JPH0680608B2 - Rare earth magnet manufacturing method - Google Patents

Rare earth magnet manufacturing method

Info

Publication number
JPH0680608B2
JPH0680608B2 JP61193065A JP19306586A JPH0680608B2 JP H0680608 B2 JPH0680608 B2 JP H0680608B2 JP 61193065 A JP61193065 A JP 61193065A JP 19306586 A JP19306586 A JP 19306586A JP H0680608 B2 JPH0680608 B2 JP H0680608B2
Authority
JP
Japan
Prior art keywords
alloy
magnet
rare earth
phase
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61193065A
Other languages
Japanese (ja)
Other versions
JPS6348805A (en
Inventor
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP61193065A priority Critical patent/JPH0680608B2/en
Publication of JPS6348805A publication Critical patent/JPS6348805A/en
Publication of JPH0680608B2 publication Critical patent/JPH0680608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は、Nd・Fe・B系永久磁石を代表とする希土類金
属(R)と遷移金属(T)とホウ素(B)を主成分とし
てなるR2T14B系金属間化合物磁石の製造方法であっ
て、特に永久磁石を粉末治金法によって製造する場合の
磁石特性の改善に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on an R 2 T 14 B system containing a rare earth metal (R), a transition metal (T), and boron (B) as a main component, represented by Nd / Fe / B system permanent magnets. The present invention relates to a method for manufacturing an intermetallic compound magnet, and particularly to improvement of magnet characteristics when a permanent magnet is manufactured by a powder metallurgy method.

R・Fe・B系磁石の製造方法については、二つの方法に
大別される。ひとつは、溶解している合金を超急冷した
後、粉砕した磁石粉末を磁場中で配向して製造される高
分子複合型磁石である。一方は、溶解して得られた磁石
合金のインゴットを微粉砕し、磁場中で成形した後、焼
結して製造される焼結型磁石である。本発明は、焼結型
磁石に関係している。
The method of manufacturing the R / Fe / B magnet is roughly classified into two methods. One is a polymer composite type magnet manufactured by ultra-quenching a molten alloy and orienting crushed magnet powder in a magnetic field. One is a sintered magnet, which is manufactured by pulverizing an ingot of a magnet alloy obtained by melting, shaping it in a magnetic field, and then sintering it. The present invention relates to sintered magnets.

R・Fe・B系磁石の粉末治金法によって製造される焼結
型磁石に関する文献として、特開昭59-46008や日本応用
磁気学会第35回研究会資料「Nd・Fe・B系新磁石」(昭
和59年5月)があげられる。これらの文献には、溶解し
て鋳込んだ合金インゴットを原料として使用し、粉砕成
形後、Ar雰囲気中で焼結する方法について記述してあ
る。
As a literature on sintered type magnets manufactured by powder metallurgy of R / Fe / B-based magnets, refer to Japanese Patent Application Laid-Open No. 59-46008 and the 35th research meeting material of the Japan Society for Applied Magnetics "Nd / Fe / B-based new magnets". (May 1984). These documents describe a method of using a melted and cast alloy ingot as a raw material, crushing and molding, and then sintering in an Ar atmosphere.

一般に、本系磁石の粉末治金法による製造工程は、原料
合金の溶解、粉砕、磁場中配向、圧縮成形、焼結、時効
の順に進められる。溶解は、アーク、高周波等の真空ま
たは不活性雰囲気中で通常行われ、鋳込んで原料インゴ
ットを得ている。粉砕は、粗粉砕と微粉砕にわけられ、
粗粉砕はジョークラッシャー、鉄乳棒、ディスクミルや
ロールミル等で行われる。微粉砕は、ボールミル、振動
ミル、ジェットミル等で行われる。磁場配向及び圧縮成
形は、金型を用いて磁場中で同時に行われるのが通例で
ある。焼結は、1000〜1150℃の範囲で、不活性雰囲気中
で行われる。時効は600℃近傍の温度で行われる。
In general, the manufacturing process of the present magnet by the powder metallurgy method proceeds in the order of melting of raw material alloy, pulverization, orientation in a magnetic field, compression molding, sintering, and aging. Melting is usually performed in a vacuum such as an arc or a high frequency or in an inert atmosphere, and is cast to obtain a raw material ingot. Grinding is divided into coarse grinding and fine grinding,
Coarse crushing is performed with a jaw crusher, an iron pestle, a disc mill, a roll mill, or the like. The fine pulverization is performed with a ball mill, a vibration mill, a jet mill or the like. Magnetic field orientation and compression molding are typically performed simultaneously in a magnetic field using a mold. Sintering is performed in the range of 1000-1150 ° C in an inert atmosphere. Aging is performed at a temperature near 600 ° C.

本発明者は、種々実験を重ねた結果、これら工程の中
で、合金原料として、通常の溶解鋳込インゴットではな
く、溶解した合金を急冷して作製された合金薄帯を熱処
理した後、合金原料として使用することにより、著しい
磁石特性の向上が実現されることを発見した。本系磁石
合金は大きく分けて主相(R2T14B)、Brich相、N dric
h相の3種からなる複合合金である。また、合金原料イ
ンゴットには、Fe相も析出する等、不安定な相の生成状
態であるといえる。特にFe相の析出は磁石特性の顕著な
低下となる。また、粉末成形体の焼結性もN drich相の
分散性に大きく依存し分散性の悪いものは、焼結温度の
向上をもたらすと同時に、1Hcも著しく低下し、工業上
不利益となる。従来の原料インゴット中のN drichの分
散性は、インゴット形成結晶粒子が大きいために、粉末
成形体では良好な状態とはなっていない。
The present inventor, as a result of repeating various experiments, in these steps, as an alloy raw material, not a usual melt-casting ingot, but a heat treatment of an alloy ribbon produced by quenching a melted alloy, It has been discovered that by using it as a raw material, a remarkable improvement in magnet characteristics is realized. This system magnet alloy is roughly divided into main phase (R 2 T 14 B), Brich phase, N dric
It is a composite alloy consisting of three types of h-phase. Further, it can be said that the alloy raw material ingot is in a state of unstable phase formation such as precipitation of Fe phase. In particular, precipitation of the Fe phase causes a marked deterioration in magnet characteristics. Also, the sinterability of the powder compact depends largely on the dispersibility of the Ndrich phase, and the one with poor dispersibility leads to an increase in the sintering temperature, and at the same time, 1 H c is significantly reduced, which is an industrial disadvantage. Become. The dispersibility of N drich in the conventional raw material ingot is not in a good state in the powder compact because the crystal grains forming the ingot are large.

したがって、合金原料中のFe相の削減とN drich相の分
散性を向上させることにより、磁石特性が著しく向上さ
れることを、本発明者は見い出した。この両者を同時に
満足させるためには、溶解している合金を急冷し薄帯を
作製した後、熱処理し、主相結晶粒を育成することによ
り、Fe析出相の存在がなく、N drich相の分散性の高い
合金原料を得ることができる。合金原料中の主相の結晶
粒径は3〜10μm程度が最も好ましく、好適な熱処理温
度は合金の組成によって変化するがネオジ−鉄−ボロン
系磁石組成であれば、600〜1100℃の範囲にある。
Therefore, the present inventor has found that the magnet characteristics are remarkably improved by reducing the Fe phase in the alloy raw material and improving the dispersibility of the Ndrich phase. In order to satisfy both of these at the same time, the melted alloy is rapidly cooled to form a ribbon, which is then heat-treated to grow the main phase crystal grains, so that there is no Fe precipitate phase and the N drich phase An alloy raw material having high dispersibility can be obtained. The crystal grain size of the main phase in the alloy raw material is most preferably about 3 to 10 μm, and the suitable heat treatment temperature varies depending on the composition of the alloy, but if it is a neodymium-iron-boron system magnet composition, it is in the range of 600 to 1100 ° C. is there.

次に実施例について述べる。Next, examples will be described.

〔実施例1〕 純度98%のNd(残部他の希土類元素)、フェロボロン
(B純度約20%)及び電解鉄を使用し、Ndが32.0wt%、
Bが1.0wt%、残部Feとなる様に、アルゴン雰囲気中
で、高周波加熱により溶解し、回転する鉄製ロールに噴
射急冷して、厚さ約50μmの急冷薄帯を得た。
[Example 1] Nd with a purity of 98% (the rest other rare earth elements), ferroboron (B purity of about 20%) and electrolytic iron were used, and Nd was 32.0 wt%.
It was melted by high-frequency heating in an argon atmosphere so that B was 1.0 wt% and the balance was Fe, and was rapidly cooled by spraying on a rotating iron roll to obtain a quenched ribbon having a thickness of about 50 μm.

次にこの合金薄帯を、Ar雰囲気中900℃で、1時間熱処
理した後、急冷した。
Next, this alloy ribbon was heat-treated at 900 ° C. for 1 hour in Ar atmosphere and then rapidly cooled.

一方、比較のために、同一原料を使用し、同一組成のイ
ンゴットをアルゴン雰囲気中で高周波加熱により溶解し
た。これは普通の製法である。
On the other hand, for comparison, the same raw material was used and ingots having the same composition were melted by high frequency heating in an argon atmosphere. This is a normal manufacturing method.

これら、合金原料をそれぞれ粗粉砕した後、ボールミル
を用いて平均粒径約3μmに微粉砕した。この微粉砕を
10KOeの磁界中1ton/cm2の圧力で成形した。この成形体
を1080℃で真空中1時間保持した後、Ar中1時間保持し
焼結した。その後100℃/hr以下の冷却速度で300℃まで
徐冷し、急冷した。この焼結体を550℃で1時間時効処
理を行った。磁石特性の測定結果を表に示す。
These alloy raw materials were roughly pulverized and then finely pulverized with a ball mill to an average particle size of about 3 μm. This fine crush
Molding was performed in a magnetic field of 10 KOe at a pressure of 1 ton / cm 2 . This compact was held at 1080 ° C. in vacuum for 1 hour and then in Ar for 1 hour for sintering. Then, it was gradually cooled to 300 ° C. at a cooling rate of 100 ° C./hr or less and then rapidly cooled. This sintered body was aged at 550 ° C. for 1 hour. The measurement results of the magnet characteristics are shown in the table.

本発明法である急冷薄帯を熱処理した合金原料を使用し
た方が、Br、1Hc、(BH)maxが著しく高い値を示してい
る。また、焼結性も向上していることが、焼結温度を変
化させて確認された。
When the alloy raw material obtained by heat-treating the quenched ribbon which is the method of the present invention is used, Br, 1 H c and (BH) max show remarkably high values. It was also confirmed that the sinterability was improved by changing the sintering temperature.

実施例2 実施例1で作製した急冷薄帯を使用して、各々600℃、7
00℃、800℃、900℃、1000℃、1100℃、1200℃で、Ar雰
囲気中、1時間熱処理した。
Example 2 Using the quenched ribbon produced in Example 1, 600 ° C., 7
It heat-processed at 00 degreeC, 800 degreeC, 900 degreeC, 1000 degreeC, 1100 degreeC, and 1200 degreeC in Ar atmosphere for 1 hour.

次に、この熱処理した合金薄帯の断面を研磨して、光学
顕微鏡にて観察したところ、主相(R2T14B)中にNdric
h相が分散しており、それらの結晶粒径は熱処理温度の
上昇とともに成長し、1200℃熱処理資料ではNdrich相の
分散度は明らかに低下していた。これら熱処理済合金薄
帯中の主相の平均結晶粒径をIcとして図1に示した。
Next, the cross section of the heat-treated alloy ribbon was polished and observed with an optical microscope. As a result, Ndric in the main phase (R 2 T 14 B) was observed.
The h phase was dispersed, and the grain size of them grew with the increase of the heat treatment temperature, and the dispersity of the Ndrich phase was obviously decreased in the 1200 ℃ heat treatment data. The average crystal grain size of the main phase in these heat-treated alloy ribbons is shown in FIG. 1 as Ic.

次に、実施例1と同様にして、微粉砕、磁界中成形、焼
結、熱処理を行い、磁石特性を測定した。その結果図2
乃至図4に示す。
Next, in the same manner as in Example 1, fine pulverization, magnetic field molding, sintering, and heat treatment were performed to measure the magnet characteristics. As a result,
Through FIG.

実施例1で示したインゴット合金原料の比較例に比べ、
熱処理温度700℃〜1100℃の範囲で磁石特性は明らかに
高い最大エネルギー積(BH)maxを示している。
Compared with the comparative example of the ingot alloy raw material shown in Example 1,
The magnet characteristics clearly show a high maximum energy product (BH) max in the heat treatment temperature range of 700 ℃ to 1100 ℃.

熱処理温度700℃以下では、結晶粒の磁場配向が不十分
となり、焼結体の残留磁束密度Brが低下するため、又、
一方、1200℃以上では、Ndrich粒子の分散が低下し、焼
結性の低下、減磁曲線の角型性が低下するため、保磁力
Hc及び残留磁束密度Brが低下することに起因して高い最
大エネルギー積を得ることができない。
At a heat treatment temperature of 700 ° C. or less, the magnetic field orientation of crystal grains becomes insufficient, and the residual magnetic flux density Br of the sintered body decreases,
On the other hand, above 1200 ° C, the dispersion of Ndrich particles decreases, the sinterability decreases, and the squareness of the demagnetization curve decreases.
A high maximum energy product cannot be obtained due to the reduction of Hc and residual magnetic flux density Br.

以上の実施例では、Nd・Fe・B系磁石についてのみ述べ
ているが、本発明は、合金急冷薄帯を熱処理することに
より、主相(R2T14B)結晶粒子を育成させ、合金原料
として使用し、通常の製法よりも高い磁石特性を得るも
のである。したがって、Nd・Fe・Bの単一成分ばかりで
なく、Ce、Pr、Dy、Gd、Ho、Tb等の希土類元素及びYや
Co、Ni等の遷移金属を含んでいるNd・Fe・B系磁石合金
にも適用できることは明白である。
Although only the Nd / Fe / B-based magnets are described in the above examples, the present invention heat-treats the alloy quenched ribbon to grow the main phase (R 2 T 14 B) crystal particles, and the alloy. It is used as a raw material and obtains magnet characteristics higher than those of ordinary manufacturing methods. Therefore, not only a single component of Nd / Fe / B but also a rare earth element such as Ce, Pr, Dy, Gd, Ho, Tb and Y or
It is obvious that the present invention can also be applied to Nd / Fe / B system magnet alloys containing transition metals such as Co and Ni.

本発明について以上詳しく説明したが、R2T14B系磁石
を粉末治金法によって製造する方法において、合金の急
冷薄帯を熱処理した後、合金原料として使用することに
より、著しい磁石特性の増加が実現できるものであり、
本発明は工業上非常に有益である。
The present invention has been described in detail above. In a method for producing an R 2 T 14 B-based magnet by a powder metallurgy method, a quenched ribbon of an alloy is heat-treated and then used as an alloy raw material to significantly increase the magnet characteristics. Can be realized,
The present invention is very useful industrially.

【図面の簡単な説明】 図1に実施例2における合金薄帯の熱処理温度と合金薄
帯中の主相(Nd2Fe14B相)の平均粒径Icとの関係を示
す。 図2は実施例2における合金薄帯の熱処理温度と焼結磁
石の最大エネルギー積(BH)maxとの関係を示す。 図3は実施例2における合金薄帯の熱処理温度と焼結磁
石の残留磁束密度Brとの関係を示す。 図4は実施例2における合金薄帯の熱処理温度と焼結磁
石の保磁力1Hcとの関係を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the relationship between the heat treatment temperature of the alloy ribbon and the average grain size Ic of the main phase (Nd 2 Fe 14 B phase) in the alloy ribbon in Example 2. FIG. 2 shows the relationship between the heat treatment temperature of the alloy ribbon and the maximum energy product (BH) max of the sintered magnet in Example 2. FIG. 3 shows the relationship between the heat treatment temperature of the alloy ribbon and the residual magnetic flux density Br of the sintered magnet in Example 2. FIG. 4 shows the relationship between the heat treatment temperature of the alloy ribbon and the coercive force 1 H c of the sintered magnet in Example 2.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Nd、Fe、Bを主成分として含有するR2T14
B系磁石(ここで、Rはイットリウム及び希土類元素、
Tは遷移金属をあらわす。)を粉末治金法によって製造
する方法において、合金の急冷薄帯をR2T14B相の結晶
粒径が3〜10μmになるよう700〜1100℃で熱処理した
後、粉砕、成形、焼結、時効することを特徴とする希土
類磁石の製造方法。
1. R 2 T 14 containing Nd, Fe and B as main components.
B-based magnet (where R is yttrium and a rare earth element,
T represents a transition metal. ) By a powder metallurgy method, the quenched ribbon of the alloy is heat treated at 700 to 1100 ° C. so that the crystal grain size of the R 2 T 14 B phase becomes 3 to 10 μm, and then crushed, molded and sintered. , A method for manufacturing a rare earth magnet characterized by aging.
JP61193065A 1986-08-19 1986-08-19 Rare earth magnet manufacturing method Expired - Lifetime JPH0680608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61193065A JPH0680608B2 (en) 1986-08-19 1986-08-19 Rare earth magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61193065A JPH0680608B2 (en) 1986-08-19 1986-08-19 Rare earth magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPS6348805A JPS6348805A (en) 1988-03-01
JPH0680608B2 true JPH0680608B2 (en) 1994-10-12

Family

ID=16301617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61193065A Expired - Lifetime JPH0680608B2 (en) 1986-08-19 1986-08-19 Rare earth magnet manufacturing method

Country Status (1)

Country Link
JP (1) JPH0680608B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285678A (en) * 1986-12-04 1994-02-15 Seal Integrity Systems, Inc. Container seal testing and pressurization
JPH0682575B2 (en) * 1987-08-19 1994-10-19 三菱マテリアル株式会社 Rare earth-Fe-B alloy magnet powder
US5125636A (en) * 1989-01-30 1992-06-30 Minolta Camera Kabushiki Kaisha Copying machine capable of copying two originals on one sheet of paper
US4968403A (en) * 1989-12-21 1990-11-06 Mobil Oil Corporation High efficiency catalytic cracking stripping process
JPH0547532A (en) * 1991-08-14 1993-02-26 Isuzu Ceramics Kenkyusho:Kk Permanent magnet and manufacture thereof
JP6939336B2 (en) * 2017-09-28 2021-09-22 日立金属株式会社 Diffusion source
JP6939337B2 (en) * 2017-09-28 2021-09-22 日立金属株式会社 Manufacturing method of RTB-based sintered magnet
JP6939338B2 (en) * 2017-09-28 2021-09-22 日立金属株式会社 Manufacturing method of RTB-based sintered magnet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976856A (en) * 1982-10-22 1984-05-02 Fujitsu Ltd Permanent magnet material and its manufacture
JPS60152652A (en) * 1984-01-21 1985-08-10 Nippon Gakki Seizo Kk Rapidly cooled magnet and its manufacture
JPS60162750A (en) * 1984-02-01 1985-08-24 Nippon Gakki Seizo Kk Rare earth magnet and its production

Also Published As

Publication number Publication date
JPS6348805A (en) 1988-03-01

Similar Documents

Publication Publication Date Title
US5930582A (en) Rare earth-iron-boron permanent magnet and method for the preparation thereof
JP2665590B2 (en) Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JPH0680608B2 (en) Rare earth magnet manufacturing method
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH08181009A (en) Permanent magnet and its manufacturing method
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JPS6233402A (en) Manufacture of rare-earth magnet
JPH08148315A (en) Production of rare earth magnet
JPH0568841B2 (en)
JP3755902B2 (en) Magnet powder for anisotropic bonded magnet and method for producing anisotropic bonded magnet
JP4133315B2 (en) Rare earth magnet manufacturing method, rare earth magnet raw material alloy and powder
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JPS6316603A (en) Manufacture of sintered rare-earth magnet
JPH0812815B2 (en) Rare earth magnet manufacturing method
JP3053344B2 (en) Rare earth magnet manufacturing method
JP2660917B2 (en) Rare earth magnet manufacturing method
JPS6150310A (en) Sintered type rare-earth magnet
JPH0426524B2 (en)
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JPH08148317A (en) Production of rare earth magnet
JPS63114106A (en) Permanent magnet and manufacture thereof
JPS61143553A (en) Production of material for permanent magnet
JPH05339683A (en) Permanent matnet alloy and its manufacture
JPS6342102A (en) Manufacture of sintered rare-earth magnet