JPH05339683A - Permanent matnet alloy and its manufacture - Google Patents

Permanent matnet alloy and its manufacture

Info

Publication number
JPH05339683A
JPH05339683A JP4151832A JP15183292A JPH05339683A JP H05339683 A JPH05339683 A JP H05339683A JP 4151832 A JP4151832 A JP 4151832A JP 15183292 A JP15183292 A JP 15183292A JP H05339683 A JPH05339683 A JP H05339683A
Authority
JP
Japan
Prior art keywords
permanent magnet
weight
rare earth
less
microns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4151832A
Other languages
Japanese (ja)
Inventor
Masako Noguchi
雅子 野口
Masahiro Takahashi
昌弘 高橋
Shigeo Tanigawa
茂穂 谷川
Katsuhiko Kojo
勝彦 古城
Masaaki Tokunaga
雅亮 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4151832A priority Critical patent/JPH05339683A/en
Publication of JPH05339683A publication Critical patent/JPH05339683A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To improve the performance of a magnet, in a sintered magnet allay expressed by R-Fe-B-M, by specifying the constitutional ratio of R and executing specified heat treatment and classificational circulating pulverization. CONSTITUTION:In a sintered magnet allay essentially consisting of rare earth elements, iron and baron expressed by R-Fe-B-M, the constitutional ratio of rare earth elements R is regulated to, by weight, 27 to 32%, a part of R is substituted by <=1.5% Dy, and the balance is substantially constituted of Nd and Pr. Then, this allay having a low rare earth content is subjected to heat treatment in the temp. range of 900 to 1150 deg.C, and the ingot obtd. by allowing alphairon precipitated at the time of its solidification to re-enter into solid solution is used. Coarse powder is classficationally circulated and pulverized at the time of its pulverization, and its size distribution is sharpened. In this way, high performance is imparted to the rare earth-iron-boron magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類-鉄-ボロン系の焼
結磁石に関するものである。特にコンピュ−タの外部磁
気記憶装置に使用されるボイスコイルモ−タ用磁石等の
高いエネルギ−積が要求される永久磁石およびその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-iron-boron system sintered magnet. In particular, the present invention relates to a permanent magnet that requires a high energy product, such as a magnet for a voice coil motor used in an external magnetic storage device of a computer, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】希土類-鉄-ボロン系磁石はコンピュ−タ
の外部磁気記憶装置であるボイスコイルモ−タ等に使用
されている。この磁石の製造方法には超急冷法と焼結法
の二つの製造方法がある。超急冷磁石はメルトスピニン
グ法等の手段を用いて得られた薄帯または粉末を熱間で
塑性加工し磁気的に異方性化し高エネルギ−積の永久磁
石とする。この永久磁石は特開昭59−64739号に
記載されているように、製造工程中に合金を粉砕する工
程を基本的には必要としないため磁石内に不純物として
含まれる酸素量が通常2000ppm以下と少ないこ
と、また磁石を形成する個々の結晶の粒子径が1ミクロ
ン以下と小さいため、高いエネルギ−積と高い保磁力が
得られる。このため超急冷法による異方性磁石はボイス
コイルモ−タ用の磁石として注目されてきた。しかし異
方性の超急冷磁石は製造工程が複雑なこと、熱間での塑
性加工を行うための大がかりな設備を必要とするから焼
結磁石と比較し製造コストが高く問題がある。焼結希土
類磁石はボイスコイルモ−タ用の磁石をはじめ様々な用
途に利用されており年々需要が増加している。一方で、
焼結希土類-鉄-ボロン系磁石の磁気特性、特に最大エネ
ルギ−積を向上させようとする研究、および開発が盛ん
に行われている。焼結希土類-鉄-ボロン磁石の最大エネ
ルギ−積を高くするためには、永久磁石としての磁性を
担っているNd2Fe14B相の磁石中で占める体積比率
を出来るだけ高くし、かつ保磁力を担っている希土類リ
ッチな第2相をNd2Fe14B相の周囲に最小かつ均一
に分散させれば良いことも公知である。上記基本的な概
念を実用の磁石体の中で実現しようとする試みが種々な
されている。例えば特開昭63−99502号公報にお
いては酸素量を300ppm以下とし合金中の希土類量
を13原子%以下とすることに高エネルギ−積化する手
段が開示されている。しかしながら磁石中の酸素量を3
00ppmとするためには、使用する原料中の酸素量を
抑制する必要があり高価な原料を使用しなければならな
い他、溶解時の坩堝等からの酸素の混入を防止するため
に浮揚溶解などの複雑な設備を必要とし工業的には問題
がある。一方、特開昭63−48805号公報には第2
相である希土類リッチ相をメルトスピニング法で作製
し、主相であるNd2Fe14B相に近い組成の合金に混
合し焼結する方法が開示されている。しかしメルトスピ
ニング法は工業的に高価であること、また主相に近い相
はα-鉄等の析出により粉砕性が悪いため高い保磁力が
得られないという問題点がある。ボイスコイルモ−タと
して使用される希土類-鉄-ボロン磁石に必要な固有保磁
力は一般的には12kOe以上であるが、使用環境を8
0〜120℃と設定した場合本系磁石の保磁力の温度係
数を−0.55〜−0.65%/℃と想定した場合、室
温での残留磁束密度の少なくとも95%の固有保磁力が
必要である。この要求を満足させるために、従来希土類
元素の一部を2重量%程度のDyで置換することが試み
られてきた。
2. Description of the Related Art Rare earth-iron-boron magnets are used in voice coil motors, which are external magnetic storage devices for computers. There are two manufacturing methods of this magnet, an ultra-quenching method and a sintering method. The ultra-quenching magnet is made into a high energy product permanent magnet by hot-plasticizing a ribbon or powder obtained by means of a melt spinning method or the like to magnetically anisotropy it. As described in JP-A-59-64739, this permanent magnet basically does not require the step of crushing the alloy during the manufacturing process, so that the amount of oxygen contained as impurities in the magnet is usually 2000 ppm or less. Since the particle size of each crystal forming the magnet is as small as 1 micron or less, a high energy product and a high coercive force can be obtained. Therefore, the anisotropic quenching anisotropic magnet has attracted attention as a magnet for a voice coil motor. However, the anisotropic ultra-quenched magnet has a complicated manufacturing process and requires large-scale equipment for performing hot plastic working, so that the manufacturing cost is higher than that of the sintered magnet and there is a problem. Sintered rare earth magnets are used in various applications including magnets for voice coil motors, and the demand for them is increasing year by year. On the other hand,
Research and development have been actively conducted to improve the magnetic properties of sintered rare earth-iron-boron magnets, especially the maximum energy product. In order to increase the maximum energy product of the sintered rare earth-iron-boron magnet, the volume ratio of the Nd 2 Fe 14 B phase, which is responsible for the magnetism of the permanent magnet, in the magnet should be as high as possible and should be maintained. It is also known that the rare earth-rich second phase, which is responsible for the magnetic force, may be dispersed around the Nd 2 Fe 14 B phase in a minimum and uniform manner. Various attempts have been made to realize the above basic concept in a practical magnet body. For example, Japanese Patent Application Laid-Open No. 63-99502 discloses a means for increasing the energy product by setting the oxygen content to 300 ppm or less and the rare earth content in the alloy to 13 atomic% or less. However, the amount of oxygen in the magnet should be 3
In order to set the content to 00 ppm, it is necessary to suppress the amount of oxygen in the raw material used, and it is necessary to use an expensive raw material. In addition, in order to prevent oxygen from being mixed from the crucible or the like at the time of melting, floating melting, etc. It requires complicated equipment and is industrially problematic. On the other hand, in JP-A-63-48805, the second
There is disclosed a method in which a rare earth-rich phase, which is a phase, is produced by a melt spinning method, mixed with an alloy having a composition close to that of a main phase, Nd 2 Fe 14 B phase, and sintered. However, the melt spinning method has a problem that it is industrially expensive and that a phase close to the main phase cannot obtain a high coercive force due to poor pulverizability due to precipitation of α-iron or the like. The rare earth-iron-boron magnet used as a voice coil motor generally has an intrinsic coercive force of 12 kOe or more, but the operating environment is 8
When set to 0 to 120 ° C. When the temperature coefficient of coercive force of the present system magnet is assumed to be −0.55 to −0.65% / ° C., the intrinsic coercive force of at least 95% of the residual magnetic flux density at room temperature is is necessary. In order to satisfy this requirement, it has been attempted to replace a part of the rare earth element with about 2% by weight of Dy.

【0003】[0003]

【発明が解決しようとする課題】Dyの添加は主相のH
aを向上させ保磁力の改善には極めて有効であるが、D
yの持つ磁気モ−メントがFeおよびNd,Prの磁気
モ−メントとフェリ強磁性的に結合するため磁石の飽和
磁化を著しく低下させるという欠点を有する。Dyの持
つ欠点を解消することを目的に、Dyの添加量を最小限
に抑えながら、かつ実用的に必要な保磁力を得るために
Nb,Al,Zr,W,Moその他の元素を複合添加し
た発明も多数開示されている。複合添加する元素の役割
は必ずしも一様では無いが焼結過程での粒成長を抑制し
たり、あるいは希土類リッチ相と主相の界面を改良する
ことにより保磁力を改善する効果が得られる。しかし、
このような複合添加の効果を利用しても室温で残留磁束
密度に対し95%以上の固有保磁力を得るためには、
1.5重量%程度のDyが必要で あり、このことが焼結
磁石において超急冷磁石より高いエネルギ−積を得るこ
とを困難としていた。
The addition of Dy is the main phase of H
It is extremely effective for improving a and coercive force, but D
Since the magnetic moment of y has a ferriferromagnetic coupling with the magnetic moments of Fe, Nd, and Pr, there is a drawback that the saturation magnetization of the magnet is significantly reduced. For the purpose of eliminating the drawbacks of Dy, Nb, Al, Zr, W, Mo and other elements are added in combination to minimize the amount of Dy added and to obtain a practically necessary coercive force. Many inventions have been disclosed. Although the role of the elements added in combination is not necessarily uniform, the effect of improving coercive force can be obtained by suppressing grain growth in the sintering process or improving the interface between the rare earth-rich phase and the main phase. But,
In order to obtain an intrinsic coercive force of 95% or more with respect to the residual magnetic flux density at room temperature even if the effect of such complex addition is utilized,
Dy needs to be about 1.5% by weight, which makes it difficult to obtain a higher energy product in the sintered magnet than in the ultra-quenched magnet.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明は合金成分として1.5重量%以下のDy
を含有する溶解鋳造インゴットを非酸化雰囲気中で90
0℃以上で熱処理し、700℃以下まで50℃/分以上
の冷却速度で急冷した後、インゴットを平均粒径3〜7
ミクロンに粉砕し、さらに粉砕粉中に含まれる10ミク
ロン以上の粗粉の存在比率を10%以下とすることによ
り、焼結体の平均結晶粒径が3〜10ミクロンで焼結体
中の酸素量が2000〜500ppmでかつ、熱処理後
の磁気特性においてその固有保磁力が残留磁束密度の9
5%以上であり、角型比が94%以上の高エネルギ−積
でかつ熱安定性に優れた希土類-鉄-ボロン焼結磁石が得
られることを見いだした。本発明において、900℃以
上のインゴットの熱処理は溶解鋳造時に析出する軟磁性
のα−Feを主相中に再固溶させるために有効であり、
特に本発明におけるDy含有量の少ない合金においては
平衡状態において、広い温度範囲においてα-鉄の析出
領域が存在するため磁気特性の改善および粉砕時の平均
粒径の制御に極めて有効な手段である。900℃以上で
のインゴットの熱処理はDy含有量が1.5重量%の合
金に対しても有効であるが、Dy含有量が2重量を越え
るとその効果は顕著でない。また、希土類含有量が増加
するとα−Feの析出温度領域が狭くなるために、その
効果は顕著ではなく、希土類含有量が32重量%の合金
に対し極めて有効である。900℃以上の熱処理を行っ
たインゴットを粉砕することにより、熱処理を行わない
場合と比較し粉砕効率が改善され粉砕粉の粒径分布をシ
ャ−プにすることは可能である。しかし、それだけでは
粉砕後の微粉中に10%以上の微粉砕10ミクロン以上
の粗粉が存在しており、このような微粉を成形し焼結し
た磁石体中には当然のことながら10%以上の粗大粒子
が存在する。この粗大粒子は磁石の角型比すなわち実質
的にはHkを低下させる。本発明においてはこのような
問題点を解決するために粉砕時、10ミクロン以下の微
粉と10ミクロン以上の粗粉を分離し粗粉を粉砕機中に
循環粉砕させることにより平均粒径を3〜7ミクロンと
し、かつ10ミクロン以上の粗粉の存在確率を10%以
下とし粒径分布のシャ−プな焼結磁石の原料粉が得られ
ることを見いだした。本発明において、粉砕粉の平均粒
径を7ミクロン以下と規定した理由は平均粒径が7ミク
ロンを越えると得られる固有保磁力の値が残留磁束密度
の値の95%以下になるためであり、3ミクロン以上と
規定した理由は平均粒径が3ミクロン以下では酸素量が
増加し、残留磁束密度の低下およびエネルギ−積の低下
が避けられないこと、また粉体の比表面積の増加により
成形工程等において、その取扱が工業上困難になるため
である。請求項2においてB量を0.9%以上とした理
由は、0.9重量%以下においてはNd2Fe17相の析出
により磁気特性、特に保磁力およびHkの低下が著しい
ためであり、1.2重量%以下とした理由は1.2重量%
以上においてはNdFe44相の析出により、粉砕性が
低下し粒径分布のシャ−プな原料粉を得ることが困難な
ためである。請求項3の添加元素は焼結時の結晶粒径成
長抑制あるいは、ち密化の促進に効果がある。しかし
1.5重量%以上の添加は磁気特性を低下させる。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention uses Dy of 1.5% by weight or less as an alloy component.
90 melt-casting ingot containing
After heat treatment at 0 ° C. or higher and rapid cooling to 700 ° C. or lower at a cooling rate of 50 ° C./min or more, the ingot has an average particle size of 3 to 7
Oxygen in the sintered body is 3 to 10 microns when the average crystal grain size of the sintered body is 3 to 10 microns by crushing to a micron and further setting the existence ratio of the coarse powder of 10 microns or more contained in the pulverized powder to 10% or less. In the magnetic properties after the heat treatment, the intrinsic coercive force is 9% of the residual magnetic flux density.
It was found that a rare earth-iron-boron sintered magnet having a high energy product of 5% or more and a squareness ratio of 94% or more and excellent thermal stability can be obtained. In the present invention, the heat treatment of the ingot at 900 ° C. or higher is effective for re-dissolving the soft magnetic α-Fe precipitated during the melting and casting in the main phase,
In particular, in the alloy of the present invention having a small Dy content, in the equilibrium state, since there is a precipitation region of α-iron in a wide temperature range, it is an extremely effective means for improving the magnetic properties and controlling the average particle size during grinding. . The heat treatment of the ingot at 900 ° C. or higher is effective for the alloy having a Dy content of 1.5% by weight, but the effect is not remarkable when the Dy content exceeds 2%. Further, as the rare earth content increases, the α-Fe precipitation temperature region becomes narrower, so that the effect is not remarkable, and it is extremely effective for an alloy having a rare earth content of 32% by weight. By crushing the ingot that has been heat-treated at 900 ° C. or higher, the crushing efficiency is improved and the particle size distribution of the crushed powder can be sharpened as compared with the case where the heat treatment is not performed. However, by itself, there is 10% or more of finely pulverized coarse particles of 10 microns or more in the fine powder after pulverization. Naturally, 10% or more is naturally present in the magnet body obtained by molding and sintering such fine powder. There are coarse particles of. The coarse particles reduce the squareness ratio of the magnet, that is, substantially reduce Hk. In the present invention, in order to solve such a problem, at the time of pulverization, a fine powder of 10 microns or less and a coarse powder of 10 microns or more are separated, and the coarse powder is circulated and pulverized in a pulverizer so that the average particle diameter is 3 to It was found that the raw material powder of the sintered magnet having a sharp particle size distribution was obtained by setting the probability of existence of the coarse powder of 7 microns and 10 microns or more to 10% or less. In the present invention, the reason for defining the average particle size of the pulverized powder as 7 microns or less is that the value of the intrinsic coercive force obtained when the average particle size exceeds 7 microns is 95% or less of the value of the residual magnetic flux density. The reason for defining as 3 microns or more is that when the average particle size is 3 microns or less, the amount of oxygen increases, a decrease in residual magnetic flux density and a decrease in energy product are unavoidable, and the specific surface area of the powder increases This is because the handling becomes industrially difficult in the process and the like. The reason why the amount of B is set to 0.9% or more in claim 2 is that the precipitation of the Nd 2 Fe 17 phase significantly reduces the magnetic properties, especially the coercive force and Hk at 0.9% by weight or less. 1.2% by weight is the reason why the amount is less than .2% by weight
This is because the precipitation of the NdFe 4 B 4 phase deteriorates the pulverizability and it is difficult to obtain a raw material powder having a sharp particle size distribution. The additional element of claim 3 is effective in suppressing the growth of the crystal grain size during sintering or promoting the densification. However, addition of more than 1.5% by weight deteriorates magnetic properties.

【0005】[0005]

【実施例】以下実施例により本発明を詳細に説明する。 (実施例1)高周波溶解により総希土類量を一定とし、
Dy含有量の異なる組成の合金を溶解した。これらの鋳
造インゴットを1100℃真空中で4時間熱処理し、A
r気流中で急冷した。急冷したインゴットを予め水素気
流中で自己崩壊させ約200ミクロンの粗粉とした後、
窒素気流中で乾式ジェットミル粉砕を行った。粉砕時、
粉砕室内の分級ゾ−ン下部より粗粉を循環させ繰り返し
粉砕を行い。平均粒径、約5ミクロンの微粉を得た。こ
の微粉を磁界中で成形し、1100℃で2時間真空中で
焼結した後、600℃で2時間Ar中で熱処理し、磁気
特性を測定した。結果を、同一組成の合金を熱処理を施
さなかったインゴットによる磁石との比較で図1に示
す。インゴットの熱処理を行うことにより、高い保磁力
が得られることがわかる。
The present invention will be described in detail with reference to the following examples. (Example 1) The total amount of rare earths was made constant by high frequency melting,
Alloys having different Dy contents were melted. These cast ingots were heat treated in a vacuum at 1100 ° C. for 4 hours,
It was rapidly cooled in an air stream. The rapidly cooled ingot was self-disintegrated in a hydrogen stream to make a coarse powder of about 200 microns,
Dry jet mill pulverization was performed in a nitrogen stream. When crushing,
Coarse powder is circulated from the lower part of the classification zone in the grinding chamber to repeat grinding. A fine powder with an average particle size of about 5 microns was obtained. This fine powder was molded in a magnetic field, sintered in vacuum at 1100 ° C. for 2 hours, and then heat-treated in Ar at 600 ° C. for 2 hours to measure magnetic properties. The results are shown in FIG. 1 in comparison with a magnet made of an ingot in which an alloy having the same composition was not heat-treated. It can be seen that high coercive force can be obtained by performing heat treatment on the ingot.

【0006】(実施例2)高周波溶解により、Ndが2
9.5重量%,Dyが0.8重量%,Bが1.05重量
%,Nbが0.5重量%,残部Feよりなる合金を高周
波溶解し鋳造しインゴットを作製した。インゴットの半
分を実施例1と同様に1100℃で熱処理、以下同様の
工程で循環粉砕,焼結,熱処理を行い永久磁石とした。
一方、半分のインゴットは比較のため熱処理を行わず
に、水素雰囲気中で自己崩壊させた後循環粉砕を行わな
いで、1パスにて通常の粉砕を行った。表1および表2
に比較例との比較で本発明の実施結果を示す。
(Example 2) Nd was reduced to 2 by high frequency melting.
An alloy composed of 9.5% by weight, 0.8% by weight of Dy, 1.05% by weight of B, 0.5% by weight of Nb, and the balance of Fe was high-frequency melted and cast to prepare an ingot. Half of the ingot was heat-treated at 1100 ° C. in the same manner as in Example 1, and then pulverized by circulation, sintered and heat-treated in the same steps to obtain a permanent magnet.
On the other hand, half of the ingots were subjected to normal crushing in one pass without heat treatment for comparison and without self-disintegration in a hydrogen atmosphere and then cyclic crushing. Table 1 and Table 2
The results of carrying out the present invention are shown in comparison with Comparative Examples.

【0007】[0007]

【表1】 [Table 1]

【0008】[0008]

【表2】 [Table 2]

【0009】(実施例3)高周波溶解により、表3に示
す組成の合金を溶解鋳造した。鋳造インゴットを実施例
1と同様の方法で熱処理し以後実施例1と同様の方法で
粉砕,焼結,熱処理し磁気特性を測定した結果を表4に
示す。
Example 3 Alloys having the compositions shown in Table 3 were melt-cast by high frequency melting. Table 4 shows the results of measuring the magnetic properties of the cast ingot which was heat-treated in the same manner as in Example 1 and then crushed, sintered and heat-treated in the same manner as in Example 1.

【0010】[0010]

【表3】 [Table 3]

【0011】[0011]

【表4】 [Table 4]

【0012】(実施例4)Ndが31重量%,Dy1.
1重量%,Al0.3重量%,Mo0.4重量%,残部
Feよりなる鋳造インゴットを1100℃で4時真空中
で熱処理した後Ar気流中で冷却した。以後実施例1と
同様の処理にて粗粉とした後、窒素気流による乾式ジェ
ットミルによる循環粉砕を行った。粉砕時に粉砕条件を
種々変化させ粉砕粉の平均粒径を変化させた。以後、こ
れらの微粉を実施例1と同様に焼結磁石とし、磁気特性
を調べた。結果を図2に示す。図2より微粉の平均粒径
が3〜7μmにおいて高い保磁力が得られ、かつ焼結体
の酸素量が5000ppm以下に低減できる。
(Example 4) Nd 31% by weight, Dy1.
A cast ingot composed of 1% by weight, 0.3% by weight of Al, 0.4% by weight of Mo, and the balance Fe was heat-treated in vacuum at 1100 ° C. for 4 hours and then cooled in an Ar stream. Thereafter, the same treatment as in Example 1 was carried out to make coarse powder, and then cyclic pulverization was carried out by a dry jet mill using a nitrogen stream. During crushing, the crushing conditions were variously changed to change the average particle size of the crushed powder. Thereafter, these fine powders were used as sintered magnets in the same manner as in Example 1 to examine the magnetic characteristics. The results are shown in Figure 2. As shown in FIG. 2, a high coercive force can be obtained when the average particle size of the fine powder is 3 to 7 μm, and the oxygen content of the sintered body can be reduced to 5000 ppm or less.

【0013】[0013]

【発明の効果】本発明によれば従来不十分であった、低
希土類かつ低Dyの組成領域においても高い保磁力と残
留磁束密度を有する、高エネルギ−積の希土類−鉄−ボ
ロン系の永久磁石の製造が可能である。
According to the present invention, a permanent magnet of a high energy-product rare earth-iron-boron system having a high coercive force and a residual magnetic flux density even in a composition region of low rare earth and low Dy, which has hitherto been insufficient. It is possible to manufacture magnets.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる、インゴットの熱処理の効果を
合金中のDy量と磁 気特性の関係で示したものであ
る。
FIG. 1 shows the effect of heat treatment of an ingot according to the present invention by the relationship between the amount of Dy in the alloy and magnetic properties.

【図2】本発明に係わる、循環粉砕の効果を粉砕粉の平
均粒径と焼結体の酸 素量および磁気特性の関係で示し
たものである。
FIG. 2 is a graph showing the effect of circulating pulverization according to the present invention, in terms of the average particle size of pulverized powder, the amount of oxygen in a sintered body, and the magnetic properties.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // H01F 1/053 (72)発明者 古城 勝彦 埼玉県熊谷市三ケ尻5200番地日立金属株式 会社磁性材料研究所内 (72)発明者 徳永 雅亮 埼玉県熊谷市三ケ尻5200番地日立金属株式 会社磁性材料研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location // H01F 1/053 (72) Inventor Katsuhiko Furujo 5200 Sankejiri, Kumagaya-shi, Saitama Hitachi Metals Co., Ltd. Magnetic Materials Research Laboratory (72) Inventor Masaaki Tokunaga 5200 Mikashiri, Kumagaya, Saitama Hitachi Metals Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 R-Fe-B−Mで表される希土類,鉄,
ボロンを主たる構成元素とする焼結磁石合金において、
希土類元素Rの構成比率が27重量%以上で32重量%
以下でありRの一部が1.5重量%以下のDyで置換さ
れ残部Rが実質的にNdとPrであることを特徴とする
永久磁石合金。
1. A rare earth represented by R-Fe-BM, iron,
In sintered magnet alloys containing boron as the main constituent element,
32% by weight when the composition ratio of the rare earth element R is 27% by weight or more
The following is a permanent magnet alloy characterized in that part of R is replaced by Dy of 1.5% by weight or less and the balance R is substantially Nd and Pr.
【請求項2】 請求項1記載の永久磁石合金において、
Bが0.9重量%以上で1.2重量%以下であることを特
徴とする永久磁石合金。
2. The permanent magnet alloy according to claim 1, wherein
A permanent magnet alloy, characterized in that B is 0.9% by weight or more and 1.2% by weight or less.
【請求項3】 請求項1及び2記載の永久磁石合金にお
いて、MがTi,Zr,V,Mo,W,Nb,Hf,A
l,Cu,Ni,Cr,Mnより選択された1種または
2種以上であり、それらの添加量の合計が1.5重量%
以下であることを特徴 とする永久磁石合金。
3. The permanent magnet alloy according to claim 1, wherein M is Ti, Zr, V, Mo, W, Nb, Hf, A.
1, 1 or 2 or more selected from Cu, Ni, Cr and Mn, and the total addition amount thereof is 1.5% by weight.
A permanent magnet alloy characterized by the following:
【請求項4】 請求項1から3記載の永久磁石合金を溶
解、鋳造、粉砕、磁界中成形、焼結、熱処理してなる永
久磁石の製造方法において、鋳造後のインゴットを90
0℃以上1200℃以下で非酸化性雰囲気中で2時間以
上熱処理することを特徴とする永久磁石の製造方法。
4. A method for producing a permanent magnet, which comprises melting, casting, crushing, forming in a magnetic field, sintering, and heat treating the permanent magnet alloy according to any one of claims 1 to 3, wherein the cast ingot is 90
A method for producing a permanent magnet, which comprises performing a heat treatment at 0 ° C. or more and 1200 ° C. or less in a non-oxidizing atmosphere for 2 hours or more.
【請求項5】 請求項1から4記載の永久磁石合金の製
造方法において粉砕時の合金粉末の粉砕平均粒径を3〜
7ミクロンとし、10ミクロン以上の粗粉の存在確立を
10%以下としたことを特徴とする永久磁石の製造方
法。
5. The method for producing a permanent magnet alloy according to claim 1, wherein the pulverized average particle size of the alloy powder during pulverization is 3 to 3.
The method for producing a permanent magnet is characterized in that the existence of coarse particles of 10 microns or more is set to 7% or less and the probability of existence of the coarse powder is 10% or less.
【請求項6】 請求項1から5記載の永久磁石合金の製
造方法において粉砕時に10ミクロン以上の粗粉を分離
し粗粉を循環粉砕することを特徴とする永久磁石の製造
方法。
6. The method for producing a permanent magnet according to any one of claims 1 to 5, wherein coarse particles of 10 microns or more are separated during pulverization and the coarse particles are circulated and pulverized.
【請求項7】 請求項1から4記載の永久磁石合金およ
びその製造方法において、焼結体の平均結晶粒径が3ミ
クロン以上で10ミクロン以下であり焼結体の酸素量が
2000〜5000ppmであることを特徴とする永久
磁石。
7. The permanent magnet alloy according to any one of claims 1 to 4, wherein the average crystal grain size of the sintered body is 3 microns or more and 10 microns or less, and the oxygen content of the sintered body is 2000 to 5000 ppm. A permanent magnet characterized by being present.
【請求項8】 請求項1から7記載の永久磁石合金およ
びその製造方法において、熱処理後の固有保磁力が残留
磁束密度の値の95%以上であり、かつ角型比(Hkの
値を固有保磁力で除した値)が94%以上であることを
特徴とする永久磁石。
8. The permanent magnet alloy according to any one of claims 1 to 7, wherein the intrinsic coercive force after heat treatment is 95% or more of the value of the residual magnetic flux density, and the squareness ratio (the value of Hk is inherent A value obtained by dividing by a coercive force) is 94% or more.
JP4151832A 1992-06-11 1992-06-11 Permanent matnet alloy and its manufacture Pending JPH05339683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4151832A JPH05339683A (en) 1992-06-11 1992-06-11 Permanent matnet alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4151832A JPH05339683A (en) 1992-06-11 1992-06-11 Permanent matnet alloy and its manufacture

Publications (1)

Publication Number Publication Date
JPH05339683A true JPH05339683A (en) 1993-12-21

Family

ID=15527284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4151832A Pending JPH05339683A (en) 1992-06-11 1992-06-11 Permanent matnet alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPH05339683A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012316A (en) * 1998-06-24 2000-01-14 Sumitomo Metal Mining Co Ltd Rare earth bond magnet, and magnetic powder and composition therefor
CN112877581A (en) * 2021-01-12 2021-06-01 包头金山磁材有限公司 Preparation method of improved neodymium iron boron cast sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012316A (en) * 1998-06-24 2000-01-14 Sumitomo Metal Mining Co Ltd Rare earth bond magnet, and magnetic powder and composition therefor
CN112877581A (en) * 2021-01-12 2021-06-01 包头金山磁材有限公司 Preparation method of improved neodymium iron boron cast sheet

Similar Documents

Publication Publication Date Title
EP0101552B2 (en) Magnetic materials, permanent magnets and methods of making those
JP3909707B2 (en) Rare earth magnet and manufacturing method thereof
EP1105889A4 (en) High performance iron-rare earth-boron-refractory-cobalt nanocomposites
JPH11186016A (en) Rare-earth element-iron-boron permanent magnet and its manufacture
EP1127358B1 (en) Sm (Co, Fe, Cu, Zr, C) COMPOSITIONS AND METHODS OF PRODUCING SAME
JP3560387B2 (en) Magnetic material and its manufacturing method
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPH11251125A (en) Rare-earth-iron-boron sintered magnet and its manufacture
JP2000219942A (en) Alloy thin strip for rare earth magnet, alloy fine powder and their production
JPH0680608B2 (en) Rare earth magnet manufacturing method
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH08181009A (en) Permanent magnet and its manufacturing method
JPH05258928A (en) Permanent magnet and powder thereof and manufacturing method thereof
JPH05339683A (en) Permanent matnet alloy and its manufacture
JPH0620813A (en) Rare earth anisotropic permanent magnet powder and manufacture thereof
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JPH05339684A (en) Permanent magnet alloy and its manufacture
JPH08148315A (en) Production of rare earth magnet
JP3209291B2 (en) Magnetic material and its manufacturing method
JP3209292B2 (en) Magnetic material and its manufacturing method
JPH06112019A (en) Nitride magnetic material
JPH02138707A (en) Rare-earth magnet powder annealing method
JP3053344B2 (en) Rare earth magnet manufacturing method
JPS63216307A (en) Alloy powder for magnet
JP3253006B2 (en) RE-T-M-B sintered magnet with excellent magnetic properties