JPH04247604A - Rare earth-fe-co-b anisotropic magnet - Google Patents

Rare earth-fe-co-b anisotropic magnet

Info

Publication number
JPH04247604A
JPH04247604A JP3060860A JP6086091A JPH04247604A JP H04247604 A JPH04247604 A JP H04247604A JP 3060860 A JP3060860 A JP 3060860A JP 6086091 A JP6086091 A JP 6086091A JP H04247604 A JPH04247604 A JP H04247604A
Authority
JP
Japan
Prior art keywords
anisotropic magnet
crystal grains
grain size
coercive force
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3060860A
Other languages
Japanese (ja)
Other versions
JP3196224B2 (en
Inventor
Takuo Takeshita
武下 拓夫
Ryoji Nakayama
亮治 中山
Yoshinari Ishii
義成 石井
Tamotsu Ogawa
保 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP06086091A priority Critical patent/JP3196224B2/en
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to EP92903728A priority patent/EP0522177B2/en
Priority to CA 2079223 priority patent/CA2079223A1/en
Priority to DE69203405T priority patent/DE69203405T3/en
Priority to PCT/JP1992/000073 priority patent/WO1992013353A1/en
Priority to TW81100770A priority patent/TW209301B/zh
Priority to CN 92101185 priority patent/CN1065152A/en
Publication of JPH04247604A publication Critical patent/JPH04247604A/en
Priority to US08/021,187 priority patent/US5395462A/en
Application granted granted Critical
Publication of JP3196224B2 publication Critical patent/JP3196224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To form an R-Fe-Co-B magnet which exhibits remarkable magnetic anisotropy and also has a small coercive force temperature coefficient by using hydrogen-treated powder containing one or two or more of specific elements together with Co. CONSTITUTION:This is an R-Fe-Co-B anisotropic magnet mainly containing at least a kind of rare earth elements (referred to R) including Y together with Fe, Co and B. The anisotropic magnet contains 10 to 20% of R, 0.1 to 50% of Co, 3 to 20% of B and 0.001 to 5.0% of a sum of one or two or more kinds of Ti, V, Nb, Ta, Al and Si by atomic percentage. The remaining comprises composition containing Fe and unavoidable impurities and a grain aggregate structure where crystal grains with an R2(Fe,Co)14B-type intermetallic compound phase showing a tetragonal structure as a main phase are crystallized. This is a hot-pressed mold or hotisostatic-pressed mold wherein a ratio of the shortest grain diameter to the longest grain diameter is less than 2 and an average crystal grain diameter is 0.05 to 20mum.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、磁気特性に優れかつ
保磁力温度係数の小さい、Yを含む希土類元素のうち少
くとも1種(以下、Rで示す)、Fe,Co,およびB
を主成分とするR−Fe−Co−B系異方性磁石に関す
るものである。さらに詳細には、ホットプレスまたは熱
間静水圧プレス(以下HIPで示す)成形体からなるR
−Fe−Co−B系異方性磁石に関するものである。
[Industrial Application Field] The present invention is directed to at least one rare earth element containing Y (hereinafter referred to as R), Fe, Co, and B, which have excellent magnetic properties and a small coercive temperature coefficient.
The present invention relates to an R-Fe-Co-B anisotropic magnet whose main component is R-Fe-Co-B. More specifically, R made of hot press or hot isostatic press (hereinafter referred to as HIP) compact
-This relates to an anisotropic magnet based on Fe-Co-B.

【0002】0002

【従来の技術】特開平1−132106号公報には、R
−Fe−Co−B系永久磁石粉末が記載されており、こ
のR−Fe−Co−B系永久磁石粉末は、強磁性相であ
るR2 (Fe,Co)14B型金属間化合物相を主相
とするR−Fe−Co−B系母合金を原料とし、この母
合金原料を所定の温度範囲のH2 雰囲気中で熱処理し
てRHx と(Fe,Co)2 Bと残部Feの各相に
相変態を促した後、脱H2 工程でH2 を原料から取
り去ることにより再び強磁性相であるR2 (Fe,C
o)14B型相を生成させたもので、その結果得られた
R−Fe−Co−B系永久磁石粉末の組織は、平均粒径
:0.05〜3μmの極めて微細なR2 (Fe,Co
)14B型相の再結晶組織を主相とした集合組織となっ
ている。
[Prior Art] Japanese Unexamined Patent Publication No. 1-132106 discloses that R
-Fe-Co-B based permanent magnet powder is described, and this R-Fe-Co-B based permanent magnet powder has a main phase of R2 (Fe, Co) 14B type intermetallic compound phase which is a ferromagnetic phase. An R-Fe-Co-B mother alloy is used as a raw material, and this mother alloy raw material is heat-treated in an H2 atmosphere at a predetermined temperature range to form phases of RHx, (Fe, Co)2 B, and the remainder Fe. After accelerating the transformation, H2 is removed from the raw material in a deH2 step, and the ferromagnetic phase R2 (Fe, C
o) The structure of the resulting R-Fe-Co-B permanent magnet powder is extremely fine R2 (Fe, Co) with an average particle size of 0.05-3 μm.
) The texture has a recrystallized structure of the 14B type phase as the main phase.

【0003】上記R−Fe−Co−B系永久磁石粉末は
、ホットプレスしてホットプレス成形体としただけでは
十分な磁気的異方性が得られないために、特開平2−3
9503号公報に記載されているように、上記ホットプ
レス成形体をさらに熱間圧延などの熱間圧延加工を施し
て、R2 (Fe,Co)14B相の結晶粒のC軸を配
向せしめた圧延組織とすることにより磁気的異方性を向
上させていた。
[0003] The above R-Fe-Co-B permanent magnet powder cannot obtain sufficient magnetic anisotropy just by hot-pressing it into a hot-press molded product, so it has been disclosed in Japanese Patent Laid-Open No. 2-3
As described in Japanese Patent No. 9503, the hot press molded body is further subjected to hot rolling such as hot rolling to orient the C axis of the crystal grains of the R2 (Fe, Co)14B phase. The structure improved the magnetic anisotropy.

【0004】0004

【発明が解決しようとする課題】しかしながら、上記ホ
ットプレス成形体をさらに熱間圧延して得られたR−F
e−Co−B系圧延磁石は優れた磁気的異方性を有する
ものの、保磁力の温度係数が増大し、このR−Fe−C
o−B系圧延磁石をモータ等に組み込んだ場合に、温度
の変化によってモータ等の性能が変化し、安定性に欠け
るなどの課題があった。
[Problems to be Solved by the Invention] However, the R-F obtained by further hot rolling the above-mentioned hot press molded product
Although e-Co-B rolled magnets have excellent magnetic anisotropy, the temperature coefficient of coercive force increases, and this R-Fe-C
When an o-B type rolled magnet is incorporated into a motor or the like, there are problems such as the performance of the motor changes due to changes in temperature and lacks stability.

【0005】また、R−Fe−Co−B系圧延磁石は、
場所による加工率のばらつきが磁気異方性のばらつきを
もたらし、それを防止するために、熱間塑性加工の工程
が複雑にならざるを得なかった。
[0005] Furthermore, the R-Fe-Co-B rolled magnet is
Variations in processing rate depending on location lead to variations in magnetic anisotropy, and in order to prevent this, the hot plastic working process had to become complicated.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者等は、
上記保磁力の温度係数の増大はホットプレス成形体を熱
間圧延することにより発生するものであるから、上記熱
間圧延することなく磁気的異方性の優れた磁石が得られ
るならば、上記保磁力の温度係数の増大は発生しないと
の認識のもとに研究を行った結果、 R:10〜20%、 Co:0.1〜50%、 B:3〜20%、 Ti,V,Nb,Ta,AlおよびSiのうち1種また
は2種以上の合計:0.001〜5.0%、を含有し、
残りがFeおよび不可避不純物からなる組成と、個々の
結晶粒の最短粒径aと最長粒径bの比b/aの値が2未
満である形状および平均結晶粒径が0.05〜20μm
の寸法を有し、かつ正方晶構造をとるR2 (Fe,C
o)14B型金属間化合物相を主相とする結晶粒から構
成される結晶粒集合組織と、からなるホットプレス成形
体またはHIP成形体で構成されたR−Fe−Co−B
系磁石は、保磁力の温度係数の増大をもたらすことなく
優れた磁気的異方性を示すという知見を得たのである。
[Means for solving the problem] Therefore, the present inventors
The above increase in the temperature coefficient of coercive force is caused by hot rolling the hot press molded body, so if a magnet with excellent magnetic anisotropy can be obtained without the above hot rolling, the above As a result of research based on the recognition that no increase in the temperature coefficient of coercive force occurs, R: 10 to 20%, Co: 0.1 to 50%, B: 3 to 20%, Ti, V, Contains a total of 0.001 to 5.0% of one or more of Nb, Ta, Al and Si,
A composition in which the remainder is Fe and unavoidable impurities, a shape in which the ratio b/a of the shortest grain size a to the longest grain size b of each crystal grain is less than 2, and an average grain size of 0.05 to 20 μm
R2 (Fe, C
o) R-Fe-Co-B composed of a hot press molded body or a HIP molded body consisting of a crystal grain texture composed of crystal grains having a 14B type intermetallic compound phase as the main phase.
They found that the system magnet exhibits excellent magnetic anisotropy without increasing the temperature coefficient of coercive force.

【0007】この発明はかかる知見にもとづいてなされ
たものであって、上記組成および結晶粒集合組織を有す
るホットプレス成形体またはHIP成形体からなる保磁
力の温度係数が小さいR−Fe−Co−B系異方性磁石
に特徴を有するものである。
[0007] The present invention was made based on this knowledge, and it is possible to obtain an R-Fe-Co- This is a characteristic of B-based anisotropic magnets.

【0008】この発明の保磁力の温度係数が小さいR−
Fe−Co−B系異方性磁石は、従来の圧延磁石に比べ
て、場所による磁気異方性のばらつきもほとんどなく耐
食性も優れている。
The present invention has a small temperature coefficient of coercive force R-
Compared to conventional rolled magnets, Fe-Co-B anisotropic magnets have almost no variation in magnetic anisotropy depending on location and have excellent corrosion resistance.

【0009】また、この発明のR−Fe−B系異方性磁
石は、結晶粒集合組織を有するために、R2 (Fe,
Co)14B型化合物組成付近、すなわちR11.8F
ebal B5.9 組成付近でもすぐれた磁気異方性
と高保磁力を有する。
Furthermore, since the R-Fe-B anisotropic magnet of the present invention has a crystal grain texture, R2 (Fe,
Co) around the 14B type compound composition, that is, R11.8F
It has excellent magnetic anisotropy and high coercive force even at compositions near ebal B5.9.

【0010】つぎに、この発明のR−Fe−Co−B系
異方性磁石の製造法を説明する。
Next, a method for manufacturing the R-Fe-Co-B anisotropic magnet of the present invention will be explained.

【0011】この発明のR−Fe−Co−B系異方性磁
石を製造するためのR−Fe−Co−B系永久磁石粉末
は、溶解鋳造してTi,V,Nb,Ta,AlおよびS
iのうち1種または2種以上を所定の成分組成となるよ
うに含有したR−Fe−Co−B系母合金を製造し、こ
のR−Fe−Co−B系母合金を水素ガス雰囲気中で昇
温し、温度:500〜1000℃、水素ガス雰囲気中ま
たは水素ガスと不活性ガスの混合ガス雰囲気中で熱処理
し、ついで、温度:500〜1000℃、水素ガス圧力
:1Torr以下の真空雰囲気または水素ガス分圧:1
Torr以下の不活性ガス雰囲気になるまで脱水素処理
したのち、冷却することにより製造される。
[0011] The R-Fe-Co-B permanent magnet powder for producing the R-Fe-Co-B anisotropic magnet of the present invention is melted and cast to form Ti, V, Nb, Ta, Al and S
An R-Fe-Co-B mother alloy containing one or more of i to have a predetermined composition is produced, and this R-Fe-Co-B mother alloy is heated in a hydrogen gas atmosphere. Heat treatment is performed at a temperature of 500 to 1000°C in a hydrogen gas atmosphere or a mixed gas atmosphere of hydrogen gas and inert gas, and then in a vacuum atmosphere at a temperature of 500 to 1000°C and a hydrogen gas pressure of 1 Torr or less. Or hydrogen gas partial pressure: 1
It is produced by dehydrogenating until it becomes an inert gas atmosphere of Torr or less, and then cooling it.

【0012】上記Ti,V,Nb,Ta,AlおよびS
iのうち1種または2種以上を所定量含有したR−Fe
−Co−B系母合金を温度:600〜1200℃で均質
化処理する工程および上記脱水素処理したのち温度:3
00〜1000℃で熱処理する工程を付加することによ
り一層優れた磁気的異方性および耐食性を有するR−F
e−Co−B系永久磁石粉末を製造することができる。
[0012] The above Ti, V, Nb, Ta, Al and S
R-Fe containing a predetermined amount of one or more of i
- A step of homogenizing the Co-B-based master alloy at a temperature of 600 to 1200°C and the above dehydrogenation treatment followed by a temperature of 3
R-F has even better magnetic anisotropy and corrosion resistance by adding a heat treatment process at 00 to 1000°C
An e-Co-B permanent magnet powder can be produced.

【0013】このようにして製造されたR−Fe−Co
−B系永久磁石粉末の組織は、粒内および粒界部に不純
物や歪がないR2 (Fe,Co)14B型金属間化合
物相の再結晶粒が集合した再結晶集合組織から構成され
ている。
[0013] R-Fe-Co thus produced
-The structure of the B-based permanent magnet powder is composed of a recrystallized texture in which recrystallized grains of the R2 (Fe, Co) 14B type intermetallic compound phase are aggregated without impurities or distortion within the grains or at the grain boundaries. .

【0014】この再結晶集合組織を構成する再結晶粒の
平均再結晶粒径は0.05〜20μmの範囲内にあれば
十分であるが、単磁区粒径の寸法(約0.3μm)に近
い0.05〜3μmの範囲内にあることが一層好ましい
[0014] It is sufficient that the average recrystallized grain size of the recrystallized grains constituting this recrystallized texture is within the range of 0.05 to 20 μm; It is more preferable that it be within the range of 0.05 to 3 μm.

【0015】上記寸法を有する個々の再結晶粒は、最短
粒径aと最長粒径bの比がb/a<2の形状を有するこ
とが好ましく、この形状を有する再結晶粒は、全再結晶
粒の50容量%以上存在することが必要である。上記最
短粒径aと最長粒径bの比b/aが2より小さい再結晶
粒の形状を有することにより、R−Fe−Co−B系永
久磁石粉末の保磁力が改善されるとともに25〜100
℃における保磁力の温度係数αiHcが−0.6%/℃
より小さくなる。
The individual recrystallized grains having the above dimensions preferably have a shape in which the ratio of the shortest grain diameter a to the longest grain diameter b is b/a<2, and the recrystallized grains having this shape are It is necessary that it exists in an amount of 50% or more by volume of the crystal grains. By having the shape of the recrystallized grains in which the ratio b/a of the shortest grain size a to the longest grain size b is smaller than 2, the coercive force of the R-Fe-Co-B permanent magnet powder is improved and the 100
Temperature coefficient αiHc of coercive force at °C is -0.6%/°C
become smaller.

【0016】さらに、このようにして製造されたR−F
e−Co−B系永久磁石粉末の再結晶組織は、粒界相が
ほとんど存在しない実質的にR2 (Fe,Co)14
B型金属間化合物相だけから構成された再結晶集合組織
を有しているために、粒界相のない分だけ磁化の値を高
めることができるとともに、粒界相を介して進行する腐
食を抑止し、さらに熱間塑性加工による応力歪も存在し
ないことから応力腐食の可能性も少なく、耐食性が向上
する。
Furthermore, the R-F produced in this way
The recrystallized structure of the e-Co-B permanent magnet powder is substantially R2 (Fe, Co)14 with almost no grain boundary phase.
Since it has a recrystallized texture composed only of B-type intermetallic compound phase, it is possible to increase the magnetization value due to the absence of grain boundary phase, and it also prevents corrosion that progresses through grain boundary phase. In addition, since there is no stress strain caused by hot plastic working, there is less possibility of stress corrosion, and corrosion resistance is improved.

【0017】このようにして製造されたR−Fe−Co
−B系永久磁石粉末を磁場中成形して圧粉体としたのち
、この圧粉体を温度:600〜900℃でホットプレス
またはHIPすることにより上記R−Fe−Co−B系
永久磁石粉末の組織および特性を保持した保磁力温度係
数αiHcの小さなこの発明のR−Fe−Co−B系異
方性磁石を得ることができる。
[0017] R-Fe-Co thus produced
-B-based permanent magnet powder is molded in a magnetic field to form a green compact, and then this green compact is hot-pressed or HIPed at a temperature of 600 to 900°C to form the R-Fe-Co-B-based permanent magnet powder. It is possible to obtain the R-Fe-Co-B based anisotropic magnet of the present invention which maintains the structure and characteristics of the present invention and has a small coercive force temperature coefficient αiHc.

【0018】また、必要に応じて300〜1000℃で
熱処理することにより、保磁力を向上させることができ
る。
[0018] Furthermore, the coercive force can be improved by heat treatment at 300 to 1000°C, if necessary.

【0019】上記圧粉体を通常の温度で焼結すると上記
焼結温度は一般に高温であるためにR−Fe−Co−B
系永久磁石粉末の微細な再結晶粒は成長し、大きな結晶
粒となって磁気特性、特に保磁力が低下するので好まし
くない。
When the green compact is sintered at a normal temperature, the sintering temperature is generally high, so R-Fe-Co-B
The fine recrystallized grains of the system permanent magnet powder grow and become large crystal grains, which is undesirable because the magnetic properties, especially the coercive force, deteriorate.

【0020】したがって、この発明のR−Fe−Co−
B系異方性磁石を製造する方法として、通常の焼結温度
よりも低い温度で焼結することのできるホットプレス法
またはHIP法を採用し、結晶粒の成長を抑える必要が
ある。また、磁気異方性の付与は、磁場中成形で行なう
ため、ホットプレス、HIPの後に熱間塑性加工を行う
必要はない。
Therefore, the R-Fe-Co-
As a method for manufacturing an anisotropic B-based magnet, it is necessary to employ a hot press method or a HIP method that allows sintering at a temperature lower than the normal sintering temperature to suppress the growth of crystal grains. Moreover, since magnetic anisotropy is imparted by forming in a magnetic field, there is no need to perform hot plastic working after hot pressing and HIP.

【0021】つぎに、この発明の保磁力温度係数の小さ
なR−Fe−Co−B系異方性磁石の成分組成、平均結
晶粒径および結晶粒を上記の如く限定した理由について
説明する。
Next, the reason why the component composition, average crystal grain size and crystal grains of the R--Fe--Co--B anisotropic magnet having a small coercivity temperature coefficient of the present invention are limited as described above will be explained.

【0022】(a)R Rは、Nd,Pr,Tb,Dy,La,Ce,Ho,E
r,Eu,Sm,Gd,Tm,Yb,LuおよびYのう
ち1種または2種以上であり、一般にNdを主体とし、
これにその他の希土類元素を添加して用いられるが、特
にTb,DyおよびPrは保磁力iHcを向上させる効
果があり、Rの含有量が10%より低くても、また20
%より高くても異方性磁石の保磁力が低下し、優れた磁
気特性が得られない。したがって、Rの含有量は10〜
20%に定めた。
(a) R R is Nd, Pr, Tb, Dy, La, Ce, Ho, E
One or more of r, Eu, Sm, Gd, Tm, Yb, Lu and Y, generally mainly composed of Nd,
Other rare earth elements are added to this and used, but Tb, Dy and Pr in particular have the effect of improving the coercive force iHc, and even if the R content is lower than 10%, the
Even if it is higher than %, the coercive force of the anisotropic magnet decreases and excellent magnetic properties cannot be obtained. Therefore, the content of R is 10~
It was set at 20%.

【0023】(b)B Bの含有量が3%より低くても、また20%より高くて
も異方性磁石の保磁力が低下し、優れた磁気特性が得ら
れないので、B含有量は3〜20%と定めた。また、B
の一部をC,N,O,Fで置換してもよい。
(b) B Even if the B content is lower than 3% or higher than 20%, the coercive force of the anisotropic magnet decreases and excellent magnetic properties cannot be obtained. was set at 3-20%. Also, B
may be partially replaced with C, N, O, or F.

【0024】(c)Co Coを添加することにより異方性磁石の保磁力および磁
気的温度特性(例えば、キュリー点)が向上し、さらに
耐食性を向上させる効果があるが、その含有量が0.1
%未満では所望の効果が得られず、一方、50%を越え
て含有してもかって磁気特性が低下するので好ましくな
い。したがって、Coの含有量は0.1〜50%に定め
た。Coの含有量は、0.1〜20%の間では、最も保
磁力が高くなるのでCo:0.1〜20%とするのが一
層好ましい。
(c) Co The addition of Co improves the coercive force and magnetic temperature characteristics (for example, Curie point) of the anisotropic magnet, and also has the effect of improving corrosion resistance. .1
If the content is less than 50%, the desired effect cannot be obtained, while if the content exceeds 50%, the magnetic properties will deteriorate, which is not preferable. Therefore, the Co content was set at 0.1 to 50%. Since the coercive force is highest when the Co content is between 0.1 and 20%, it is more preferable that the Co content is between 0.1 and 20%.

【0025】(d)Ti,V,Nb,Ta,Alおよび
Si これらの成分は、R−Fe−Co−B系異方性磁石の成
分として含有し、保磁力を向上させるとともに優れた磁
気的異方性および耐食性を安定的に付与する作用を有す
るが、その含有量が0.001%未満では所望の効果が
得られず、一方、5.0%を越えて含有すると磁気特性
が低下する。したがって、Ti,V,Nb,Ta,Al
およびSiのうち1種または2種以上の合計は0.00
1〜5.0%に定めた。
(d) Ti, V, Nb, Ta, Al and Si These components are contained as components of the R-Fe-Co-B anisotropic magnet, and improve the coercive force and provide excellent magnetic properties. It has the effect of stably imparting anisotropy and corrosion resistance, but if its content is less than 0.001%, the desired effect cannot be obtained, while if it is contained in excess of 5.0%, magnetic properties will deteriorate. . Therefore, Ti, V, Nb, Ta, Al
The sum of one or more of Si and Si is 0.00
It was set at 1 to 5.0%.

【0026】なお、さらに、Ni,Cu,Zn,Ga,
Ge,Zr,Mo,Hf,Wのうち少なくとも1種を0
.001〜5.0%含有しても優れた磁気的異方性およ
び耐食性を有するR−Fe−Co−B系異方性磁石が得
られる。
Furthermore, Ni, Cu, Zn, Ga,
At least one of Ge, Zr, Mo, Hf, and W is 0
.. Even if the content is 0.001 to 5.0%, an anisotropic R-Fe-Co-B magnet having excellent magnetic anisotropy and corrosion resistance can be obtained.

【0027】(e)平均結晶粒径 R−Fe−Co−B系異方性磁石の組織を構成するR2
 (Fe,Co)14B型相結晶粒の平均結晶粒径が0
.05μmより小さいと着磁が困難になるので好ましく
なく、一方、20μmより大きいと保磁力や角型性が低
下し、高磁気特性が得られないので好ましくない。
(e) Average grain size R-R2 constituting the structure of the Fe-Co-B anisotropic magnet
(Fe, Co) The average crystal grain size of the 14B type phase crystal grains is 0
.. If it is smaller than 0.05 μm, magnetization becomes difficult, which is undesirable. On the other hand, if it is larger than 20 μm, coercive force and squareness will decrease, making it impossible to obtain high magnetic properties, which is not preferable.

【0028】したがって、平均結晶粒径は0.05〜2
0μmに定めた。この場合、平均結晶粒径は単磁区粒径
の寸法(0.3μm)に近い0.05〜3μmとする方
が一層好ましい。
[0028] Therefore, the average crystal grain size is 0.05 to 2
It was set at 0 μm. In this case, it is more preferable that the average crystal grain size is 0.05 to 3 μm, which is close to the single magnetic domain grain size (0.3 μm).

【0029】(f)結晶粒の形状 上記寸法を有する結晶粒の形状は、最短粒径aと最長粒
径bの比b/aが2より小さな形状を有することが好ま
しく、この形状を有する結晶粒は全結晶粒の50容量%
以上存在することが必要である。上記b/a<2を満足
することによりR−Fe−Co−B系異方性磁石の保磁
力が改善されるとともに耐食性も向上し、さらに保磁力
の温度係数も小さくなるからである。
(f) Shape of crystal grains It is preferable that the shape of the crystal grains having the above-mentioned dimensions has a shape in which the ratio b/a of the shortest grain diameter a to the longest grain diameter b is smaller than 2. Grains account for 50% by volume of all grains
It is necessary for the above to exist. This is because by satisfying the above condition b/a<2, the coercive force of the R-Fe-Co-B anisotropic magnet is improved, the corrosion resistance is also improved, and the temperature coefficient of the coercive force is also reduced.

【0030】[0030]

【実施例】この発明を実施例および比較例にもとづいて
具体的に説明する。
[Examples] The present invention will be explained in detail based on Examples and Comparative Examples.

【0031】プラズマ溶解し鋳造して得られたCo、並
びにTi,V,Nb,Ta,AlおよびSiのうち1種
または2種以上含まれるR−Fe−Co−B系各種合金
インゴット、さらに、Ti,V,Nb,Ta,Al,S
iのいずれをも全く含まないR−Fe−Co−B系合金
インゴットを用意し、これら合金インゴットをそれぞれ
アルゴンガス雰囲気中、温度:1130℃、20時間保
持の条件で均質化処理したのち、この均質化処理インゴ
ットを約15mm角まで砕いて原料合金とした。この原
料合金を1気圧の水素雰囲気中で室温から830℃まで
昇温し、830℃で1時間保持の水素雰囲気中熱処理を
施し、ついで、830℃、真空度:1×10−1Tor
r以下になるまで脱水素を行った後、直ちにアルゴンガ
スを流入して急冷した。かかる水素処理を終えた後、真
空中、630℃、2時間熱処理を行った。
[0031] Various R-Fe-Co-B alloy ingots containing Co and one or more of Ti, V, Nb, Ta, Al and Si obtained by plasma melting and casting; Ti, V, Nb, Ta, Al, S
Prepare R-Fe-Co-B alloy ingots that do not contain any of i, and homogenize these alloy ingots in an argon gas atmosphere at a temperature of 1130°C for 20 hours. The homogenized ingot was crushed into approximately 15 mm square pieces to obtain a raw material alloy. This raw material alloy was heated from room temperature to 830°C in a hydrogen atmosphere of 1 atm, heat-treated in a hydrogen atmosphere for 1 hour at 830°C, and then heated at 830°C and vacuum degree: 1 x 10-1 Torr.
After dehydrogenation was carried out until the temperature was below r, argon gas was immediately introduced to rapidly cool the reactor. After completing the hydrogen treatment, heat treatment was performed at 630° C. for 2 hours in vacuum.

【0032】得られた原料合金を、乳鉢で軽く粉砕し、
平均粒度:40μmを有するR−Fe−Co−B系永久
磁石粉末を得た。
[0032] The obtained raw material alloy was lightly ground in a mortar,
R-Fe-Co-B permanent magnet powder having an average particle size of 40 μm was obtained.

【0033】これらR−Fe−Co−B系永久磁石粉末
を25KOeの磁場中でプレス成形することにより圧粉
体を作製し、これら圧粉体に温度:720℃、圧力:1
.5Ton /cm2 のホットプレスまたは温度:7
10℃、圧力:1.5 Ton/cm2 のHIPを施
し、さらに各々620℃、2時間真空中保持の熱処理を
することにより本発明焼結磁石1〜45および比較焼結
磁石1〜14を製造した。なお、磁場中成形した圧粉体
は、配向方向がホットプレスのときのプレス方向と一致
するように配置してホットプレスを行った。上記本発明
焼結磁石1〜25および比較焼結磁石1〜7は上記ホッ
トプレス法により製造したものであり、また上記本発明
焼結磁石26〜45および比較焼結磁石8〜14は上記
HIP法により製造したものである。なお、密度は全て
7.5〜7.6g/cm3 と充分緻密化していた。
[0033] These R-Fe-Co-B permanent magnet powders were press-molded in a magnetic field of 25 KOe to produce green compacts, and these green compacts were heated at a temperature of 720°C and a pressure of 1
.. 5Ton/cm2 hot press or temperature: 7
Sintered magnets 1 to 45 of the present invention and comparative sintered magnets 1 to 14 were manufactured by performing HIP at 10°C and pressure: 1.5 Ton/cm2, and further heat treatment at 620°C and holding in vacuum for 2 hours. did. Note that hot pressing was performed by arranging the green compact formed in a magnetic field so that the orientation direction coincided with the pressing direction during hot pressing. The above-mentioned sintered magnets 1 to 25 of the present invention and comparative sintered magnets 1 to 7 were manufactured by the above-mentioned hot pressing method, and the above-mentioned sintered magnets 26 to 45 of the present invention and comparative sintered magnets 8 to 14 were manufactured by the above-mentioned HIP method. Manufactured by law. In addition, all the densities were 7.5 to 7.6 g/cm 3 and were sufficiently dense.

【0034】さらに比較のために、Ti,V,Nb,T
a,AlおよびSiのいずれをも含まない合金インゴッ
トから製造されたR−Fe−Co−B系永久磁石粉末を
銅製缶に真空中で充填封入し、720℃に加熱して圧延
率80%になるまで数回圧延を行い、従来異方性磁石を
作製した。
For further comparison, Ti, V, Nb, T
a, R-Fe-Co-B permanent magnet powder manufactured from an alloy ingot containing neither Al nor Si was filled and sealed in a copper can in vacuum, and heated to 720°C to achieve a rolling ratio of 80%. A conventional anisotropic magnet was produced by rolling several times until it became .

【0035】このようにして製造された本発明異方性磁
石1〜45、比較異方性磁石1〜14および従来異方性
磁石の成分組成を表1〜6に示し、さらにこれら異方性
磁石の平均結晶粒径、個々の結晶粒の最長粒径/最短粒
径の値が2より小さい形状の結晶粒の存在量(容量%)
、保磁力温度係数αiHc、並びに磁場中プレス成形し
て得られた圧粉体にホットプレスまたはHIPを施して
得られたR−Fe−Co−B系異方性磁石の磁気特性を
測定し、これら測定値を表7〜11に示した。
The component compositions of the anisotropic magnets 1 to 45 of the present invention, comparative anisotropic magnets 1 to 14, and conventional anisotropic magnets manufactured in this manner are shown in Tables 1 to 6. The average crystal grain size of the magnet, the amount of crystal grains with a shape where the value of longest grain size / shortest grain size of individual crystal grains is smaller than 2 (volume %)
, coercive force temperature coefficient αiHc, and magnetic properties of an R-Fe-Co-B anisotropic magnet obtained by hot pressing or HIPing a compact obtained by press-molding in a magnetic field, These measured values are shown in Tables 7-11.

【0036】上記保磁力温度係数αiHcは、25℃に
おける保磁力iHc25および100℃における保磁力
αiHc100 を測定し、上記保磁力の差の割合(i
Hc100 −iHc25)/iHc25を温度差75
℃で割った値である。
The coercive force temperature coefficient αiHc is determined by measuring the coercive force iHc25 at 25°C and the coercive force αiHc100 at 100°C, and calculating the ratio of the difference in coercive force (i
Hc100 -iHc25)/iHc25 with a temperature difference of 75
It is the value divided by °C.

【0037】[0037]

【表1】[Table 1]

【0038】[0038]

【表2】[Table 2]

【0039】[0039]

【表3】[Table 3]

【0040】[0040]

【表4】[Table 4]

【0041】[0041]

【表5】[Table 5]

【0042】[0042]

【表6】[Table 6]

【0043】[0043]

【表7】[Table 7]

【0044】[0044]

【表8】[Table 8]

【0045】[0045]

【表9】[Table 9]

【0046】[0046]

【表10】[Table 10]

【0047】[0047]

【表11】[Table 11]

【0048】表1〜11の結果から、この発明のTi,
V,Nb,Ta,AlおよびSiのうちの1種または2
種以上含む本発明異方性磁石1〜45は、これらの元素
を全く含まない圧延磁石である従来異方性磁石に比べて
磁気特性がほぼ同等であるが、保磁力温度係数は格段に
小さく、さらにTi,V,Nb,Ta,Al,Siの含
有量がこの発明の条件から外れた比較異方性磁石1〜1
4は磁気的異方性が低下しており、結晶粒の寸法および
形状も磁気特性に大きな影響を与えていることがわかる
From the results in Tables 1 to 11, it can be seen that Ti,
One or two of V, Nb, Ta, Al and Si
The anisotropic magnets 1 to 45 of the present invention containing at least one of these elements have almost the same magnetic properties as conventional anisotropic magnets that are rolled magnets that do not contain any of these elements, but the temperature coefficient of coercive force is much smaller. , Comparative anisotropic magnets 1 to 1 in which the contents of Ti, V, Nb, Ta, Al, and Si deviate from the conditions of the present invention.
No. 4 has a decreased magnetic anisotropy, and it can be seen that the size and shape of the crystal grains also have a large influence on the magnetic properties.

【0049】[0049]

【発明の効果】この発明は、CoとともにTi,V,N
b,Ta,AlおよびSiのうち1種または2種以上を
含有せしめた水素処理粉末を用いることにより熱間塑性
加工を施すことなく顕著な磁気的異方性を示すと同時に
保磁力温度係数の小さなR−Fe−Co−B系磁石を得
ることができ、モータ等の電動機器の性能および安定性
の向上に優れた効果をもたらすものである。
[Effect of the invention] This invention provides Ti, V, and N in addition to Co.
By using a hydrogen-treated powder containing one or more of Ta, Al, and Si, it exhibits remarkable magnetic anisotropy without hot plastic working, and at the same time, the temperature coefficient of coercive force can be reduced. A small R-Fe-Co-B magnet can be obtained, which has an excellent effect on improving the performance and stability of electric equipment such as motors.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  Yを含む希土類元素のうち少なくとも
1種(以下、Rで示す)とFeとCoとBを主成分とす
るR−Fe−Co−B系異方性磁石であって、この異方
性磁石は、原子百分率で、 R:10〜20%、        Co:0.1〜5
0%、B:3〜20%、 Ti,V,Nb,Ta,AlおよびSiのうち1種また
は2種以上の合計:0.001〜5.0%、を含有し、
残りがFeおよび不可避不純物からなる組成と、正方晶
構造をとるR2 (Fe,Co)14B型金属間化合物
相を主相とする結晶粒が集合した結晶粒集合組織とを有
し、上記結晶粒集合組織は、個々の結晶粒の最短粒径a
と最長粒径bの比b/aの値が2未満である形状の結晶
粒が全結晶粒の50容量%以上存在し、かつ上記結晶粒
集合組織を構成する結晶粒の平均結晶粒径が0.05〜
20μmの寸法を有するホットプレス成形体または熱間
静水圧プレス成形体であることを特徴とするR−Fe−
Co−B系異方性磁石。
Claim 1: An R-Fe-Co-B anisotropic magnet containing at least one rare earth element including Y (hereinafter referred to as R), Fe, Co, and B as main components, The anisotropic magnet has, in atomic percentage, R: 10-20%, Co: 0.1-5
0%, B: 3 to 20%, total of one or more of Ti, V, Nb, Ta, Al and Si: 0.001 to 5.0%,
It has a composition in which the remainder consists of Fe and unavoidable impurities, and a crystal grain texture in which crystal grains whose main phase is an R2 (Fe, Co) 14B type intermetallic compound phase having a tetragonal structure are aggregated, and the above crystal grains Texture is defined by the shortest grain size a of individual grains.
50% by volume or more of all crystal grains exist in which the ratio b/a of the longest grain size b is less than 2, and the average crystal grain size of the crystal grains constituting the crystal grain texture is 0.05~
R-Fe- characterized in that it is a hot press molded product or a hot isostatic press molded product having a dimension of 20 μm.
Co-B anisotropic magnet.
【請求項2】  上記結晶粒が集合した結晶粒集合組織
は、実質的にR2 (Fe,Co)14B型金属間化合
物相だけからなることを特徴とする請求項1記載のR−
Fe−Co−B系異方性磁石。
2. The R- according to claim 1, wherein the crystal grain texture in which the crystal grains are aggregated consists essentially of an R2 (Fe, Co) 14B type intermetallic compound phase.
Fe-Co-B anisotropic magnet.
【請求項3】  上記平均結晶粒径は、0.05〜3μ
mであることを特徴とする請求項1または2記載のR−
Fe−Co−B系異方性磁石。
3. The average crystal grain size is 0.05 to 3μ.
R- according to claim 1 or 2, characterized in that it is m.
Fe-Co-B anisotropic magnet.
JP06086091A 1991-01-28 1991-02-01 Rare earth-Fe-Co-B anisotropic magnet Expired - Fee Related JP3196224B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP06086091A JP3196224B2 (en) 1991-02-01 1991-02-01 Rare earth-Fe-Co-B anisotropic magnet
CA 2079223 CA2079223A1 (en) 1991-01-28 1992-01-28 Anisotropic rare earth-fe-b system and rare earth-fe-co-b system magnet
DE69203405T DE69203405T3 (en) 1991-01-28 1992-01-28 Anisotropic rare earth magnet.
PCT/JP1992/000073 WO1992013353A1 (en) 1991-01-28 1992-01-28 Anisotropic rare earth-iron-boron and rare earth-iron-cobalt-boron magnet
EP92903728A EP0522177B2 (en) 1991-01-28 1992-01-28 Anisotropic Rare Earth Magnet
TW81100770A TW209301B (en) 1991-02-01 1992-01-31
CN 92101185 CN1065152A (en) 1991-02-01 1992-02-01 Terres rares-iron-cobalt-B anisotropic magnet
US08/021,187 US5395462A (en) 1991-01-28 1993-02-23 Anisotropic rare earth-Fe-B system and rare earth-Fe-Co-B system magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06086091A JP3196224B2 (en) 1991-02-01 1991-02-01 Rare earth-Fe-Co-B anisotropic magnet

Publications (2)

Publication Number Publication Date
JPH04247604A true JPH04247604A (en) 1992-09-03
JP3196224B2 JP3196224B2 (en) 2001-08-06

Family

ID=13154564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06086091A Expired - Fee Related JP3196224B2 (en) 1991-01-28 1991-02-01 Rare earth-Fe-Co-B anisotropic magnet

Country Status (3)

Country Link
JP (1) JP3196224B2 (en)
CN (1) CN1065152A (en)
TW (1) TW209301B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0626703A2 (en) * 1993-05-28 1994-11-30 Rhone-Poulenc Specialty Chemicals Co. Magnetically anisotropic spherical powder
WO2008065903A1 (en) 2006-11-30 2008-06-05 Hitachi Metals, Ltd. R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
JP2014165228A (en) * 2013-02-22 2014-09-08 Hitachi Metals Ltd Method of manufacturing r-t-b based permanent magnet
CN111681868A (en) * 2020-07-09 2020-09-18 福建省长汀金龙稀土有限公司 Method for treating neodymium iron boron alloy sheet after smelting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352301A (en) * 1992-11-20 1994-10-04 General Motors Corporation Hot pressed magnets formed from anisotropic powders

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139638A (en) * 1984-12-10 1986-06-26 Sumitomo Special Metals Co Ltd Manufacture of sintered permanent magnet material
JPS63282239A (en) * 1987-05-13 1988-11-18 Hitachi Metals Ltd Permanent magnet alloy
JPH02263404A (en) * 1989-04-04 1990-10-26 Hitachi Metals Ltd Rare earth group iron base permanent magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139638A (en) * 1984-12-10 1986-06-26 Sumitomo Special Metals Co Ltd Manufacture of sintered permanent magnet material
JPS63282239A (en) * 1987-05-13 1988-11-18 Hitachi Metals Ltd Permanent magnet alloy
JPH02263404A (en) * 1989-04-04 1990-10-26 Hitachi Metals Ltd Rare earth group iron base permanent magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0626703A2 (en) * 1993-05-28 1994-11-30 Rhone-Poulenc Specialty Chemicals Co. Magnetically anisotropic spherical powder
EP0626703A3 (en) * 1993-05-28 1995-01-25 Rhone Poulenc Spec Chim Magnetically anisotropic spherical powder.
WO2008065903A1 (en) 2006-11-30 2008-06-05 Hitachi Metals, Ltd. R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
JP2014165228A (en) * 2013-02-22 2014-09-08 Hitachi Metals Ltd Method of manufacturing r-t-b based permanent magnet
CN111681868A (en) * 2020-07-09 2020-09-18 福建省长汀金龙稀土有限公司 Method for treating neodymium iron boron alloy sheet after smelting
CN111681868B (en) * 2020-07-09 2022-08-16 福建省长汀金龙稀土有限公司 Method for treating neodymium iron boron alloy sheet after smelting

Also Published As

Publication number Publication date
JP3196224B2 (en) 2001-08-06
TW209301B (en) 1993-07-11
CN1065152A (en) 1992-10-07

Similar Documents

Publication Publication Date Title
US4601875A (en) Process for producing magnetic materials
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JP3092672B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
EP0477810B1 (en) R-Fe-B type permanent magnet powder and bonded magnet therefrom
JPH01219143A (en) Sintered permanent magnet material and its production
JP2665590B2 (en) Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP3196224B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JPH045740B2 (en)
JP3092673B2 (en) Rare earth-Fe-B based anisotropic magnet
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH061726B2 (en) Method of manufacturing permanent magnet material
JP2773444B2 (en) Rare earth-Fe-B based anisotropic magnet
JPH045739B2 (en)
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH045738B2 (en)
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
EP0522177B2 (en) Anisotropic Rare Earth Magnet
JPH045737B2 (en)
JPH0475303B2 (en)
JPS6077961A (en) Permanent magnet material and its manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980908

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees