JPS5976856A - Permanent magnet material and its manufacture - Google Patents

Permanent magnet material and its manufacture

Info

Publication number
JPS5976856A
JPS5976856A JP57185532A JP18553282A JPS5976856A JP S5976856 A JPS5976856 A JP S5976856A JP 57185532 A JP57185532 A JP 57185532A JP 18553282 A JP18553282 A JP 18553282A JP S5976856 A JPS5976856 A JP S5976856A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
magnetization
magnet material
metallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57185532A
Other languages
Japanese (ja)
Inventor
Kaoru Hashimoto
薫 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57185532A priority Critical patent/JPS5976856A/en
Publication of JPS5976856A publication Critical patent/JPS5976856A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a permanent magnet material having improved magnetization temp. characteristics by very rapidly cooling a molten Fe-Co-rare earth metallic compound to form a ribbonlike amorphous body and by annealing the body. CONSTITUTION:An ingot of an Fe-Co-rare earth metallic compound having a composition represented by a formula[(Fe100-xCox)yB100-y]z(LawR100-w)100-z (where 15<=x<=50,75<=y<=85.70<=z<=90, 40<=w<=100, and R is a rare earth metal other than La) is manufactured. The ingot is melted, the melt is very rapidly cooled with a liq. to form a ribbonlike amorphous body, and the body is annealed under prescribed conditions. Since Co is substituted for part of Fe to form a Co-rare earth metallic compound besides an Fe-rare earth metallic compound, the dependence of the magnetic characteristics of the resulting permanent magnet material on temp. is improved, and the magnetizability and coercive force are also improved.

Description

【発明の詳細な説明】 (1)  発すjの技術分野 本発明は、鉄−希土類系永久磁石旧制の614気竹性を
改善するための相打組成および製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a mutually compounding composition and manufacturing method for improving the 614 strength of an old iron-rare earth permanent magnet.

(2)従来技術と問題点 鉄−希土類系永久磁石材料の磁気特性は、一般・の金属
永久磁石材料に比べて、その温度特性が劣る。たとえば
、磁化の温度依存性については、材料の磁化は温度が2
00℃程度まではほとんど変化しないが、それ以上の温
度で磁化は急激に低下し、約300℃で室温における値
の半分以下となる。このように低い温度で磁化が低下す
ることは、この材料を実際に使用する際に大きな制限と
なる。
(2) Prior Art and Problems The magnetic properties of iron-rare earth permanent magnet materials are inferior to those of general metal permanent magnet materials in terms of temperature properties. For example, regarding the temperature dependence of magnetization, the magnetization of a material is
There is almost no change up to about 00°C, but at temperatures higher than that, the magnetization decreases rapidly, and at about 300°C it becomes less than half of the value at room temperature. This reduction in magnetization at such low temperatures is a major limitation in the practical use of this material.

(3)発明の目的 本発明は、このような欠点をM’f n%するため、材
料を構成する成分の一つである鉄の一部をコバルトでお
きかえた土、(料をJ、j、j供す/′)にある。
(3) Purpose of the Invention In order to eliminate such drawbacks by M'f n%, the present invention provides soil in which a part of the iron, which is one of the components constituting the material, is replaced with cobalt. , jprovide/').

(4)発明rノI]11成 本発明は、組成が下記一般式で夛わされる鉄−コバルト
−fl: ::I−: lj:14化合物lから成るこ
とを特徴とする永久磁、Ti材旧t (FcIIIQ−
ycO8)y BIoo−J l ’l(■”’W”I
O6,W)+00−Z、15≦−X≦50 、75≦y
 り85 。
(4) Invention I] 11 The present invention relates to a permanent magnet, characterized in that it consists of an iron-cobalt-fl:::I-:lj:14 compound l having a composition represented by the following general formula: Material old t (FcIIIQ-
ycO8)y BIoo-J l 'l(■"'W"I
O6, W) +00-Z, 15≦-X≦50, 75≦y
ri85.

70−8、l≦90.40;、’w≦100. RiJ
:La以外の1111もしく にt 2 qIQ以上の
苗土4Htj金屈であ−って、上託糾成の材料を液イA
−′ll?+急冷法によシ)形成し、焼鈍することar
ηr(“しヒlする。
70-8, l≦90.40;,'w≦100. RiJ
: Seedling soil of 1111 or more than t 2 qIQ other than La, 4Htj Kinku-ku, and the material of the above-mentioned compaction is liquid A.
-'ll? + quenching method) forming and annealing ar
ηr(“I feel sorry for you.

IQII ill、<)1−−名)ニレ14 、%永久
f!、4 石’I’/l 11”l−U) Jr、<気
’If 1’l−0)温度依存性を数丁9する一つの方
法として、添加物について紳々ftLl!l介したA・
、−果、秩の一部をコバルトでおきかえるこさがイ1効
であることがわかった。
IQII ill, <) 1-- name) Elm 14, % permanent f! , 4 Stone 'I'/l 11"l-U) Jr, <Qi'If 1'l-0) As one way to reduce the temperature dependence, A.
As a result, it was found that replacing part of the chichi with cobalt was the first effect.

例数なら、鉄の一部をコバルトでおきかえることによっ
て、月利中1こi;L4:I、−イ:じト1j1化合物
のほかに、コバルト−イ1f土力1化合物lか形成され
る7、後者の磁化のYrA 瓜依存件は両名のそイアよ
りもJぐれている。したか−1で、彼者の効果によって
、本発明による利オ・1のイ市気特イつ゛の温度依イJ
1qを改善でき磁化の値そのものイーJt1す111さ
ぜること、おJ、ひ保磁力の値を増加させる。I惧バー
”> iiだな効J(4も有している。
For example, by replacing part of the iron with cobalt, in addition to the compound L4:I, -I, -J1, a compound L of cobalt-I1F is formed. 7. The dependence of the latter's magnetization on YrA is different from that of both. In fact, due to their effects, the temperature dependence of the market temperature of the advantage of the present invention is 1.
1q can be improved by touching the magnetization value itself, and increasing the coercive force value. It also has an effect of 4.

(5)発明の実ノ111例 以下本発明?(二ついてI’ニア1面を参照[ッてW(
−細に説明する3、 利刺紹成をノリ、定するjc l”、*: l、 、才
4°、非晶η合金を了する〕こめの比り11り勿のf山
(自およびその’IIを’If MF(昭57−570
0に基づきJ、リポした。
(5) 111 Actual Examples of Invention Is this invention the following? (Refer to page 1 of I'Near [tteW(
- Detailed explanation 3. To determine the value of the ratio jc l", The 'II 'If MF (Sho 57-570
J, repo based on 0.

液体超急冷法により非晶11n合金作製する場合、合金
を非晶η化するために、])、C,Pなどの半金回(以
後メタロイド吉nT2ず)を添加する必要がある。本発
明(ζおkjるこノー<、i”eを含む合金てはこイ1
らのメタ11イドの添加方法己−し7て、メタ「jイ1
−イーF(・L合金化さ一11°で添加ずろ方法が最も
容易でに(ス実である。そして、f’il”ItメタI
]イドの中で、ltm eと合金化した場合1こ最もj
X7.い右1ρ化を示AものはBである。
When producing an amorphous 11n alloy by the liquid ultra-quenching method, it is necessary to add metalloid compounds such as ]), C, and P (hereinafter referred to as metalloid metals) in order to make the alloy amorphous. The present invention (alloy containing ζokjrukono<,i''e
The method of adding meta
-I F(・L alloyed at 11°) is the easiest method to add.
] Among the oids, when alloyed with ltm e, 1 is the most j
X7. The one that shows the right 1ρ conversion is B.

第11ヌ1に示ずごc:<、Fe−n合金においては、
↓−−引イ;−19−バ己廿!1矛メ4(、ゴ〉ン(く
ニュ1重シ虻二く;1力湘り章尊ご(1λ2:すIit
+’!pう1<l−1,」す(々りいΣIひ1丁する・
F’teとCoは同じ遷移金ハであるこLかl;)、F
eの一部をCoでおきかえた組成においても、これらF
e(!:Co0)総量と飽和磁化との111係は第1図
に示したFe計と飽和磁化さの関係と同様な傾向を示す
。このことから本発明によるメタロイド成分Bの、計は
15〜25原子チの範囲とし、た。
Not shown in No. 11 c: <, In Fe-n alloy,
↓--Hide;-19-Base! 1 spear 4 (, go)
+'! pu1<l-1,''
F'te and Co are the same transition gold.
Even in a composition in which a part of e is replaced with Co, these F
The 111 coefficient between the total amount of e(!:Co0) and the saturation magnetization shows the same tendency as the relationship between the Fe meter and the saturation magnetization shown in FIG. From this, the total amount of metalloid component B according to the present invention was determined to be in the range of 15 to 25 atoms.

Feの一部をおきかえるCo′hJは、本発明における
組成の1っである((Fe100−X ”X)82 B
+8)90La5Pr5に基づき決定した。このデータ
を第2図に示す。この図は横軸にCo邦の原子%Xを、
縦軸に磁場15koeにおける☆ノ3化をとったときの
データである。h犬半1の46釧i7晶7Qlは700
’Cである。
Co'hJ, which replaces a part of Fe, is one of the compositions in the present invention ((Fe100-X ''X)82 B
+8) Determined based on 90La5Pr5. This data is shown in FIG. In this figure, the horizontal axis shows the atomic %X of Co,
This is data when the vertical axis represents 3 stars at a magnetic field of 15 koe. h dog half 1 46 sen i7 crystal 7Ql is 700
'C.

第2図に示すごとく、この組成においてFeとおきかえ
るCo14を増すにつれて磁化は上昇し、9隻祖)虞俣
−せ性皐−工最も(ぐなり、さらにco量を増すと磁化
は徐々に低下する。この結果から、Co貝は−Vり更〕
づ1μ」ユとし、その最大周は50 )M −7−%と
じた。これは50原子チ以上では、磁化の値はco 1
5原子−の場合とほぼ同等であれないためである。
As shown in Figure 2, in this composition, as the amount of Co14 replaced with Fe increases, the magnetization increases, and as the amount of Co increases further, the magnetization gradually decreases. From this result, Co shellfish is -V Risara]
The maximum circumference was 50) M-7%. This means that for 50 atoms or more, the magnetization value is co 1
This is because it is not nearly equivalent to the case of 5 atoms.

一方、希土類成分さしでCJ1前記特願昭57−570
0にて開示したごさく、Laが不可欠である。
On the other hand, in terms of rare earth components, CJ1 said patent application No. 57-570.
0, La is indispensable.

また、前記特願昭57−5700では、ヒステリシスル
ープの改善のために、Prの添加が有効であったが、本
発明ではP、の添加がなくてもヒステリシスループは正
常な形を示すことがわかった。
Furthermore, in the above-mentioned Japanese Patent Application No. 57-5700, the addition of Pr was effective for improving the hysteresis loop, but in the present invention, the hysteresis loop can exhibit a normal shape even without the addition of P. Understood.

La1Jを規定するデータを第3図に示す。第3図は(
(Fe7Gco30)112 BIff)9゜(LaW
Prloo−W)Ill について、横軸にLa量の原
子チWを、縦軸に保磁力をとったときのデータである。
FIG. 3 shows data defining La1J. Figure 3 is (
(Fe7Gco30)112 BIff)9°(LaW
Prloo-W)Ill is data when the horizontal axis represents the amount of atoms of La and the vertical axis represents the coercive force.

焼針、温JKは700℃である。このクラフかられかる
ように、Laか19息女叫よl配円林1ノ剋酊山bLa
が40W子−以1p多台には、超急冷後の状態で、すて
にPr(!:Feの化合物と考えられる結晶が形成され
るため(Xi回vjにより、結晶の存在を示す回折ピー
クが認められる)−1保磁力は高くできない。才た、L
a習が多い場合には、La吉Coの化合物が形成される
ために保磁力は高く保たれる。
The temperature of the baked needle is 700°C. As if to be scolded by this craft, La or 19's daughter shouts l Saienrin 1 no Kakuzan bLa
However, after ultra-quenching, crystals thought to be a compound of Pr(!:Fe) are formed (Xi times vj shows a diffraction peak indicating the presence of crystals). )-1 Coercive force cannot be made high.
When there are many a-xis, the coercive force is kept high because a Lakichi Co compound is formed.

ここで示した例ではLa以外の希土類はPrであるが、
一般的には、他の希土類元素を含む場合でも、Laが4
0原子係以上あれば、他の希土類元素を添加でき、しか
も超急冷後の状態でも非晶質となる。
In the example shown here, the rare earth other than La is Pr,
Generally, even when other rare earth elements are included, La is 4
If the atomic ratio is 0 or more, other rare earth elements can be added, and even after ultra-quenching, the material becomes amorphous.

以上のことをもとにして、種々検討した結果得られた、
本発明による材料組成は、((Feloo−XCoX 
)YBjOO−3142(LaWRloo−W)100
−2である。ただし、Rはり、以外の希土類金属の1柚
もしくは2梗以上ここで、15≦X≦50 、75≦y
≦85 、70≦2≦90゜40≦W≦100 (実施例−1) 合金組成は(()e7゜Co3g)62B16)g6L
a5Pr6である。純度99.5チのLa+Prおよび
純度99.9チのFe 1Fe−BrCoを用いて、上
記組成のインゴットを作成した。このインゴットを小片
に砕き、こμフTI、lll′i〜数即()刈ポン状試
オ゛1をイ1僅ソした。この試料は、X線解イフ[の結
果、非晶)西であることを桶゛認した。
Based on the above, we obtained the results of various studies.
The material composition according to the invention is ((Feloo-XCoX
) YBjOO-3142 (LaWRloo-W) 100
-2. However, if R beam is one or more rare earth metals other than R beam, 15≦X≦50, 75≦y
≦85, 70≦2≦90゜40≦W≦100 (Example-1) The alloy composition is (()e7゜Co3g)62B16)g6L
a5Pr6. An ingot having the above composition was created using La+Pr with a purity of 99.5% and Fe1Fe-BrCo with a purity of 99.9%. This ingot was broken into small pieces and a few pieces of powder were poured into the ingot. This sample was confirmed to be amorphous after X-ray analysis.

700℃で焼鈍した試別につぃ′C磁化の温度変化をH
+、vlべろと(?lll定MX’M415koe )
 、iE4図Jc示’Jように、本発明にょるCOを含
む試別は、coを合成ない試料(組成” (FelHB
+5)onLa5Pr5..1til造法、焼鈍条件は
同じ)に比べて、磁化が低下し始める温度は従来の約2
0 Q ℃から約4.00 ℃とより高いことが碇認で
き、本発明が有効であることがわかる。また、その他の
効果として、磁化の値を^くできることも明白である。
H
+, vl tongue (?llll fixed MX'M415koe)
As shown in Figure Jc, iE4, the sample containing CO according to the present invention is a sample (composition) that does not synthesize co.
+5) onLa5Pr5. .. 1til manufacturing method, same annealing conditions), the temperature at which magnetization starts to decrease is about 2
It can be seen that the temperature is higher than 0 Q°C to about 4.00°C, which shows that the present invention is effective. It is also clear that as another effect, the value of magnetization can be increased.

この材料の保磁力と焼鈍温度との関係を調べたところ、
第5図に示すように、7oo℃で焼鈍したときに最も高
い保磁力9.5koeを示すことがわかった。#i釧一
時間を1時間から18時間の範囲の神々の時間まで延長
した場合jこも、保磁力の変化は認められなかった。ま
たcoを含む試料の保磁力は、coを含まない場合に比
べで、3倍以上であり、coの添加は保磁力の向上にも
効果かあることが確認できる。焼鈍温度は、第5図から
550〜900℃が最適である。
When we investigated the relationship between the coercive force and annealing temperature of this material, we found that
As shown in FIG. 5, it was found that the highest coercive force of 9.5 koe was exhibited when annealed at 70°C. No change in the coercive force was observed when the length of time was extended to the divine time in the range of 1 to 18 hours. Furthermore, the coercive force of the sample containing co was more than three times that of the sample not containing co, confirming that the addition of co was effective in improving the coercive force. From FIG. 5, the optimum annealing temperature is 550 to 900°C.

(実施例−2) 合金組成は((Fe70C030)l12B+8)90
LaSTb6であり、製造法は実施例−1と同じである
。この材料の磁化の温度変化(測定磁場15koe)は
第6図に示すような変化を示し、coを含まない試料に
比べてずぐれている。このことから、本発明の有効性を
確認できる。さらに、別の効果として磁化の値もより高
くできるLいうことも明白である。
(Example-2) The alloy composition is ((Fe70C030)l12B+8)90
It is LaSTb6, and the manufacturing method is the same as in Example-1. The magnetization of this material changes with temperature (measured magnetic field: 15 koe) as shown in FIG. 6, which is superior to that of a sample that does not contain cobalt. From this, the effectiveness of the present invention can be confirmed. Furthermore, it is clear that another effect is that the magnetization value can also be increased.

この材料の保磁力と焼鈍温度の関係を第7図に示す。こ
の図かられかるように、保磁力は600’C焼鈍で、最
も高い値10.5 koeを示す。焼鈍時間による保磁
力の変化は認められず、1時間の焼鈍で十分である。ま
た、この材料の保磁力はCOを含まないものの約4倍以
上を示し、本発明の別の効果を明白に示している。
The relationship between coercive force and annealing temperature of this material is shown in FIG. As can be seen from this figure, the coercive force shows the highest value of 10.5 koe at 600'C annealing. No change in coercive force due to annealing time was observed, and annealing for 1 hour was sufficient. Furthermore, the coercive force of this material is about four times or more than that of a material that does not contain CO, clearly showing another effect of the present invention.

これらの結果から、焼鈍温度は550〜950’Cか最
適である。
From these results, the optimum annealing temperature is 550 to 950'C.

(6)発明の効果 本発明によれは、磁化の温度fl’b性が改善でき、さ
らに別の効果として、磁化および保磁力をより高くでき
る。
(6) Effects of the Invention According to the present invention, the temperature fl'b property of magnetization can be improved, and as another effect, the magnetization and coercive force can be further increased.

さらに、本発明により得られる合金の応用法の1つとし
て、この合金を微粉化し、これを樹脂等で固着すること
によって、加工性に富む、高性能永久磁石が実現できる
Furthermore, as one method of applying the alloy obtained by the present invention, a high-performance permanent magnet with excellent workability can be realized by pulverizing this alloy and fixing it with resin or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はFe−HにおけるFe洲と飽和磁化の関係を示
す図、第2図はCOの添加効果を示す図、第3図はLa
の効果を示す図、第4図は磁化の温度変化を示す図、第
5図は保磁力と焼鈍温度との関係を示す図、第6図は磁
化の温度変化を示す図、第7図は保磁力と焼鈍温度との
1ダ1係を示す図である。 70  7f   m   l!;   豫  25F
e量 (源σ2) す1図 Co蓋、χC漂チ別 2fJ
Figure 1 is a diagram showing the relationship between Fe and saturation magnetization in Fe-H, Figure 2 is a diagram showing the effect of adding CO, and Figure 3 is a diagram showing the relationship between Fe and saturation magnetization in Fe-H.
Figure 4 is a diagram showing the temperature change in magnetization, Figure 5 is a diagram showing the relationship between coercive force and annealing temperature, Figure 6 is a diagram showing the temperature change in magnetization, and Figure 7 is a diagram showing the temperature change in magnetization. FIG. 3 is a diagram showing the 1-Da-1 relationship between coercive force and annealing temperature. 70 7f m l! ; Yu 25F
E amount (source σ2) 1 Figure Co cover, χC drift 2fJ

Claims (3)

【特許請求の範囲】[Claims] (1)材料の組成が下611一般式で表わされる鉄−コ
バルト−希土類化合物から成ることを特徴とする永久磁
石材料。 ((FelG。−X C0X)V B+00−)’)Z
(LawRI’0O−W)100まただし、RはLa以
外の1種もしくは2種以上の希土類金属 15≦X≦50.75≦y≦85.70≦2≦90 、
40≦W≦100
(1) A permanent magnet material characterized in that the composition of the material is an iron-cobalt-rare earth compound represented by the following general formula 611. ((FelG.-X C0X)V B+00-)')Z
(LawRI'0O-W) 100, where R is one or more rare earth metals other than La 15≦X≦50.75≦y≦85.70≦2≦90,
40≦W≦100
(2)組成が+(”eloo−xCox)y B100
−7)Z(LaWRloo −w)100−Zで表わさ
れる鉄−コバルト−希土類化合物を形成する工程、該鉄
−コノクルl・−希土類化合物の融液を超急冷してリボ
ン状の非晶質体を形成する工程、該リボン状の非晶質体
を焼鈍する工程を有することを特徴とする永久磁石材料
の製法。
(2) Composition is +("eloo-xCox)y B100
-7) Step of forming an iron-cobalt-rare earth compound represented by Z(LaWRloo-w)100-Z, by ultra-quenching the melt of the iron-cobalt-rare earth compound to form a ribbon-shaped amorphous body. 1. A method for producing a permanent magnet material, comprising the steps of: forming a ribbon-shaped amorphous body; and annealing the ribbon-shaped amorphous body.
(3)焼鈍したリホン状非晶質体を粉砕後固着して磁石
材料とすることを特徴とする特許請求の範囲第2項記載
の永久磁石月1の製法。
(3) A method for manufacturing the permanent magnet 1 according to claim 2, characterized in that the annealed liphon-like amorphous material is crushed and then fixed to form a magnet material.
JP57185532A 1982-10-22 1982-10-22 Permanent magnet material and its manufacture Pending JPS5976856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57185532A JPS5976856A (en) 1982-10-22 1982-10-22 Permanent magnet material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57185532A JPS5976856A (en) 1982-10-22 1982-10-22 Permanent magnet material and its manufacture

Publications (1)

Publication Number Publication Date
JPS5976856A true JPS5976856A (en) 1984-05-02

Family

ID=16172444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57185532A Pending JPS5976856A (en) 1982-10-22 1982-10-22 Permanent magnet material and its manufacture

Country Status (1)

Country Link
JP (1) JPS5976856A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159708A (en) * 1984-12-31 1986-07-19 Kaneo Mori Permanent magnet
JPS61174364A (en) * 1985-09-17 1986-08-06 Mori Kaneo Permanent magnet
JPS6348805A (en) * 1986-08-19 1988-03-01 Tohoku Metal Ind Ltd Manufacture of rare-earth magnet
JPS63197305A (en) * 1986-05-17 1988-08-16 Tokin Corp Rare-earth permanent magnet and manufacture thereof
JPS63226007A (en) * 1986-10-31 1988-09-20 Tokin Corp Rare-earth magnet and manufacture thereof
JPS63232301A (en) * 1986-03-20 1988-09-28 Hitachi Metals Ltd Magnetic anisotropic bond magnet, magnetic powder used therefor, and manufacture thereof
US4782994A (en) * 1987-07-24 1988-11-08 Electric Power Research Institute, Inc. Method and apparatus for continuous in-line annealing of amorphous strip
USRE34838E (en) * 1984-12-31 1995-01-31 Tdk Corporation Permanent magnet and method for producing same
JP2022054231A (en) * 2020-09-25 2022-04-06 トヨタ自動車株式会社 Magnetic material and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159708A (en) * 1984-12-31 1986-07-19 Kaneo Mori Permanent magnet
USRE34838E (en) * 1984-12-31 1995-01-31 Tdk Corporation Permanent magnet and method for producing same
JPS61174364A (en) * 1985-09-17 1986-08-06 Mori Kaneo Permanent magnet
JPS63232301A (en) * 1986-03-20 1988-09-28 Hitachi Metals Ltd Magnetic anisotropic bond magnet, magnetic powder used therefor, and manufacture thereof
JPS63197305A (en) * 1986-05-17 1988-08-16 Tokin Corp Rare-earth permanent magnet and manufacture thereof
JPS6348805A (en) * 1986-08-19 1988-03-01 Tohoku Metal Ind Ltd Manufacture of rare-earth magnet
JPS63226007A (en) * 1986-10-31 1988-09-20 Tokin Corp Rare-earth magnet and manufacture thereof
US4782994A (en) * 1987-07-24 1988-11-08 Electric Power Research Institute, Inc. Method and apparatus for continuous in-line annealing of amorphous strip
WO1990003244A1 (en) * 1987-07-24 1990-04-05 Allied-Signal Inc. Method and apparatus for continuous in-line annealing of amorphous strip
JP2022054231A (en) * 2020-09-25 2022-04-06 トヨタ自動車株式会社 Magnetic material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4152144A (en) Metallic glasses having a combination of high permeability, low magnetostriction, low ac core loss and high thermal stability
JPS58123853A (en) Rare earth metal-iron type permanent magnet and its manufacture
JPS5976856A (en) Permanent magnet material and its manufacture
JP2005068451A (en) Fe BASED SOFT MAGNETIC BULK AMORPHOUS-NANOCRYSTAL DUAL PHASE ALLOY, AND ITS PRODUCTION METHOD
JP2894561B2 (en) Soft magnetic alloy
JP2552274B2 (en) Glassy alloy with perminer characteristics
JP3623970B2 (en) Fe-based soft magnetic alloy and manufacturing method
KR920007579B1 (en) Soft magnetic materials
JPH0448005A (en) Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same
JPH04165012A (en) Production of anisotropic sintered permanent magnet based on rare earth element
CA1223761A (en) Iron-boron solid solution alloys having high saturation magnetization and low magnetostriction
JP2625163B2 (en) Manufacturing method of permanent magnet powder
JPH01290744A (en) Fe-base soft-magnetic alloy
JPS62177101A (en) Production of permanent magnet material
JPH0277555A (en) Fe-base soft-magnetic alloy
JP2934460B2 (en) Ultra-microcrystalline alloy with permimber properties and method for producing the same
JPH0448004A (en) Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
KR100710613B1 (en) Fe-BASED NANO CRYSTALLINE ALLOY AND METHOD FOR MANUFACTURING THE SAME
JP3413609B2 (en) Fe-Cr-Co magnet alloy and method for producing the same
US4532979A (en) Iron-boron solid solution alloys having high saturation magnetization and low magnetostriction
JP3312908B2 (en) Iron-rare earth-nitrogen permanent magnet material
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
JPH0533095A (en) Permanent magnet alloy and its production
JP2818718B2 (en) Permanent magnet powder