JPH0982510A - Re-t-m-b sintered magnet excellent in magnetic characteristic - Google Patents

Re-t-m-b sintered magnet excellent in magnetic characteristic

Info

Publication number
JPH0982510A
JPH0982510A JP7234150A JP23415095A JPH0982510A JP H0982510 A JPH0982510 A JP H0982510A JP 7234150 A JP7234150 A JP 7234150A JP 23415095 A JP23415095 A JP 23415095A JP H0982510 A JPH0982510 A JP H0982510A
Authority
JP
Japan
Prior art keywords
microns
ihc
less
magnet
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7234150A
Other languages
Japanese (ja)
Inventor
Keisuke Nakamura
啓介 中村
Takeo Omori
健雄 大森
Makoto Ushijima
誠 牛嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7234150A priority Critical patent/JPH0982510A/en
Publication of JPH0982510A publication Critical patent/JPH0982510A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PROBLEM TO BE SOLVED: To obtain a sintered magnet mass-producible and having an excellent magnetic characteristic by making the areas of crystal grains whose diameters are a specific value or more to the total area of the main-phase crystals of a magnet a specific value or more, the sum of the areas of crystal grains whose diameters are a specific value or less in a specific range, and magnetic characteristics Br, iHc specific values or more. SOLUTION: Ingots wherein RE-B-M-T are adjusted into various composition are manufactured, and they are finely ground into various average grain sizes after their coarse grinding. Two ingots having the same composition are ground into crystal grain diameters 4.3 and 5.2 microns, and they are mixed by a ratio of 50 to 50. The average grain size after the mixing is 4.7 microns, and the main-phase area ratio (%) after sintering is 50% or more for crystal grain diameters of 15 microns or more, and in a range of 2-5% for crystal grain diameters of 5 microns or less. Besides, its magnetic characteristics are in ranges Br>=12.8kG and iHc>=16kOe . By controlling the main-phase crystal grain diameter after sintering in this way, it becomes possible to obtain a high- performance magnet of high Br and iHc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種電気、電子機
器材料として用いられる磁気特性に優れた希土類鉄ボロ
ン系焼結永久磁石に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth iron boron-based sintered permanent magnet having excellent magnetic characteristics, which is used as a material for various electric and electronic devices.

【0002】[0002]

【従来の技術】Nd−Fe−B系磁石はその磁気特性が
高いことと、主要材料のFeが豊富で安価なこと、又N
dがSmと比べ資源的に有利で安いことからSm−Co
系永久磁石にとって代り希土類磁石の主流となってい
る。しかしこの磁石はキュリー点が低い(Nd2Fe14
Bのキュリー点が312℃)こと及び保磁力iHcの可
逆温度係数が大きいという欠点を有している。これらの
欠点を補う方法としてFeの一部をCoで置換してキュ
リー点を上げること、又Ndの一部をDy,Tb,Ho
等の重希土類元素で置換して結晶磁気異方性定数を上げ
常温の保磁力iHcを高めること等により、ある程度の
高温での使用に耐えるようにする方法が一般的に知られ
ている。しかしながらCo添加によるキュリー点向上は
iHcの低下を招き、Dy等重希土類元素の多量添加は
磁石の飽和磁束密度Brを低下させ高Brで且つ高iH
cの磁石の実現は困難であった。
2. Description of the Related Art Nd-Fe-B magnets have high magnetic properties, are abundant in Fe as a main material, and are inexpensive.
Since d is resource-friendly and cheaper than Sm, Sm-Co
It has become the mainstream of rare earth magnets instead of permanent magnets. However, this magnet has a low Curie point (Nd 2 Fe 14
(B has a Curie point of 312 ° C.) and has a large reversible temperature coefficient of coercive force iHc. As a method of compensating for these drawbacks, part of Fe is replaced by Co to raise the Curie point, and part of Nd is Dy, Tb, Ho.
There is generally known a method of substituting a heavy rare earth element such as, for example, to increase the magnetocrystalline anisotropy constant to increase the coercive force iHc at room temperature so as to withstand use at a high temperature to some extent. However, the improvement of the Curie point due to the addition of Co leads to a decrease in iHc, and the addition of a large amount of a rare earth element such as Dy lowers the saturation magnetic flux density Br of the magnet, resulting in a high Br and a high iH.
It was difficult to realize the magnet of c.

【0003】Brの向上法としてはREを少なくしTを
多くすること、又磁石合金粉末を単磁区粒子径に近づけ
(例えば3ミクロン以下)磁場成形時の異方性度を高め
る方法等が一般的である。しかしREを少なくするとi
Hcは単調に低下する。又、合金粉末を平均粒径で3ミ
クロン以下に粉砕すると粉の酸化を生じ結果としてiH
cを大きく低下させる。酸化を防止するには焼結までの
工程を無酸素ないし低酸素雰囲気(例えば1%以下)に
保つことで可能であるが、量産規模で行うには非常に高
価な設備が必要で、又生産性も低下するため製品の大幅
なコスト高を招き実用的でない。一方、各種電気、電子
機器の小型化高性能化は目ざましく、これらに使用する
磁石材料として高Brで且つ高iHcの磁石の実用化が
望まれていた。
As a method for improving Br, there is generally used a method of reducing RE and increasing T, or a method of bringing magnet alloy powder close to a single domain particle size (for example, 3 microns or less) to increase anisotropy during magnetic field molding. Target. However, if RE is reduced, i
Hc decreases monotonically. Also, if the alloy powder is pulverized to an average particle size of 3 microns or less, the powder is oxidized, resulting in iH
c is greatly reduced. To prevent oxidation, it is possible to keep the process up to sintering in an oxygen-free or low-oxygen atmosphere (for example, 1% or less), but very expensive equipment is required for mass-scale production. Since it also deteriorates the productivity, it causes a large increase in the cost of the product and is not practical. On the other hand, miniaturization and high performance of various electric and electronic devices are remarkable, and it has been desired to put into practical use magnets having high Br and high iHc as magnet materials used for these devices.

【0004】[0004]

【発明が解決しようとする課題】量産性に富んだ安価簡
便な方法により製造できる高Brで且つ高iHcを有す
る安価なRE−T−M−B系焼結磁石を提供することで
ある。
An object of the present invention is to provide an inexpensive RE-T-M-B system sintered magnet having a high Br and a high iHc, which can be manufactured by a low cost and simple method which is rich in mass productivity.

【0005】[0005]

【課題を解決するための手段】発明者らは高Brで且つ
高iHc化の検討を種々行った結果、焼結体の結晶組織
を制御することが極めて有効であることを見い出した。
本系磁石は磁石主相であるRE214B相と結晶粒界に
存在するREリッチ相及びBリッチ相の3相から主に成
立っているが、主相のRE214B結晶粒径aが15ミ
クロン以上を有する結晶粒面積の和が主相総面積の50
%以上とし、且つaが5ミクロン以下の結晶粒面積の和
が主相総面積の2%以上5%以下に制御することにより
高Brで且つ高iHcを有する磁石が得られることを見
い出した。ここで結晶粒径aは、磁石を異方性方向に垂
直な面で切断し研磨した面をエッチングした際観察され
る主相結晶粒の長径と短径の和を2で除した数を表し、
結晶粒面積はaを直径とする円近似で算出したものであ
る。
As a result of various investigations for high Br and high iHc, the inventors have found that controlling the crystal structure of the sintered body is extremely effective.
Although the magnet is mainly Seiritsu' from 3-phase RE-rich phase and B-rich phase present in RE 2 T 14 B phase and the grain boundary is a magnet main phase, the main phase RE 2 T 14 B crystal The sum of the crystal grain areas having a grain size a of 15 microns or more is 50 of the total main phase area.
It has been found that a magnet having a high Br and a high iHc can be obtained by controlling the sum of the crystal grain areas where a is 5% or less and a is 5 μm or less to 2% or more and 5% or less of the total main phase area. Here, the crystal grain size a represents the number obtained by dividing the sum of the major axis and minor axis of the main phase crystal grains observed when the magnet is cut along a plane perpendicular to the anisotropic direction and the polished surface is etched, by 2. ,
The crystal grain area is calculated by a circle approximation having a as a diameter.

【0006】本発明の焼結体組織と高磁気特性を有する
磁石は以下の組成で実現される。すなわちRE(Yを含
む希土類元素で、Nd,Pr及びDyの和がREトータ
ルの90重量%以上)29.5%以上32.5%以下、
B0.8%以上1.5%以下、M(Al,Nb,Ga,
Mo,Ti,V,Ni,Cr,Mn,Ta,Zr,H
f,Cu,Snの少なくとも1種以上、より好ましくは
3種以上)0.5%以上2.5%以下、残部T(Fe但
しその一部をCoで置換可)及び不可避の不純物からな
るものである。
A magnet having a sintered body structure and high magnetic properties according to the present invention is realized by the following composition. That is, RE (a rare earth element containing Y, in which the sum of Nd, Pr and Dy is 90% by weight or more of the RE total) 29.5% or more and 32.5% or less,
B 0.8% or more and 1.5% or less, M (Al, Nb, Ga,
Mo, Ti, V, Ni, Cr, Mn, Ta, Zr, H
f, Cu, Sn, at least one kind or more, more preferably three kinds or more) 0.5% or more and 2.5% or less, the balance T (Fe, but a part thereof can be replaced by Co) and unavoidable impurities Is.

【0007】結晶粒径aが15ミクロン以上の結晶粒面
積の和が主相総面積の50%未満であると焼結時の2次
再結晶による配向度改善が不十分のためBr≧12.8
kGが得られない。aが5ミクロン以下の結晶粒面積の
和が主相総面積の2%未満になるとiHcが低下し16
kOe以上が得られない。この理由は十分には解明され
ていないが、主相結晶粒界に於ける逆磁区の芽が増加す
るためと推察される。5%を越えると焼結時の2次再結
晶による配向度改善が不十分のなりBrが低下し12.
8kG以上が得られない。
If the sum of the crystal grain areas having a crystal grain size a of 15 microns or more is less than 50% of the total area of the main phase, the degree of orientation improvement due to the secondary recrystallization during sintering is insufficient, and Br ≧ 12. 8
Cannot get kG. When the sum of the crystal grain areas where a is 5 microns or less is less than 2% of the total area of the main phase, iHc decreases and 16
Cannot obtain more than kOe. The reason for this has not been fully clarified, but it is presumed that the number of buds of the reverse magnetic domain in the grain boundary of the main phase increases. If it exceeds 5%, the degree of orientation improvement due to secondary recrystallization at the time of sintering becomes insufficient, and Br decreases.
I can't get more than 8kG.

【0008】次に組成の限定理由について説明する。R
Eが29.5%未満だと良好なiHcが得られない。磁
石製造過程で発生する磁石合金粉および成形体の酸化を
極端に抑えれば(例えば2500ppm以下)iHcの
低下は防げるが、これには大きなコストアップが伴うた
め29.5%以上とする。REが32.5%を越えると
iHcは容易に高いレベルを維持できるがBrの低下を
生じるので32.5%以下とする。又Nd,Pr及びD
yの和がREトータルの90%未満になるとBr≧1
2.8kG、iHc≧16kOeを同時に満足すること
が出来ないので90%以上とする。B量が0.8%未満
では良好なiHcが得られず、又1.5%を越えるとB
rの低下が大きくなるため0.8%以上1.5%以下と
する。
Next, the reasons for limiting the composition will be described. R
If E is less than 29.5%, good iHc cannot be obtained. If the oxidation of the magnet alloy powder and the molded body generated in the magnet manufacturing process is extremely suppressed (for example, 2500 ppm or less), the reduction of iHc can be prevented, but this is accompanied by a large cost increase, and therefore it is set to 29.5% or more. When RE exceeds 32.5%, iHc can easily maintain a high level, but Br is lowered, so the content is set to 32.5% or less. Also Nd, Pr and D
If the sum of y is less than 90% of the RE total, Br ≧ 1
Since 2.8 kG and iHc ≧ 16 kOe cannot be satisfied at the same time, it is set to 90% or more. If the B content is less than 0.8%, good iHc cannot be obtained, and if it exceeds 1.5%, B
Since the decrease of r becomes large, it is made 0.8% or more and 1.5% or less.

【0009】M元素はiHc向上又は焼結時の異常粒成
長抑制元素としての働きを有するが0.5%未満では両
機能とも不十分で、その結果結晶粒径5ミクロン以下の
結晶粒の面積の和が主相結晶粒の総面積の2%未満とな
りiHc≧16kOeが得られない。Mが2.5%を越
えるとBrが低下しBr≧12.8kGが得られないの
で0.5%以上2.5%以下とする。
The element M has a function as an element for suppressing iHc improvement or abnormal grain growth at the time of sintering, but if it is less than 0.5%, both functions are insufficient, and as a result, the area of the crystal grain having a grain size of 5 μm or less is obtained. Is less than 2% of the total area of the main phase crystal grains, iHc ≧ 16 kOe cannot be obtained. When M exceeds 2.5%, Br decreases and Br ≧ 12.8 kG cannot be obtained, so 0.5% or more and 2.5% or less.

【0010】焼結後のRE214B主相の結晶粒径制御
を簡便に行う方法として、平均粒度(FISCHER
SUB−SIEVE SIZERにより測定)の異なる
複数の微粉を作成しこれらを混合後に磁場中成形、焼結
及び熱処理する方法が適用できる。又、最終磁石組成を
有する合金を複数の平均粒度に微粉化したものを混合す
る方法、および異なる組成を有する複数の合金をそれぞ
れ異なる平均粒度に微粉砕後最終磁石組成となる比率で
混合して磁場成形以降同様の処理をする方法のどちらで
も良い。又、微粉の平均粒度の最適値は磁石組成によっ
て微妙に変化するので焼結後の磁石主相RE214B結
晶粒の大きさが本発明の請求項1に合致するよう平均粒
径を設定すれば良い。キーポイントは複数の平均粒径を
持たせることである。
As a simple method for controlling the crystal grain size of the RE 2 T 14 B main phase after sintering, the average grain size (FISCHER
It is possible to apply a method in which a plurality of fine powders having different SUB-SIEVE SIZERs) are prepared, and these are mixed, followed by molding in a magnetic field, sintering and heat treatment. In addition, a method of mixing finely divided alloys having a final magnet composition into a plurality of average particle sizes, and a plurality of alloys having different compositions are finely pulverized to have different average particle sizes and then mixed at a ratio of the final magnet composition. Either method of performing the same processing after the magnetic field shaping may be used. Further, since the optimum value of the average particle size of the fine powder slightly changes depending on the magnet composition, the average particle size of the RE 2 T 14 B crystal grains of the magnet main phase after sintering conforms to claim 1 of the present invention. Just set it. The key point is to have multiple average particle sizes.

【0011】[0011]

【発明の実施の形態】以下本発明を実施例によって説明
する。但し本発明は実施例のみに限定されるものではな
い。 (実施例) 表1に示す種々の組成に調整したインゴッ
トを作製し粗粉砕後に同表に示す種々の平均粒度(F.
S.S.S.)に微粉砕した。インゴットの製法(例え
ば通常の高周波溶解又はアーク溶解、金型鋳造又は急冷
法等)、粉砕法(例えば乾式ジェットミル法又は湿式ボ
ールミル法等)に関しては一般的に用いられているどの
方法でも良い。得られた微粉を表2に示す混合比で混合
し、該混合粉を磁場中成形後通常の方法にて焼結磁石化
した。得られた磁石の磁気特性および、磁石を異方性方
向に垂直な面で切断し、研磨した面をエッチングした際
に観察される主相結晶粒径aが5ミクロン以下と15ミ
クロン以上を有する結晶粒面積の和の主相総面積に対す
る比率(主相面積率)を表3の実施例1〜5に示す。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to Examples. However, the present invention is not limited to the examples. (Examples) Ingots adjusted to various compositions shown in Table 1 were produced, and after coarse pulverization, various average particle sizes (F.
S. S. S. ). Any commonly used method may be used as a method for producing an ingot (for example, ordinary high-frequency melting or arc melting, die casting or quenching method) and a crushing method (for example, dry jet mill method or wet ball mill method). The obtained fine powders were mixed at the mixing ratio shown in Table 2, and the mixed powders were molded in a magnetic field and then sintered magnetized by a usual method. The magnetic properties of the obtained magnet and the crystal grain size a of the main phase observed when the magnet is cut along a plane perpendicular to the anisotropic direction and the polished surface is etched have a particle size of 5 μm or less and 15 μm or more. The ratio of the sum of the crystal grain areas to the total area of the main phase (main phase area ratio) is shown in Examples 1 to 5 in Table 3.

【0012】(比較例) 表4に示す種々の組成に調整
したインゴットを作製し粗粉砕後に同表に示す種々の平
均粒度に微粉砕した。以下の方法は実施例の場合と全く
同様に行った。微粉の混合比率を表5に、磁気特性およ
び主相面積率を表3の比較例1〜4に示す。
Comparative Example Ingots having various compositions shown in Table 4 were prepared, coarsely pulverized, and then finely pulverized into various average particle sizes shown in the same table. The following method was performed exactly as in the case of the examples. The mixing ratio of the fine powder is shown in Table 5, and the magnetic characteristics and the main phase area ratio are shown in Comparative Examples 1 to 4 of Table 3.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【表3】 [Table 3]

【0016】[0016]

【表4】 [Table 4]

【0017】以下に各実施例および比較例の内容を説明
する。実施例1は同一組成を有するインゴットNo.1
とNo.2を4.3ミクロンと5.2ミクロンに粉砕後
50:50の割合で混合したものであり、混合後の平均
粒度は、4.7ミクロンであった。表3に示した通り主
相面積率は請求項1に合致しており、又磁気特性もBr
≧12.8kG、iHc≧16kOeを満足している。
一方、比較例1は実施例1の組成を有するインゴットN
o.12(第4表参照)を平均粒度4.7ミクロンに粉
砕したものであるが、焼結後の主相面積率は実施例1と
異なっており磁気特性も低い。この差は微粉の平均粒度
は同一でも粒度分布が異なっていることによる。
The contents of each example and comparative example will be described below. Example 1 is an ingot No. 1 having the same composition. 1
And No. 2 was crushed to 4.3 microns and 5.2 microns and mixed at a ratio of 50:50, and the average particle size after mixing was 4.7 microns. As shown in Table 3, the main phase area ratio conforms to claim 1, and the magnetic characteristics are also Br.
It satisfies ≧ 12.8 kG and iHc ≧ 16 kOe.
On the other hand, Comparative Example 1 is an ingot N having the composition of Example 1.
o. 12 (see Table 4) was crushed to an average particle size of 4.7 microns, but the main phase area ratio after sintering is different from that of Example 1, and the magnetic properties are also low. This difference is due to the fact that even if the average particle size of the fine powder is the same, the particle size distribution is different.

【0018】実施例2は最終磁石組成よりREを高く
し、又M元素を添加したインゴットNo.3を4.3ミ
クロンに粉砕し、最終磁石組成よりREを低くしたM元
素無添加インゴットNo.4を5.2ミクロンに粉砕
し、それらを40:60の割合で混合したものである。
保磁力向上及び結晶粒成長抑制効果を有するM元素の添
加量を増やしたことにより混合後のMを1.2%に増や
して実施例1より更にiHcが向上している。一方、比
較例2は実施例2と同様に最終組成よりREを高くしM
元素を添加したインゴットNo.13およびREを低く
したインゴットNo.14をそれぞれ4.3ミクロンと
4.5ミクロンに粉砕し40:60で混合したものであ
る。表3で明かな通り磁気特性はiHcは高いがBrは
12.8KGに達していない。これは結晶粒径15ミク
ロン以上の主相面積率が41.9%と低いためである。
主相面積率が低いのはインゴットNo.13とNo.1
4の微粉粒径がほぼ同じであるため焼結時の2次再結晶
が十分に進まなかったことによる。
In Example 2, ingot No. No. 1 having an RE higher than that of the final magnet composition and an element M added thereto was used. 3 was crushed to 4.3 microns and RE was made lower than the final magnet composition. 4 was ground to 5.2 microns and they were mixed in a ratio of 40:60.
By increasing the addition amount of M element having the effect of improving coercive force and suppressing crystal grain growth, M after mixing was increased to 1.2%, and iHc was further improved as compared with Example 1. On the other hand, in Comparative Example 2, as in Example 2, RE was set higher than the final composition, and M
Ingot No. with element added No. 13 and RE having a low RE. 14 was crushed to 4.3 micron and 4.5 micron, respectively, and mixed at 40:60. As is clear from Table 3, the magnetic characteristics are high in iHc, but Br does not reach 12.8 KG. This is because the area ratio of the main phase having a crystal grain size of 15 microns or more is as low as 41.9%.
The ingot No. has a low main phase area ratio. 13 and No. 1
This is because secondary recrystallization at the time of sintering did not proceed sufficiently because the fine powder particle size of 4 was almost the same.

【0019】実施例3は同一組成を有するインゴットN
o.5とNo.6をそれぞれ4.0ミクロンと5.6ミ
クロンに粉砕後35:65の割合で混合したものであ
り、混合後の平均粒度は5.0ミクロンであった。表3
に示した通り主相面積率は請求項1に合致している。実
施例1と比較し、M元素添加量をやや少なくしたことに
よりBrはやや高く、iHcはやや低くなっているがい
ずれも規定値を上回っている。比較例3は実施例3より
M元素添加量を更に下げ0.4%とした以外はすべて実
施例3と同様にしたものであるが、表3に示した通り結
晶粒径5ミクロン以下の主相面積率が0.9%となり、
その結果iHcは12.3KOeと低い。これはM元素
が少なすぎて粒成長抑制が不十分であったことによる。
Example 3 is an ingot N having the same composition.
o. 5 and No. 6 was pulverized to 4.0 micron and 5.6 micron respectively and then mixed in a ratio of 35:65, and the average particle size after mixing was 5.0 micron. Table 3
The main phase area ratio conforms to claim 1, as shown in FIG. Compared with Example 1, Br was slightly higher and iHc was slightly lower by slightly reducing the amount of addition of the M element, but both exceeded the specified values. Comparative Example 3 is the same as Example 3 except that the amount of M element added is further reduced from that of Example 3 to 0.4%, but as shown in Table 3, the crystal grain size of 5 μm or less is mainly used. Phase area ratio becomes 0.9%,
As a result, iHc is as low as 12.3 KOe. This is because the M element was too small and the grain growth was not sufficiently suppressed.

【0020】実施例4はインゴットNo.7,8(表
1)をそれぞれ平均粒度3.9ミクロンと5.7ミクロ
ンに粉砕後30:70の割合で混合したものであり、混
合後の平均粒度は5.2ミクロンであった。表3に示し
た通り主相面積率および磁気特性は請求項1に合致して
いる。実施例1より希土類元素量を少なくし、混合後の
平均粒径をやや大きくし、又結晶粒成長抑制元素Mの添
加量をやや多くしたことによりその磁気特性Brおよび
iHcは実施例1より更に高い値を示している。比較例
4はM元素を2.8%添加したインゴットNo.17と
インゴットNo.18をそれぞれ4.0ミクロン、5.
6ミクロンに粉砕後30:70の割合で混合したもので
あり、混合後の平均粒度は5.1ミクロンであった。す
なわち混合後のM元素の量が実施例4の1.3%に対し
2.8%と高くなっているほかは実施例4とほぼ同等で
あるが、表3に示した通りiHcは18.6kOeと非
常に高いがBrは12.6kGと低い値である。これは
M元素が多いため焼結時の粒成長抑制が効き過ぎ、十分
な2次再結晶が起らなかったことによる。
In the fourth embodiment, the ingot No. Nos. 7 and 8 (Table 1) were pulverized to have an average particle size of 3.9 microns and 5.7 microns and mixed at a ratio of 30:70, and the average particle size after mixing was 5.2 microns. As shown in Table 3, the main phase area ratio and the magnetic properties conform to claim 1. The magnetic properties Br and iHc thereof are further increased as compared with those of Example 1 by reducing the amount of rare earth element, slightly increasing the average particle size after mixing, and increasing the addition amount of the crystal grain growth suppressing element M as compared with Example 1. It shows a high value. Comparative Example 4 is an ingot No. 3 containing 2.8% of M element. 17 and ingot No. 18 to 4.0 microns and 5.
It was crushed to 6 microns and mixed at a ratio of 30:70, and the average particle size after mixing was 5.1 microns. That is, it is almost the same as in Example 4 except that the amount of M element after mixing is as high as 2.8% as compared with 1.3% in Example 4, but as shown in Table 3, iHc was 18. Although it is very high at 6 kOe, Br is as low as 12.6 kG. This is because the large amount of M element suppresses the grain growth at the time of sintering, resulting in insufficient secondary recrystallization.

【0021】実施例5は同一組成を有するインゴットN
o.9,10,11をそれぞれ3.7,4.5,5.9
ミクロンに粉砕後20:20:60の割合で混合したも
のであり、混合後の平均粒度は5.2ミクロンであっ
た。表3に示した通り主相面積率および磁気特性とも請
求項1に合致している。
Example 5 is an ingot N having the same composition.
o. 9, 10, 11 for 3.7, 4.5, 5.9 respectively
The mixture was pulverized to micron and mixed at a ratio of 20:20:60, and the average particle size after mixing was 5.2 microns. As shown in Table 3, both the main phase area ratio and the magnetic characteristics meet claim 1.

【0022】[0022]

【表5】 [Table 5]

【0023】[0023]

【発明の効果】本発明のRE−T−M−B系焼結磁石は
その焼結後の主相結晶粒径を制御することにより、従来
にない高Brで且つ高iHcを実現した高性能磁石であ
り、各種電気、電子機器の小形化高機能化に十分に応え
られるものである。
EFFECTS OF THE INVENTION The RE-T-M-B system sintered magnet of the present invention controls the grain size of the main phase after sintering to achieve a high Br and a high iHc which have never been achieved in the past. It is a magnet, and can sufficiently meet the demand for miniaturization and high functionality of various electric and electronic devices.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁石主相結晶の総面積に対し、結晶粒径
15ミクロン以上の結晶粒の面積の和が50%以上、結
晶粒径が5ミクロン以下の結晶粒の面積の和が2%以上
5%以下で、且つその磁気特性がBr≧12.8kG、
iHc≧16kOeであることを特徴とする磁気特性に
優れたRE−T−M−B系焼結磁石。
1. The total area of crystal grains with a grain size of 15 microns or more is 50% or more and the sum of area of crystal grains with a grain size of 5 microns or less is 2% with respect to the total area of the main phase crystals of the magnet. 5% or less, and the magnetic characteristics are Br ≧ 12.8 kG,
A RE-T-M-B system sintered magnet excellent in magnetic characteristics, characterized in that iHc ≧ 16 kOe.
【請求項2】 RE(Yを含む希土類元素で、Nd,P
r及びDyの和が90重量%以上)29.5%以上3
2.5%以下(重量% 以下同じ)、B0.8%以上
1.5%以下、M(Al,Nb,Ga,Mo,Ti,
V,Ni,Cr,Mn,Ta,Zr,Hf,Cu,Sn
の少なくとも1種以上)0.5%以上2.5%以下、残
部T(Fe但しその一部をCoで置換可)及び不可避の
不純物からなることを特徴とする請求項1に記載の焼結
磁石。
2. RE (Y is a rare earth element containing Y, Nd, P
The sum of r and Dy is 90% by weight or more) 29.5% or more 3
2.5% or less (same as below by weight%), B 0.8% or more and 1.5% or less, M (Al, Nb, Ga, Mo, Ti,
V, Ni, Cr, Mn, Ta, Zr, Hf, Cu, Sn
0.5% or more and 2.5% or less, the balance T (Fe, but a part thereof can be replaced by Co), and unavoidable impurities. magnet.
JP7234150A 1995-09-12 1995-09-12 Re-t-m-b sintered magnet excellent in magnetic characteristic Pending JPH0982510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7234150A JPH0982510A (en) 1995-09-12 1995-09-12 Re-t-m-b sintered magnet excellent in magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7234150A JPH0982510A (en) 1995-09-12 1995-09-12 Re-t-m-b sintered magnet excellent in magnetic characteristic

Publications (1)

Publication Number Publication Date
JPH0982510A true JPH0982510A (en) 1997-03-28

Family

ID=16966439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7234150A Pending JPH0982510A (en) 1995-09-12 1995-09-12 Re-t-m-b sintered magnet excellent in magnetic characteristic

Country Status (1)

Country Link
JP (1) JPH0982510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11335484B2 (en) * 2018-01-30 2022-05-17 Tdk Corporation Permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11335484B2 (en) * 2018-01-30 2022-05-17 Tdk Corporation Permanent magnet

Similar Documents

Publication Publication Date Title
US6506265B2 (en) R-Fe-B base permanent magnet materials
EP0801402A1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
US4859254A (en) Permanent magnet
JPWO2007063969A1 (en) Rare earth sintered magnet and manufacturing method thereof
US5230751A (en) Permanent magnet with good thermal stability
JP2665590B2 (en) Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JP3296507B2 (en) Rare earth permanent magnet
JP3712595B2 (en) Alloy ribbon for permanent magnet and sintered permanent magnet
JP2739525B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
JP3253006B2 (en) RE-T-M-B sintered magnet with excellent magnetic properties
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JPH0982510A (en) Re-t-m-b sintered magnet excellent in magnetic characteristic
JPH0549737B2 (en)
JPH04247604A (en) Rare earth-fe-co-b anisotropic magnet
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JP2868062B2 (en) Manufacturing method of permanent magnet
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPS6318603A (en) Permanent magnet
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JP2514155B2 (en) Method for manufacturing permanent magnet alloy
JPH04246803A (en) Rare earth-fe-b anisotropic magnet
KR100394992B1 (en) Fabricating Method of NdFeB Type Sintered Magnet
JPH0477066B2 (en)
JPH1012474A (en) Manufacture of rare-earth permanent magnet and rare-earth permanent magnet