JP3558350B2 - Fe-based soft magnetic alloy and manufacturing method - Google Patents

Fe-based soft magnetic alloy and manufacturing method Download PDF

Info

Publication number
JP3558350B2
JP3558350B2 JP31711292A JP31711292A JP3558350B2 JP 3558350 B2 JP3558350 B2 JP 3558350B2 JP 31711292 A JP31711292 A JP 31711292A JP 31711292 A JP31711292 A JP 31711292A JP 3558350 B2 JP3558350 B2 JP 3558350B2
Authority
JP
Japan
Prior art keywords
soft magnetic
atomic
magnetic alloy
based soft
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31711292A
Other languages
Japanese (ja)
Other versions
JPH06158239A (en
Inventor
好彦 廣田
健二 小田川
洋 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP31711292A priority Critical patent/JP3558350B2/en
Publication of JPH06158239A publication Critical patent/JPH06158239A/en
Application granted granted Critical
Publication of JP3558350B2 publication Critical patent/JP3558350B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Description

【0001】
【産業上の利用分野】
本発明は、Fe基軟磁性合金に係わり、特に良好な軟磁気特性を有するFe基軟磁性合金及びその製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、磁気ヘッド、高周波トランス、可飽和リアクトル、チョークコイル等の磁心材料として、高い飽和磁束密度を有するFe系の非晶質磁性合金が広く知られている。しかし、Fe系の非晶質磁性合金はCo系よりも安価ではあるが、一般的にコア損失が大きく、透磁率も低い。さらに飽和磁歪も大きいためまだ磁気特性の面では十分とは言えない。
【0003】
本願発明は、このような従来のFe系非晶質磁性に代わる軟磁性材料であって、しかも飽和磁歪および鉄損が小さく、かつ、低コストである新規なFe基軟磁性合金を提供することを目的とする。
【0004】
【課題を解決するための手段】
このような目的を達成するため本発明者は、Fe基軟磁性合金について鋭意研究の結果、Fe−B系Fe基軟磁性合金にAl及び特定の元素M、特にNbを添加した場合、優れた軟磁気特性を示し、例えば飽和磁歪が低いこと、またこのようなFe−B−Al−M系Fe基軟磁性合金にリン(P)及び炭素(C)を添加した場合、優れた軟磁気特性を示すことを見い出し、本発明に至ったものである。
【0005】
即ち、本発明のFe基軟磁性合金は、(Fe1-xx100-a-b-c-d-e-fAlabM’cdef(式中、AはCo及び/又はNi、MはNb、Mo、Ta、Zr、Vから選ばれる1種又は2種以上の元素を表わし、M'はSi元素を表わす。xは0≦x≦0.2、またa、b、c、d、e、fは原子%を表わし、それぞれ、2.5≦a≦10、3≦b≦20、0≦c≦6、1≦d≦9、2<e≦9、0.1≦f≦5を満たし、PとCの組成比e/f(原子比)が、1≦e/f≦40を満たすものとする)で表わされるものであり、特にその組織の少なくとも30%以上が微細な結晶粒で生成されていることが好ましく、更に結晶粒は鉄を主体としたbcc固溶体から成るものである。
【0006】
本発明のFe基軟磁性合金の急冷直後の合金構造は、非晶質状態が望ましいが、熱処理後に軟磁気特性が得られる範囲内であれば一部結晶質が混在していてもよい。
【0007】
本発明のFe基軟磁性合金において、Feはxが0から0.2の範囲でA(Co及び/又はNi)で置換することができる。Aは熱処理時に生成するFeを主体としたbcc結晶に固溶し、特にCoは飽和磁化、Niは結晶磁気異方性定数の改善に寄与する。本発明において、Aの含有量(FeとAの合計を1とした場合のAの割合)xが0.2より多いとbcc構造以外の生成相がみられ軟磁気特性が劣化する。このため、Aの含有量xは、0.2以下であることが好ましい。さらに好ましくは、0.1以下である。
【0008】
Alは本発明の合金の必須元素であり、Alを特定量(2.5原子%以上10原子%以下)添加することにより、結晶磁気異方性の小さい軟磁性を示す結晶(Fe基bcc固溶体)の結晶化温度(Tx1)と軟磁性を阻害する結晶(例えばFe−B系結晶)の結晶化温度(Tx2)との温度差(△T)を大きくすることができ、熱処理時のFe−B系結晶等の生成を抑制すると共に、比較的低い温度の熱処理で軟磁気特性を導出することができる。AlはNi(Co)と同様にFeとの相互パラメータが負であるため、Alを添加することによりFeを主体とした固溶体中に固溶され、即ちα−Fe結晶構造のFe原子の位置に置換される形で固溶されbcc結晶を安定化する。また、Alは熱処理により生成した析出結晶粒を微細化するものと推定される。以上のことから、本合金系においてAl添加によって結晶磁気異方性の小さい微細結晶粒が選択的に生成されるので、これによって優れた軟磁気特性が発現すると思われる。
【0009】
本発明においてAlの含有量aは、好ましくは2.5〜10原子%、更に好ましくは3〜6原子%である。3〜6原子%の範囲において、特に鉄損の小さい合金を得ることができる。
【0010】
本発明における元素MはNb、Mo、Ta、Zr、Vから選ばれる1種又は2種以上の元素で、軟磁性の発現を阻害する、Fe−B、Fe−P系結晶の析出を抑制あるいは析出開始温度を高い温度に移動させる効果があると推察される。さらに、元素Mの添加は結晶粒の微細化のみならず非晶質形成能を向上させる効果がある。また、MとしてはNbが好適である。
【0011】
本発明における元素Mの含有量bは、3原子%から20原子%、好ましくは3〜15原子%、更に好ましくは5〜10原子%である。
【0012】
本発明における元素M’は、Si元素で、Feと固溶体を形成し、6原子%以下添加することにより軟磁性を向上させる。
【0013】
ホウ素(B)は本発明の合金の必須元素であり非晶質形成に寄与し、Bが9原子%を超えると磁気特性が良好な熱処理条件では磁歪が大きくなる。よって、好ましい範囲は1原子%〜9原子%、最も好ましい範囲は2原子%〜8原子%である。
【0014】
本発明においてリン(P)と炭素(C)はそれぞれ必須元素であり、元素Pは非晶質形成範囲の拡大に寄与する。またCは結晶粒を微細化し軟磁気特性を向上させる。但しPが9原子%を超えると熱処理によりFe−P系結晶が析出し軟磁性の発現を阻害するので、Pの含有量eは2原子%を超え9原子%以下、好ましくは2.5原子%〜9原子%、更に好ましくは3原子%〜7原子%である。
【0015】
またCが5原子%を超えると熱処理によりFe−Cが生成しやすくなり軟磁性の発現を阻害するので、Cの含有量fは、0.1原子%〜5原子であり、好ましくは、0.5原子%〜3原子%、更に好ましくは0.5原子%〜2原子%である。
【0016】
また本発明の合金において、元素M、P及びCはともに耐食性を向上させる働きがある。このような効果を得るために、これら元素の含有量合計の好ましい範囲は、5.1原子%<b+e+f≦34原子%であり、更に好ましくは10原子%<b+e+f≦34原子%である。
【0017】
更に本発明の合金では、PとCとを複合添加することにより、保磁力の低減および軟磁気特性(鉄損および透磁率)が改善される。PとCの組成比率(原子比e/f)において、好ましい範囲は、1≦e/f≦40、好ましくは2<e/f<20であり、最も好ましい範囲は、2≦e/f≦7である。
【0018】
本発明においてはN、S、Oなどの不可避的不純物を、目的とする特性が劣化しない程度に含有している合金も本発明に含むものである。
【0019】
本発明のFe基軟磁性合金は、組織全体の少なくとも30%以上が微細な結晶粒から成り、微結晶粒以外の部分は主として非晶質およびまたは上記微結晶粒以外の結晶質部分よりなる。本発明では、結晶粒の割合が上記範囲にあるとき優れた(軟)磁気特性を示す。なお、本発明では微細結晶粒の割合が実質的に100%であっても優れた(軟)磁気特性を示す。本発明のFe基軟磁性合金においては磁気特性の面から、組織全体の少なくとも50%以上が微細な結晶粒から成ることが特に好ましく、70%以上が微細な結晶粒から成ることが最も好ましい。
【0020】
また本発明の合金に含まれる微細結晶粒は主としてbcc構造を有しており、Fe及びAlを主体としてM、M'および微量のB、P、Cが固溶していると考えられる。この微細結晶粒は1000オングストローム以下、好ましくは500オングストローム以下、更に好ましくは50〜300オングストロームの平均粒径を有している。本発明では平均粒径が1000オングストローム以下であることにより、優れた磁気特性が得られるものである。
【0021】
なお、本発明において結晶粒の全体に占める割合は、実験的にX線回折法等により評価することができる。即ち、結晶化に伴い生じるX線回折線のX線回折強度と、結晶化に伴い減少する非晶質特有のハローによるX線回折強度との比から評価することができる。また、本発明において平均粒径はX線回折図形のbccピーク反射(110)を用い、シェラーの式(t=0.9λ/βcosθ)によって導出したものである(カリティ著、新版 X線回折要論(Element of X-ray Diffraction (Second Edition)、B.D. Cullity)、91〜94頁)。
【0022】
更に本発明のFe基軟磁性合金は、磁歪が小さく、磁束密度が大きく、好適には飽和磁歪λsが−5×10-6≦λs≦+10×10-6の範囲にあるものであり、飽和磁束密度Bsが好ましくは1.2以上のものである。
【0023】
このような本発明のFe基軟磁性合金は、一般にアモルファス合金を形成する液体急冷法、(例えば単ロール法)、キャビテーション法、薄膜作製法(例えばスパッタ法、メッキ法または蒸着法等)あるいは粉体作製法(例えばメカニカルアロイング法)等により上記組成の急冷合金をリボン状、粉末状、ファイバ状、繊維状又は薄膜状等に形成した後、得られた急冷合金を必要に応じて所定の形状に加工した後、熱処理し、少なくとも一部、好ましくは試料全体の30%以上を結晶化することにより得られる。なおこの急冷合金は非晶質でもよく、あるいは非晶質と結晶質が混在する合金でもよい。
【0024】
通常は、単にロール法により急冷薄帯を作成し、これを巻磁心等の所定の形状にした後熱処理する。熱処理は真空中あるいはアルゴンガスもしくは窒素ガス等の不活性ガス、H2等の還元性ガスもしくは空気等の酸化性ガス雰囲気中で行なう。好ましくは真空中あるいは不活性ガス雰囲気中で行なう。熱処理温度は約200〜800℃程度、好ましくは300〜700℃程度、更に好ましくは400〜700℃程度とする。熱処理時間は24時間以内、好ましくは0.5〜5時間、更に好ましくは0.5〜3時間とする。また、熱処理は無磁場中でも、また磁場を印加して行なってもよい。本発明では上記の温度範囲で且つ上記範囲の熱処理時間で上記組成の非晶質または一部結晶質の混合した合金を熱処理することにより本発明の特性に優れた軟磁性合金を得ることができる。
【0025】
本発明合金の用途は磁気ヘッド、高周波トランス、可飽和リアクトル、チョークコイル等の材料として広く使用することができる。
【0026】
【実施例】
以下、実施例を挙げて更に説明する。
【0027】
実施例1及び2、比較例
単ロール法を用いて、Fe、Al、Nb、B、P、Cを含有する溶湯からアルゴンガス1気圧雰囲気中で幅5mm程度、板厚約20μmの急冷薄帯を作成し試料とした。この試料を窒素ガスの存在下600℃で約1時間無磁場で熱処理した。
【0028】
得られたFe基軟磁性合金の合金組成を表1に示した。また、表2に得られたFe基軟磁性合金の飽和磁束密度Bs(T)、保磁力Hc(mOe)、周波数1KHz及び最大励磁磁界5mOeでの実効透磁率μ(1KHz)、周波数100kHz及び最大磁束密度0.1Tでの鉄損値Pc(W/Kg)、飽和磁歪λs(×10-6)を示した。なお組成はC以外の元素はICP分析によって決定し、Cは二酸化炭素に変換し、赤外線検出器で検出し決定した。
【0029】
なお、実施例1及び2において、α−Fe(110)の回折強度と非晶質の回折強度から求めた熱処理後の試料の結晶化度はいずれも80%以上であった。またそれら結晶粒の平均粒径は実施例1の合金では100オングストローム、実施例2の合金では120オングストロームであった。
【0030】
また比較例としてFe78Si913(比較例1、市販品)の特性を併せて表2に示した。

Figure 0003558350
表2からも明らかなように、本実施例のFe基軟磁性合金は優れた磁性特性を示し、特に従来の磁性合金に比べ優れた実行透磁率、低い鉄損を示した。
【0031】
【発明の効果】
以上の実施例からも明らかなように、本発明によればFe−B系合金にAl及び特定の元素を添加するとともに特定量のリン及び炭素を添加することにより、優れた軟磁性特性のFe基軟磁性合金を提供できる。[0001]
[Industrial applications]
The present invention relates to an Fe-based soft magnetic alloy, and more particularly to an Fe-based soft magnetic alloy having good soft magnetic properties and a method for producing the same.
[0002]
Problems to be solved by the prior art and the invention
In recent years, Fe-based amorphous magnetic alloys having a high saturation magnetic flux density are widely known as magnetic core materials for magnetic heads, high-frequency transformers, saturable reactors, choke coils, and the like. However, Fe-based amorphous magnetic alloys are less expensive than Co-based alloys, but generally have large core loss and low magnetic permeability. Furthermore, since the saturation magnetostriction is large, it cannot be said that the magnetic properties are still sufficient.
[0003]
An object of the present invention is to provide a novel Fe-based soft magnetic alloy which is a soft magnetic material that replaces such conventional Fe-based amorphous magnetism, has a low saturation magnetostriction and iron loss, and is low in cost. With the goal.
[0004]
[Means for Solving the Problems]
In order to achieve such an object, the present inventors have conducted intensive studies on Fe-based soft magnetic alloys. As a result, when adding Al and a specific element M, particularly Nb, to an Fe-B-based Fe-based soft magnetic alloy, excellent results were obtained. It exhibits soft magnetic properties, for example, low saturation magnetostriction, and excellent soft magnetic properties when phosphorus (P) and carbon (C) are added to such Fe-B-Al-M-based Fe-based soft magnetic alloy. Have been found, and the present invention has been achieved.
[0005]
That, Fe-based soft magnetic alloy of the present invention, (Fe 1-x A x ) 100-abcdef Al a M b M 'c B d P e C f ( wherein, A is Co and / or Ni, M is Represents one or more elements selected from Nb, Mo, Ta, Zr, and V , M ′ represents a Si element , x is 0 ≦ x ≦ 0.2, and a, b, c, d, e and f represent atomic%, and 2.5 ≦ a ≦ 10 , 3 ≦ b ≦ 20, 0 ≦ c ≦ 6, 1 ≦ d ≦ 9, 2 <e ≦ 9, and 0.1 ≦ f ≦ 5, respectively. Is satisfied, and the composition ratio e / f (atomic ratio) of P and C satisfies 1 ≦ e / f ≦ 40). In particular, at least 30% or more of the structure has fine crystals. Preferably, the grains are made of grains, and the grains are made of a bcc solid solution mainly composed of iron .
[0006]
The alloy structure of the Fe-based soft magnetic alloy of the present invention immediately after quenching is desirably in an amorphous state, but may be partially crystalline as long as soft magnetic properties can be obtained after heat treatment.
[0007]
In the Fe-based soft magnetic alloy of the present invention, Fe can be substituted with A (Co and / or Ni) when x is in the range of 0 to 0.2. A forms a solid solution in the bcc crystal mainly composed of Fe generated during the heat treatment, and particularly Co contributes to the saturation magnetization and Ni contributes to the improvement of the crystal magnetic anisotropy constant. In the present invention, if the content of A (the ratio of A when the total of Fe and A is 1) x is more than 0.2, a generated phase other than the bcc structure is observed, and the soft magnetic properties are deteriorated. Therefore, the content x of A is preferably 0.2 or less. More preferably, it is 0.1 or less.
[0008]
Al is an essential element of the alloy of the present invention, and a crystal (Fe-based bcc solid solution) having a small magnetic anisotropy and exhibiting soft magnetism can be obtained by adding a specific amount of Al ( 2.5 at% to 10 at% ). ) And the crystallization temperature (Tx2) of a crystal that inhibits soft magnetism (eg, Fe—B-based crystal) (ΔT) can be increased. The formation of the B-based crystal and the like can be suppressed, and the soft magnetic characteristics can be derived by heat treatment at a relatively low temperature. Since Al has a negative mutual parameter with Fe similarly to Ni (Co), Al is dissolved in a solid solution mainly composed of Fe by adding Al, that is, at a position of Fe atom in the α-Fe crystal structure. It is dissolved in the form of being substituted and stabilizes the bcc crystal. Also, it is presumed that Al refines the precipitated crystal grains generated by the heat treatment. From the above, it is considered that, in the present alloy system, fine crystal grains with small crystal magnetic anisotropy are selectively generated by the addition of Al, whereby excellent soft magnetic properties are exhibited.
[0009]
In the present invention, the Al content a is preferably 2.5 to 10 atomic% , and more preferably 3 to 6 atomic%. In the range of 3 to 6 atomic%, an alloy having particularly small iron loss can be obtained.
[0010]
The element M in the present invention is one or two or more elements selected from Nb, Mo, Ta, Zr, and V, which inhibits the development of soft magnetism, suppresses the precipitation of Fe-B, Fe-P-based crystals, or It is presumed that there is an effect of moving the precipitation start temperature to a higher temperature. Further, the addition of the element M has the effect of improving the ability to form an amorphous phase as well as making the crystal grains finer. Also, M is preferably Nb.
[0011]
The content b of the element M in the present invention is 3 to 20 atomic%, preferably 3 to 15 atomic%, more preferably 5 to 10 atomic%.
[0012]
The element M ′ in the present invention is a Si element , forms a solid solution with Fe, and improves soft magnetism by adding 6 atomic% or less.
[0013]
Boron (B) is an essential element of the alloy of the present invention and contributes to the formation of an amorphous phase. When B exceeds 9 atomic%, magnetostriction increases under heat treatment conditions with good magnetic properties. Therefore, a preferable range is 1 to 9 atomic%, and a most preferable range is 2 to 8 atomic%.
[0014]
In the present invention, phosphorus (P) and carbon (C) are essential elements, respectively, and the element P contributes to expansion of an amorphous formation range. C refines crystal grains and improves soft magnetic properties. However, if P exceeds 9 atomic%, the heat treatment precipitates Fe-P-based crystals and inhibits the development of soft magnetism. Therefore, the P content e is more than 2 atomic% and 9 atomic% or less, preferably 2.5 atomic%. % To 9 at%, more preferably 3 to 7 at%.
[0015]
Further, when C exceeds 5 atomic%, Fe-C is easily generated by heat treatment and the development of soft magnetism is inhibited. Therefore, the content f of C is 0.1 to 5 atomic%, and preferably 0 to 0 atomic%. It is from 0.5 at% to 3 at%, more preferably from 0.5 at% to 2 at%.
[0016]
Further, in the alloy of the present invention, the elements M, P and C all have a function of improving the corrosion resistance. In order to obtain such effects, a preferable range of the total content of these elements is 5.1 atomic% <b + e + f ≦ 34 atomic%, and more preferably 10 atomic% <b + e + f ≦ 34 atomic%.
[0017]
Further, in the alloy of the present invention, coercive force is reduced and soft magnetic properties (iron loss and magnetic permeability) are improved by adding P and C in combination. In the composition ratio of P and C (atomic ratio e / f), a preferable range is 1 ≦ e / f ≦ 40, preferably 2 <e / f <20, and a most preferable range is 2 ≦ e / f ≦. 7
[0018]
In the present invention, an alloy containing unavoidable impurities such as N, S, and O to such an extent that desired characteristics are not deteriorated is also included in the present invention.
[0019]
In the Fe-based soft magnetic alloy of the present invention, at least 30% or more of the entire structure is composed of fine crystal grains, and portions other than the fine crystal grains are mainly composed of amorphous and / or crystalline portions other than the above-mentioned fine crystal grains. In the present invention, when the proportion of the crystal grains is in the above range, excellent (soft) magnetic properties are exhibited. In the present invention, excellent (soft) magnetic properties are exhibited even when the ratio of fine crystal grains is substantially 100%. In the Fe-based soft magnetic alloy of the present invention, from the viewpoint of magnetic properties, it is particularly preferable that at least 50% or more of the entire structure is composed of fine crystal grains, and it is most preferable that 70% or more is composed of fine crystal grains.
[0020]
Further, the fine crystal grains contained in the alloy of the present invention mainly have a bcc structure, and it is considered that M and M 'and trace amounts of B, P and C mainly form a solid solution mainly of Fe and Al. The fine grains have an average particle size of less than 1000 angstroms, preferably less than 500 angstroms, more preferably 50-300 angstroms. In the present invention, when the average particle size is 1000 Å or less, excellent magnetic properties can be obtained.
[0021]
In the present invention, the ratio of the crystal grains to the whole can be experimentally evaluated by an X-ray diffraction method or the like. That is, it can be evaluated from the ratio of the X-ray diffraction intensity of the X-ray diffraction line generated due to the crystallization to the X-ray diffraction intensity due to the halo peculiar to the amorphous which decreases with the crystallization. In the present invention, the average particle diameter is derived by the Scherrer's formula (t = 0.9λ / βcosθ) using the bcc peak reflection (110) of the X-ray diffraction pattern. (Element of X-ray Diffraction (Second Edition), BD Cullity), pp. 91-94).
[0022]
Further, the Fe-based soft magnetic alloy of the present invention has a low magnetostriction and a high magnetic flux density, and preferably has a saturation magnetostriction λs in the range of −5 × 10 −6 ≦ λs ≦ + 10 × 10 −6 , The magnetic flux density Bs is preferably 1.2 or more.
[0023]
Such an Fe-based soft magnetic alloy of the present invention is generally prepared by a liquid quenching method for forming an amorphous alloy (for example, a single roll method), a cavitation method, a thin film forming method (for example, a sputtering method, a plating method or a vapor deposition method) or a powder. After the quenched alloy having the above composition is formed into a ribbon, powder, fiber, fiber, or thin film by a body manufacturing method (for example, mechanical alloying method) or the like, the obtained quenched alloy is optionally subjected to a predetermined method. After being processed into a shape, it is obtained by heat treatment to crystallize at least a part, preferably 30% or more of the whole sample. The quenched alloy may be amorphous or an alloy in which amorphous and crystalline are mixed.
[0024]
Normally, a quenched ribbon is simply prepared by a roll method, and is formed into a predetermined shape such as a wound core and then heat-treated. The heat treatment is performed in a vacuum or in an atmosphere of an inert gas such as argon gas or nitrogen gas, a reducing gas such as H 2, or an oxidizing gas such as air. Preferably, it is performed in a vacuum or an inert gas atmosphere. The heat treatment temperature is about 200 to 800 ° C, preferably about 300 to 700 ° C, and more preferably about 400 to 700 ° C. The heat treatment time is within 24 hours, preferably 0.5 to 5 hours, and more preferably 0.5 to 3 hours. The heat treatment may be performed in the absence of a magnetic field or by applying a magnetic field. In the present invention, a soft magnetic alloy having excellent characteristics of the present invention can be obtained by heat-treating an amorphous or partially crystalline mixed alloy having the above composition within the above-mentioned temperature range and within the above-mentioned heat treatment time. .
[0025]
The alloy of the present invention can be widely used as a material for magnetic heads, high frequency transformers, saturable reactors, choke coils, and the like.
[0026]
【Example】
Hereinafter, the present invention is further described with reference to examples.
[0027]
Examples 1 and 2, Comparative Example Using a single roll method, a quenched ribbon having a width of about 5 mm and a plate thickness of about 20 μm from a molten metal containing Fe, Al, Nb, B, P, and C in an atmosphere of argon gas at 1 atm. Was prepared as a sample. This sample was heat-treated in the presence of nitrogen gas at 600 ° C. for about 1 hour without a magnetic field.
[0028]
Table 1 shows the alloy composition of the obtained Fe-based soft magnetic alloy. Further, the saturation magnetic flux density Bs (T), coercive force Hc (mOe), effective magnetic permeability μ (1 KHz) at a frequency of 1 KHz and a maximum exciting magnetic field of 5 mOe, a frequency of 100 kHz and a maximum of the Fe-based soft magnetic alloy obtained in Table 2 were obtained. The iron loss value Pc (W / Kg) and the saturation magnetostriction λs (× 10 −6 ) at a magnetic flux density of 0.1 T are shown. The composition was determined by ICP analysis for elements other than C, and C was converted to carbon dioxide and detected and determined by an infrared detector.
[0029]
In Examples 1 and 2, the crystallinity of the sample after the heat treatment obtained from the diffraction intensity of α-Fe (110) and the diffraction intensity of amorphous was 80% or more. The average grain size of the crystal grains was 100 Å for the alloy of Example 1 and 120 Å for the alloy of Example 2.
[0030]
Table 2 also shows the characteristics of Fe 78 Si 9 B 13 (Comparative Example 1, commercially available product) as a comparative example.
Figure 0003558350
As is evident from Table 2, the Fe-based soft magnetic alloy of this example exhibited excellent magnetic properties, and particularly exhibited superior effective magnetic permeability and low iron loss as compared with the conventional magnetic alloy.
[0031]
【The invention's effect】
As is apparent from the above examples, according to the present invention, by adding Al and a specific element to a Fe-B-based alloy and adding a specific amount of phosphorus and carbon, Fe having excellent soft magnetic properties can be obtained. A base soft magnetic alloy can be provided.

Claims (8)

一般式(Fe1-xx100-a-b-c-d-e-fAlabM’cdef(式中、AはCo及び/又はNi、MはNb、Mo、Ta、Zr、Vから選ばれる1種又は2種以上の元素を表わし、M'はSi元素を表わす。xは0≦x≦0.2、またa、b、c、d、e、fは原子%を表わし、それぞれ、2.5≦a≦10、3≦b≦20、0≦c≦6、1≦d≦9、2<e≦9、0.1≦f≦5を満たし、PとCの組成比e/f(原子比)が、1≦e/f≦40を満たすものとする)で表わされることを特微とするFe基軟磁性合金。Formula (Fe 1-x A x) in 100-abcdef Al a M b M 'c B d P e C f ( wherein, A is Co and / or Ni, M is Nb, Mo, Ta, Zr, from V M ′ represents one or more selected elements, M ′ represents a Si element, x represents 0 ≦ x ≦ 0.2, and a, b, c, d, e, and f represent atomic%. 2.5 ≦ a ≦ 10 , 3 ≦ b ≦ 20, 0 ≦ c ≦ 6, 1 ≦ d ≦ 9, 2 <e ≦ 9, 0.1 ≦ f ≦ 5, and the composition ratio e of P and C / F (atomic ratio) satisfies 1 ≦ e / f ≦ 40). 組織の少なくとも30%以上が微細結晶粒から成ることを特微とする請求項1記載のFe基軟磁性合金。2. The Fe-based soft magnetic alloy according to claim 1 , wherein at least 30% or more of the structure is composed of fine crystal grains. 前記結晶粒が鉄を主体としたbcc固溶体であることを特微とする請求項2記載のFe基軟磁性合金。 3. The Fe-based soft magnetic alloy according to claim 2, wherein the crystal grains are a bcc solid solution mainly composed of iron . 前記結晶粒の平均粒径が1000オングストローム以下である請求項2または3項記載のFe基軟磁性合金。The Fe-based soft magnetic alloy according to claim 2 or 3, wherein the average grain size of the crystal grains is 1000 Å or less. 飽和磁歪λsが−5×10-6≦λs≦+10×10-6の範囲にある請求項1ないしのいずれか1項記載のFe基軟磁性合金。Saturation magnetostriction [lambda] s is -5 × 10 -6 ≦ λs ≦ + 10 × 10 -6 is in the range of claims 1 to 4 of any one Fe-based soft magnetic alloy according. 飽和磁束密度Bsが1.2T以上の範囲にある請求項1ないしのいずれか1項記載のFe基軟磁性合金。The Fe-based soft magnetic alloy according to any one of claims 1 to 5, wherein a saturation magnetic flux density Bs is in a range of 1.2T or more. 液体急冷法、薄膜作製法又は粉体作製法により作製された、(Fe1-xx100-a-b-c-d-e-fAlab M’cdef(式中、AはCo及び/又はNi、MはNb、Mo、Ta、Zr、Vから選ばれる1種又は2種以上の元素を表わし、M'はSi元素を表わす。xは0≦x≦0.2、またa、b、c、d、e、fは原子%を表わし、それぞれ、2.5≦a≦10、3≦b≦20、0≦c≦6、1≦d≦9、2<e≦9、0.1≦f≦5を満たし、PとCの組成比e/f(原子比)が、1≦e/f≦40を満たすものとする)で表わされる組成の急冷合金を熱処理してなるFe基軟磁性合金。Liquid quenching method, produced by thin film forming method or a powder preparation method, (Fe 1-x A x ) in 100-abcdef Al a M b M 'c B d P e C f ( wherein, A is Co and / Alternatively, Ni and M represent one or more elements selected from Nb, Mo, Ta, Zr, and V, M ′ represents a Si element, x is 0 ≦ x ≦ 0.2, and a and b , C, d, e, and f represent atomic%, and are 2.5 ≦ a ≦ 10 , 3 ≦ b ≦ 20, 0 ≦ c ≦ 6, 1 ≦ d ≦ 9, 2 <e ≦ 9, 0. Fe-based alloy obtained by heat-treating a quenched alloy having a composition satisfying 1 ≦ f ≦ 5 and a composition ratio e / f (atomic ratio) of P and C satisfying 1 ≦ e / f ≦ 40) Soft magnetic alloy. (Fe1-xx100-a-b-c-d-e-fAlab M’cdef(式中、AはCo及び/又はNi、MはNb、Mo、Ta、Zr、Vから選ばれる1種又は2種以上の元素を表わし、M'はSi元素を表わす。xは0≦x≦0.2、またa、b、c、d、e、fは原子%を表わし、それぞれ、2.5≦a≦10、3≦b≦20、0≦c≦6、1≦d≦9、2<e≦9、0.1≦f≦5を満たし、PとCの組成比e/f(原子比)が、1≦e/f≦40を満たすものとする)で表わされる組成の急冷合金を液体急冷法、薄膜作製法又は粉体作製法により作製した後、200℃〜800℃の熱処理温度で24時間以内保持することを特微とするFe基軟磁性合金の製造方法。 (Fe 1-x A x) 100-abcdef Al a M b M 'c B d P e C f ( wherein, A is Co and / or Ni, M is selected Nb, Mo, Ta, Zr, from V represents one or more elements, M 'is .x is 0 ≦ x ≦ 0.2 which represents a Si element also a, b, c, d, e, f, represents the atomic%, respectively, 2 0.5 ≦ a ≦ 10 , 3 ≦ b ≦ 20, 0 ≦ c ≦ 6, 1 ≦ d ≦ 9, 2 <e ≦ 9, 0.1 ≦ f ≦ 5, and the composition ratio e / f of P and C (Atomic ratio is assumed to satisfy 1 ≦ e / f ≦ 40), a quenched alloy having a composition represented by the following formula is prepared by a liquid quenching method, a thin film forming method or a powder forming method. A method for producing an Fe-based soft magnetic alloy, characterized in that the temperature is maintained within 24 hours at a heat treatment temperature.
JP31711292A 1992-11-26 1992-11-26 Fe-based soft magnetic alloy and manufacturing method Expired - Lifetime JP3558350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31711292A JP3558350B2 (en) 1992-11-26 1992-11-26 Fe-based soft magnetic alloy and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31711292A JP3558350B2 (en) 1992-11-26 1992-11-26 Fe-based soft magnetic alloy and manufacturing method

Publications (2)

Publication Number Publication Date
JPH06158239A JPH06158239A (en) 1994-06-07
JP3558350B2 true JP3558350B2 (en) 2004-08-25

Family

ID=18084576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31711292A Expired - Lifetime JP3558350B2 (en) 1992-11-26 1992-11-26 Fe-based soft magnetic alloy and manufacturing method

Country Status (1)

Country Link
JP (1) JP3558350B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3442375B2 (en) * 2000-11-29 2003-09-02 アルプス電気株式会社 Amorphous soft magnetic alloy
KR100690281B1 (en) * 2004-11-22 2007-03-09 경북대학교 산학협력단 Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
KR101633611B1 (en) * 2014-12-05 2016-06-27 주식회사 포스코 High silicon electrical steel sheet with superior magnetic properties, and method for fabricating the high silicon electrical steel
JP6451877B1 (en) * 2018-01-12 2019-01-16 Tdk株式会社 Soft magnetic alloys and magnetic parts

Also Published As

Publication number Publication date
JPH06158239A (en) 1994-06-07

Similar Documents

Publication Publication Date Title
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
US4881989A (en) Fe-base soft magnetic alloy and method of producing same
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JPH044393B2 (en)
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JP3231149B2 (en) Noise filter
JP3623970B2 (en) Fe-based soft magnetic alloy and manufacturing method
JP3655321B2 (en) Method for producing Fe-based soft magnetic alloy powder
JP2667402B2 (en) Fe-based soft magnetic alloy
EP0513385B1 (en) Iron-base soft magnetic alloy
JP3558350B2 (en) Fe-based soft magnetic alloy and manufacturing method
JP3322407B2 (en) Fe-based soft magnetic alloy
JP2919886B2 (en) Fe-based soft magnetic alloy
JP2713714B2 (en) Fe-based magnetic alloy
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JP3228427B2 (en) Ultra-microcrystalline soft magnetic alloy
JP3233289B2 (en) Ultra-microcrystalline alloy ribbon and powder and magnetic core using the same
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
JP2857257B2 (en) High saturation magnetic flux density Fe soft magnetic alloy
JP2934460B2 (en) Ultra-microcrystalline alloy with permimber properties and method for producing the same
KR0153174B1 (en) Fe-al based feeble magnetic alloy having high magnetic permeability
JP2878472B2 (en) High saturation magnetic flux density Fe soft magnetic alloy
JPH04341544A (en) Fe base soft magnetic alloy
JPH0641698A (en) Fe-base soft-magnetic alloy
JPH06181113A (en) Fe-base constant-permeability magnetic core

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9