JP3623970B2 - Fe-based soft magnetic alloy and manufacturing method - Google Patents

Fe-based soft magnetic alloy and manufacturing method Download PDF

Info

Publication number
JP3623970B2
JP3623970B2 JP15833892A JP15833892A JP3623970B2 JP 3623970 B2 JP3623970 B2 JP 3623970B2 JP 15833892 A JP15833892 A JP 15833892A JP 15833892 A JP15833892 A JP 15833892A JP 3623970 B2 JP3623970 B2 JP 3623970B2
Authority
JP
Japan
Prior art keywords
soft magnetic
based soft
magnetic alloy
alloy
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15833892A
Other languages
Japanese (ja)
Other versions
JPH062076A (en
Inventor
洋 渡辺
好彦 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP15833892A priority Critical patent/JP3623970B2/en
Priority to CA002098532A priority patent/CA2098532A1/en
Priority to DE69313938T priority patent/DE69313938T2/en
Priority to EP93304762A priority patent/EP0575190B1/en
Priority to KR1019930011091A priority patent/KR0131376B1/en
Publication of JPH062076A publication Critical patent/JPH062076A/en
Application granted granted Critical
Publication of JP3623970B2 publication Critical patent/JP3623970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【産業上の利用分野】
【0002】
本発明は、Fe基軟磁性合金に係わり、特に良好な軟磁気特性を有するFe基軟磁性合金及びその製造方法に関する。
【従来の技術及び発明が解決しようとする課題】
【0003】
近年、磁気ヘッド、高周波トランス、可飽和リアクトル、チョークコイル等の磁心材料として、高い飽和磁束密度を有するFe系の非晶質磁性合金が広く知られている。しかし、Fe系の非晶質磁性合金はCo系よりも安価ではあるが、一般的に高周波領域においてコア損失が大きく、透磁率も低いという欠点があった。さらに飽和磁歪も大きいという欠点があった。
【0004】
また、従来のFe系の非晶質磁性合金としてFe−B系のものが知られているが、一般にB(ホウ素)が高価であるため、Bを用いた軟磁性合金自体は高価になるという難点があった。
【0005】
本願発明は、このような従来のFe系非晶質磁性合金に代わる軟磁性材料であって、しかも飽和磁歪および鉄損が小さく、かつ、低コストである新規なFe基軟磁性合金を提供することを目的とする。
【課題を解決するための手段】
【0006】
このような目的を達成するため本発明者は、Fe基軟磁性合金について鋭意研究の結果、Fe−P系Fe基軟磁性合金に特定の元素M、特にZrを添加した場合、優れた軟磁気特性を示し、例えば飽和磁歪が低いこと、またこのようなFe−P−M系Fe基軟磁性合金にCuを添加した場合に優れた軟磁気特性を示すことを見い出し、本発明に至ったものである。
【0007】
即ち、本発明のFe基軟磁性合金は、一般式Fe100-a-b-c-dPaMbM'cCud(式中、MはZr、Hf、Nb、Mo、Ti、M ' はCo、Niから選ばれる1種類以上の元素を表わす。a、b、c、dは原子%を示し、それぞれ、0≦a≦25、3<b<12、0≦c≦20、0≦d≦5を満たすものとする)で表わされるものであり、特にその組織の少なくとも30%以上が微細な結晶粒で生成されていることが好ましく、更に結晶粒は主として鉄を主体としたbcc固溶体から成るものである。
【0008】
P(リン)は本発明の合金の必須元素であり、B(ホウ素)等の高価な元素を使用せずとも、Pを特定量(0原子%を超え25原子%以下)添加することにより、急冷直後の非晶質形成範囲の拡大することができる。そのため全体として合金製造コストを低減することができる。
【0009】
本発明におけるPの含有量aは、0原子%を超え25原子%以下、好ましくは1〜15原子%、更に好ましくは2〜12原子%である。
【0010】
一方、本発明のFe基軟磁性合金に添加される元素Mは、軟磁性の発現を阻害する、Fe−P系結晶の析出を抑制あるいはFe−P系結晶の析出開始温度を高い温度に移動させる効果があると現時点では推察されるものであり、MとしてZr、Hf、Nb、Mo、Tiが用いられる。これら元素のうち特にZrが好適である。このような元素Mの添加は、更に結晶粒の微細化およびFe−P系合金における非晶質形成能を向上させる効果がある。
【0011】
本発明における元素Mの含有量bは、0原子%を超え15原子%以下、好ましくは2〜15原子%、更に好ましくは3〜12原子%である
本発明のFe基軟磁性合金に更に添加される元素M'は、Co、Niから選ばれる1種類以上の元素であり、これらの元素はFeとの相互パラメータが負であるため、Feを主体とした固溶体中に固溶され、即ちα−Fe結晶構造のFe原子の位置に置換される形で固溶されbcc結晶を安定化するものと考えられる。これにより、bcc結晶の真性的な結晶磁気異方性あるいは磁歪定数の小さい結晶粒が作成されため優れた軟磁気特性が発現されるものと思われる。
【0012】
本発明における元素M'の含有量cは、0原子%を超え20原子%以下、好ましくは1〜15原子%である。
【0013】
本発明のFe基軟磁性合金においてCuは、非晶質を熱処理することにより得られる結晶粒の微細化に寄与する。また、結晶粒の微細化に伴い実効的な磁気異方性エネルギーが結晶粒の持つ真性的な結晶磁気異方性エネルギーよりも小さくなると考えられるので磁気特性も改善される。但し、Cuの含有量を5原子%より多くすると急冷直後の合金は脆化してしまい合金製造の面から好ましくない。従って、本発明におけるCuの含有量dは0原子%以上5原子%以下、好ましくは0.5〜3原子%が好ましい。
【0014】
なお、本発明においてはN、S、Oなどの不可避的不純物を、目的とするFe基軟磁性合金の特性が劣化しない程度に含有している合金も本発明に含むものである。
【0015】
本発明のFe基軟磁性合金は組織全体の少なくとも30%以上(30%〜100%)が微細な結晶粒から成り、微結晶粒以外の部分は主として非晶質およびまたは上記微結晶粒以外の結晶質部分よりなる。本発明では、結晶粒の割合が上記範囲にあるとき優れた(軟)磁気特性を示す。なお、本発明では微細結晶粒の割合が実質的に100%であっても優れた(軟)磁気特性を示す。本発明のFe基軟磁性合金においては磁気特性の面から、組織全体の少なくとも50%以上が微細な結晶粒から成ることが特に好ましく、70%以上が微細な結晶粒から成ることが最も好ましい。
【0016】
また本発明の合金に含まれれる微細結晶粒は主としてbcc構造を有しており、Feを主体としてM、M'および微量のPが固溶していると考えられる。この微細結晶粒は1000オングストローム以下、好ましくは500オングストローム以下、更に好ましくは50〜300オングストロームの平均粒径を有している。本発明では平均粒径が1000オングストローム以下であることにより、優れた磁気特性が得られるものである。
【0017】
本発明のFe基軟磁性合金について、飽和磁歪(λs)は+10×10-6〜−5×10-6の範囲にある。
【0018】
なお、本発明において結晶粒の全体に占める割合は、実験的にX線回折法等により評価することができる。即ち、完全に結晶化した状態(X線回折強度が飽和した状態)のX線回折強度を基準とし、これに対する測定すべき磁性合金材料のX線回折強度の割合をもって実験的に評価することができる。また、結晶化に伴い生じるX線回折線のX線回折強度と、結晶化に伴い減少する非晶質特有のハローによるX線回折強度との比から評価することもできる。また、本発明において平均粒径はX線回折図形のbccピーク反射(110)を用い、シェラーの式 (t=0.9λ/βcosθ)によって導出したものである(カリティ著、新版 X線回折要論(Element of X-ray Diffraction (Second Edition)、B.D. Cullity)、 91〜94頁)。
【0019】
このような微細結晶粒を有する本発明のFe基軟磁性合金は、一般にアモルファス合金を形成する方法により所定形状の合金を作成した後熱処理することにより得られる。即ち、例えば単ロール法、双ロール法等の液体急冷法、キャビテーション法、スパッタ法、蒸着法等の薄膜作製法あるいはメカニカルアロイングのような粉体作製法等により上記組成の急冷合金をリボン状、粉末状、ファイバ状、繊維状又は薄膜状等に形成した後、得られた急冷合金を必要に応じて所定の形状に加工した後、熱処理し、少なくとも一部、好ましくは試料全体の30%以上を結晶化する。Fe基軟磁性合金の急冷直後の合金構造は、非晶質状態が望ましいが、熱処理後に軟磁気特性が得られる範囲内であれば一部結晶質が混在していてもよい。
【0020】
通常は、単にロール法により急冷薄帯を作成し、これを巻磁心等の所定の形状にした後熱処理する。熱処理は真空中あるいはアルゴンガスもしくは窒素ガスなど不活性ガス、H2等の還元性ガスもしくは空気等の酸化性ガス雰囲気中で行なうことができる。好ましくは真空中あるいは不活性ガス雰囲気中で行なう。熱処理温度は約200〜800℃程度、好ましくは300〜700℃程度、更に好ましくは400〜700℃程度とする。熱処理時間は24時間以内、好ましくは0.5〜5時間程度とすることが好ましい。また、熱処理は無磁場中でも、また磁場を印加して行なってもよい。磁場を印加することにより磁気異方性を付与することができる。
【0021】
本発明のFe基軟磁性合金の製造方法では上記の温度範囲で且つ上記範囲の熱処理時間で上記組成の非晶質合金を熱処理することにより本発明の特性に優れた軟磁性合金を得ることができる。
【0022】
以下、実施例を挙げて更に説明する。
【実施例】
【0023】
実施例1〜3
単ロール法を用いて、Fe、P、Zr、(Cu)を含有する溶湯からアルゴンガス1気圧雰囲気中で幅1.5mm程度、板厚約15〜24μmの急冷薄帯を作成し試料とした。この試料を表1に示す熱処理温度で窒素ガスの存在下約1時間無磁場で熱処理した。この試料について、周波数100kHz及び最大磁束密度0.1Tにおける鉄損値Pc(W/Kg)、周波数1KHz及び最大励磁磁界5mOeにおける実効透磁率μ(1KHz)、飽和磁化Bs(emu/g)、飽和磁歪λs(×10-6)をそれぞれ測定した。得られた合金試料の合金組成及び合金中の微細結晶粒の含有量及び平均粒径を表1に示した。表1から明らかなように本実施例の合金中の微細結晶粒の含有量は全て60%以上であった。なお組成はICP分析によって決定した。
【0024】
【表1】

Figure 0003623970
【0025】
また、磁性特性の測定結果を表2に示した。
【0026】
比較例としてFe76Si1014(比較例1、市販品)及びFe78Si913(比較例2、市販品)を実施例と同様の条件で急冷合金とし、更に熱処理した後の鉄損、透磁率、飽和磁化、飽和磁歪を併せて表2に示した。
【0027】
【表2】
Figure 0003623970
【0028】
表2からも明らかなように本発明のFe基軟磁性合金は、Fe−B系非晶質軟磁性合金とほぼ同様の鉄損、透磁率を有し、Fe−B系非晶質軟磁性合金に代る磁性材料として十分実用できることが示された。
【0029】
図1に単ロール法により作製したFe882Zr9Cu1(実施例3)の急冷合金を620℃、1時間アルゴン雰囲気中で熱処理した場合のX線回折パターンを示した。
【0030】
図より、熱処理により得られた合金構造は主にbcc構造であることがわかる。
【発明の効果】
【0031】
以上の実施例からも明らかなように、本発明のFe基軟磁性合金はFe−P系を基本として特定の元素、特にZrを添加するとともにCuを添加することにより、低鉄損、高透磁率、低飽和磁歪等の優れた磁性特性を示し、Fe−B系軟磁性合金に代る磁性材料として磁気ヘッド、高周波トランス、可飽和リアクトル、チョークコイル等に広く実用することができる。また、本発明のFe基軟磁性合金はホウ素Bの代りにリンPを用いることにより、低コストのFe基軟磁性合金を得ることができる。
【図面の簡単な説明】
【0032】
【図1】本発明のFe基軟磁性合金の熱処理後X線回折パターンを示す図。[0001]
[Industrial application fields]
[0002]
The present invention relates to an Fe-based soft magnetic alloy, and particularly to an Fe-based soft magnetic alloy having good soft magnetic properties and a method for producing the same.
[Prior art and problems to be solved by the invention]
[0003]
In recent years, Fe-based amorphous magnetic alloys having a high saturation magnetic flux density are widely known as magnetic core materials for magnetic heads, high-frequency transformers, saturable reactors, choke coils, and the like. However, Fe-based amorphous magnetic alloys are less expensive than Co-based materials, but generally have the disadvantages of high core loss and low permeability in the high-frequency region. Furthermore, there was a drawback that the saturation magnetostriction was also large.
[0004]
In addition, Fe-B alloys are known as conventional Fe-based amorphous magnetic alloys. However, since B (boron) is generally expensive, a soft magnetic alloy using B itself is expensive. There were difficulties.
[0005]
The present invention provides a novel Fe-based soft magnetic alloy that is a soft magnetic material that can replace such a conventional Fe-based amorphous magnetic alloy and that has low saturation magnetostriction and iron loss and is low in cost. For the purpose.
[Means for Solving the Problems]
[0006]
In order to achieve such an object, the present inventors have conducted extensive research on Fe-based soft magnetic alloys. As a result, when a specific element M, particularly Zr, is added to an Fe-P-based Fe-based soft magnetic alloy, the present inventors have excellent soft magnetic properties. It has been found that, for example, the saturation magnetostriction is low, and excellent soft magnetic properties are exhibited when Cu is added to such an Fe-PM-based Fe-based soft magnetic alloy. It is.
[0007]
That is, the Fe-based soft magnetic alloy of the present invention has the general formula Fe100-abc-dPaMbM'cCud (wherein M is one or more selected from Zr, Hf, Nb, Mo, Ti, and M ' are Co and Ni ). A, b, c and d represent atomic%, and 0 ≦ a ≦ 25, 3 <b <12 , 0 ≦ c ≦ 20, and 0 ≦ d ≦ 5, respectively. In particular, it is preferable that at least 30% or more of the structure is formed of fine crystal grains, and the crystal grains are mainly composed of a bcc solid solution mainly composed of iron.
[0008]
P (phosphorus) is an essential element of the alloy of the present invention, and by adding a specific amount (greater than 0 atomic% and 25 atomic% or less) of P without using an expensive element such as B (boron), The amorphous formation range immediately after quenching can be expanded. Therefore, the alloy manufacturing cost can be reduced as a whole.
[0009]
The content a of P in the present invention is more than 0 atomic% and 25 atomic% or less, preferably 1 to 15 atomic%, more preferably 2 to 12 atomic%.
[0010]
On the other hand, the element M added to the Fe-based soft magnetic alloy of the present invention inhibits the appearance of soft magnetism, suppresses the precipitation of Fe—P crystals, or moves the precipitation start temperature of the Fe—P crystals to a higher temperature. At present, it is assumed that there is an effect of the above, and M is Zr, Hf, Nb, Mo, or Ti . Of these elements, Zr is particularly preferred. Such addition of the element M has an effect of further refinement of crystal grains and improvement of amorphous forming ability in the Fe-P alloy.
[0011]
The content b of the element M in the present invention is more than 0 atomic% and not more than 15 atomic%, preferably 2 to 15 atomic%, more preferably 3 to 12 atomic%, and further added to the Fe-based soft magnetic alloy of the present invention. The element M ′ is one or more elements selected from Co and Ni . Since these elements have negative mutual parameters with Fe, they are dissolved in a solid solution mainly composed of Fe, that is, α It is considered that the bcc crystal is stabilized by solid solution in the form of substitution at the position of Fe atom in the -Fe crystal structure. As a result, a crystal grain having a small intrinsic magnetocrystalline anisotropy or magnetostriction constant of the bcc crystal is produced, so that it is considered that excellent soft magnetic characteristics are exhibited.
[0012]
The content c of the element M ′ in the present invention is more than 0 atomic% and 20 atomic% or less, preferably 1 to 15 atomic%.
[0013]
In the Fe-based soft magnetic alloy of the present invention, Cu contributes to refinement of crystal grains obtained by heat-treating the amorphous. Further, since the effective magnetic anisotropy energy is considered to be smaller than the intrinsic crystal magnetic anisotropy energy of the crystal grains as the crystal grains are refined, the magnetic characteristics are also improved. However, if the Cu content is more than 5 atomic%, the alloy immediately after quenching becomes brittle, which is not preferable from the viewpoint of alloy production. Therefore, the Cu content d in the present invention is 0 atomic% or more and 5 atomic% or less, preferably 0.5 to 3 atomic%.
[0014]
In the present invention, alloys containing unavoidable impurities such as N, S and O to the extent that the characteristics of the target Fe-based soft magnetic alloy are not deteriorated are also included in the present invention.
[0015]
In the Fe-based soft magnetic alloy of the present invention, at least 30% or more (30% to 100%) of the entire structure is composed of fine crystal grains, and the portion other than the microcrystal grains is mainly amorphous and / or other than the microcrystal grains. It consists of a crystalline part. In the present invention, excellent (soft) magnetic properties are exhibited when the proportion of crystal grains is in the above range. In the present invention, excellent (soft) magnetic properties are exhibited even when the proportion of fine crystal grains is substantially 100%. In the Fe-based soft magnetic alloy of the present invention, from the viewpoint of magnetic properties, it is particularly preferable that at least 50% or more of the entire structure is composed of fine crystal grains, and most preferably 70% or more is composed of fine crystal grains.
[0016]
Further, the fine crystal grains contained in the alloy of the present invention mainly have a bcc structure, and it is considered that M, M ′ and a small amount of P are mainly dissolved in Fe. The fine crystal grains have an average grain size of 1000 angstroms or less, preferably 500 angstroms or less, more preferably 50 to 300 angstroms. In the present invention, excellent magnetic properties can be obtained when the average particle size is 1000 angstroms or less.
[0017]
For the Fe-based soft magnetic alloy of the present invention, the saturation magnetostriction (λs) is in the range of + 10 × 10 −6 to −5 × 10 −6 .
[0018]
In the present invention, the ratio of the crystal grains to the whole can be experimentally evaluated by the X-ray diffraction method or the like. That is, it is possible to experimentally evaluate the ratio of the X-ray diffraction intensity of the magnetic alloy material to be measured with respect to the X-ray diffraction intensity in a completely crystallized state (a state where the X-ray diffraction intensity is saturated). it can. It can also be evaluated from the ratio between the X-ray diffraction intensity of an X-ray diffraction line generated along with crystallization and the X-ray diffraction intensity due to an amorphous halo that decreases along with crystallization. In the present invention, the average particle diameter is derived from Scherrer's equation (t = 0.9λ / βcosθ) using the bcc peak reflection (110) of the X-ray diffraction pattern (Karrit, new edition X-ray diffraction required). (Element of X-ray Diffraction (Second Edition), BD Cullity), pages 91-94).
[0019]
The Fe-based soft magnetic alloy of the present invention having such fine crystal grains is generally obtained by preparing an alloy having a predetermined shape by a method of forming an amorphous alloy and then performing a heat treatment. That is, for example, a rapidly quenched alloy having the above composition is formed into a ribbon shape by a liquid quenching method such as a single roll method or a twin roll method, a thin film production method such as a cavitation method, a sputtering method or a vapor deposition method, or a powder production method such as mechanical alloying. After forming into a powder form, fiber form, fiber form or thin film form, etc., the obtained quenched alloy is processed into a predetermined shape as necessary, and then heat-treated, and at least a part, preferably 30% of the entire sample The above is crystallized. The alloy structure immediately after quenching of the Fe-based soft magnetic alloy is preferably in an amorphous state, but a part of the crystalline structure may be mixed as long as soft magnetic properties are obtained after heat treatment.
[0020]
Usually, a quenching ribbon is prepared simply by a roll method, and after making it into a predetermined shape such as a wound core, heat treatment is performed. The heat treatment can be performed in a vacuum or in an inert gas atmosphere such as an inert gas such as argon gas or nitrogen gas, a reducing gas such as H2, or air. Preferably, it is performed in a vacuum or in an inert gas atmosphere. The heat treatment temperature is about 200 to 800 ° C, preferably about 300 to 700 ° C, more preferably about 400 to 700 ° C. The heat treatment time is within 24 hours, preferably about 0.5 to 5 hours. Further, the heat treatment may be performed in the absence of a magnetic field or by applying a magnetic field. Magnetic anisotropy can be imparted by applying a magnetic field.
[0021]
In the method for producing an Fe-based soft magnetic alloy of the present invention, a soft magnetic alloy having excellent characteristics of the present invention can be obtained by heat-treating an amorphous alloy having the above composition within the above-mentioned temperature range and within the above-mentioned heat treatment time. it can.
[0022]
Hereinafter, an example is given and it demonstrates further.
【Example】
[0023]
Examples 1-3
Using a single roll method, a quenching ribbon having a width of about 1.5 mm and a plate thickness of about 15 to 24 μm was prepared from a molten metal containing Fe, P, Zr, and (Cu) in an atmosphere of argon gas at 1 atmosphere and used as a sample. . This sample was heat-treated in the absence of a magnetic field at the heat treatment temperature shown in Table 1 for about 1 hour in the presence of nitrogen gas. For this sample, iron loss value Pc (W / Kg) at a frequency of 100 kHz and maximum magnetic flux density of 0.1 T, effective permeability μ (1 KHz) at a frequency of 1 KHz and a maximum excitation magnetic field of 5 mOe, saturation magnetization Bs (emu / g), saturation Magnetostriction λs (× 10 −6 ) was measured. Table 1 shows the alloy composition of the obtained alloy sample, the content of fine crystal grains in the alloy, and the average grain size. As is apparent from Table 1, the content of fine crystal grains in the alloy of this example was 60% or more. The composition was determined by ICP analysis.
[0024]
[Table 1]
Figure 0003623970
[0025]
The measurement results of the magnetic properties are shown in Table 2.
[0026]
As a comparative example, Fe 76 Si 10 B 14 (Comparative Example 1, commercially available product) and Fe 78 Si 9 B 13 (Comparative Example 2, commercially available product) were made into rapidly quenched alloys under the same conditions as in the examples, and further heat-treated iron. The loss, magnetic permeability, saturation magnetization, and saturation magnetostriction are shown together in Table 2.
[0027]
[Table 2]
Figure 0003623970
[0028]
As apparent from Table 2, the Fe-based soft magnetic alloy of the present invention has substantially the same iron loss and magnetic permeability as the Fe-B amorphous soft magnetic alloy, and Fe-B amorphous soft magnetic. It has been shown that it can be used practically as a magnetic material instead of alloys.
[0029]
FIG. 1 shows an X-ray diffraction pattern in the case where a quenched alloy of Fe 88 P 2 Zr 9 Cu 1 (Example 3) produced by the single roll method is heat-treated in an argon atmosphere at 620 ° C. for 1 hour.
[0030]
From the figure, it can be seen that the alloy structure obtained by the heat treatment is mainly a bcc structure.
【The invention's effect】
[0031]
As is clear from the above examples, the Fe-based soft magnetic alloy of the present invention is based on the Fe-P system, and by adding a specific element, particularly Zr, and adding Cu, low iron loss and high permeability. It exhibits excellent magnetic properties such as magnetic susceptibility and low saturation magnetostriction, and can be widely used in magnetic heads, high-frequency transformers, saturable reactors, choke coils, and the like as magnetic materials in place of Fe-B soft magnetic alloys. Further, the Fe-based soft magnetic alloy of the present invention can obtain a low-cost Fe-based soft magnetic alloy by using phosphorus P in place of boron B.
[Brief description of the drawings]
[0032]
FIG. 1 is a view showing an X-ray diffraction pattern after heat treatment of an Fe-based soft magnetic alloy of the present invention.

Claims (7)

一般式Fe100-a-b-c-dPaMbM'cCud(式中、MはZr、Hf、Nb、Mo、Ti、M'はCo、Niから選ばれる1種類以上の元素を表わす。a、b、c、dは原子%を示し、それぞれ、2<a≦12、3<b<12、0≦c≦20、0≦d≦5を満たすものとする)で表わされることを特徴とするFe基軟磁性合金。General formula Fe100-abc-dPaMbM'cCud (wherein M represents one or more elements selected from Zr, Hf, Nb, Mo, Ti and M 'selected from Co and Ni. A, b, c and d are An Fe-based soft magnetic alloy that represents atomic% and is represented by 2 <a ≦ 12, 3 <b <12 , 0 ≦ c ≦ 20, and 0 ≦ d ≦ 5. 組織の少なくとも30%以上が微細結晶粒から成ることを特徴とする請求項1記載のFe基軟磁性合金。The Fe-based soft magnetic alloy according to claim 1, wherein at least 30% of the structure is composed of fine crystal grains. 前記結晶粒が主として鉄を主体としたbcc固溶体であることを特徴とする請求項2記載のFe基軟磁性合金。3. The Fe-based soft magnetic alloy according to claim 2, wherein the crystal grains are a bcc solid solution mainly composed of iron. 前記微細結晶粒の平均粒径が1000オングストローム以下であることを特徴とする請求項1〜3いずれか1項記載のFe基軟磁性合金。The Fe-based soft magnetic alloy according to any one of claims 1 to 3, wherein an average grain size of the fine crystal grains is 1000 angstroms or less. 飽和磁歪(λs)が+10×10-6〜−5×10-6の範囲にあることを特徴とする請求項1〜3いずれか1項記載のFe基軟磁性合金。Saturation magnetostriction ([lambda] s) is + 10 × 10 -6 ~-5 × 10 , characterized in that the range of -6 claim 1 any one Fe-based soft magnetic alloy according. 液体急冷法、薄膜作製法及び粉体作製法のいずれか一つの方法により、一般式Fe100-a-b-c-dPaMbM'cCud(式中、MはZr、Hf、Nb、Mo、Ti、M'はCo、Niから選ばれる1種類以上の元素を表わす。a、b、c、dは原子%を示し、それぞれ、2<a≦12、3<b<12、0≦c≦20、0≦d≦5を満たすものとする)で表わされる組成の急冷合金を作製した後、この急冷合金を熱処理することを特徴とするFe基軟磁性合金の製造方法。According to any one of a liquid quenching method, a thin film manufacturing method, and a powder manufacturing method, the general formula Fe100-abc-dPaMbM′cCud (wherein M is Zr, Hf, Nb, Mo, Ti, and M ′ is Co, Represents one or more elements selected from Ni, a, b, c, and d represent atomic%, and 2 <a ≦ 12, 3 <b <12 , 0 ≦ c ≦ 20, and 0 ≦ d ≦ 5, respectively. A method for producing an Fe-based soft magnetic alloy, comprising: preparing a quenched alloy having a composition represented by: 前記急冷合金を350℃〜700℃の熱処理温度で24時間以内保持することを特徴とする請求項6記載のFe基軟磁性合金の製造方法。The method for producing an Fe-based soft magnetic alloy according to claim 6, wherein the quenched alloy is held at a heat treatment temperature of 350 ° C to 700 ° C within 24 hours.
JP15833892A 1992-06-17 1992-06-17 Fe-based soft magnetic alloy and manufacturing method Expired - Lifetime JP3623970B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15833892A JP3623970B2 (en) 1992-06-17 1992-06-17 Fe-based soft magnetic alloy and manufacturing method
CA002098532A CA2098532A1 (en) 1992-06-17 1993-06-16 Fe-base soft magnetic alloy and process for making same
DE69313938T DE69313938T2 (en) 1992-06-17 1993-06-17 Soft magnetic iron-based alloy and manufacturing process
EP93304762A EP0575190B1 (en) 1992-06-17 1993-06-17 Fe-base soft magnetic alloy and process for making same
KR1019930011091A KR0131376B1 (en) 1992-06-17 1993-06-17 Fe-bane soft magnetic alloy & process for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15833892A JP3623970B2 (en) 1992-06-17 1992-06-17 Fe-based soft magnetic alloy and manufacturing method

Publications (2)

Publication Number Publication Date
JPH062076A JPH062076A (en) 1994-01-11
JP3623970B2 true JP3623970B2 (en) 2005-02-23

Family

ID=15669458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15833892A Expired - Lifetime JP3623970B2 (en) 1992-06-17 1992-06-17 Fe-based soft magnetic alloy and manufacturing method

Country Status (5)

Country Link
EP (1) EP0575190B1 (en)
JP (1) JP3623970B2 (en)
KR (1) KR0131376B1 (en)
CA (1) CA2098532A1 (en)
DE (1) DE69313938T2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4444482A1 (en) * 1994-12-14 1996-06-27 Bosch Gmbh Robert Soft magnetic material
KR100916602B1 (en) * 2002-11-11 2009-09-11 엘지디스플레이 주식회사 Liquid crystal display device with soda-lime glass and method for fabricating of the same
CN102360670B (en) * 2011-10-24 2014-01-08 南京信息工程大学 Composite material with ferrite magnetic layer and amorphous soft magnetic core as well as preparation method thereof
CN104962821B (en) * 2015-05-26 2017-03-22 北京科技大学 Machining method of wire printer yoke iron seat part
JP7106919B2 (en) * 2018-03-23 2022-07-27 Tdk株式会社 Soft magnetic thin films, thin film inductors and magnetic products
CN110998918B (en) 2018-04-10 2022-12-06 株式会社Lg新能源 Method for preparing iron phosphide, positive electrode for lithium secondary battery comprising iron phosphide, and lithium secondary battery comprising said positive electrode
KR102229460B1 (en) * 2018-04-10 2021-03-18 주식회사 엘지화학 Method for manufacturing iron phosphide
WO2019198949A1 (en) * 2018-04-10 2019-10-17 주식회사 엘지화학 Method of producing iron phosphide, positive electrode for lithium secondary battery comprising iron phosphide, and lithium secondary battery comprising same
DE102019105215A1 (en) * 2019-03-01 2020-09-03 Vacuumschmelze Gmbh & Co. Kg Alloy and method of making a magnetic core
KR20220038899A (en) * 2020-09-21 2022-03-29 엘지전자 주식회사 Alloy powder and method of fabrication the same
CN112176222B (en) * 2020-10-30 2021-12-17 东北大学 Ce-containing Fe-Ni permalloy material and preparation method thereof
CN117026103A (en) * 2023-08-08 2023-11-10 中南大学 Multi-component soft magnetic alloy with high strength, high resistance and low resistance temperature coefficient, and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2713711B2 (en) * 1987-11-17 1998-02-16 日立金属株式会社 Security sensor marker
JPH04272159A (en) * 1991-01-08 1992-09-28 Sumitomo Metal Ind Ltd Ferrous magnetic alloy

Also Published As

Publication number Publication date
DE69313938T2 (en) 1998-03-05
JPH062076A (en) 1994-01-11
DE69313938D1 (en) 1997-10-23
EP0575190B1 (en) 1997-09-17
EP0575190A3 (en) 1994-01-26
KR0131376B1 (en) 1998-04-24
EP0575190A2 (en) 1993-12-22
KR940006157A (en) 1994-03-23
CA2098532A1 (en) 1993-12-18

Similar Documents

Publication Publication Date Title
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
JP5455040B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP5288226B2 (en) Magnetic alloys, amorphous alloy ribbons, and magnetic parts
JPH044393B2 (en)
JP3623970B2 (en) Fe-based soft magnetic alloy and manufacturing method
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JP3231149B2 (en) Noise filter
JP3655321B2 (en) Method for producing Fe-based soft magnetic alloy powder
JP2667402B2 (en) Fe-based soft magnetic alloy
WO1992009714A1 (en) Iron-base soft magnetic alloy
JPH0711396A (en) Fe base soft magnetic alloy
JP3558350B2 (en) Fe-based soft magnetic alloy and manufacturing method
JP2020020023A (en) ALLOY COMPOSITION, Fe-BASED NANOCRYSTAL ALLOY AND MANUFACTURING METHOD THEREFOR, AND MAGNETIC MEMBER
JP2919886B2 (en) Fe-based soft magnetic alloy
JP3322407B2 (en) Fe-based soft magnetic alloy
JP2718261B2 (en) Magnetic alloy and method for producing the same
JPH03177545A (en) Magnetic alloy material
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JPH0641698A (en) Fe-base soft-magnetic alloy
JP2760539B2 (en) Fe-based soft magnetic alloy
JPH03271346A (en) Soft magnetic alloy
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
JPH04272159A (en) Ferrous magnetic alloy

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8