JPS63317643A - Production of rare earth-iron permanent magnetic material - Google Patents

Production of rare earth-iron permanent magnetic material

Info

Publication number
JPS63317643A
JPS63317643A JP62151453A JP15145387A JPS63317643A JP S63317643 A JPS63317643 A JP S63317643A JP 62151453 A JP62151453 A JP 62151453A JP 15145387 A JP15145387 A JP 15145387A JP S63317643 A JPS63317643 A JP S63317643A
Authority
JP
Japan
Prior art keywords
rare earth
grain size
thin plate
cast
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62151453A
Other languages
Japanese (ja)
Other versions
JP2665590B2 (en
Inventor
Hiroaki Sakamoto
広明 坂本
Fumio Matsumoto
文夫 松本
Kenichi Miyazawa
憲一 宮沢
Toshiaki Mizoguchi
利明 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62151453A priority Critical patent/JP2665590B2/en
Priority to EP88309097A priority patent/EP0310416A3/en
Publication of JPS63317643A publication Critical patent/JPS63317643A/en
Application granted granted Critical
Publication of JP2665590B2 publication Critical patent/JP2665590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B19/00Indicating the time by visual means
    • G04B19/24Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars
    • G04B19/243Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars characterised by the shape of the date indicator
    • G04B19/247Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars characterised by the shape of the date indicator disc-shaped
    • G04B19/25Devices for setting the date indicators manually
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B27/00Mechanical devices for setting the time indicating means
    • G04B27/02Mechanical devices for setting the time indicating means by making use of the winding means
    • G04B27/04Mechanical devices for setting the time indicating means by making use of the winding means with clutch wheel

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Electromechanical Clocks (AREA)
  • Electric Clocks (AREA)

Abstract

PURPOSE:To obtain the titled material which shows high magnetic characteristics by grinding a thin plate obtd. by quench casting an Fe alloy molten metal contg. specific amounts of Y contg. one or two kinds of Nd and Pr, rare earth elements and B, forming said late and sintering it. CONSTITUTION:The molten metal of the Fe alloy (e.g. Nd12.3Fe79.7B8) expressed by general formula is quench cast to the thick plate having 0.05-3mm more preferably 0.5-2.5mm plate thickness, 3-20mum more preferably 10-15mum crystal grain size and the homogenizing structure by a double rolling method. Said thin plate is successively ground and the desired rare earth-iron permanent magnetic material is obtd. by a powder metallurgy method, i.e., by executing pressing, sintering and heat treatment thereto. The capacity, particularly the coercive force of a permanent magnet can drastically be increased by using said permanent magnetic material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、R(ただし、RはNdまたはPrの少なくと
も1種を含むYおよび希土類元素) 、Fe、 Bを主
成分とする焼結磁石材料の製造方法において、特に鋳片
の組織を改善し、高い磁気特性が得られるR−Fe−B
系焼結磁石材料の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a sintered magnet whose main components are R (where R is Y containing at least one of Nd or Pr and a rare earth element), Fe, and B. In the material manufacturing method, R-Fe-B, which improves the structure of slabs and provides high magnetic properties, is used.
The present invention relates to a method for producing a sintered magnet material.

(従来の技術) 永久磁石材料は一般の家電製品から大型コンピューター
の周辺端末機まで幅広い分野で使われる極めて重要な電
気・電子材料の一つである。近年、電気・電子機器の小
型化、軽量化、高効率化に伴い永久磁石はますます高性
能化が要求されるようになった。
(Prior Art) Permanent magnetic materials are one of the extremely important electrical and electronic materials used in a wide range of fields, from general home appliances to peripheral terminals for large computers. In recent years, as electrical and electronic equipment becomes smaller, lighter, and more efficient, permanent magnets are required to have even higher performance.

最近、R−Fe−B系合金が新しい高性能永久磁石とし
て注目されている。その成分はFe、。。−a−1kR
11BI+ +(Fe+−xCox) 100−m−b
RaBb(ただし、X≦20at%であり、RはNdま
たはPrの少なくとも1種を含むYおよび希土類元素か
ら成る成分、a、bは含有率でそれぞれa : l O
〜20at%、b:4〜10at%)〔特公昭61−3
4242号公報、IEEE Trans。
Recently, R-Fe-B alloys have been attracting attention as new high-performance permanent magnets. Its component is Fe. . -a-1kR
11BI+ +(Fe+-xCox) 100-m-b
RaBb (where,
~20 at%, b: 4~10 at%)
No. 4242, IEEE Trans.

Magn、 MAG−20、1584(1984) 〕
が知られている。
Magn, MAG-20, 1584 (1984)]
It has been known.

その製造方法としては大別して粉末冶金法とメルトスピ
ン法の二つが知られている。粉末冶金法は溶湯を鋳型に
鋳込んだインゴットを出発素材とし、そのインゴットを
スタンプミル、ショークラッシャーなどで粗粉砕し、さ
らにディスクミル、ボールミル、アトライターミル、ジ
ェットミルなどを用いて平均粒径が3〜5μ債の粉末に
微粉砕した後、磁場中プレスによって成形体を作成し、
それを1000〜1150℃の温度範囲で焼結した後、
400〜900℃の温度範囲で時効する永久磁石の製造
方法である。
There are two known manufacturing methods: powder metallurgy and melt spin. In the powder metallurgy method, the starting material is an ingot made by casting molten metal into a mold, and the ingot is coarsely crushed using a stamp mill, show crusher, etc., and then crushed to an average particle size using a disc mill, ball mill, attritor mill, jet mill, etc. After finely pulverizing the powder into a powder of 3 to 5 μm, a molded body is created by pressing in a magnetic field,
After sintering it at a temperature range of 1000-1150℃,
This is a method for producing a permanent magnet that is aged in a temperature range of 400 to 900°C.

本系焼結磁石は、磁気特性、特に、残留磁束密度を向上
させるために、NdあるいはBの含有率を減少させる必
要がある。ただし、少なくとも化学量論的にNdzFe
+Jを形成し、かつ、過剰のFeが存在しないだけのN
dあるいはBは必要である。しかし、NdあるいはBを
減少させていくと、Nd≦15at%あるいはB≦8a
t%の範囲においてインゴットの冷却過程で初晶として
γFeの析出が起こり、それが冷却後αFeとしてイン
ゴット中に偏析する。
In order to improve the magnetic properties, especially the residual magnetic flux density, it is necessary to reduce the content of Nd or B in the sintered magnet of this system. However, at least stoichiometrically, NdzFe
N that forms +J and does not contain excess Fe.
d or B is necessary. However, if Nd or B is decreased, Nd≦15at% or B≦8a
In the range of t%, γFe precipitates as primary crystals during the cooling process of the ingot, and after cooling, it segregates in the ingot as αFe.

この残留αFeは本系焼結磁石の磁気特性を低下させる
相である。そこで、インゴットを1000〜1150℃
の範囲で均質化焼き鈍しすることによって、残留αFe
を減少させる方法が考えられる。しかし、この焼き鈍し
によって主相(Nd、Fe+J)が粗大化し磁気特性を
低下させる原因となる。金属組織学的にはインゴットの
冷却速度を大きくし、γFeの生成温度範囲を急速に通
過させれば残留αFeの割合を減少させることが可能で
あるが、現在、採用されている水冷銅鋳型(特公昭61
−34242号公報)へ鋳込む程度の冷却速度では不十
分であり残留αFeは抑制されず結晶粒が粗大化し不均
質なインゴットとなる。Nd>15at%あるいはB>
8at%の範囲においては、残留αFeはほとんど存在
しないが、水冷銅鋳型へ鋳込む方法では結晶粒が粗大化
し偏析が多く磁気特性を低下させる原因となる。
This residual αFe is a phase that deteriorates the magnetic properties of the sintered magnet of this system. Therefore, the ingot was heated to 1000-1150℃.
By homogenizing annealing in the range of
There are ways to reduce this. However, this annealing causes the main phase (Nd, Fe+J) to become coarse, which causes deterioration of the magnetic properties. Metallographically, it is possible to reduce the proportion of residual αFe by increasing the cooling rate of the ingot and allowing it to rapidly pass through the γFe formation temperature range, but the currently used water-cooled copper mold ( Special Public Service 1986
The cooling rate at which the ingot is cast into the ingot (No. 34242) is insufficient, and the residual αFe is not suppressed, resulting in coarse grains and a non-uniform ingot. Nd>15at% or B>
In the range of 8 at%, there is almost no residual αFe, but in the method of casting into a water-cooled copper mold, the crystal grains become coarse and there is a lot of segregation, which causes a decrease in magnetic properties.

一方、溶湯を急冷し直接薄帯にする方法(特開昭61−
15943号公報、特開昭61−15944号公報)が
発明されているが、これらは薄帯の状態で永久磁石とし
て使用することが特徴であり、粉末冶金法を用いて製造
する素材にはなり得ない。
On the other hand, there is a method of rapidly cooling molten metal and directly forming it into a thin ribbon (Japanese Patent Application Laid-open No. 1983-
15943, Japanese Patent Application Laid-Open No. 15944/1983), but these are characterized by being used as permanent magnets in the form of thin strips, and cannot be used as materials manufactured using powder metallurgy. I don't get it.

(発明が解決しようとする問題点) 上述の如く、従来の知見によれば、粉末冶金法を用いて
製造する焼結磁石用インゴットを水冷銅鋳型を用いて製
造する場合、結晶粒の粗大化、αFeの残留1、偏析と
言う問題があった。
(Problems to be Solved by the Invention) As mentioned above, according to conventional knowledge, when a sintered magnet ingot manufactured using a powder metallurgy method is manufactured using a water-cooled copper mold, coarsening of crystal grains occurs. There were problems such as residual αFe and segregation.

本発明は、冷却速度が制御された薄板状に急冷鋳造する
ことによって上記問題点を解決し、磁気特性を向上させ
た粉末冶金法用鋳片を提供しようとするものである。
The present invention aims to solve the above-mentioned problems by rapid cooling casting into a thin plate shape with a controlled cooling rate, and to provide a slab for powder metallurgy with improved magnetic properties.

(問題点を解決するための手段) すなわち、上記問題点を解決するために本発明では、F
eloo−m−bRmBb 、  (Fe+−xco 
x)100−m−bRmBb(ただし、X≦20at%
であり、RはNdまたはPrの少なくとも1種を含むY
および希土類元素から成る成分、a、bは含有率でそれ
ぞれa:10〜20at%、b:4〜1Oat%)組成
の合金を溶湯から双ロール法で板厚0.05〜3 u+
の薄板に10”〜104℃/Sの急冷速度で急冷鋳造す
ることによって結晶粒径が3〜20μmの均質な組織の
薄片を得ることを特徴とする。
(Means for solving the problem) That is, in order to solve the above problem, in the present invention, F
eloo-m-bRmBb, (Fe+-xco
x) 100-m-bRmBb (however, X≦20at%
and R is Y containing at least one of Nd or Pr.
and rare earth elements, a and b are content rates of a: 10 to 20 at% and b: 4 to 1 Oat%, respectively) from molten metal to a plate thickness of 0.05 to 3 u+ by twin roll method.
It is characterized in that a thin piece with a homogeneous structure with a crystal grain size of 3 to 20 μm is obtained by rapid cooling casting into a thin plate at a rapid cooling rate of 10” to 104° C./S.

本発明で用いる合金の成分組成はFeをベースとし、R
は本発明の高性能磁石を得るために不可欠の希土類元素
であり、通常一種をもって足りるが実用上は二種以上の
混合物を用いることができる。
The composition of the alloy used in the present invention is based on Fe, and R
is a rare earth element essential for obtaining the high-performance magnet of the present invention, and usually one kind is sufficient, but in practice, a mixture of two or more kinds can be used.

本発明において主としてNdまたはPrの少なくとも1
種を用いるのは、その磁気特性が特に優れているからで
ある。しかし、Rが10at%に満たないと充分な保持
力が得られず、一方、20at%を超えて添加すると残
留磁束密度が低下し磁気特性が低下する。以上の理由か
らRを10〜20at%の範囲とした。
In the present invention, at least one of mainly Nd or Pr
Seeds are used because they have particularly excellent magnetic properties. However, if R is less than 10 at%, sufficient coercive force cannot be obtained, while if it is added in excess of 20 at%, the residual magnetic flux density decreases and the magnetic properties deteriorate. For the above reasons, R was set in the range of 10 to 20 at%.

Bは主相であるNdzFelJ相の生成を安定させるが
4at%未満ではその生成が不安定で、10at%を超
えると残留磁束密度が低下するので4〜10at%の範
囲とした。
B stabilizes the formation of the NdzFelJ phase, which is the main phase, but if it is less than 4 at%, the formation is unstable, and if it exceeds 10 at%, the residual magnetic flux density decreases, so it was set in the range of 4 to 10 at%.

Coはキュリ一温度を上昇させ、耐温度特性を向上させ
るのでFeに対して20at%まで置換させてもよいが
、それ以上置換すると磁気特性が低下する。
Co increases the Curie temperature and improves the temperature resistance characteristics, so it may be substituted up to 20 at % with respect to Fe, but if it is substituted more than that, the magnetic properties will deteriorate.

次に本発明のポイントである上記成分を有する合金系の
溶湯を急冷する方法について説明する。
Next, a method for rapidly cooling a molten alloy having the above-mentioned components, which is the key point of the present invention, will be explained.

本発明において急冷する方法としては、双ロール法を用
いることが望ましく、実用的である。
In the present invention, it is desirable and practical to use a twin roll method as a method for rapid cooling.

次に板厚の限定理由について述べる。板厚が0、05 
mmより薄くなると急冷効果が過大になり結晶粒径が3
μmより小さくなる確率が高くなり磁気特性が低下する
ので板厚を0.05n以上とした。
Next, we will discuss the reasons for limiting the plate thickness. Plate thickness is 0,05
If it becomes thinner than 3 mm, the quenching effect becomes excessive and the crystal grain size becomes 3 mm.
The plate thickness was set to 0.05 nm or more because the probability of the thickness becoming smaller than μm increases and the magnetic properties deteriorate.

逆に、板厚が3 xmより厚くなると冷却速度が遅くな
りαFeが残留し、結晶粒径が20μmを越え磁気特性
が低下するので板厚を3龍以下とした。すなわち、結晶
粒径が3μmより小さくなると、それを単結晶まで粉砕
する場合(磁場中プレスによる磁場配向度を高めるため
鋳片を結晶粒径以下の単結晶サイズまで粉砕する必要が
ある)、酸化が非常に大きくなるため磁気特性が低下す
る。逆に結晶粒径が20μmより大きくなると結晶の粒
径分布が不均一となり、それらを粉砕した後の粒子の粒
径分布も不均一となり、磁気特性が低下する。
On the other hand, if the plate thickness is thicker than 3 x m, the cooling rate will be slow and αFe will remain, and the crystal grain size will exceed 20 μm and the magnetic properties will deteriorate, so the plate thickness was set to 3 x m or less. In other words, when the crystal grain size becomes smaller than 3 μm, when grinding it to a single crystal (in order to increase the degree of magnetic field orientation by pressing in a magnetic field, it is necessary to grind the slab to a single crystal size smaller than the crystal grain size), oxidation becomes very large and the magnetic properties deteriorate. On the other hand, if the crystal grain size is larger than 20 μm, the grain size distribution of the crystals becomes non-uniform, and the particle size distribution of the particles after pulverizing them also becomes non-uniform, resulting in a decrease in magnetic properties.

従い、結晶粒径を3〜20μ…の範囲とした。板厚を0
.5から2.5 m負として冷却速度を制御し、結晶粒
径を10〜15μmの均質な組織にすると、微粉砕後の
粉末粒子の粒径分布が狭くなり磁気特性がさらに向上す
る。
Therefore, the crystal grain size was set in the range of 3 to 20 μm. Set the plate thickness to 0
.. If the cooling rate is controlled to a negative value of 5 to 2.5 m to obtain a homogeneous structure with a crystal grain size of 10 to 15 μm, the particle size distribution of the powder particles after pulverization becomes narrower, and the magnetic properties are further improved.

本発明により製造した板厚0.05〜3鰭の鋳片を粉砕
し、プレス、焼結、熱処理を行なって製造した永久磁石
の保持力は、水冷銅鋳型に鋳造したインゴットを用いて
同一方法で製造した永久磁石の保持力に比べて顕著に増
加する。これは本発明によって結晶粒径が微細化され、
特に残留αFeが抑制されて鋳片組織が均質化されたた
めであると考えられる。
The holding power of the permanent magnet manufactured by crushing the slab of plate thickness 0.05 to 3 fins manufactured according to the present invention, pressing, sintering, and heat treatment is the same as that of the ingot cast in a water-cooled copper mold. The holding force is significantly increased compared to that of permanent magnets manufactured by This is because the crystal grain size is made finer by the present invention.
This is thought to be due to the fact that residual αFe was particularly suppressed and the structure of the slab was homogenized.

以下、実施例を示す。Examples are shown below.

(実施例1) 出発原料として、純度99.9wt%の電解鉄、99.
9wt%のNd、および、99.9wt%のBをNd、
□、 3FE179.7B8になるように所定量配合し
て高周波誘導加熱により溶解し、直径300mmの銅製
ロール2本を併設した双ロール式薄板製造装置を用い板
厚1.1 **の薄板鋳造材を得た。ただし、すべてA
r雰囲気鋳で行った。この鋳片を48メソシユ以下まで
粗粉砕した。この段階で、粗粉砕粉に本系磁石の焼結性
を高めるために、予め水冷銅鋳型に鋳込んで作成したN
d−Fe−8三元共晶成分(Nd69.5Fezs、 
SB6.7)の48メソシユ以下の粗粉砕粉を4.8w
t%添加し充分混合した。さらに、この混合粉をジェッ
トミルによって微粉砕し平均粒径3.5μmの合金粉末
を得た。この合金粉末を16kOeの磁界中で配向させ
1.5 ton/−の圧力で加圧し幅10龍×高さl 
Q m X長さ20龍の成形体を得た。この成形体を1
080℃xlh、真空中で焼結し、続いて600℃xl
hAr中で時効し永久磁石を得た。本発明による双ロー
ル鋳造鋳片の組織写真を第1図に、および磁気特性値を
第1表(a)にそれぞれ示した。第1図において鋳片組
織中に残留αFeは認められず、結晶粒径が3〜20μ
mの範囲にある均質な組織となっている。
(Example 1) As a starting material, electrolytic iron with a purity of 99.9 wt%, 99.9 wt%.
9wt% Nd and 99.9wt% B Nd,
□, A predetermined amount of 3FE179.7B8 was mixed and melted by high-frequency induction heating, and a thin plate casting material with a plate thickness of 1.1 ** was produced using a twin-roll thin plate manufacturing equipment equipped with two copper rolls with a diameter of 300 mm. I got it. However, all A
The casting was carried out in an r atmosphere. This cast piece was coarsely ground to 48 mesos. or less. At this stage, in order to improve the sinterability of this magnet, the coarsely ground powder was pre-cast in a water-cooled copper mold.
d-Fe-8 ternary eutectic component (Nd69.5Fezs,
4.8w of coarsely ground powder of SB6.7) of 48 mesoyu or less
t% was added and thoroughly mixed. Further, this mixed powder was finely pulverized using a jet mill to obtain an alloy powder with an average particle size of 3.5 μm. This alloy powder was oriented in a magnetic field of 16 kOe and pressurized with a pressure of 1.5 tons/- to form a powder with a width of 10 mm x height of 1 mm.
A molded body having a length of Q m and a length of 20 dragons was obtained. This molded body is 1
Sintering in vacuum at 080℃xlh, followed by 600℃xl
A permanent magnet was obtained by aging in hAr. A photograph of the structure of the twin-roll cast slab according to the present invention is shown in FIG. 1, and magnetic property values are shown in Table 1 (a). In Figure 1, no residual αFe was observed in the structure of the slab, and the grain size was 3 to 20μ.
It has a homogeneous structure within the range of m.

保持力(iHc )  11.0 koe 、残留磁束
密度(Br)12.8kG、最大エネルギー積(BH)
□、37.0MGOeの磁気特性値が得られた。
Holding force (iHc) 11.0 koe, residual magnetic flux density (Br) 12.8kG, maximum energy product (BH)
A magnetic property value of □, 37.0 MGOe was obtained.

次に、比較のために同一成分の合金を水冷銅鋳型へ鋳造
し、以下同一方法で永久磁石を得た。インゴットの組織
写真を第2図に、および磁気特性値を第1表(b)にそ
れぞれ示した。第2図において、水冷銅鋳型に接してい
ない領域で残留αFeが多く認められ、結晶粒径が50
μmを超えた不均質な組織となっている。保磁カフ、3
kOe、残留磁束密度12.8kG、最大エネルギー積
36.0MGOeの磁気特性値が得られた。
Next, for comparison, an alloy with the same composition was cast into a water-cooled copper mold, and a permanent magnet was obtained by the same method. A photograph of the structure of the ingot is shown in FIG. 2, and the magnetic property values are shown in Table 1 (b). In Figure 2, a large amount of residual αFe is observed in the area not in contact with the water-cooled copper mold, and the crystal grain size is 50%.
It has a heterogeneous structure exceeding μm in size. Retention cuff, 3
Magnetic property values of kOe, residual magnetic flux density of 12.8 kG, and maximum energy product of 36.0 MGOe were obtained.

第    1    表 双ロール鋳造材と比較材を比較すると双ロール鋳造材を
用いた方が保磁力が顕著に増加した。
Table 1 Comparing the twin-roll cast material and the comparative material, the coercive force was significantly increased when the twin-roll cast material was used.

(実施例2) Nd I 5.5FeT&、 :+fla、 2の双ロ
ール鋳造材を実施例1と同一の方法で製造した。この鋳
造材を48メツシユ以下まで粗粉砕し、さらに、ジェッ
トミルによって微粉砕し平均粒径3.5μmの合金粉末
を得た。この合金粉末を16kOeの磁界中で配向させ
、1.5 ton/crlの圧力で加圧し、幅10mm
x高さ10龍×長さ20m鵬の成形体を得た。この成形
体を1080℃xlh、真空中で焼結し、続いて600
℃X1hAr中で時効し永久磁石を得た。この時の磁気
特性値を第2表(a)に示した。保持力13.5koe
 、残留磁束密度12.2kG、最大エネルギー積34
.’OMGOeの磁気特性値が得られる。次に比較のた
めに同一成分の合金を水冷銅鋳型へ鋳造し、以下同一方
法で永久磁石を得た。この時の磁気特性値を第2表(b
)に示した。保持力9.5kOe、残留磁束密度12.
2kG、最大エネルギー積33.0MGOeの磁気特性
値が得られた。双ロール鋳造材と比較材を比較すると両
材料とも残留αFeが認められなかったにもかわらず、
双ロール鋳造材の方が結晶粒径が細かくなり、その結果
として保持力が顕著に増加した。
(Example 2) A twin-roll cast material of Nd I 5.5FeT&, :+fla, 2 was produced in the same manner as in Example 1. This cast material was coarsely ground to 48 meshes or less, and then finely ground using a jet mill to obtain an alloy powder with an average particle size of 3.5 μm. This alloy powder was oriented in a magnetic field of 16 kOe, pressed at a pressure of 1.5 ton/crl, and made into a material with a width of 10 mm.
A molded body measuring 10 m in height and 20 m in length was obtained. This molded body was sintered at 1080°Cxlh in vacuum, and then at 600°C
A permanent magnet was obtained by aging in ℃×1hAr. The magnetic property values at this time are shown in Table 2 (a). Holding force 13.5koe
, residual magnetic flux density 12.2kG, maximum energy product 34
.. 'Magnetic property values of OMGOe can be obtained. Next, for comparison, an alloy with the same composition was cast into a water-cooled copper mold, and a permanent magnet was obtained using the same method. The magnetic property values at this time are shown in Table 2 (b
)It was shown to. Holding force 9.5kOe, residual magnetic flux density 12.
Magnetic property values of 2 kG and a maximum energy product of 33.0 MGOe were obtained. When comparing the twin-roll cast material and the comparative material, although no residual αFe was observed in either material,
The grain size of the twin-roll cast material was smaller, and as a result, the holding force was significantly increased.

(実施例3) 板厚が2. 3. 4鶴の双ロール鋳造材を実施例1と
同一方法で製造し、さらに、これらの鋳造材から実施例
1と同一方法で永久磁石を得た。板厚と結晶粒径および
保持力の関係を第3表に示す。
(Example 3) The plate thickness is 2. 3. Four crane twin-roll cast materials were produced in the same manner as in Example 1, and permanent magnets were obtained from these cast materials in the same manner as in Example 1. Table 3 shows the relationship between plate thickness, grain size, and holding force.

第3表から板厚を2m(結晶粒径13μm)および3寵
(結晶粒径18μm)に制御した鋳片を用いて得られる
永久磁石の保持力は板厚4鶴(結晶粒径40μI)の鋳
片を用いて得られる永久磁石の保持力よりも顕著に増加
した。
From Table 3, the holding force of a permanent magnet obtained using slabs whose plate thicknesses are controlled to 2 m (crystal grain size 13 μm) and 3 m (crystal grain size 18 μm) is the same as when the plate thickness is 4 m (crystal grain size 40 μm). The holding force was significantly increased compared to that of permanent magnets obtained using slabs.

(発明の効果) 以上のべたように、本発明に従い双ロールで薄板に急冷
鋳造した鋳造材を用いることは、永久磁石の高性能化、
特に、保持力を顕著に増加させることを可能にすること
から、工業的価値が高い。
(Effects of the Invention) As described above, the use of a cast material rapidly cast into a thin plate using twin rolls according to the present invention improves the performance of permanent magnets.
In particular, it is of high industrial value because it makes it possible to significantly increase the holding power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による双ロール鋳造鋳片の金属顕微鏡に
よる組織を、第2図は比較材としてのインゴツト材の組
織を示した金属組織顕微鏡写真である。
FIG. 1 is a metallographic micrograph showing the structure of a twin-roll cast slab according to the present invention taken with a metallographic microscope, and FIG. 2 is a metallographic micrograph showing the structure of an ingot material as a comparative material.

Claims (1)

【特許請求の範囲】 (1)Fe_1_0_0_−_a_−_bR_aB_b
(ただし、RはNdまたはPrの少なくとも1種を含む
Yおよび希土類元素から成る成分、a、bは含有率でそ
れぞれa:10〜20at%、b:4〜10at%)な
る合金の溶湯を双ロール法で板厚0.05〜3mm、結
晶粒径3〜20μmの範囲の均質な組織を有する薄板に
急冷鋳造し、引続き、該薄板を粉砕したのち通常の粉末
冶金法で製造することを特徴とする希土類−鉄系永久磁
石材料の製造方法。 2、(Fe_1_−_xCo_x)_1_0_0_−_
a_−_bR_aB_b(ただし、X≦20at%であ
り、RはNdまたはPrの少なくとも1種を含むYおよ
び希土類元素から成る成分、a、bは含有率でそれぞれ
a:10〜20at%、b:4〜10at%)なる合金
の溶湯を双ロール法で板厚0.05〜3mm、結晶粒径
3〜20μmの範囲の均質な組織を有する薄板に急冷鋳
造し、引続き、該薄板を粉砕したのち通常の粉末冶金法
で製造することを特徴とする希土類−鉄系永久磁石材料
の製造方法。 (3)板厚が0.5〜2.5mmである特許請求の範囲
第1項又は第2項記載の永久磁石材料の製造方法。 (4)結晶粒径が10〜15μmである特許請求の範囲
第1項又は第2項記載の永久磁石材料の製造方法。
[Claims] (1) Fe_1_0_0_-_a_-_bR_aB_b
(However, R is a component consisting of Y containing at least one of Nd or Pr, and a rare earth element, and a and b are content rates of a: 10 to 20 at% and b: 4 to 10 at%, respectively). It is characterized by being rapidly cast by a roll method into a thin plate having a homogeneous structure with a thickness of 0.05 to 3 mm and a crystal grain size of 3 to 20 μm, followed by crushing the thin plate and then manufacturing it by a normal powder metallurgy method. A method for producing a rare earth-iron permanent magnet material. 2, (Fe_1_-_xCo_x)_1_0_0_-_
a_-_bR_aB_b (where, ~10 at%) is rapidly cooled and cast into a thin plate having a homogeneous structure with a thickness of 0.05 to 3 mm and a crystal grain size of 3 to 20 μm using a twin roll method, and then the thin plate is crushed and then cast into a conventional 1. A method for producing a rare earth-iron permanent magnet material, characterized in that it is produced by a powder metallurgy method. (3) The method for manufacturing a permanent magnet material according to claim 1 or 2, wherein the plate thickness is 0.5 to 2.5 mm. (4) The method for producing a permanent magnet material according to claim 1 or 2, wherein the crystal grain size is 10 to 15 μm.
JP62151453A 1987-06-19 1987-06-19 Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet Expired - Lifetime JP2665590B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62151453A JP2665590B2 (en) 1987-06-19 1987-06-19 Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet
EP88309097A EP0310416A3 (en) 1987-06-19 1988-09-30 Timepiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62151453A JP2665590B2 (en) 1987-06-19 1987-06-19 Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6158193A Division JP2745042B2 (en) 1994-06-17 1994-06-17 Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet

Publications (2)

Publication Number Publication Date
JPS63317643A true JPS63317643A (en) 1988-12-26
JP2665590B2 JP2665590B2 (en) 1997-10-22

Family

ID=15518908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62151453A Expired - Lifetime JP2665590B2 (en) 1987-06-19 1987-06-19 Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet

Country Status (2)

Country Link
EP (1) EP0310416A3 (en)
JP (1) JP2665590B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504486A (en) * 1989-01-25 1992-08-06 マサチューセッツ・インスティチュート・オブ・テクノロジー Method and apparatus for producing polycrystalline flakes of magnetic material with strong directionality
US5486224A (en) * 1993-12-28 1996-01-23 Sumitomo Metal Industries, Ltd. Powder mixture for use in compaction to produce rare earth iron sintered permanent magnets
EP0706190A1 (en) 1994-10-07 1996-04-10 Sumitomo Special Metals Company Limited Fabrication methods for R-Fe-B permanent magnets
US5908513A (en) * 1996-04-10 1999-06-01 Showa Denko K.K. Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
US6403024B1 (en) 1999-02-19 2002-06-11 Sumitomo Special Metals Co., Ltd. Hydrogen pulverizer for rare-earth alloy magnetic material powder using the pulverizer, and method for producing magnet using the pulverizer
WO2004094090A1 (en) * 2003-04-22 2004-11-04 Neomax Co. Ltd. Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP2007144428A (en) * 2005-11-24 2007-06-14 Mitsubishi Electric Corp Rare earth-iron-boron-based magnet alloy, and manufacturing method and device for the same alloy
US8056610B2 (en) 2007-09-25 2011-11-15 Ulvac, Inc. Secondary cooling apparatus and casting apparatus
US8545641B2 (en) 2004-07-01 2013-10-01 Intermetallics Co., Ltd. Method and system for manufacturing sintered rare-earth magnet having magnetic anisotropy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932011A (en) * 1989-11-06 1990-06-05 Timex Corporation Three hand movement for a timepiece with improved timesetting gear train
WO2013146781A1 (en) 2012-03-30 2013-10-03 インターメタリックス株式会社 NdFeB-BASED SINTERED MAGNET

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115943A (en) * 1984-07-03 1986-01-24 Kawasaki Steel Corp Rare earth permanent magnet thin strip
JPS6233402A (en) * 1985-08-07 1987-02-13 Tohoku Metal Ind Ltd Manufacture of rare-earth magnet
JPS62131503A (en) * 1985-12-04 1987-06-13 Sumitomo Metal Mining Co Ltd Manufacture of rare earth-iron-boron alloy powder for resin magnet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225751B1 (en) * 1970-07-30 1977-07-09
GB1325233A (en) * 1970-07-30 1973-08-01 Suwa Seikosha Kk Timepiece mechanism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115943A (en) * 1984-07-03 1986-01-24 Kawasaki Steel Corp Rare earth permanent magnet thin strip
JPS6233402A (en) * 1985-08-07 1987-02-13 Tohoku Metal Ind Ltd Manufacture of rare-earth magnet
JPS62131503A (en) * 1985-12-04 1987-06-13 Sumitomo Metal Mining Co Ltd Manufacture of rare earth-iron-boron alloy powder for resin magnet

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504486A (en) * 1989-01-25 1992-08-06 マサチューセッツ・インスティチュート・オブ・テクノロジー Method and apparatus for producing polycrystalline flakes of magnetic material with strong directionality
US5486224A (en) * 1993-12-28 1996-01-23 Sumitomo Metal Industries, Ltd. Powder mixture for use in compaction to produce rare earth iron sintered permanent magnets
US5527504A (en) * 1993-12-28 1996-06-18 Sumitomo Metal Industries, Ltd. Powder mixture for use in compaction to produce rare earth iron sintered permanent magnets
EP0706190A1 (en) 1994-10-07 1996-04-10 Sumitomo Special Metals Company Limited Fabrication methods for R-Fe-B permanent magnets
US5908513A (en) * 1996-04-10 1999-06-01 Showa Denko K.K. Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
US5963774A (en) * 1996-04-10 1999-10-05 Showa Denko K.K. Method for producing cast alloy and magnet
US6403024B1 (en) 1999-02-19 2002-06-11 Sumitomo Special Metals Co., Ltd. Hydrogen pulverizer for rare-earth alloy magnetic material powder using the pulverizer, and method for producing magnet using the pulverizer
WO2004094090A1 (en) * 2003-04-22 2004-11-04 Neomax Co. Ltd. Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
US7390369B2 (en) 2003-04-22 2008-06-24 Neomax Co., Ltd. Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
US8545641B2 (en) 2004-07-01 2013-10-01 Intermetallics Co., Ltd. Method and system for manufacturing sintered rare-earth magnet having magnetic anisotropy
JP2007144428A (en) * 2005-11-24 2007-06-14 Mitsubishi Electric Corp Rare earth-iron-boron-based magnet alloy, and manufacturing method and device for the same alloy
US8056610B2 (en) 2007-09-25 2011-11-15 Ulvac, Inc. Secondary cooling apparatus and casting apparatus

Also Published As

Publication number Publication date
JP2665590B2 (en) 1997-10-22
EP0310416A2 (en) 1989-04-05
EP0310416A3 (en) 1989-07-12

Similar Documents

Publication Publication Date Title
US5125988A (en) Rare earth-iron system permanent magnet and process for producing the same
JPS63317643A (en) Production of rare earth-iron permanent magnetic material
JPH01219143A (en) Sintered permanent magnet material and its production
JPH0685369B2 (en) Permanent magnet manufacturing method
JP3148581B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
US5536334A (en) Permanent magnet and a manufacturing method thereof
JP3712595B2 (en) Alloy ribbon for permanent magnet and sintered permanent magnet
JPH0831626A (en) Rare earth magnetic powder, permanent magnet thereof, and manufacture of them
JPH0680608B2 (en) Rare earth magnet manufacturing method
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JPS5852019B2 (en) Rare earth cobalt permanent magnet alloy
JPH0931608A (en) High performance rare earth-iron-boron-carbon magnet material excellent in corrosion resistance
JPH0549737B2 (en)
JP2000303153A (en) Alloy thin strip for permanent magnet and sintered permanent magnet
JPH0837122A (en) Production of r-t-m-n anisotropic bonded magnet
JPS62213102A (en) Manufacture of rare-earth permanent magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH0535211B2 (en)
JPS61147504A (en) Rare earth magnet
JPH06112027A (en) Manufacture of high-quality magnet material
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JP2827643B2 (en) Method for producing rare earth-Fe-B based magnet alloy powder
JPS61143553A (en) Production of material for permanent magnet
JP2002088451A (en) Rare earth magnet and its manufacturing method
JPH06283318A (en) Manufacture of rare-earth permanent magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term