JPH04341544A - Fe base soft magnetic alloy - Google Patents

Fe base soft magnetic alloy

Info

Publication number
JPH04341544A
JPH04341544A JP3112800A JP11280091A JPH04341544A JP H04341544 A JPH04341544 A JP H04341544A JP 3112800 A JP3112800 A JP 3112800A JP 11280091 A JP11280091 A JP 11280091A JP H04341544 A JPH04341544 A JP H04341544A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic alloy
alloy
amorphous
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3112800A
Other languages
Japanese (ja)
Inventor
Hiroshi Watanabe
洋 渡辺
Jun Saito
準 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP3112800A priority Critical patent/JPH04341544A/en
Publication of JPH04341544A publication Critical patent/JPH04341544A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To offer an Fe base soft magnetic alloy excellent in soft magnetic properties by incorporating Fe, Co, Ni, Si Al, B and Cu with specified relationship. CONSTITUTION:The componental structure of an Fe base soft magnetic alloy is expressed by a formula I. In the formula I, M denotes Co and/or Ni. X denotes atomic ratio as well as (a), (b), (c) and (d) denote atomic %, respectively, and 0<=x<=0.5, 0<=a<=24, 1<=b<=2, 0.4<=c<=30 and 0.2<=d<=3 are satisfied. At least >=30% of the structure is constituted of crystalline ones and the balance amorphous ones. The crystalline ones are formed of bcc solid soln. essentially consisting of iron. In this way, the Fe base soft magnetic alloy suitable as a magnetic core material can be offered.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、Fe基軟磁性合金に係
わり、特に良好な軟磁気特性を有するFe基軟磁性合金
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Fe-based soft magnetic alloy, and particularly to an Fe-based soft magnetic alloy having good soft magnetic properties.

【0002】0002

【従来の技術及び発明が解決しようとする課題】近年、
高周波トランス、可飽和リアクトル、チョークコイル等
の磁心材料として、高い飽和磁束密度を有するFe系の
非晶質磁性合金が広く知られている。しかし、Fe系非
晶質合金は一般に飽和磁歪定数が大きいため、コアを作
製した後、樹脂含浸、切断等応力が加わると、軟磁気特
性、特に鉄損が大幅に劣化する等の問題点があった。
[Prior art and problems to be solved by the invention] In recent years,
Fe-based amorphous magnetic alloys having high saturation magnetic flux density are widely known as magnetic core materials for high frequency transformers, saturable reactors, choke coils, and the like. However, Fe-based amorphous alloys generally have a large saturation magnetostriction constant, so if stress is applied after the core is fabricated, such as by resin impregnation or cutting, there are problems such as significant deterioration of soft magnetic properties, especially iron loss. there were.

【0003】本願発明は、このような従来のFe系非晶
質合金に代わる軟磁性材料であり、軟磁気特性、特に鉄
損に優れた新規なFe基軟磁性合金を提供することを目
的とする。更に、本発明は、従来の磁性材料製造装置を
利用して容易に製造することのできる比較的低融点のF
e基軟磁性合金を提供することを目的とする。
The present invention aims to provide a novel Fe-based soft magnetic alloy that is a soft magnetic material that can replace such conventional Fe-based amorphous alloys and has excellent soft magnetic properties, particularly iron loss. do. Furthermore, the present invention provides a relatively low melting point F that can be easily manufactured using conventional magnetic material manufacturing equipment.
The object of the present invention is to provide an e-based soft magnetic alloy.

【0004】0004

【課題を解決するための手段】このような目的を達成す
るため本発明者は、Fe基軟磁性合金について鋭意研究
を進めた結果、Fe−Si−B系合金にAlおよびCu
を添加した合金が、小さな飽和磁歪定数を持つことを見
い出し、本発明に至ったものである。 即ち、本発明のFe基軟磁性合金は、一般式(Fe1−
XMX)100−a−b−c−dSiaAlbBcCu
d(式中、MはCo及び/又はNiを示す。xは原子比
を、a、b、c、dは原子%を示し、それぞれ0≦x≦
0.5、0≦a≦24、1≦b≦20、4≦c≦30、
0.2≦d≦3を満たすものとする)により表わされる
ものであり、特にその組織の少なくとも30%以上が結
晶質で生成されていることが好ましく、この結晶質は鉄
を主体としたbcc固溶体から成るものである。
[Means for Solving the Problems] In order to achieve the above object, the present inventor has carried out intensive research on Fe-based soft magnetic alloys, and as a result, has found that Al and Cu are added to Fe-Si-B alloys.
It was discovered that an alloy to which . That is, the Fe-based soft magnetic alloy of the present invention has the general formula (Fe1-
XMX) 100-a-b-c-dSiaAlbBcCu
d (in the formula, M represents Co and/or Ni; x represents the atomic ratio; a, b, c, and d represent atomic %; each 0≦x≦
0.5, 0≦a≦24, 1≦b≦20, 4≦c≦30,
0.2≦d≦3), and in particular, it is preferable that at least 30% of the structure is made of crystalline material, and this crystalline material is a BCC mainly composed of iron. It consists of a solid solution.

【0005】本発明のFe基軟磁性合金において、Fe
はその半分以下をCo及び/又はNiで置換することが
できる。Alは本発明合金の必須元素であり、Alは本
発明合金を構成する結晶の結晶磁気異方性を小さくする
効果がある。Alの含有量は、1原子%以上、20原子
%以下、好ましくは4〜12原子%である。この理由は
、Alを1原子%以上とすることにより析出結晶の結晶
磁気異方性を小さくする効果が得られ、また、20原子
%以下とすることにより非結晶合金の形成が阻害される
ことがない。
In the Fe-based soft magnetic alloy of the present invention, Fe
less than half of it can be replaced with Co and/or Ni. Al is an essential element of the alloy of the present invention, and Al has the effect of reducing the magnetocrystalline anisotropy of the crystals constituting the alloy of the present invention. The content of Al is 1 atomic % or more and 20 atomic % or less, preferably 4 to 12 atomic %. The reason for this is that by setting the Al content to 1 atomic % or more, the effect of reducing the crystal magnetic anisotropy of the precipitated crystals can be obtained, and by setting the Al content to 20 atomic % or less, the formation of an amorphous alloy is inhibited. There is no.

【0006】Cuは、Fe基bcc固溶体の生成温度を
低下させるとともに、結晶粒の粗大化を防ぐ効果がある
。その含有量は0.2〜3原子%である。この理由は、
Cuを、このような範囲とすることにより磁気特性を劣
化させることなく、所期の効果を得ることができるから
である。本発明合金は非結晶状態から熱処理により結晶
化させることにより作製されるが、Bは本発明のFe基
合金を急冷することにより非晶質化させる元素である。 Bの含有量は4〜30原子%、好ましくは6〜18原子
%である。Bを4原子%以上とすることにより本発明合
金を非晶質化させることができる。また、Bを30原子
%以下とすることにより、熱処理によって非晶質状態か
ら結晶化する際、Bが多すぎるためFe−B化合物が多
数析出し軟磁気特性が劣化するという傾向を押えること
ができる。Siの含有量は0〜24原子%であり、飽和
磁歪を低くするためにSiは24原子%以下が好ましい
[0006] Cu has the effect of lowering the formation temperature of the Fe-based BCC solid solution and preventing coarsening of crystal grains. Its content is 0.2 to 3 at%. The reason for this is
This is because by setting Cu within such a range, the desired effect can be obtained without deteriorating the magnetic properties. The alloy of the present invention is produced by crystallizing it from an amorphous state through heat treatment, and B is an element that causes the Fe-based alloy of the present invention to become amorphous by rapidly cooling it. The content of B is 4 to 30 at%, preferably 6 to 18 at%. By setting B to 4 atomic % or more, the alloy of the present invention can be made amorphous. In addition, by controlling B to 30 atomic % or less, it is possible to suppress the tendency that when crystallizing from an amorphous state by heat treatment, a large number of Fe-B compounds precipitate due to too much B and the soft magnetic properties deteriorate. can. The content of Si is 0 to 24 atomic %, and preferably 24 atomic % or less to lower the saturation magnetostriction.

【0007】本発明のFe基軟磁性合金の基本的組成は
上述の、Fe(M)−B、Si、Al、Cuであるが、
更に耐食性等を向上させるために他の元素M’を加える
ことができる。M’としては、Pd、Ru、Ga、Cr
、Y、W、Nb、Ta、Ge、C、Pから選ばれる1種
以上が挙げられる。これらの元素は、10原子%以下、
好ましくは5原子%以下添加される。
The basic composition of the Fe-based soft magnetic alloy of the present invention is the above-mentioned Fe(M)-B, Si, Al, and Cu.
Furthermore, other elements M' can be added to improve corrosion resistance and the like. M' is Pd, Ru, Ga, Cr
, Y, W, Nb, Ta, Ge, C, and P. These elements are contained in an amount of 10 atomic% or less,
Preferably, it is added in an amount of 5 atomic % or less.

【0008】本発明のFe基軟磁性合金は、AlとCu
を所定の割合で含有させることによって結晶磁気異方性
および飽和磁歪が極めて小さな結晶粒が微細に形成され
る。この結晶粒は1000オングストローム以下、また
良好な軟磁気特性を得るためには500オングストロー
ム以下が好ましい。また組織は主に結晶質と非晶質から
構成されるが、非晶質部分は結晶質部分よりも磁歪が大
きいため、少なくとも組織全体の30%以上、好ましく
は60%以上が結晶質で生成され、残部は非晶質である
ことが好ましい。なお、本発明では、結晶粒の大きさ、
結晶質の程度(結晶化度)は電子顕微鏡回折法およびX
線回折法で決定した。
The Fe-based soft magnetic alloy of the present invention contains Al and Cu.
By containing in a predetermined proportion, fine crystal grains with extremely small magnetocrystalline anisotropy and saturation magnetostriction are formed. The grain size is preferably 1000 angstroms or less, and preferably 500 angstroms or less in order to obtain good soft magnetic properties. In addition, the structure is mainly composed of crystalline and amorphous materials, but since the amorphous portion has a larger magnetostriction than the crystalline portion, at least 30% or more of the entire structure, preferably 60% or more, is crystalline. and the remainder is preferably amorphous. In addition, in the present invention, the size of crystal grains,
The degree of crystallinity (crystallinity) was determined by electron microscopy diffraction method and
Determined by line diffraction method.

【0009】本発明のFe基軟磁性合金は、最初に非晶
質の薄帯、粉末、細線、薄膜等を作製した後、これら得
られた非晶質合金を熱処理することにより得られる。薄
帯の場合、単ロール法等により作製した試料を巻磁心等
の所定の形状にした後、約400〜700℃程度で熱処
理する。熱処理中に磁場を印加してもよい。また熱処理
は窒素ガス、アルゴンガス、真空中いずれの雰囲気中で
行なってもよい。
The Fe-based soft magnetic alloy of the present invention can be obtained by first preparing an amorphous ribbon, powder, fine wire, thin film, etc., and then heat-treating the obtained amorphous alloy. In the case of a ribbon, a sample prepared by a single roll method or the like is formed into a predetermined shape such as a wound core, and then heat-treated at about 400 to 700°C. A magnetic field may be applied during the heat treatment. Further, the heat treatment may be performed in any atmosphere of nitrogen gas, argon gas, or vacuum.

【0010】以下、実施例を挙げて更に説明する。[0010] Hereinafter, further explanation will be given with reference to examples.

【0011】[0011]

【実施例】単ロール法を用いて、Fe、Si、Al、B
、Cuを含有する合金からアルゴンガス雰囲気中で幅3
mm、厚さ約18μmの急冷薄帯を作成した。この急冷
薄帯の組成及び結晶化温度を表1に示す。
[Example] Using a single roll method, Fe, Si, Al, B
, width 3 in an argon gas atmosphere from a Cu-containing alloy.
A quenched ribbon having a thickness of about 18 μm and a thickness of about 18 μm was prepared. Table 1 shows the composition and crystallization temperature of this quenched ribbon.

【0012】0012

【表1】[Table 1]

【0013】表1より明らかなように、Cuの添加は、
非晶質薄帯の結晶化温度を低下させる(結晶粒の析出を
早める)効果があることがわかる。次に、この薄帯のX
線回折パターンを図1に示した。図1からも明らかなよ
うに薄帯製造直後の薄帯は非晶質合金に特有のハローパ
ターンを示すことから、その構造は非晶質であることが
わかる。
[0013] As is clear from Table 1, the addition of Cu
It can be seen that this has the effect of lowering the crystallization temperature of the amorphous ribbon (accelerating the precipitation of crystal grains). Next, the X of this thin strip
The line diffraction pattern is shown in Figure 1. As is clear from FIG. 1, the ribbon immediately after production exhibits a halo pattern characteristic of an amorphous alloy, which indicates that its structure is amorphous.

【0014】次に得られた薄帯を内径15mm、外径1
8mm程度の巻磁心とした後、窒素ガス気流中で500
℃で約1時間保持した後、窒素気流中で冷却した。この
際、磁場は印加しなかった。この熱処理後のX線回折パ
ターンを図2に示した。熱処理後の薄帯ではFe基bc
c固溶体結晶の回折ピークが認められた。磁心の損失(
W/kg)は、周波数100kHz、最大磁束密度0.
1Tにてデジタルオシロスコープを用いて測定した交流
ヒステリシスループの囲む面積から決定した。飽和磁歪
定数λS(ppm)は、ストレインゲージ法によって決
定した。結果を表2に示す。
[0014] Next, the obtained ribbon has an inner diameter of 15 mm and an outer diameter of 1
After making a wound core of about 8 mm, it was heated for 500 min in a nitrogen gas stream.
After being maintained at °C for about 1 hour, it was cooled in a nitrogen stream. At this time, no magnetic field was applied. The X-ray diffraction pattern after this heat treatment is shown in FIG. In the ribbon after heat treatment, Fe-based bc
c Diffraction peaks of solid solution crystals were observed. Core loss (
W/kg) at a frequency of 100kHz and a maximum magnetic flux density of 0.
It was determined from the area surrounded by an AC hysteresis loop measured using a digital oscilloscope at 1T. The saturation magnetostriction constant λS (ppm) was determined by the strain gauge method. The results are shown in Table 2.

【0015】[0015]

【表2】[Table 2]

【0016】表2からも明らかなように実施例の磁心は
、従来のFe基非晶質合金(比較例)に比べて、含浸に
よる磁心損失の増加は非常に小さい。この結果は、本発
明の磁性合金は飽和磁歪も従来のFe基非晶質合金に比
べて1桁程度小さいことに対応している。以上より、本
発明合金は、含浸工程において磁性特性の劣化が非常に
小さいことが明らかとなった。
As is clear from Table 2, the increase in core loss due to impregnation in the magnetic core of the example is much smaller than that of the conventional Fe-based amorphous alloy (comparative example). This result corresponds to the fact that the saturation magnetostriction of the magnetic alloy of the present invention is also about one order of magnitude smaller than that of the conventional Fe-based amorphous alloy. From the above, it has become clear that the alloy of the present invention exhibits very little deterioration in magnetic properties during the impregnation process.

【0017】[0017]

【発明の効果】以上の実施例からも明らかなように、本
発明のFe基軟磁性合金によれば、Fe−Si−B系合
金にAlおよびCuを添加することにより、軟磁性特性
の優れた新規なFe基軟磁性合金を得ることができる。 また本発明のFe基軟磁性合金は低磁歪を示すため、含
浸後の鉄損の増加が小さく、磁心材料として好適である
Effects of the Invention As is clear from the above examples, the Fe-based soft magnetic alloy of the present invention has excellent soft magnetic properties by adding Al and Cu to the Fe-Si-B alloy. A new Fe-based soft magnetic alloy can be obtained. Furthermore, since the Fe-based soft magnetic alloy of the present invention exhibits low magnetostriction, the increase in core loss after impregnation is small, making it suitable as a magnetic core material.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明のFe基軟磁性合金薄帯の急冷直後にお
けるX線回折パターンを示す図。
FIG. 1 is a diagram showing an X-ray diffraction pattern of the Fe-based soft magnetic alloy ribbon of the present invention immediately after quenching.

【図2】本発明のFe基軟磁性合金薄帯の最適熱処理後
のX線回折パターンを示す図。
FIG. 2 is a diagram showing the X-ray diffraction pattern of the Fe-based soft magnetic alloy ribbon of the present invention after optimum heat treatment.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一般式(Fe1−XMX)100−a−b
−c−dSiaAlbBcCud(式中、MはCo及び
/又はNiを表わす。xは原子比を、a、b、c、dは
原子%を表わし、それぞれ0≦x≦0.5、0≦a≦2
4、1≦b≦20、4≦c≦30、0.2≦d≦3を満
たすものとする)で表わされることを特徴とするFe基
軟磁性合金。
Claim 1: General formula (Fe1-XMX) 100-a-b
-c-dSiaAlbBcCud (In the formula, M represents Co and/or Ni. x represents the atomic ratio, and a, b, c, and d represent atomic %, respectively, 0≦x≦0.5, 0≦a≦ 2
4, 1≦b≦20, 4≦c≦30, 0.2≦d≦3).
【請求項2】組織の少なくとも30%以上が結晶質から
成り、残部は非晶質であることを特徴とする第1項記載
のFe基軟磁性合金。
2. The Fe-based soft magnetic alloy according to claim 1, wherein at least 30% of the structure is crystalline and the remainder is amorphous.
【請求項3】前記結晶質が鉄を主体としたbcc固溶体
であることを特徴とする第2項記載のFe基軟磁性合金
3. The Fe-based soft magnetic alloy according to claim 2, wherein the crystalline material is a BCC solid solution mainly composed of iron.
JP3112800A 1991-05-17 1991-05-17 Fe base soft magnetic alloy Withdrawn JPH04341544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3112800A JPH04341544A (en) 1991-05-17 1991-05-17 Fe base soft magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3112800A JPH04341544A (en) 1991-05-17 1991-05-17 Fe base soft magnetic alloy

Publications (1)

Publication Number Publication Date
JPH04341544A true JPH04341544A (en) 1992-11-27

Family

ID=14595841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3112800A Withdrawn JPH04341544A (en) 1991-05-17 1991-05-17 Fe base soft magnetic alloy

Country Status (1)

Country Link
JP (1) JPH04341544A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503169A (en) * 1996-01-11 2000-03-14 アライドシグナル・インコーポレーテッド Distributed gap electric choke
CN102304680A (en) * 2011-09-16 2012-01-04 中南大学 Iron-based amorphous/nanocrystalline thin band with low cost and excellent soft magnetic properties and preparation method thereof
WO2020142810A1 (en) * 2019-01-11 2020-07-16 Monash University Iron based alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503169A (en) * 1996-01-11 2000-03-14 アライドシグナル・インコーポレーテッド Distributed gap electric choke
CN102304680A (en) * 2011-09-16 2012-01-04 中南大学 Iron-based amorphous/nanocrystalline thin band with low cost and excellent soft magnetic properties and preparation method thereof
WO2020142810A1 (en) * 2019-01-11 2020-07-16 Monash University Iron based alloy

Similar Documents

Publication Publication Date Title
JP5288226B2 (en) Magnetic alloys, amorphous alloy ribbons, and magnetic parts
US5340413A (en) Fe-NI based soft magnetic alloys having nanocrystalline structure
JPH03219009A (en) Production of fe-base soft-magnetic alloy
JP5916983B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP3357386B2 (en) Soft magnetic alloy, method for producing the same, and magnetic core
JP2000073148A (en) Iron base soft magnetic alloy
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JP3231149B2 (en) Noise filter
JP2868121B2 (en) Method for producing Fe-based magnetic alloy core
JP2667402B2 (en) Fe-based soft magnetic alloy
KR0131376B1 (en) Fe-bane soft magnetic alloy &amp; process for making same
JPH01290744A (en) Fe-base soft-magnetic alloy
JPH04341544A (en) Fe base soft magnetic alloy
JP3389972B2 (en) Nanocrystalline alloy ribbon with improved asymmetry of BH loop and method for producing magnetic core and nanocrystalline alloy ribbon
JP2718261B2 (en) Magnetic alloy and method for producing the same
JP3723016B2 (en) Fe-based soft magnetic alloy
JP3322407B2 (en) Fe-based soft magnetic alloy
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JPH0610105A (en) Fe base soft magnetic alloy
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JP3233289B2 (en) Ultra-microcrystalline alloy ribbon and powder and magnetic core using the same
JPH03271346A (en) Soft magnetic alloy
JPH06158239A (en) Fe base soft magnetic alloy and its production
JPH01142049A (en) Fe-based magnetic alloy

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806