JPH05339684A - Permanent magnet alloy and its manufacture - Google Patents
Permanent magnet alloy and its manufactureInfo
- Publication number
- JPH05339684A JPH05339684A JP4151833A JP15183392A JPH05339684A JP H05339684 A JPH05339684 A JP H05339684A JP 4151833 A JP4151833 A JP 4151833A JP 15183392 A JP15183392 A JP 15183392A JP H05339684 A JPH05339684 A JP H05339684A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- less
- magnet alloy
- rare earth
- coercive force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は希土類-鉄-ボロン系の焼
結磁石に関するものである。特にコンピュ−タの外部磁
気記憶装置に使用されるボイスコイルモ−タ用磁石等の
高いエネルギ−積が要求される永久磁石およびその製造
方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-iron-boron system sintered magnet. In particular, the present invention relates to a permanent magnet that requires a high energy product, such as a magnet for a voice coil motor used in an external magnetic storage device of a computer, and a manufacturing method thereof.
【0002】[0002]
【従来の技術】希土類-鉄-ボロン系磁石はコンピュ−タ
の外部磁気記憶装置であるボイスコイルモ−タ等に使用
されている。この磁石の製造方法には超急冷法と焼結法
の二つがある。超急冷磁石は、メルトスピニング法等の
手段を用いて得られた薄帯または粉末を熱間で塑性加工
し磁気的に異方性化した高エネルギ−積の永久磁石であ
る。この永久磁石は特開昭59−64739号に記載さ
れているように、製造工程中に合金を粉砕する工程を基
本的には必要としないため、磁石内に不純物として含ま
れる酸素量が通常2000ppm以下と少ない。また磁
石を形成する個々の結晶の粒子径が1ミクロン以下と小
さいため、高いエネルギ−積と高い保磁力が得られる。
このため超急冷法による異方性磁石はボイスコイルモ−
タ用の磁石として注目されてきた。しかし異方性の超急
冷磁石は製造工程が複雑なこと、熱間での塑性加工を行
うための大がかりな設備を必要とするから焼結磁石と比
較し製造コストが高い。焼結希土類磁石はボイスコイル
モ−タ用の磁石をはじめ様々な用途に利用されており年
々需要が増加している。一方で、焼結希土類-鉄-ボロン
系磁石の磁気特性、特に最大エネルギ−積を向上させよ
うとする研究、および開発が盛んに行われている。焼結
希土類-鉄-ボロン磁石の最大エネルギ−積を高くするた
めには、永久磁石としての磁性を担っているNd2Fe1
4B相の磁石中で占める体積比率を出来るだけ高くし、
かつ保磁力を担っている希土類リッチな第2相をNd2
Fe14B相の周囲に最小かつ均一に分散させれば良いこ
とが知られている。上記基本的な概念を実用の磁石体の
中で実現しようとする試みが種々なされている。例えば
特開昭63−99502号公報においては酸素量を30
0ppm以下とし合金中の希土類量を13原子%以下と
することに高エネルギ−積化する手段が開示されてい
る。しかしながら磁石中の酸素量を300ppmとする
ためには、使用する原料中の酸素量を抑制する必要があ
り高価な原料を使用しなければならない他、溶解時の坩
堝等からの酸素の混入を防止するために浮揚溶解などの
複雑な設備を必要とし工業レベルでの生産には適さな
い。一方、特開昭63−48805号公報には第2相で
ある希土類リッチ相をメルトスピニング法で作製し、主
相であるNd2Fe14B相に近い組成の合金に混合し焼
結する方法が開示されている。 しかしメルトスピニン
グ法は工業的に高価であること、また主相に近い相はα
- 鉄等の析出により粉砕性が悪いため高い保磁力が得ら
れないという問題点がある。ボイスコイルモ−タとして
使用される希土類-鉄-ボロン磁石に必要な固有保磁力は
一般的には12kOe以上であるが、使用環境を80〜
120℃と設定した場合本系磁石の保磁力の温度係数を
−0.55〜−0.65%/℃と想定した場合、室温で
の残留磁束密度の少なくとも95%の固有保磁力が必要
である。この要求を満足させるために、従来希土類元素
の一部を2重量%程度のDyで置換することが試みられ
てきた。Dyの添加は主相のHaを向上させ保磁力の改
善には極めて有効であるが、Dyの持つ磁気モ−メント
がFeおよびNd,Prの磁気モ−メントとフェリ強磁
性的に結合するため磁石の飽和磁化を著しく低下させる
という欠点を有する。Dyの持つ欠点を解消することを
目的に、Dyの添加量を最小限に抑えながら、かつ実用
的に必要な保磁力を得るためにNb,Al,Zr,W,
Moその他の元素を複合添加した発明も多数開示されて
いる。複合添加する元素の役割はが焼結過程での粒成長
を抑制したり、あるいは希土類リッチ相と主相の界面を
改良することにより保磁力を改善する効果が得られる。
しかし、このような複合添加の効果を利用しても室温で
残留磁束密度に対し95%以上の固有保磁力を得るため
には、1.5重量%程度のDyが必 要であり、このこと
が焼結磁石において超急冷磁石より高いエネルギ−積を
得ることを困難としていた。本発明は以上の背景に鑑
み、低希土類かつ低Dyの組成領域においても高い保磁
力と高い残留磁束密度を有する、高エネルギ−積の希土
類−鉄−ボロン系の永久磁石の提供を課題とする。2. Description of the Related Art Rare earth-iron-boron magnets are used in voice coil motors, which are external magnetic storage devices for computers. There are two methods for manufacturing this magnet: an ultra-quenching method and a sintering method. The ultra-quenching magnet is a high energy-product permanent magnet obtained by hot-plasticizing a ribbon or powder obtained by using a method such as a melt spinning method and magnetically anisotropy. As described in JP-A-59-64739, this permanent magnet basically does not require the step of crushing the alloy during the manufacturing process, so that the amount of oxygen contained as impurities in the magnet is usually 2000 ppm. Less than the following. Further, since the particle size of each crystal forming the magnet is as small as 1 micron or less, a high energy product and a high coercive force can be obtained.
For this reason, an anisotropic magnet produced by the ultra-quenching method is a voice coil model.
It has been attracting attention as a magnet for magnets. However, anisotropic ultra-quenched magnets have a complicated manufacturing process and require large-scale equipment for performing hot plastic working, so that the manufacturing cost is higher than that of sintered magnets. Sintered rare earth magnets are used in various applications including magnets for voice coil motors, and the demand for them is increasing year by year. On the other hand, research and development have been actively conducted to improve the magnetic characteristics of sintered rare earth-iron-boron magnets, particularly the maximum energy product. In order to increase the maximum energy product of the sintered rare earth-iron-boron magnet, Nd2Fe1 which has the magnetism as a permanent magnet.
Make the volume ratio of the 4B phase magnet as high as possible,
And the rare earth-rich second phase that is responsible for the coercive force is Nd2
It is known that it is sufficient to disperse the Fe14B phase around the minimum and evenly. Various attempts have been made to realize the above basic concept in a practical magnet body. For example, in JP-A-63-99502, the amount of oxygen is 30
A means for achieving high energy product is disclosed in which the content of rare earth in the alloy is set to 0 ppm or less and 13 atomic% or less. However, in order to set the amount of oxygen in the magnet to 300 ppm, it is necessary to suppress the amount of oxygen in the raw material used, and it is necessary to use expensive raw materials, and to prevent the mixing of oxygen from the crucible during melting. Therefore, it requires complicated equipment such as flotation and melting, which is not suitable for industrial production. On the other hand, Japanese Patent Application Laid-Open No. 63-48805 discloses a method in which a rare earth-rich phase which is a second phase is prepared by a melt spinning method, which is mixed with an alloy having a composition close to that of the Nd2Fe14B phase which is a main phase and is sintered. There is. However, the melt spinning method is industrially expensive, and the phase close to the main phase is α
-There is a problem that high coercive force cannot be obtained due to poor pulverizability due to precipitation of iron and the like. The rare earth-iron-boron magnet used as a voice coil motor generally has an intrinsic coercive force of 12 kOe or more, but the operating environment is 80-
When set to 120 ° C, assuming a temperature coefficient of coercive force of this system magnet of -0.55 to -0.65% / ° C, an intrinsic coercive force of at least 95% of residual magnetic flux density at room temperature is required. is there. In order to satisfy this requirement, it has been attempted to replace a part of the rare earth element with about 2% by weight of Dy. Although the addition of Dy improves the Ha of the main phase and is extremely effective in improving the coercive force, the magnetic moment of Dy is coupled to the magnetic moments of Fe, Nd, and Pr in a ferriferromagnetic manner. It has the drawback of significantly reducing the saturation magnetization of the magnet. In order to eliminate the drawbacks of Dy, the amount of Dy added should be kept to a minimum and Nb, Al, Zr, W,
Many inventions in which Mo and other elements are added in combination are also disclosed. The role of the added elements is to suppress grain growth in the sintering process or to improve the coercive force by improving the interface between the rare earth-rich phase and the main phase.
However, in order to obtain an intrinsic coercive force of 95% or more with respect to the residual magnetic flux density at room temperature even if the effect of such composite addition is utilized, Dy of about 1.5% by weight is necessary. Made it difficult to obtain a higher energy product in a sintered magnet than in an ultra-quenched magnet. In view of the above background, an object of the present invention is to provide a high energy-product rare earth-iron-boron-based permanent magnet having a high coercive force and a high residual magnetic flux density even in a composition region of low rare earth and low Dy. ..
【0003】[0003]
【問題を解決する手段】上記問題点を解決するために、
本発明は合金成分として1.5重量%以下のDyを含有
する溶解鋳造インゴットを非酸化雰囲気中で900℃以
上で熱処理し、700℃以下まで50℃/分以上の冷却
速度で急冷した後、インゴットを平均粒径3〜7ミクロ
ンに粉砕し、さらに粉砕粉中に含まれる10ミクロン以
上の粗粉の存在比率を10%以下とすることにより、焼
結体の平均結晶粒径が3〜10ミクロンで焼結体中の酸
素量が2000〜500ppmでかつ、熱処理後の磁気
特性においてその固有保磁力が残留磁束密度の95%以
上であり、角型比が94%以上の高エネルギ−積でかつ
熱安定性に優れた希土類-鉄-ボロン焼結磁石が得られる
ことを見いだした。本発明において、900℃以上のイ
ンゴットの熱処理は溶解鋳造時に析出する軟磁性のα−
Feを主相中に再固溶させるために有効であり、特に本
発明におけるDy含有量の少ない合金においては平衡状
態において、広い温度範囲においてα-鉄の析出領域が
存在するため磁気特性の改善および粉砕時の平均粒径の
制御に極めて有効な手段である。900℃以上でのイン
ゴットの熱処理はDy含有量が1.5重量%の合金に対
しても有効であるが、Dy含有量が2重量を越えるとそ
の効果は顕著でない。また、希土類含有量が増加すると
α−Feの析出温度領域が狭くなるために、その効果は
顕著ではない。したがって、、希土類含有量を32重量
%以下とする。900℃以上の熱処理を行ったインゴッ
トを粉砕することにより、熱処理を行わない場合と比較
し粉砕効率が改善され粉砕粉の粒径分布をシャ−プにす
ることは可能である。しかし、それだけでは粉砕後の微
粉中に10%以上の未粉砕である10ミクロン以上の粗
粉が存在しており、このような微粉を成形し焼結した磁
石体中には当然のことながら10%以上の粗大粒子が存
在する。この粗大粒子は磁石の角型比すなわち実質的に
はHkを低下させる。本発明においてはこのような問題
点を解決するために粉砕時、10ミクロン以下の微粉と
10ミクロン以上の粗粉を分離し粗粉を粉砕機中に循環
粉砕させることにより平均粒径を3〜7ミクロンとし、
かつ10ミクロン以上の粗粉の存在確率を10%以下と
し粒径分布のシャ−プな焼結磁石の原料粉が得られるこ
とを見いだした。本発明において、粉砕粉の平均粒径を
7ミクロン以下と規定した理由は平均粒径が7ミクロン
を越えると得られる固有保磁力の値が残留磁束密度の値
の95%以下となるためであり。3ミクロン以上と規定
した理由は平均粒径が3ミクロン以下では酸素量が増加
し、残留磁束密度の低下およびエネルギ−積の低下が避
けられないこと、また粉体の比表面積の増加により成形
工程等において、その取扱が工業上困難になるためであ
る。本発明において、Dy以外のRとしてはNd、Pr
等の従来公知の元素を用いることができる。本発明にお
いてB量を0.9%以上とした理由は、0.9重量%未満
ではNd2Fe17相の析出により磁気特性、特に保磁力
およびHkの低下が著しい ためであり、一方1.2重量
%以下とした理由は1.2重量%を越えるとNdFe4B
4相の析出により、粉砕性が低下し粒径分布のシャ−プ
な原料粉を得ることが困難なためである。本発明におい
てMで示される添加元素は、焼結時の結晶粒径成長抑制
あるいは、ち密化の促進に効果がある。しかし1.5重
量%を越える添加は磁気特性を低下さため1.5重量%
以下とする。[Means for Solving Problems] In order to solve the above problems,
According to the present invention, a melt cast ingot containing Dy of 1.5 wt% or less as an alloy component is heat-treated at 900 ° C. or higher in a non-oxidizing atmosphere and rapidly cooled to 700 ° C. or lower at a cooling rate of 50 ° C./min or higher, By crushing the ingot to an average particle size of 3 to 7 microns, and further setting the abundance ratio of the coarse particles of 10 microns or more contained in the crushed powder to 10% or less, the average crystal grain size of the sintered body becomes 3 to 10 The sintered body has an oxygen content of 2000 to 500 ppm, a specific coercive force of 95% or more of the residual magnetic flux density, and a squareness ratio of 94% or more. It was also found that a rare earth-iron-boron sintered magnet having excellent thermal stability can be obtained. In the present invention, the heat treatment of the ingot at 900 ° C. or higher causes the soft magnetic α-precipitated during melting and casting.
It is effective for re-dissolving Fe in the main phase, and particularly in the alloy having a small Dy content in the present invention, in the equilibrium state, there is an α-iron precipitation region in a wide temperature range, so that the magnetic properties are improved. It is also an extremely effective means for controlling the average particle size during pulverization. The heat treatment of the ingot at 900 ° C. or higher is effective for the alloy having a Dy content of 1.5% by weight, but the effect is not remarkable when the Dy content exceeds 2%. Further, as the rare earth content increases, the α-Fe precipitation temperature region narrows, so that the effect is not remarkable. Therefore, the rare earth content is set to 32% by weight or less. By crushing the ingot that has been heat-treated at 900 ° C. or higher, the crushing efficiency is improved and the particle size distribution of the crushed powder can be sharpened as compared with the case where the heat treatment is not performed. However, by itself, 10% or more of unpulverized coarse powder of 10 microns or more is present in the fine powder after pulverization. Naturally, in a magnet body obtained by molding and sintering such fine powder, % Or more of coarse particles are present. The coarse particles reduce the squareness ratio of the magnet, that is, substantially reduce Hk. In the present invention, in order to solve such a problem, at the time of pulverization, a fine powder of 10 microns or less and a coarse powder of 10 microns or more are separated, and the coarse powder is circulated and pulverized in a pulverizer so that the average particle diameter is 3 to 7 microns,
Further, it was found that the existence probability of the coarse powder of 10 microns or more was set to 10% or less and the raw material powder of the sintered magnet having a sharp particle size distribution was obtained. In the present invention, the reason for defining the average particle size of the pulverized powder as 7 microns or less is that the value of the intrinsic coercive force obtained when the average particle size exceeds 7 microns is 95% or less of the value of the residual magnetic flux density. .. The reason for defining as 3 micron or more is that when the average particle size is 3 micron or less, the amount of oxygen increases, the reduction of the residual magnetic flux density and the reduction of the energy product cannot be avoided, and the specific surface area of the powder increases, which results in the molding process. This is because the handling becomes difficult industrially. In the present invention, R other than Dy is Nd or Pr.
Conventionally known elements such as the above can be used. In the present invention, the reason why the B content is set to 0.9% or more is that if it is less than 0.9% by weight, the magnetic properties, particularly coercive force and Hk are remarkably lowered due to the precipitation of the Nd2Fe17 phase. The reason for setting below is NdFe4B when it exceeds 1.2% by weight.
This is because the precipitation of four phases reduces the pulverizability and makes it difficult to obtain a raw material powder having a sharp particle size distribution. In the present invention, the additional element represented by M is effective in suppressing the growth of the crystal grain size during sintering or promoting the densification. However, the addition of more than 1.5% by weight deteriorates the magnetic properties, so 1.5% by weight
Below.
【0004】[0004]
【実施例】以下実施例により本発明を詳細に説明する。 (実施例1)高周波溶解により総希土類量を一定としさ
らにCo量を5重量%とし、Dy含有量の異なる組成の
合金を溶製した。これらの鋳造インゴットを1150℃
真空中で4時間熱処理し、Ar気流中で急冷した。急冷
したインゴットを予め水素気流中で自己崩壊させ約20
0ミクロンの粗粉とした後、窒素気流中で乾式ジェット
ミル粉砕を行った。粉砕時、粉砕室内の分級ゾ−ン下部
より粗粉を循環させ繰り返し粉砕を行い、平均粒径約5
ミクロンの微粉を得た。この微粉を磁界中で成形し、1
100℃で2時間真空中で焼結した後、600℃で2時
間Ar中で熱処理し、磁気特性を測定した。結果を、同
一組成の合金を熱処理を施さなかったインゴットによる
磁石との比較で図1に示す。インゴットの熱処理を行う
ことにより、高い保磁力が得られることがわかる。The present invention will be described in detail with reference to the following examples. (Example 1) Alloys having different compositions of Dy contents were prepared by making the total amount of rare earths constant by high frequency melting and further setting the amount of Co to 5% by weight. These cast ingots were heated to 1150 ° C
It heat-processed in vacuum for 4 hours, and was rapidly cooled in Ar stream. The rapidly cooled ingot was self-disintegrated in a hydrogen stream in advance for about 20 minutes.
After making a coarse powder of 0 micron, it was subjected to dry jet mill grinding in a nitrogen stream. During crushing, coarse powder is circulated from the lower part of the classification zone in the crushing chamber and repeatedly crushed to obtain an average particle size of about 5
Micron fines were obtained. Mold this fine powder in a magnetic field and
After sintering in vacuum at 100 ° C. for 2 hours, heat treatment was performed in Ar at 600 ° C. for 2 hours to measure magnetic properties. The results are shown in FIG. 1 in comparison with an ingot magnet in which an alloy having the same composition was not heat-treated. It can be seen that high coercive force can be obtained by performing heat treatment on the ingot.
【0005】(実施例2)高周波溶解により、Ndが2
9.5重量%,Dyが0.8重量%,Bが1.05重量
%,Coが3重量%,Nbが0.5重量%,残部Feよ
りなる合金を高周波溶解し鋳造しインゴットを作製し
た。インゴットの半分を実施例1と同様に1100℃で
熱処理、以下同様の工程で循環粉砕焼結、熱処理を行い
永久磁石とした。一方、半分のインゴットは比較のため
熱処理を行わずに、水素雰囲気中で自己崩壊させた後循
環粉砕を行わないで、1パスにて通常の粉砕を行った。
表1および表2に比較例との比較で本発明の実施結果を
示す。(Example 2) Nd was reduced to 2 by high frequency melting.
9.5 wt%, Dy 0.8 wt%, B 1.05 wt%, Co 3 wt%, Nb 0.5 wt%, the balance Fe alloy is melted by high frequency and cast to make an ingot. did. Half of the ingot was heat-treated at 1100 ° C. in the same manner as in Example 1, and then pulverized by cyclic sinter and heat-treated in the same steps to obtain a permanent magnet. On the other hand, half of the ingots were subjected to normal crushing in one pass without heat treatment for comparison and without self-disintegration in a hydrogen atmosphere and then cyclic crushing.
Tables 1 and 2 show the results of carrying out the present invention in comparison with comparative examples.
【0006】[0006]
【表1】 [Table 1]
【0007】[0007]
【表2】 [Table 2]
【0008】(実施例3)高周波溶解により、表3に示
す組成の合金を溶解鋳造した。鋳造インゴットを実施例
1と同様の方法で熱処理し以後実施例1と同様の方法で
粉砕,焼結,熱処理し磁気特性を測定した結果を表4に
示す。Example 3 An alloy having the composition shown in Table 3 was melt-cast by high frequency melting. Table 4 shows the results of measuring the magnetic properties of the cast ingot which was heat-treated in the same manner as in Example 1 and then crushed, sintered and heat-treated in the same manner as in Example 1.
【0009】[0009]
【表3】 [Table 3]
【0010】[0010]
【表4】 [Table 4]
【0011】(実施例4)Ndが31重量%,Dy1.
3重量%,Al0.6重量%,Nb0.8量%,ボロン
1.05重量%とし、コバルトの添加量を種々変えた溶
解インゴットを作製した。このインゴットを1150℃
で4時真空中で熱処理した後Ar気流中で冷却した。以
後実施例1と同様の処理にて粗粉とした後、実施例1と
同様に焼結磁石とし、磁気特性、焼結体酸素量、平均粒
径を調べた。結果を表5および表6に示す。(Example 4) Nd 31% by weight, Dy1.
3% by weight, 0.6% by weight of Al, 0.8% by weight of Nb, and 1.05% by weight of boron were used to prepare molten ingots with various amounts of cobalt added. This ingot is 1150 ℃
After being heat-treated in a vacuum for 4 hours, it was cooled in an Ar stream. After that, coarse powder was formed by the same process as in Example 1, and then a sintered magnet was formed in the same manner as in Example 1, and the magnetic properties, the oxygen content of the sintered body, and the average particle size were examined. The results are shown in Tables 5 and 6.
【0012】[0012]
【表5】 注:比較例2は1150℃の熱処理を行わなかった。[Table 5] Note: Comparative Example 2 was not heat-treated at 1150 ° C.
【0013】[0013]
【表6】 [Table 6]
【0014】(実施例5)Ndが31重量%,Dy1.
1重量%,Al0.3重量%,Mo0.4重量%,ボロ
ン1.1重量%、コバルト5重量%、残部Feよりなる
鋳造インゴットを1100℃で4時真空中で熱処理した
後Ar気流中で冷却した。以後実施例1と同様の処理に
て粗粉とした後、窒素気流による乾式ジェットミルによ
る循環粉砕を行った。粉砕時に粉砕条件を種々変化させ
粉砕粉の平均粒径を変化させた。以後、これらの微粉を
実施例1と同様に焼結磁石とし、磁気特性を調べた。結
果を図2に示す。図2より微粉の平均粒径が3〜7μm
において高い保磁力が得られ、かつ焼結体の酸素量が5
000ppm以下に低減できる。(Example 5) Nd 31% by weight, Dy1.
A cast ingot composed of 1% by weight, 0.3% by weight of Al, 0.4% by weight of Mo, 1.1% by weight of boron, 5% by weight of cobalt, and the balance of Fe was heat-treated in vacuum at 1100 ° C. for 4 hours and then in an Ar stream. Cooled. After that, the same treatment as in Example 1 was performed to make coarse powder, and then cyclic pulverization was performed by a dry jet mill using a nitrogen stream. During crushing, the crushing conditions were variously changed to change the average particle size of the crushed powder. Thereafter, these fine powders were used as sintered magnets in the same manner as in Example 1, and the magnetic characteristics were examined. The results are shown in Figure 2. From FIG. 2, the average particle size of the fine powder is 3 to 7 μm.
High coercive force was obtained and the oxygen content of the sintered body was 5
It can be reduced to 000 ppm or less.
【0015】[0015]
【発明の効果】本発明によれば従来不十分であった、低
希土類かつ低Dyの組成領域においても高い保磁力と高
い残留磁束密度を有する、高エネルギ−積の希土類−鉄
−ボロン系の永久磁石の製造が可能である。According to the present invention, a high energy-product rare earth-iron-boron system having a high coercive force and a high residual magnetic flux density even in a composition region of low rare earth and low Dy, which has hitherto been insufficient, is obtained. It is possible to manufacture permanent magnets.
【図1】本発明に係わる、インゴットの熱処理の効果を
合金中のDy量と磁気特性の関係で示したものである。FIG. 1 shows the effect of heat treatment of an ingot according to the present invention by the relationship between the amount of Dy in the alloy and the magnetic properties.
【図2】本発明に係わる、循環粉砕の効果を粉砕粉の平
均粒径と焼結体の酸素量および磁気特性の関係で示した
ものである。FIG. 2 is a graph showing the effect of circulating pulverization according to the present invention, in terms of the average particle size of pulverized powder, the oxygen content of the sintered body, and the magnetic properties.
フロントページの続き (72)発明者 古城 勝彦 埼玉県熊谷市三ケ尻5200番地日立金属株式 会社磁性材料研究所内 (72)発明者 徳永 雅亮 埼玉県熊谷市三ケ尻5200番地日立金属株式 会社磁性材料研究所内Front Page Continuation (72) Inventor Katsuhiko Furujo 5200 Sankejiri, Kumagaya-shi, Saitama, Hitachi Metals Co., Ltd. Magnetic Materials Research Laboratory (72) Inventor Masaaki Tokunaga 5200 Sankejiri, Kumagaya, Saitama Hitachi Metals Co., Ltd.
Claims (10)
鉄,ボロンを主たる構成元素とする焼結磁石合金におい
て、希土類元素Rの構成比率が27重量%以上で32重
量%以下であり、RのうちのDyが1.5重量%以下で
あることを特徴とする永久磁石合金。1. A rare earth represented by R-Fe-Co-BM.
In a sintered magnet alloy containing iron and boron as main constituent elements, the constituent ratio of the rare earth element R is 27% by weight or more and 32% by weight or less, and Dy of R is 1.5% by weight or less. Characteristic permanent magnet alloy.
下でかつCoが0〜10重量%以下である請求項1に記
載の永久磁石合金。2. The permanent magnet alloy according to claim 1, wherein B is 0.9 wt% or more and 1.2 wt% or less, and Co is 0 to 10 wt% or less.
H,Al,Cu,Ni,Cr,Mnより選択された1種
または2種以上であり、それらの添加量の合計が1.5
重量%以下である請求項1または2に記載の永久磁石合
金。3. M is Ti, Zr, V, Mo, W, Nb,
One or more selected from H, Al, Cu, Ni, Cr, and Mn, and the total addition amount thereof is 1.5
The permanent magnet alloy according to claim 1 or 2, wherein the content is less than or equal to wt%.
ロン以下であり焼結体の酸素量が2000〜5000p
pmである請求項1〜3のいずれかに記載の永久磁石合
金。4. The average crystal grain size is not less than 3 microns and not more than 10 microns, and the oxygen content of the sintered body is 2000 to 5000 p.
The permanent magnet alloy according to claim 1, which is pm.
値の95%以上であり、かつ角型比(Hkの値を固有保
磁力で除した値)が94%以上である請求項1〜4のい
ずれかに記載の永久磁石合金。5. The intrinsic coercive force after heat treatment is 95% or more of the value of the residual magnetic flux density, and the squareness ratio (Hk value divided by the intrinsic coercive force) is 94% or more. The permanent magnet alloy according to any one of to 4.
磁石合金を溶解、鋳造、粉砕、磁界中成形、焼結、熱処
理してなる永久磁石の製造方法において、鋳造後のイン
ゴットを900℃以上、1250℃以下の非酸化性雰囲
気中で2時間以上熱処理することを特徴とする永久磁石
合金の製造方法。6. A method for producing a permanent magnet, which comprises melting, casting, crushing, forming in a magnetic field, sintering, and heat-treating the permanent magnet alloy according to claim 1, wherein the cast ingot is 900 A method for producing a permanent magnet alloy, which comprises heat-treating for 2 hours or more in a non-oxidizing atmosphere at a temperature of not less than 1 ° C and not more than 1250 ° C.
7ミクロンとし、10ミクロン以上の粗粉の存在確率を
10%以下とした請求項5に記載の永久磁石合金の製造
方法。7. The crushed average particle size of the alloy powder during crushing is 3 to.
The method for producing a permanent magnet alloy according to claim 5, wherein the probability of existence of the coarse powder having a size of 7 microns is 10% or less.
し粗粉を循環粉砕する請求項5または6に記載の永久磁
石合金の製造方法。8. The method for producing a permanent magnet alloy according to claim 5, wherein coarse powder of 10 μm or more is separated at the time of pulverization, and the coarse powder is circulated and pulverized.
10ミクロン以下であり焼結体の酸素量が2000〜5
000ppmである請求項5〜7のいずれかに記載の永
久磁石。9. The average crystal grain size of the sintered body is 3 μm or more and 10 μm or less, and the oxygen content of the sintered body is 2000-5.
It is 000 ppm, The permanent magnet in any one of Claims 5-7.
の値の95%以上であり、かつ角型比(Hkの値を固有
保磁力で除した値)が94%以上である請求項5〜9の
いずれかに記載の永久磁石。10. The intrinsic coercive force after heat treatment is 95% or more of the value of the residual magnetic flux density, and the squareness ratio (Hk value divided by the intrinsic coercive force) is 94% or more. The permanent magnet according to any one of to 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4151833A JPH05339684A (en) | 1992-06-11 | 1992-06-11 | Permanent magnet alloy and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4151833A JPH05339684A (en) | 1992-06-11 | 1992-06-11 | Permanent magnet alloy and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05339684A true JPH05339684A (en) | 1993-12-21 |
Family
ID=15527303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4151833A Pending JPH05339684A (en) | 1992-06-11 | 1992-06-11 | Permanent magnet alloy and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05339684A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108352233A (en) * | 2015-09-28 | 2018-07-31 | 厦门钨业股份有限公司 | A kind of compound R-Fe-B systems rare-earth sintered magnet containing Pr and W |
-
1992
- 1992-06-11 JP JP4151833A patent/JPH05339684A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108352233A (en) * | 2015-09-28 | 2018-07-31 | 厦门钨业股份有限公司 | A kind of compound R-Fe-B systems rare-earth sintered magnet containing Pr and W |
JP2018536278A (en) * | 2015-09-28 | 2018-12-06 | シアメン タングステン カンパニー リミテッド | R-Fe-B rare earth sintered magnet containing both Pr and W |
CN108352233B (en) * | 2015-09-28 | 2020-09-18 | 厦门钨业股份有限公司 | R-Fe-B rare earth sintered magnet compositely containing Pr and W |
US10971289B2 (en) | 2015-09-28 | 2021-04-06 | Xiamen Tungsten Co., Ltd. | Composite R-Fe-B series rare earth sintered magnet comprising Pr and W |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7867343B2 (en) | Rare earth magnet and method for production thereof | |
KR910001065B1 (en) | Permanent magnet | |
JP4743211B2 (en) | Rare earth sintered magnet and manufacturing method thereof | |
JPS6393841A (en) | Rare-earth permanent magnet alloy | |
JP3693838B2 (en) | Alloy ribbon for rare earth magnet, alloy fine powder, and production method thereof | |
JPS60204862A (en) | Rare earth element-iron type permanent magnet alloy | |
JP4442597B2 (en) | Rare earth magnet and manufacturing method thereof | |
JPH11251125A (en) | Rare-earth-iron-boron sintered magnet and its manufacture | |
JP3693839B2 (en) | Alloy ribbon for rare earth magnet, alloy fine powder, and production method thereof | |
JPH0680608B2 (en) | Rare earth magnet manufacturing method | |
JPH06207204A (en) | Production of rare earth permanent magnet | |
JP3645312B2 (en) | Magnetic materials and manufacturing methods | |
KR900006533B1 (en) | Anisotropic magnetic materials and magnets made with it and making method for it | |
JPH05258928A (en) | Permanent magnet and powder thereof and manufacturing method thereof | |
JP2745042B2 (en) | Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet | |
JP3126199B2 (en) | Manufacturing method of rare earth permanent magnet | |
JPH05339684A (en) | Permanent magnet alloy and its manufacture | |
JPH05339683A (en) | Permanent matnet alloy and its manufacture | |
JP5235264B2 (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP3254232B2 (en) | Manufacturing method of rare earth permanent magnet | |
JPH0521219A (en) | Production of rare-earth permanent magnet | |
JPH08148315A (en) | Production of rare earth magnet | |
JPH02138707A (en) | Rare-earth magnet powder annealing method | |
JP3053344B2 (en) | Rare earth magnet manufacturing method | |
JPH10135020A (en) | Radial anisotropic bond magnet |