JP3253006B2 - RE-T-M-B sintered magnet with excellent magnetic properties - Google Patents
RE-T-M-B sintered magnet with excellent magnetic propertiesInfo
- Publication number
- JP3253006B2 JP3253006B2 JP10328996A JP10328996A JP3253006B2 JP 3253006 B2 JP3253006 B2 JP 3253006B2 JP 10328996 A JP10328996 A JP 10328996A JP 10328996 A JP10328996 A JP 10328996A JP 3253006 B2 JP3253006 B2 JP 3253006B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- magnet
- ihc
- magnetic properties
- main phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、各種電気、電子機
器材料として用いられる磁気特性に優れた希土類鉄ボロ
ン系焼結永久磁石に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth iron boron-based sintered permanent magnet having excellent magnetic properties and used as a material for various electric and electronic devices.
【0002】[0002]
【従来の技術】Nd−Fe−B系磁石はその磁気特性が
高いことと、主要材料のFeが豊富で安価なこと、又N
dがSmと比べ資源的に有利で安いことからSm−Co
系永久磁石にとって代り希土類磁石の主流となってい
る。しかしこの磁石はキュリー点が低い(Nd2Fe14
Bのキュリー点が312℃)こと及び保磁力iHcの可
逆温度係数が大きいという欠点を有している。これらの
欠点を補う方法としてFeの一部をCoで置換してキュ
リー点を上げること、又Ndの一部をDy,Tb,Ho
等の重希土類元素で置換して結晶磁気異方性定数を上げ
常温の保磁力iHcを高めること等により、ある程度の
高温での使用に耐えるようにする方法が一般的に知られ
ている。しかしながらCo添加によるキュリー点向上は
iHcの低下を招き、Dy等重希土類元素の多量添加は
磁石の飽和磁束密度Brを低下させ高Brで且つ高iH
cの磁石の実現は困難であった。2. Description of the Related Art Nd-Fe-B magnets have high magnetic properties, are rich in Fe as a main material and are inexpensive.
Since d is resource-friendly and cheaper than Sm, Sm-Co
Rare earth magnets have become the mainstream for permanent magnets. However, this magnet has a low Curie point (Nd 2 Fe 14
B has a Curie point of 312 ° C.) and a large reversible temperature coefficient of coercive force iHc. As a method for compensating for these disadvantages, a part of Fe is replaced with Co to raise the Curie point, and a part of Nd is replaced with Dy, Tb, Ho.
It is generally known that the material can be used at a certain high temperature by replacing it with a heavy rare earth element such as the above to increase the crystal magnetic anisotropy constant and increase the coercive force iHc at room temperature. However, an increase in the Curie point due to the addition of Co causes a decrease in iHc, and the addition of a large amount of heavy rare earth elements such as Dy lowers the saturation magnetic flux density Br of the magnet, resulting in a high Br and high iHc.
It was difficult to realize magnet c.
【0003】Brの向上法としてはREを少なくしTを
多くすること、又磁石合金粉末を単磁区粒子径に近づけ
(例えば3ミクロン以下)磁場成形時の異方性度を高め
る方法等が一般的である。しかしREを少なくするとi
Hcは単調に低下する。又、合金粉末を平均粒径で3ミ
クロン以下に粉砕すると粉の酸化を生じ結果としてiH
cを大きく低下させる。酸化を防止するには焼結までの
工程を無酸素ないし低酸素雰囲気(例えば1%以下)に
保つことで可能であるが、量産規模で行うには非常に高
価な設備が必要で、又生産性も低下するため製品の大幅
なコスト高を招き実用的でない。一方、各種電気、電子
機器の小型化高性能化は目ざましく、これらに使用する
磁石材料として高Brで且つ高iHcの磁石の実用化が
望まれていた。[0003] As a method of improving Br, a method of reducing RE and increasing T, and a method of increasing the anisotropy at the time of magnetic field molding by bringing the magnet alloy powder close to a single magnetic domain particle diameter (for example, 3 microns or less) are common. It is a target. However, when RE is reduced, i
Hc decreases monotonically. Also, when the alloy powder is pulverized to an average particle size of 3 μm or less, the powder is oxidized, resulting in iH
c is greatly reduced. Oxidation can be prevented by keeping the process up to sintering in an oxygen-free or low-oxygen atmosphere (for example, 1% or less). However, mass production scale requires very expensive equipment and production. As a result, the cost of the product is greatly increased, which is not practical. On the other hand, the miniaturization and high performance of various electric and electronic devices are remarkable, and the practical use of a high Br and high iHc magnet as a magnet material used for these devices has been desired.
【0004】[0004]
【発明が解決しようとする課題】量産性に富んだ安価簡
便な方法により製造できる高Brで且つ高iHcを有す
る安価なRE−T−M−B系焼結磁石を提供することで
ある。SUMMARY OF THE INVENTION An object of the present invention is to provide an inexpensive RE-T-MB-based sintered magnet having high Br and high iHc which can be mass-produced and manufactured by an inexpensive and simple method.
【0005】[0005]
【課題を解決するための手段】発明者らは高Brで且つ
高iHc化の検討を種々行った結果、焼結体の結晶組織
を制御することが極めて有効であることを見い出した。
本系磁石は磁石主相であるRE2T14B相と結晶粒界に
存在するREリッチ相及びBリッチ相の3相から主に成
立っているが、主相のRE2T14B結晶粒径aが15ミ
クロン以上を有する結晶粒面積の和が主相総面積の50
%以上とし、且つaが5ミクロン以下の結晶粒面積の和
が主相総面積の1%以上10%以下に制御することによ
り高Brで且つ高iHcを有する磁石が得られることを
見い出した。ここで結晶粒径aは、磁石を異方性方向に
垂直な面で切断し研磨した面をエッチングした際観察さ
れる主相結晶粒の長径と短径の和を2で除した数を表
し、結晶粒面積はaを直径とする円近似で算出したもの
である。Means for Solving the Problems The inventors of the present invention have conducted various studies to increase the Br and iHc, and have found that it is extremely effective to control the crystal structure of the sintered body.
Although the magnet is mainly Seiritsu' from 3-phase RE-rich phase and B-rich phase present in RE 2 T 14 B phase and the grain boundary is a magnet main phase, the main phase RE 2 T 14 B crystal The sum of the area of crystal grains having a particle diameter a of 15 microns or more is 50 of the total area of the main phase.
It has been found that a magnet having a high Br and a high iHc can be obtained by controlling the sum of crystal grain areas where a is 5% or less and a is 5% or less to 1% to 10% of the total area of the main phase. Here, the crystal grain size a represents a number obtained by dividing the sum of the major axis and the minor axis of the main phase crystal grains, which is observed when the magnet is cut at a plane perpendicular to the anisotropic direction and the polished surface is etched, by two. The crystal grain area is calculated by a circle approximation having a as a diameter.
【0006】本発明の焼結体組織と高磁気特性を有する
磁石は以下の組成で実現される。すなわちRE(Yを含
む希土類元素で、Nd,Pr及びDyの和が90重量%
以上)29.5%以上32.5%以下(重量% 以下同
じ)、B0.8%以上1.5%以下、M(Al,Nb,
Ga,Mo,Ti,V,Ni,Cr,Mn,Ta,Z
r,Hf,Cu,Snの少なくとも1種以上)0.5%
以上2.5%以下、残部T(Fe但しその一部をCoで
置換可)及び不可避の不純物からなるものである。The sintered body structure of the present invention and the magnet having high magnetic properties are realized by the following composition. That is, RE (Y is a rare earth element containing Y, and the sum of Nd, Pr and Dy is 90% by weight.
29.5% or more and 32.5% or less (weight% or less the same), B 0.8% or more and 1.5% or less, M (Al, Nb,
Ga, Mo, Ti, V, Ni, Cr, Mn, Ta, Z
at least one of r, Hf, Cu, Sn) 0.5%
2.5% or less, the balance is made up of the balance T (Fe but part of it can be replaced by Co) and unavoidable impurities.
【0007】結晶粒径aが15ミクロン以上の結晶粒面
積の和が主相総面積の50%未満であると焼結時の粒成
長が不十分であることに起因し、Br≧12kGが得ら
れない。またaが25ミクロン以上の結晶粒面積の和が
主相総面積の50%以上であると、焼結時の粒成長が過
剰であることに起因し、iHcが低下し15kOe以上
が得られない。aが5ミクロン以下の結晶粒面積の和
が、主相総面積の1%未満になるとiHcが低下し、1
5KOe以上か得られない。この理由はiHcの向上に
寄与する細粒が少ない為と推察される。10%を越える
と焼結時の粒成長が不十分であることに起因し、Br≧
12kGが得られない。If the sum of the areas of the crystal grains having a crystal grain size a of 15 μm or more is less than 50% of the total area of the main phase, grain growth during sintering is insufficient, and Br ≧ 12 kG is obtained. I can't. If the sum of the crystal grain areas where a is 25 microns or more is 50% or more of the total area of the main phase, the grain growth during sintering is excessive, iHc decreases, and 15 kOe or more cannot be obtained. . When the sum of the crystal grain areas where a is 5 μm or less is less than 1% of the total area of the main phase, iHc decreases, and
5 KOe or more cannot be obtained. This is presumed to be due to the small amount of fine particles contributing to the improvement of iHc. If it exceeds 10%, the grain growth during sintering is insufficient, so that Br ≧
12 kG cannot be obtained.
【0008】次に組成の限定理由について説明する。R
Eが29.5%未満だと良好なiHcが得られない。磁
石製造過程で発生する磁石合金粉および成形体の酸化を
極端に抑えれば(例えば2500ppm以下)iHcの
低下は防げるが、これには大きなコストアップが伴うた
め29.5%以上とする。REが32.5%を越えると
iHcは容易に高いレベルを維持できるがBrの低下を
生じるので32.5%以下とする。又Nd,Pr及びD
yの和がREトータルの90%未満になるとBr≧12
kG、iHc≧15kOeを同時に満足することが出来
ないので90%以上とする。B量が0.8%未満では良
好なiHcが得られず、又1.5%を越えるとBrの低
下が大きくなるため0.8%以上1.5%以下とする。Next, the reasons for limiting the composition will be described. R
If E is less than 29.5%, good iHc cannot be obtained. If the oxidation of the magnet alloy powder and the molded body generated during the magnet manufacturing process is extremely suppressed (for example, 2500 ppm or less), the decrease in iHc can be prevented, but this involves a large cost increase, so that it is set to 29.5% or more. If RE exceeds 32.5%, iHc can easily maintain a high level, but Br decreases, so it is set to 32.5% or less. Nd, Pr and D
When the sum of y is less than 90% of the total RE, Br ≧ 12
Since kG and iHc ≧ 15 kOe cannot be simultaneously satisfied, the content is set to 90% or more. If the B content is less than 0.8%, good iHc cannot be obtained, and if it exceeds 1.5%, the reduction of Br becomes large, so the content is made 0.8% or more and 1.5% or less.
【0009】M元素はiHc向上又は焼結時の異常粒成
長抑制元素としての働きを有するが0.5%未満では両
機能とも不十分で、その結果結晶粒径5ミクロン以下の
結晶粒の面積の和が主相結晶粒の総面積の1%未満とな
りiHc≧15kOeが得られない。Mが2.5%を越
えるとBrが低下しBr≧12kGが得られないので
0.5%以上2.5%以下とする。The M element has a function as an element for improving iHc or suppressing abnormal grain growth during sintering, but if it is less than 0.5%, both functions are insufficient, and as a result, the area of crystal grains having a grain size of 5 μm or less is consequently reduced. Is less than 1% of the total area of the main phase crystal grains, iHc ≧ 15 kOe cannot be obtained. If M exceeds 2.5%, Br decreases and Br ≧ 12 kG cannot be obtained.
【0010】焼結後のRE2T14B主相の結晶粒径制御
を簡便に行う方法として、平均粒度(FISCHER
SUB−SIEVE SIZERにより測定)の異なる
複数の微粉を作成しこれらを混合後に磁場中成形、焼結
及び熱処理する方法が適用できる。又、最終磁石組成を
有する合金を複数の平均粒度に微粉化したものを混合す
る方法、および異なる組成を有する複数の合金をそれぞ
れ異なる平均粒度に微粉砕後最終磁石組成となる比率で
混合して磁場成形以降同様の処理をする方法のどちらで
も良い。又、微粉の平均粒度の最適値は磁石組成によっ
て微妙に変化するので焼結後の磁石主相RE2T14B結
晶粒の大きさが本発明の請求項1に合致するよう平均粒
径を設定すれば良い。キーポイントは複数の平均粒径を
持たせることである。As a simple method for controlling the crystal grain size of the main phase of RE 2 T 14 B after sintering, an average grain size (FISCHER
A method in which a plurality of fine powders having different SUB-SIEVE SIZER) are prepared, mixed, then molded in a magnetic field, sintered, and heat-treated can be applied. Also, a method of mixing the alloy having the final magnet composition into fine powders having a plurality of average particle sizes, and a method of mixing a plurality of alloys having different compositions into different average particle diameters at a ratio of the final magnet composition after being pulverized to different average particle sizes. Either method of performing the same processing after the magnetic field shaping may be used. Further, since the optimum value of the average particle size of the fine powder is slightly changed depending on the magnet composition, the average particle size of the magnet main phase RE 2 T 14 B after sintering is adjusted so as to conform to claim 1 of the present invention. Just set it. The key point is to have multiple average particle sizes.
【0011】[0011]
【実施例】以下本発明を実施例によって説明する。但し
本発明は実施例のみに限定されるものではない。 (実施例) 表1に示す種々の組成に調整したインゴッ
トを作製し粗粉砕後に同表に示す種々の平均粒度(F.
S.S.S.)に微粉砕した。インゴットの製法(例え
ば通常の高周波溶解又はアーク溶解、金型鋳造又は急冷
法等)、粉砕法(例えば乾式ジェットミル法又は湿式ボ
ールミル法等)に関しては一般的に用いられているどの
方法でも良い。得られた微粉を表2に示す混合比で混合
し、該混合粉を磁場中成形後通常の方法にて焼結磁石化
した。得られた磁石の磁気特性および、磁石を異方性方
向に垂直な面で切断し、研磨した面をエッチングした際
観察される主相結晶粒径aが5ミクロン以下と15〜2
5ミクロンを有する結晶粒面積の和の主相総面積に対す
る比率(主相面積率)を表3の実施例1〜5に示す。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments. However, the present invention is not limited only to the embodiments. (Examples) Ingots adjusted to various compositions shown in Table 1 were prepared, and after coarse pulverization, various average particle sizes (F.
S. S. S. ). Regarding the ingot production method (for example, ordinary high frequency melting or arc melting, mold casting or quenching method, etc.) and the pulverization method (for example, dry jet mill method or wet ball mill method), any generally used method may be used. The obtained fine powder was mixed at a mixing ratio shown in Table 2, and the mixed powder was molded in a magnetic field and then converted into a sintered magnet by an ordinary method. The magnetic properties of the obtained magnet and the main phase crystal grain size a observed when the magnet was cut along a plane perpendicular to the anisotropic direction and the polished surface was etched were 5 μm or less and 15 to 2 μm.
The ratio of the sum of the crystal grain areas having 5 microns to the total area of the main phase (main phase area ratio) is shown in Examples 1 to 5 of Table 3.
【0012】(比較例) 表4に示す種々の組成に調整
したインゴットを作製し粗粉砕後に同表に示す種々の平
均粒度に微粉砕した。以下の方法は実施例の場合と全く
同様に行った。微粉の混合比率を表5に、磁気特性およ
び主相面積率を表3の比較例1〜4に示す。Comparative Examples Ingots adjusted to various compositions shown in Table 4 were prepared, coarsely pulverized, and then finely pulverized to various average particle sizes shown in the same table. The following method was performed exactly as in the case of the example. The mixing ratio of the fine powder is shown in Table 5, and the magnetic properties and the area ratio of the main phase are shown in Comparative Examples 1 to 4 in Table 3.
【0013】[0013]
【表1】 [Table 1]
【0014】[0014]
【表2】 [Table 2]
【0015】[0015]
【表3】 [Table 3]
【0016】[0016]
【表4】 [Table 4]
【0017】以下に各実施例および比較例の内容を説明
する。実施例1は同一組成を有するインゴットNo.1
とNo.2を4.3ミクロンと5.2ミクロンに粉砕後
50:50の割合で混合したものであり、混合後の平均
粒度は、4.7ミクロンであった。表3に示した通り主
相面積率は請求項1に合致しており、又磁気特性もBr
≧12KG、iHc≧15kOeを満足している。一
方、比較例1は実施例1の組成を有するインゴットN
o.12(表4参照)を平均粒度4.7ミクロンに粉砕
したものであるが、焼結後の主相面積率は実施例1と異
なっており磁気特性も低い。この差は微粉の平均粒度は
同一でも粒度分布が異なっていることによる。図1に実
施例1の結晶組織写真、図2に比較例1の結晶組織写真
を示す。The contents of each of the examples and comparative examples will be described below. Example 1 shows ingot No. 1 having the same composition. 1
And No. 2 was crushed to 4.3 microns and 5.2 microns, and then mixed at a ratio of 50:50. The average particle size after mixing was 4.7 microns. As shown in Table 3, the area ratio of the main phase is in accordance with claim 1, and the magnetic properties are also Br.
≧ 12KG, iHc ≧ 15kOe. On the other hand, Comparative Example 1 is an ingot N having the composition of Example 1.
o. 12 (see Table 4) was pulverized to an average particle size of 4.7 microns, but the area ratio of the main phase after sintering was different from that of Example 1 and the magnetic properties were low. This difference is due to the difference in particle size distribution even though the average particle size of the fine powder is the same. FIG. 1 shows a photograph of the crystal structure of Example 1, and FIG. 2 shows a photograph of the crystal structure of Comparative Example 1.
【0018】実施例2は磁石最終組成よりREを高く
し、又M元素を添加したインゴットNo.3を4.3ミ
クロンに粉砕し、磁石最終組成よりREを低くしたM元
素無添加インゴットNo.4を5.2ミクロンに粉砕
し、それらを40:60の割合で混合したものである。
保磁力向上及び結晶粒成長抑制効果を有するM元素の添
加量を増やしたことにより混合後のMを1.2%に増や
して実施例1より更にiHcが向上している。一方、比
較例2は実施例2と同様に最終組成よりREを高くしM
元素を添加したインゴットNo.13およびREを低く
したインゴットNo.14をそれぞれ4.3ミクロン、
4.5ミクロンに粉砕し40:60で混合したものであ
る。表3で明らかな通り磁気特性はiHcが高いがBr
は12KGに達していない。これは結晶粒径15〜25
ミクロンの主相面積率が41.9%と低いためである。
主相面積率が低いのはインゴットNo.13とNo.1
4の微粉粒径がほぼ同じため焼結時の2次再結晶が十分
に進まなかったことによる。In Example 2, the ingot No. was made higher in RE than the final composition of the magnet, and M element was added. No. 3 was pulverized to 4.3 microns, and M element-free ingot No. No. 4 was ground to 5.2 microns and they were mixed at a ratio of 40:60.
By increasing the amount of the M element having the effect of improving the coercive force and suppressing the growth of crystal grains, the M after mixing was increased to 1.2%, and the iHc was further improved as compared with the first embodiment. On the other hand, in Comparative Example 2, as in Example 2, RE was higher than the final composition and M
Ingot No. to which the element was added. 13 and the ingot No. 14, 4.3 microns each,
It was pulverized to 4.5 microns and mixed at 40:60. As is clear from Table 3, the magnetic properties are high for iHc but Br
Has not reached 12KG. It has a grain size of 15-25
This is because the main phase area ratio of microns is as low as 41.9%.
The ingot No. of the main phase area ratio is low. 13 and No. 1
This is because secondary recrystallization during sintering did not proceed sufficiently because the particle diameters of the fine powders of No. 4 were almost the same.
【0019】実施例3は同一組成を有するインゴットN
o.5とNo.6をそれぞれ4.0ミクロンと5.6ミ
クロンに粉砕後35:65の割合で混合したものであ
り、混合後の平均粒度は5.0ミクロンであった。表3
に示した通り主相面積率は請求項1に合致している。実
施例1と比較しM元素の添加量をやや少なくしたことに
よりBrはやや高く、iHcはやや低くなっているがい
ずれも規定値を上回っている。比較例3は実施例3より
M元素添加量を更に下げ0.4%とした以外はすべて実
施例3と同様にしたものであるが、表3に示した通り結
晶粒径5ミクロン以下の主相面積率が0.2%となり、
その結果iHcは14kOeと低い。これはM元素が少
なすぎて粒成長抑制が不十分であったことによる。Example 3 shows an ingot N having the same composition.
o. 5 and No. 5 6 were pulverized to 4.0 microns and 5.6 microns, respectively, and then mixed at a ratio of 35:65, and the average particle size after mixing was 5.0 microns. Table 3
As shown in the above, the area ratio of the main phase conforms to claim 1. As compared with Example 1, the addition amount of the M element was slightly reduced, so that Br was slightly higher and iHc was slightly lower, but all exceeded the specified values. Comparative Example 3 was the same as Example 3 except that the addition amount of M element was further reduced to 0.4% from Example 3, but as shown in Table 3, the main particles having a crystal grain size of 5 μm or less were used. The phase area ratio becomes 0.2%,
As a result, iHc is as low as 14 kOe. This is due to the fact that the amount of M element was too small to sufficiently suppress the grain growth.
【0020】実施例4はインゴットNo.7,8(表
1)をそれぞれ平均粒度3.9ミクロンと5.7ミクロ
ンに粉砕後30:70の割合で混合したものであり、混
合後の平均粒度は5.2ミクロンであった。表3に示し
た通り主相面積率は請求項1に合致している。実施例1
より希土類元素量を少なくし、混合後の平均粒径をやや
大きくし、又結晶粒成長抑制元素Mの添加量をやや多く
したことによりその磁気特性BrおよびiHcは実施例
1より更に高い値を示している。比較例4はM元素を
2.8%添加したインゴットNo.17とインゴットN
o.18をそれぞれ4.0ミクロン、5.6ミクロンに
粉砕後30:70の割合で混合したものであり、混合後
の平均粒度は5.1ミクロンであった。すなわち混合後
のM元素の量が実施例4の1.3%に対し2.8%と高
くなっているほかは実施例4とほぼ同等であるが、表3
に示した通りiHcは18.6kOeと非常に高いがB
rは11.75kGと低い値である。これはM元素が多
いため焼結時の粒成長抑制が効き過ぎ、十分な2次再結
晶が起らなかったことによる。Embodiment 4 shows the ingot No. 7, 8 (Table 1) were pulverized to an average particle size of 3.9 microns and 5.7 microns, respectively, and then mixed at a ratio of 30:70, and the average particle size after mixing was 5.2 microns. As shown in Table 3, the main phase area ratio is consistent with claim 1. Example 1
The magnetic properties Br and iHc are higher than those of Example 1 by reducing the amount of the rare earth element, slightly increasing the average particle diameter after mixing, and slightly increasing the addition amount of the crystal grain growth suppressing element M. Is shown. Comparative Example 4 was prepared for ingot No. 1 containing 2.8% of M element. 17 and ingot N
o. 18 were mixed to a ratio of 30:70 after pulverization to 4.0 μm and 5.6 μm, respectively, and the average particle size after mixing was 5.1 μm. That is, although the amount of the M element after mixing is higher than the 1.3% of Example 4 to 2.8%, it is almost the same as that of Example 4;
The iHc is very high at 18.6 kOe as shown in FIG.
r is a low value of 11.75 kG. This is because grain growth suppression during sintering was too effective due to the large amount of M element, and sufficient secondary recrystallization did not occur.
【0021】実施例5は同一組成を有するインゴットN
o.9,10,11をそれぞれ3.7,4.5,5.9
ミクロンに粉砕後20:20:60の割合で混合したも
のであり、混合後の平均粒径は5.9ミクロンであっ
た。表3に示した通り主相面積率および磁気特性とも請
求項1に合致している。Example 5 shows an ingot N having the same composition.
o. 9, 10, and 11 are 3.7, 4.5, and 5.9, respectively.
After pulverization to a micron, the mixture was mixed at a ratio of 20:20:60, and the average particle size after the mixing was 5.9 μm. As shown in Table 3, both the area ratio of the main phase and the magnetic properties are consistent with the first aspect.
【0022】[0022]
【表5】 [Table 5]
【0023】[0023]
【発明の効果】本発明のRE−T−M−B系焼結磁石は
その焼結後の主相結晶粒径を制御することにより、従来
にない高Brで且つ高iHcを実現した高性能磁石であ
り、各種電気、電子機器の小型化高機能化に十分に応え
られるものである。The RE-T-M-B based sintered magnet of the present invention has a high Br and iHc which is unprecedented by controlling the crystal grain size of the main phase after sintering. It is a magnet that can sufficiently respond to miniaturization and high functionality of various electric and electronic devices.
【図1】実施例1の結晶組織の顕微鏡写真。FIG. 1 is a micrograph of the crystal structure of Example 1.
【図2】比較例1の結晶組織の顕微鏡写真。FIG. 2 is a micrograph of the crystal structure of Comparative Example 1.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 1/032 - 1/08 C22C 33/02 C22C 38/00 303 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) H01F 1/032-1/08 C22C 33/02 C22C 38/00 303
Claims (2)
15〜25ミクロンの結晶粒の面積の和が50%以上、
結晶粒径が5ミクロン以下の結晶粒の面積の和が1%以
上10%以下で、且つその磁気特性がBr≧12kG、
iHc≧15kOeであることを特徴とする磁気特性に
優れたRE−T−M−B系焼結磁石。1. The sum of the areas of crystal grains having a crystal grain size of 15 to 25 microns is 50% or more of the total area of the magnet main phase crystals.
The sum of the areas of crystal grains having a crystal grain size of 5 μm or less is 1% or more and 10% or less, and the magnetic properties thereof are Br ≧ 12 kG,
An RE-T-MB-based sintered magnet having excellent magnetic properties, wherein iHc ≧ 15 kOe.
r及びDyの和が90重量%以上)29.5%以上3
2.5%以下(重量% 以下同じ)、B0.8%以上
1.5%以下、M(Al,Nb,Ga,Mo,Ti,
V,Ni,Cr,Mn,Ta,Zr,Hf,Cu,Sn
の少なくとも1種以上)0.5%以上2.5%以下、残
部T(Fe但しその一部をCoで置換可)及び不可避の
不純物からなることを特徴とする請求項1に記載の焼結
磁石。2. A rare earth element containing RE (Y, Nd, P
The sum of r and Dy is 90% by weight or more) 29.5% or more 3
2.5% or less (same as weight% or less), B 0.8% or more and 1.5% or less, M (Al, Nb, Ga, Mo, Ti,
V, Ni, Cr, Mn, Ta, Zr, Hf, Cu, Sn
2. The sintering according to claim 1, wherein the sintering is made up of at least one of 0.5% or more and 2.5% or less, the balance T (Fe but part of which can be replaced by Co) and unavoidable impurities. magnet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10328996A JP3253006B2 (en) | 1995-06-05 | 1996-03-29 | RE-T-M-B sintered magnet with excellent magnetic properties |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-137612 | 1995-06-05 | ||
JP13761295 | 1995-06-05 | ||
JP10328996A JP3253006B2 (en) | 1995-06-05 | 1996-03-29 | RE-T-M-B sintered magnet with excellent magnetic properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0955310A JPH0955310A (en) | 1997-02-25 |
JP3253006B2 true JP3253006B2 (en) | 2002-02-04 |
Family
ID=26443933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10328996A Expired - Lifetime JP3253006B2 (en) | 1995-06-05 | 1996-03-29 | RE-T-M-B sintered magnet with excellent magnetic properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3253006B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9972435B2 (en) | 2014-03-26 | 2018-05-15 | Hitachi Metals, Ltd. | Method for manufacturing R-T-B based sintered magnet |
-
1996
- 1996-03-29 JP JP10328996A patent/JP3253006B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0955310A (en) | 1997-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1315571C (en) | Magnetic materials and permanent magnets | |
EP0101552B2 (en) | Magnetic materials, permanent magnets and methods of making those | |
EP0197712A1 (en) | Rare earth-iron-boron-based permanent magnet | |
US8182618B2 (en) | Rare earth sintered magnet and method for producing same | |
JPH07105289B2 (en) | Rare earth permanent magnet manufacturing method | |
US4891078A (en) | Rare earth-containing magnets | |
JP3092672B2 (en) | Rare earth-Fe-Co-B anisotropic magnet | |
JP2665590B2 (en) | Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet | |
JP4170468B2 (en) | permanent magnet | |
US4601754A (en) | Rare earth-containing magnets | |
JP3296507B2 (en) | Rare earth permanent magnet | |
US4776902A (en) | Method for making rare earth-containing magnets | |
JP3253006B2 (en) | RE-T-M-B sintered magnet with excellent magnetic properties | |
JP2745042B2 (en) | Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet | |
JP3298220B2 (en) | Rare earth-Fe-Nb-Ga-Al-B sintered magnet | |
JPH0982510A (en) | Re-t-m-b sintered magnet excellent in magnetic characteristic | |
JP2935376B2 (en) | permanent magnet | |
JP2002285276A (en) | R-t-b-c based sintered magnet and production method therefor | |
JP2868062B2 (en) | Manufacturing method of permanent magnet | |
JP5235264B2 (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP2514155B2 (en) | Method for manufacturing permanent magnet alloy | |
JPS6144155A (en) | Permanent magnet alloy | |
JP2825449B2 (en) | Manufacturing method of permanent magnet | |
JPH04246803A (en) | Rare earth-fe-b anisotropic magnet | |
KR100394992B1 (en) | Fabricating Method of NdFeB Type Sintered Magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071122 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081122 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091122 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121122 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131122 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |