JPS6320411A publication Critical patent/JPS6320411A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a raw material for a permanent magnet having high magnetic characteristics by melting specifically composed rare earth/boron/ferrous raw material and casting the melt thereof into a casting mold to cast an ingot, then subjecting the ingot to a heat treatment under specific conditions. CONSTITUTION:The compsn. expressed by the formula I is used for the raw material. In the formula, I, R; >=1 kinds among Nd, Dy and Tb, (a); 8-30atom%, (c); 2-28atom%. This raw material is melted and the melt thereof is cast into the casting mold to produce the ingot; thereafter, the ingot is heat-treated for 10min-10hr in an inert atmosphere or vacuum in a 950-1,120 deg.C range. The compsn. expressed by the formula II is otherwise used for the raw material. In the formula, R; >=1 kinds among Nd, Dy and Tb, X; >=1 kinds among Co, Si and Al, (a); 8-30atom%, (b); 0.1-20atom%, (c); 2-28atom%.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は希土類・ボロン・鉄を主成分とする永久磁石用
材料の製造方法に係り、得られた材料鋳を粉砕し、さら
に該粉末を成形し焼結焼鈍等の粉末冶金法による永久磁
石の製造に供しようとするものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing a material for permanent magnets whose main components are rare earth elements, boron, and iron. It is intended to be used in the production of permanent magnets using powder metallurgy methods such as molding, sintering and annealing.

(従来の技術) 永久磁石材料は一般の家庭で使用される各種の電気製品
からコンピューターの周辺端末機器まで広範囲に用いら
れている。近年永久磁石材料は電気電子機器の小型化、
高効率化の要求にともない高性能化がはかられている。
(Prior Art) Permanent magnetic materials are used in a wide range of applications, from various electrical appliances used in ordinary homes to peripheral terminal equipment for computers. In recent years, permanent magnet materials have been used to miniaturize electrical and electronic equipment,
With the demand for higher efficiency, efforts are being made to improve performance.

現在使用されている代表的な永久磁石材料はアルニコ、
ハードフェライト、サマリウム・コバルト磁石であるが
、近年新しい高性能永久磁石として希土類・ボロン・鉄
を主成分とする永久磁石が提案されている。(特開昭5
9−46008号公報) この磁石は原料の鉄、ボロン、希土類金属を高周波溶解
し、水冷銅鋳型などに鋳造して鋳片をえて、その鋳片を
スタンプミル、ジッークラフシャーなどで粗粉砕し、さ
らにディスクミル、ボールミル、アトライター、ジェッ
トミルなどで微粉砕し平均粒径3〜110A1の粉末に
した後、磁場プレスによって成形し、1000〜120
0℃テ焼結後、400〜900℃で焼鈍処理して製造さ
れる。
The typical permanent magnet materials currently used are alnico,
These include hard ferrite and samarium-cobalt magnets, but in recent years permanent magnets containing rare earth elements, boron, and iron as main components have been proposed as new high-performance permanent magnets. (Unexamined Japanese Patent Publication No. 5
Publication No. 9-46008) This magnet is produced by high-frequency melting of raw materials such as iron, boron, and rare earth metals, casting into water-cooled copper molds, etc. to obtain slabs, and then coarsely pulverizing the slabs using a stamp mill, Zic Ruffsha, etc. , further finely pulverized with a disk mill, ball mill, attritor, jet mill, etc. to a powder with an average particle size of 3 to 110 A1, and then molded by a magnetic field press to form a powder with an average particle size of 1000 to 120 A1.
After sintering at 0°C, it is manufactured by annealing at 400-900°C.

(発明が解決しようとする問題点) 本発明は高磁気特性をもつ永久磁石用材料を簡易な方法
により製造しようとするものである。
(Problems to be Solved by the Invention) The present invention attempts to produce a permanent magnet material having high magnetic properties by a simple method.

(問題点を解決するための手段) 本発明は、Fe1611−a−c RaBcまたはFe
1O+1−m−b−0RaXbBc (RはNd、D)
1.Tbの少なくとも1種、XはCo。
(Means for solving the problems) The present invention provides Fe1611-a-c RaBc or Fe1611-a-c RaBc
1O+1-m-b-0RaXbBc (R is Nd, D)
1. At least one type of Tb and X are Co.

Si+Alの少なくとも1種、aは8〜30原子パーセ
ント、bは0.1〜20原子パーセント、Cは2〜28
原子パーセント)の組成からなる原料を溶解し、鋳型に
鋳造して鋳片を製造した後、該鋳片を950℃乃至11
20℃の温度範囲で不活性雰囲気あるいは真空中で10
分乃至10時間の熱処理を行いあるいは該熱処理後、急
速冷却を行なうことにより、高磁気特性をもつ永久磁石
用の原料を得ようとするものである。
At least one kind of Si + Al, a is 8 to 30 atomic percent, b is 0.1 to 20 atomic percent, C is 2 to 28 atomic percent
After melting a raw material with a composition of
10 in an inert atmosphere or vacuum at a temperature range of 20°C.
The purpose is to obtain a raw material for permanent magnets having high magnetic properties by heat treatment for a period of 10 minutes to 10 hours or by rapid cooling after the heat treatment.

以下本発明について説明する。The present invention will be explained below.

希土類・ボロン・鉄系永久磁石合金の鋳片の製造には水
冷銅鋳型が用いられたり、鋳片を薄く大きくひろげて弁
当箱のような箱型の鋳型に鋳込んだりするなど通常の鋳
造方法よりも凝固速度の大きな鋳造方法が採用されてい
る。鋳片の凝固速度を大きくする理由は明らかにされて
おらず高い磁気特性をもつ焼結磁石を安定して得る方法
はいまだ十分解明されていない、そこで本発明者は種々
検討した結果以下のことを明らかにした。
Water-cooled copper molds are used to manufacture slabs of rare earth, boron, and iron-based permanent magnet alloys, and conventional casting methods include rolling out slabs thinly and then casting them into box-shaped molds like bento boxes. A casting method with a faster solidification rate is used. The reason for increasing the solidification rate of slabs has not been clarified, and the method for stably obtaining sintered magnets with high magnetic properties has not yet been fully elucidated.As a result of various studies, the present inventor has made the following points. revealed.

希土類とボロンおよび鉄を主成分とする永久磁石材料の
鋳造U織はボロンの量や希土類元素の量によって変化す
る。希土類元素はNd、 DVなど種々な元素があるが
代表的な元素としてNdを選び、以下、鉄−ボロン−N
d系について具体的に説明する。
Cast U-woven fabrics made of permanent magnet materials whose main components are rare earths, boron, and iron vary depending on the amount of boron and the amount of rare earth elements. There are various rare earth elements such as Nd and DV, but Nd is selected as the representative element, and below, iron-boron-N
The d system will be specifically explained.

Fe−B−Nd系磁石材料の鋳造組織はボロン(B)や
Nd量量によって変化するが、通常Nd1Fe+4Bな
る組成からなる正方晶結晶(以下T、相という)が主相
であって、その他にNdが8割以上をしめるNd−Fe
−B化合物(以下Ndrich相という)、Bを5重量
%以上を含むNd−Fe−B化合物(以下Br1ch相
という)およびFe相からなる。Ndrich相とBr
1ch相は主相のTI相のなかに一定の幅をもった帯状
の組織として現われ、Fe相は樹枝状晶ないしは球状粒
子として主相のTI相の結晶粒内に点在する。
The cast structure of Fe-B-Nd magnet materials changes depending on the amount of boron (B) and Nd, but usually the main phase is a tetragonal crystal (hereinafter referred to as T phase) consisting of Nd1Fe+4B, and there are other Nd-Fe in which Nd accounts for more than 80%
-B compound (hereinafter referred to as Ndrich phase), an Nd-Fe-B compound containing 5% by weight or more of B (hereinafter referred to as Br1ch phase), and Fe phase. Ndrich phase and Br
The 1ch phase appears as a band-like structure with a certain width in the main TI phase, and the Fe phase is scattered as dendrites or spherical particles within the crystal grains of the main TI phase.

通常の鋳鉄の鋳型を用いて20鶴厚さの鋳片を製造した
場合、主相のT、相はその巾が100μ鵠程度になり、
Ndrich相とBr1ch相は10μ翔以上の巾であ
る場合に局在し、Nd量やB量が少ない成分系ではFe
相が多量に現われることがわかった。
When a slab with a thickness of 20 mm is produced using a normal cast iron mold, the width of the main phase T is about 100 μm,
Ndrich phase and Br1ch phase are localized when the width is 10μ or more, and in component systems with small amounts of Nd and B, Fe
It was found that a large number of phases appeared.

水冷銅鋳型を用いて5n+厚さの鋳片を製造した場合は
主相のT、相は10μ−以下になり、Ndrich相と
Br1ch相は2μ醜以下になり、とくに鋳型に接した
部分はT、相、Ndr ich相、Br1ch相ともに
非常に微細化される。またNd量やBfiが少ない成分
系においてもFe相は少量しか現われないことがわかっ
た。
When a slab with a thickness of 5n+ is produced using a water-cooled copper mold, the main phase T is less than 10μ-, the Ndrich phase and Br1ch phase are less than 2μ, and especially the part in contact with the mold is T. , Ndrich phase, and Br1ch phase are all extremely refined. It was also found that only a small amount of Fe phase appears even in a component system with a small amount of Nd or Bfi.

これらの鋳片を粉砕して焼結磁石を製造したところ、通
常鋳型の場合は焼結磁石の磁気特性が大きくばらつき安
定した特性が得られなかった。とくにFe相が多い場合
は焼結体の保磁力はほとんど零に近い、水冷銅鋳型によ
る鋳片からは比較的安定した磁気特性が得られたが、保
磁力のばらつきがかなり大きいことがわかった。これら
の検討の結果、鋳片の凝固速度が大きいほど焼結磁石の
磁気特性は安定することが明らかになった。
When sintered magnets were produced by crushing these slabs, the magnetic properties of the sintered magnets varied widely and stable properties could not be obtained in the case of ordinary molds. In particular, when the Fe phase is large, the coercive force of the sintered body is almost zero, and although relatively stable magnetic properties were obtained from slabs made with water-cooled copper molds, it was found that the variation in coercive force was quite large. . As a result of these studies, it became clear that the higher the solidification rate of the slab, the more stable the magnetic properties of the sintered magnet.

しかしながら水冷銅鋳型のような凝固速度の大きい鋳片
の場合にも問題点が多い。鋳型に接した部分の組織が微
細化されることが明らかになったが、主相のT、相は幅
が5μ−以下、Ndrich相およびBr1ch相はそ
の幅が1μ−以下であり、この鋳片を粉砕して焼結磁石
を製造すると結晶粒の大きなものと小さなものとが混合
した状態になって磁性のばらつきをもたらすことが明ら
かになった。
However, there are many problems in the case of slabs that solidify at a high rate, such as water-cooled copper molds. It became clear that the structure of the part in contact with the mold was refined; It has become clear that when sintered magnets are manufactured by crushing pieces, a mixture of large and small crystal grains results, resulting in variations in magnetism.

そこで、磁気特性が安定してかつ磁石の強さを表わす最
大エネルギー積(BH)i+axの高いものが得られる
焼結磁石の冶金的組織を鋭意検討した結果、主相のT1
相の結晶粒径が3から30μm 、Ndrich相およ
びBr1ch相の粒径は1から20μ場でかっNdr 
ich相とBr1ch相が主相のT、相をとりかこんだ
ような組織かえられ、Fe相の割合が10%以下、望ま
しくは5%以下であることを明らかにした。
Therefore, as a result of intensive study on the metallurgical structure of sintered magnets that can obtain stable magnetic properties and a high maximum energy product (BH) i + ax, which represents the strength of the magnet, we found that the main phase T1
The grain size of the phase is 3 to 30 μm, and the grain size of the Ndrich phase and Br1ch phase is 1 to 20 μm.
It was revealed that the structure was changed so that the ich phase and the Br1ch phase surrounded the main T phase, and the proportion of the Fe phase was 10% or less, preferably 5% or less.

このような組織を得るためには粉体の出発原料である鋳
片における組織のバランスが重要である。
In order to obtain such a structure, it is important to balance the structure of the slab, which is the starting material for the powder.

そのためには鋳片を熱処理することが極めて有効である
ことをみいだした。たとえば、水冷銅鋳型で製造した鋳
片を950℃から1120℃の温度範囲でアルゴン雰囲
気ないし真空中で1o分から10時間加熱すると鋳片の
組織として主相のT1相は10〜100.17−になり
、Ndrich相とBr1ch相の幅は3から30μ欄
になり鋳片全体の組織は均一化される。また通常の鋳型
で製造した鋳片においても950℃から1120℃の熱
処理によりMi織が均一化されてNdrich相やBr
1ch相の局在がなくなり、同時に有害なFe相がなく
なることがわかった。このような熱処理を行なった鋳片
から粉体をつくって焼結磁石を製造すると磁気特性が極
めて高い値で安定しとくに保磁力が安定することがわが
うた。熱処理温度を950℃から1120℃に限定した
理由は950℃以下では鋳片のMi織を構成する元素の
拡散が遅(て目的とする組織の調整ができないこと、ま
た1120℃以上では組織を構成する組成が変化してし
まい同様に組織調整が困難になるからである。熱処理時
間としては950℃から1120℃の範囲内で低温はど
長く、高温はど短時間で安定した組織調整が行なえる。
For this purpose, we have found that heat treating the slab is extremely effective. For example, when a slab manufactured using a water-cooled copper mold is heated in an argon atmosphere or vacuum for 10 minutes to 10 hours in the temperature range of 950°C to 1120°C, the main phase T1 phase changes from 10 to 100.17- as the structure of the slab. The width of the Ndrich phase and the Br1ch phase ranges from 3 to 30μ, and the structure of the entire slab is made uniform. In addition, even in slabs manufactured using normal molds, the Mi texture is made uniform by heat treatment at 950°C to 1120°C, resulting in Ndrich phase and Br.
It was found that the localization of the 1ch phase disappeared, and at the same time, the harmful Fe phase disappeared. It has been found that when sintered magnets are manufactured by making powder from cast slabs that have undergone such heat treatment, the magnetic properties are extremely high and stable, especially the coercive force. The reason for limiting the heat treatment temperature to 950°C to 1120°C is that below 950°C, the diffusion of the elements that make up the Mi weave of the slab is slow (and the desired structure cannot be adjusted), and above 1120°C, the elements that make up the Mi weave of the slab cannot be adjusted. This is because the composition changes, making it difficult to adjust the structure in the same way.The heat treatment time is within the range of 950°C to 1120°C, and stable structure adjustment can be achieved in a low temperature for a long time and a high temperature for a short time. .

希土類元素を含む合金鋳片は非常に酸化されやすいため
、アルゴン、ヘリウムなどの不活性雰囲気中か真空中で
熱処理する必要がある。さらに熱処理後急速冷却を行な
うと後工程の粉砕が容易になり粉体製造が効果的になり
酸化防止にも役立つ。
Alloy slabs containing rare earth elements are highly susceptible to oxidation, so they must be heat-treated in an inert atmosphere such as argon or helium, or in a vacuum. Furthermore, rapid cooling after heat treatment facilitates pulverization in the subsequent process, makes powder production more effective, and helps prevent oxidation.

さらに成分系によってはFe相が熱処理により一旦減少
しても冷却が遅いと再び現われるなどの現象がおこるが
、急速冷却はそれを阻止するためこの点からも有利であ
る。冷却はアルゴンガスなどのガス冷却でよ(、さらに
水焼入れなどの急冷が望ましい、このような熱処理を行
なうことによって磁気特性の安定した高性能永久磁石の
製造が可能になった。
Furthermore, depending on the component system, even if the Fe phase is once reduced by heat treatment, it may reappear if the cooling is slow, but rapid cooling is advantageous in that it prevents this. Cooling can be done by gas cooling such as argon gas (and preferably rapid cooling such as water quenching).By performing such heat treatment, it has become possible to manufacture high-performance permanent magnets with stable magnetic properties.

上述の説明では希土類・ボロン・鉄系を主体とした成分
系において主に希土類としてNdを選んで説明したが、
Ndlの一部を他の希土類元素oy、 Tb。
In the above explanation, Nd was mainly selected as the rare earth element in the component system mainly composed of rare earth elements, boron, and iron.
A part of Ndl is replaced with other rare earth elements oy, Tb.

で代替した場合やCo、Aj!、Siなどの元素を加え
た場合も鋳片の熱処理により同じ効果が現われる。
If substituted with Co, Aj! The same effect can be obtained by heat treating the slab when elements such as , Si, etc. are added.

またCo、Aj!、Siの添加により保磁力が増大し、
磁石としての温度特性が向上する効果もある。
Co, Aj again! , the coercive force increases with the addition of Si,
It also has the effect of improving the temperature characteristics of a magnet.

ここで本発明においてR,X、Bの範囲を特定した理由
について説明する。
Here, the reason why the ranges of R, X, and B are specified in the present invention will be explained.

R(Nd、 Dy、 Tb)は8at%以下では磁性を
発生するための化合物(Nd2Fe、B、主相)が形成
されず、また30atχを超えると酸化し燃焼しゃすい
、また高価である等の理由から8〜30atχとした。
If R (Nd, Dy, Tb) is less than 8 at%, a compound (Nd2Fe, B, main phase) for generating magnetism will not be formed, and if it exceeds 30 at%, it will oxidize and burn easily, and it is expensive. For this reason, it was set to 8 to 30 atχ.

X (Co、 St 、 Al)は保持力を上げるため
に添加されるもので、0.1atχ未満では効果がなく
、また20atχを超えるとFe分が少くなり残留磁気
Brが減少するので0.1〜20atχとした。
X (Co, St, Al) is added to increase the coercive force, and if it is less than 0.1 atχ, it has no effect, and if it exceeds 20 atχ, the Fe content will decrease and the residual magnetism Br will decrease, so 0.1 ~20atχ.

BはFe、 Rとの関係で範囲が定まるものであるが保
持力をI KOe以上にするためには20at%以上が
必要であり、高磁束密度にするためには28%以下であ
ることが必要であるので2〜28atχとした。
The range of B is determined by the relationship with Fe and R, but in order to make the coercive force more than IKOe, it needs to be more than 20 at%, and in order to make it have a high magnetic flux density, it needs to be less than 28%. Since it is necessary, it was set to 2 to 28 atχ.

(実施例) 実施例1 希土類・ボロン・鉄を主成分とする5鶴厚の鋳片を、原
料を高周波溶解炉によって溶解して製造した。この鋳片
をアルゴン雰囲気中で950℃から1100℃で熱処理
し水焼入れした。この鋳片をジぢ−クラッシャで粗粉砕
した後ボールミルで平均5μ翔の粉末にした。粉末は磁
場プレスによって圧力2t/aj、磁場15KGで成形
し、アルゴン中で1080℃で1時間の焼結後、650
℃で1時間の焼鈍を行なった。焼結体の磁気特性として
残留磁束密度Br、保磁力iHc 、最大エネルギー積
(B)りs+axを測定した。その値を第1表に示す。
(Examples) Example 1 A cast slab with a thickness of 5 mm containing rare earth elements, boron, and iron as main components was manufactured by melting raw materials in a high-frequency melting furnace. This slab was heat treated at 950°C to 1100°C in an argon atmosphere and water quenched. This slab was coarsely crushed using a di-crusher and then ground into powder having an average particle size of 5 μm using a ball mill. The powder was compacted by a magnetic field press at a pressure of 2t/aj and a magnetic field of 15KG, and after sintering in argon at 1080℃ for 1 hour,
Annealing was performed at ℃ for 1 hour. The residual magnetic flux density Br, coercive force iHc, and maximum energy product (B) s+ax were measured as the magnetic properties of the sintered body. The values are shown in Table 1.

表には比較のために熱処理を行なわなかった場合につい
ても記した。
For comparison, the table also shows the case where no heat treatment was performed.

(発明の効果) 本発明によれば、焼結永久磁石として高い磁気特性をも
ち、しかも安定した製品の製造に供しうる永久磁石用材
料を掻めて節単に製造することが出来るので、本発明は
産業土掻めで有用である。
(Effects of the Invention) According to the present invention, it is possible to easily produce a material for a permanent magnet that has high magnetic properties as a sintered permanent magnet and can be used for producing stable products. is useful in industrial soil plowing.

Claims (4)

【特許請求の範囲】[Claims] (1)Fe_1_0_0_−_a_−_cR_aB_c
(RはNd、Dy、Tbの少なくとも1種、aは8〜3
0原子パーセント、cは2〜28原子パーセント)の組
成からなる原料を溶解し、鋳型に鋳造して鋳片を製造し
た後、該鋳片を950℃乃至1120℃の温度範囲で不
活性雰囲気あるいは真空中で10分乃至10時間の熱処
理を行うことを特徴とする永久磁石用材料の製造方法
(1) Fe_1_0_0_-_a_-_cR_aB_c
(R is at least one of Nd, Dy, Tb, a is 8-3
0 atomic percent and c is 2 to 28 atomic percent) is melted and cast into a mold to produce a slab. A method for producing a permanent magnet material, which comprises performing heat treatment in a vacuum for 10 minutes to 10 hours.
(2)Fe_1_0_0_−_a_−_b_−_cR_
aX_bB_c(RはNd、Dy、Tbの少なくとも1
種、XはCo、Si、Alの少なくとも1種、aは8〜
30原子パーセント、bは0.1〜20原子パーセント
、cは2〜28原子パーセント)の組成からなる原料を
溶解し、鋳型に鋳造して鋳片を製造した後、該鋳片を9
50℃乃至1120℃の温度範囲で不活性雰囲気あるい
は真空中で10分乃至10時間の熱処理を行うことを特
徴とする永久磁石用材料の製造方法
(2) Fe_1_0_0_-_a_-_b_-_cR_
aX_bB_c (R is at least one of Nd, Dy, and Tb
species, X is at least one of Co, Si, Al, a is 8-8
30 atomic percent, b is 0.1 to 20 atomic percent, and c is 2 to 28 atomic percent) is melted and cast into a mold to produce a slab.
A method for producing a permanent magnet material, characterized by heat treatment in an inert atmosphere or vacuum at a temperature range of 50°C to 1120°C for 10 minutes to 10 hours.
(3)Fe_1_0_0_−_a_−_cR_aB_c
(RはNd、Dy、Tbの少なくとも1種、aは8〜3
0原子パーセント、cは2〜28原子パーセント)の組
成からなる原料を溶解し、鋳型に鋳造して鋳片を製造し
た後、該鋳片を950℃乃至1120℃の温度範囲で不
活性雰囲気あるいは真空中で10分乃至10時間の熱処
理を行った後急速冷却することを特徴とする永久磁石用
材料の製造方法
(3) Fe_1_0_0_-_a_-_cR_aB_c
(R is at least one of Nd, Dy, Tb, a is 8-3
0 atomic percent and c is 2 to 28 atomic percent) is melted and cast into a mold to produce a slab. A method for producing a permanent magnet material, characterized by heat treatment in vacuum for 10 minutes to 10 hours and then rapid cooling.
(4)Fe_1_0_0_−_a_−_b_−_cR_
aX_bB_c(RはNd、Dy、Tbの少なくとも1
種、XはCo、Si、Alの少なくとも1種、aは8〜
30原子パーセント、bは0.1〜20原子パーセント
、cは2〜28原子パーセント)の組成からなる原料を
溶解し、鋳型に鋳造して鋳片を製造した後、該鋳片を9
50℃乃至1120℃の温度範囲で不活性雰囲気あるい
は真空中で10分乃至10時間の熱処理を行った後急速
冷却することを特徴とする永久磁石用材料の製造方法
(4) Fe_1_0_0_-_a_-_b_-_cR_
aX_bB_c (R is at least one of Nd, Dy, and Tb
species, X is at least one of Co, Si, Al, a is 8-8
30 atomic percent, b is 0.1 to 20 atomic percent, and c is 2 to 28 atomic percent) is melted and cast into a mold to produce a slab.
A method for producing a material for a permanent magnet, characterized by heat treatment in an inert atmosphere or vacuum for 10 minutes to 10 hours at a temperature range of 50°C to 1120°C, followed by rapid cooling.
JP16454786A 1986-07-15 1986-07-15 Production of material for permanent magnet Pending JPS6320411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16454786A JPS6320411A (en) 1986-07-15 1986-07-15 Production of material for permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16454786A JPS6320411A (en) 1986-07-15 1986-07-15 Production of material for permanent magnet

Publications (1)

Publication Number Publication Date
JPS6320411A true JPS6320411A (en) 1988-01-28

Family

ID=15795228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16454786A Pending JPS6320411A (en) 1986-07-15 1986-07-15 Production of material for permanent magnet

Country Status (1)

Country Link
JP (1) JPS6320411A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9654104B2 (en) 2007-07-17 2017-05-16 Apple Inc. Resistive force sensor with capacitive discrimination
US9977518B2 (en) 2001-10-22 2018-05-22 Apple Inc. Scrolling based on rotational movement
US10139870B2 (en) 2006-07-06 2018-11-27 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
US10180732B2 (en) 2006-10-11 2019-01-15 Apple Inc. Gimballed scroll wheel
US10353565B2 (en) 2002-02-25 2019-07-16 Apple Inc. Input apparatus and button arrangement for handheld device
US10866718B2 (en) 2007-09-04 2020-12-15 Apple Inc. Scrolling techniques for user interfaces

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9977518B2 (en) 2001-10-22 2018-05-22 Apple Inc. Scrolling based on rotational movement
US10353565B2 (en) 2002-02-25 2019-07-16 Apple Inc. Input apparatus and button arrangement for handheld device
US10139870B2 (en) 2006-07-06 2018-11-27 Apple Inc. Capacitance sensing electrode with integrated I/O mechanism
US10180732B2 (en) 2006-10-11 2019-01-15 Apple Inc. Gimballed scroll wheel
US9654104B2 (en) 2007-07-17 2017-05-16 Apple Inc. Resistive force sensor with capacitive discrimination
US10866718B2 (en) 2007-09-04 2020-12-15 Apple Inc. Scrolling techniques for user interfaces

Similar Documents

Publication Publication Date Title
JPS62291904A (en) Mafufacture of permanent magnet
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPS6320411A (en) Production of material for permanent magnet
JPS63317643A (en) Production of rare earth-iron permanent magnetic material
JPS62177101A (en) Production of permanent magnet material
JPH08181009A (en) Permanent magnet and its manufacturing method
JPS6348805A (en) Manufacture of rare-earth magnet
JPS61295342A (en) Manufacture of permanent magnet alloy
JPS6233402A (en) Manufacture of rare-earth magnet
JP2587617B2 (en) Manufacturing method of rare earth permanent magnet
JPH0568841B2 (en)
JPS6037602B2 (en) Permanent magnet material and its manufacturing method
JP3227613B2 (en) Manufacturing method of powder for rare earth sintered magnet
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JPH03162546A (en) Manufacture of permanent magnet alloy having excellent oxidation resistance
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPH01175207A (en) Manufacture of permanent magnet
JPS63216307A (en) Alloy powder for magnet
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JPS62208609A (en) Resin-bonded permanent magnet and manufacture of its magnetic powder
JPS63287005A (en) Permanent magnet and manufacture thereof
JPH08148317A (en) Production of rare earth magnet
JPS63285909A (en) Permanent magnet and manufacture thereof
JPS63287008A (en) Resin bonded magnet and manufacture thereof
JPS6316603A (en) Manufacture of sintered rare-earth magnet