JP3389972B2 - Nanocrystalline alloy ribbon with improved asymmetry of BH loop and method for producing magnetic core and nanocrystalline alloy ribbon - Google Patents

Nanocrystalline alloy ribbon with improved asymmetry of BH loop and method for producing magnetic core and nanocrystalline alloy ribbon

Info

Publication number
JP3389972B2
JP3389972B2 JP14753893A JP14753893A JP3389972B2 JP 3389972 B2 JP3389972 B2 JP 3389972B2 JP 14753893 A JP14753893 A JP 14753893A JP 14753893 A JP14753893 A JP 14753893A JP 3389972 B2 JP3389972 B2 JP 3389972B2
Authority
JP
Japan
Prior art keywords
concentration
alloy ribbon
nanocrystalline alloy
less
element selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14753893A
Other languages
Japanese (ja)
Other versions
JPH0718388A (en
Inventor
克仁 吉沢
嘉雄 備前
俊介 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP14753893A priority Critical patent/JP3389972B2/en
Publication of JPH0718388A publication Critical patent/JPH0718388A/en
Application granted granted Critical
Publication of JP3389972B2 publication Critical patent/JP3389972B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランス、チョークコ
イル、可飽和リアクトル等に用いられるB−Hル−プの
非対称性を改善したナノ結晶合金薄帯ならびに磁心およ
びナノ結晶合金薄帯の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of nanocrystalline alloy ribbons and magnetic cores and nanocrystalline alloy ribbons having improved asymmetry of BH loops used in transformers, choke coils, saturable reactors and the like. Regarding the method.

【0002】[0002]

【従来の技術】ナノ結晶合金は優れた軟磁気特性を示す
ため、コモンモ−ドチョ−クコイル、高周波トランス、
漏電警報器や磁気スイッチコア等に使用されている。代
表的組成系は特公平4-4393号公報に記載されてい
るFe−Cu−M−Si−B系合金がある。これらのナ
ノ結晶合金は、前記組成の合金を液相や気相から急冷し
非晶質合金とした後、これを熱処理により微結晶化する
ことにより通常は作製されている。液相から急冷する方
法としては単ロ−ル法、双ロ−ル法、遠心急冷法、回転
液中紡糸法、アトマイズ法やキャビテーション法等が知
られている。また、気相から急冷する方法としては、ス
パッタ法、蒸着法、イオンプレ−ティング法等が知られ
ている。ナノ結晶合金はこれらの方法により作製した非
晶質合金を微結晶化したもので、非晶質合金にみられる
ような熱的不安定性がほとんどなく、高飽和磁束密度、
低磁歪で優れた軟磁気特性を示す。
2. Description of the Related Art Since nanocrystalline alloys have excellent soft magnetic properties, common mode choke coils, high frequency transformers,
Used in earth leakage alarms and magnetic switch cores. A typical composition system is an Fe-Cu-M-Si-B system alloy described in Japanese Patent Publication No. 4393/1992. These nanocrystalline alloys are usually produced by quenching an alloy having the above composition from a liquid phase or a gas phase to form an amorphous alloy, and then microcrystallizing the amorphous alloy by heat treatment. Known methods for quenching from the liquid phase include a single roll method, a twin roll method, a centrifugal quenching method, a rotating submerged spinning method, an atomizing method and a cavitation method. Further, as a method of quenching from the gas phase, a sputtering method, a vapor deposition method, an ion plating method and the like are known. Nanocrystalline alloy is a microcrystallized amorphous alloy produced by these methods, has almost no thermal instability as seen in amorphous alloys, high saturation magnetic flux density,
It exhibits low magnetostriction and excellent soft magnetic properties.

【0003】[0003]

【発明が解決しようとする課題】しかし、鋭意検討の結
果ナノ結晶合金において、液体急冷法により作製した狭
幅材ではそれほど問題にならないが、量産ベ−スで広幅
材や板厚の厚い材料等を製造した場合にB−H曲線が非
対称になる問題が生ずることがあることが分かった。こ
の傾向は、Al等の不純物の多い材料や高飽和磁束密度
の組成において顕著である。このような非対称B−Hル
−プを示す材料を磁心に用い回路に組込んだ場合には磁
心が対称なB−Hル−プを示す場合と同じ動作をしない
ため、通常の回路では回路がうまく動作しなかったり回
路が不安定となり好ましくない。本発明は、B−Hル−
プの非対称性を改善したナノ結晶合金薄帯ならびに磁心
およびナノ結晶合金薄帯の製造方法を提供することを目
的とする。
However, as a result of intensive studies, narrow-width materials produced by the liquid quenching method in nanocrystal alloys do not cause much problems, but wide-width materials and thick-material materials are used in mass production bases. It has been found that there is a problem that the BH curve becomes asymmetric when manufactured. This tendency is remarkable in a material having a large amount of impurities such as Al and a composition having a high saturation magnetic flux density. When a material having such an asymmetric BH loop is used in a magnetic core and incorporated in a circuit, the same operation as in the case where the magnetic core exhibits a symmetric BH loop is not performed. Is not preferable because it does not work well or the circuit becomes unstable. The present invention is a B-H rule
It is an object of the present invention to provide a nanocrystalline alloy ribbon having improved asymmetry of a magnetic field, a magnetic core, and a method for producing a nanocrystalline alloy ribbon.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに本発明者らは、組成式(Fe1-aa)
100-x-y-z-α-β-γxSiyzM'αM''βγ(at%)
(但し、MはCo及び/またはNiであり、AはCu、
Auから選ばれる少なくとも一種の元素、M’はNb,
Mo,Ta,Ti,Zr,Hf,V,及びWからなる群
から選ばれた少なくとも1種の元素、M’’はCr,M
n,Al,白金族元素,Sc,Zn,Re、Agからな
る群から選ばれた少なくとも1種の元素、XはC,G
e,P,Ga,N,Oからなる群から選ばれた少なくと
も1種の元素であり、a,x,y,z,α,β及びγはそれぞれ0
≦a≦0.5,0.1≦x≦3,0≦y≦17,0≦z≦10,0.1≦α≦20,0
≦β≦20,0≦γ≦20を満たす。)により表される組成か
らなり、組織の少なくとも50%が粒径50nm以下の
結晶粒からなるナノ結晶合金薄帯であって、Snを0.
01から1wt%含有し、AES法による濃度分布測定
において少なくとも片面の表面から0.1μm以下の領
域内にSnの濃度が高い領域が形成しており、Snの濃
度の高い領域のSnに対応する強度のピ−ク値が、Sn
の濃度がほぼ一定の部分であるSn濃度安定部の3倍以
上であるナノ結晶合金薄帯ならびにこれを用いた磁心
や、組成式(Fe1-aa)100-x-y-z-α-β-γxSiy
zM'αM''βγ(at%)(但し、MはCo及び/または
Niであり、AはCu、Auから選ばれる少なくとも一
種の元素、M’はNb,Mo,Ta,Ti,Zr,H
f,V,及びWからなる群から選ばれた少なくとも1種
の元素、M’’はCr,Mn,Al,白金族元素,S
c,Zn,Re、Agからなる群から選ばれた少なくと
も1種の元素、XはC,Ge,P,Ga,N,Oからな
る群から選ばれた少なくとも1種の元素であり、a,x,y,
z,α,β及びγはそれぞれ0≦a≦0.5,0.1≦x≦3,0≦y≦1
7,0≦z≦10,0.1≦α≦20,0≦β≦20,0≦γ≦20を満た
す。)により表される組成からなり、組織の少なくとも
50%が粒径50nm以下の結晶粒からなるナノ結晶合
金薄帯であって、Sを0.005から0.05wt%、A
lを0.0001から0.3wt%含有し、AES法によ
る濃度分布測定において少なくとも片面の表面から0.
1μm以下の領域内にSの濃度の高い領域が形成して
り、Sの濃度の高い領 域のSに対応する強度のピ−ク値
が、Sの濃度がほぼ一定の部分であるS濃度安定部の3
倍以上であるナノ結晶合金薄帯ならびにこれを用いた磁
心ではB−Hル−プの非対称性が改善されることを見い
出し本発明に想到した。本発明においてB−Hル−プの
非対称性は、直流B−Hル−プのシフトHsにより表す
ことにする。Hsは図1中に示したHc1、Hc2を用い次
の様に定義した。 Hs=(Hc1+Hc2)/2 ただし、Hc1,Hc2の位置がB軸に対して右側の場合は
Hc1,Hc2の値を正、左側の場合は負とする。測定の際
の最大印加磁界は8A/m(0.1Oe)とした。ま
た、B−Hル−プが非対称の場合の保磁力Hcは Hc=(Hc1-Hc2)/2 と定義する。Hsが大きい程B−Hル−プの非対称性が
大きいことを意味する。
The present inventors to solve the above problems SUMMARY OF THE INVENTION, the composition formula (Fe 1-a M a)
100-xyz-α - β - γ A x Si y B z M'α M '' β X γ (at%)
(However, M is Co and / or Ni, A is Cu,
At least one element selected from Au, M ′ is Nb,
At least one element selected from the group consisting of Mo, Ta, Ti, Zr, Hf, V, and W, M ″ is Cr, M
n, Al, platinum group element, at least one element selected from the group consisting of Sc, Zn, Re and Ag, X is C, G
It is at least one element selected from the group consisting of e, P, Ga, N and O, and a, x, y, z, α, β and γ are each 0
≤a ≤0.5,0.1 ≤x ≤3,0 ≤y ≤17,0 ≤z ≤10,0.1 ≤α ≤20,0
≦ β ≦ 20, 0 ≦ γ ≦ 20 are satisfied. ) Is a nanocrystalline alloy ribbon having a composition of at least 50% of which is composed of crystal grains having a grain size of 50 nm or less, and a Sn content of 0.
Containing 01 to 1 wt%, concentration distribution measurement by AES method
Has a concentration of at least Sn from the surface to 0.1μm or less in the region of one side region of high formation in, the Sn concentrated
The peak value of the intensity corresponding to Sn in the high frequency region is Sn.
3 times or more of the Sn concentration stable part where the concentration of Sn is almost constant
Upper magnetic core and using a nanocrystalline alloy ribbon and which is represented by the composition formula (Fe 1-a M a) 100-xyz-α - β - γ A x Si y B
z M ′ α M ″ β X γ (at%) (where M is Co and / or Ni, A is at least one element selected from Cu and Au, and M ′ is Nb, Mo, Ta, Ti , Zr, H
at least one element selected from the group consisting of f, V, and W, M ″ is Cr, Mn, Al, a platinum group element, S
at least one element selected from the group consisting of c, Zn, Re and Ag, X is at least one element selected from the group consisting of C, Ge, P, Ga, N and O, and a, x, y,
z, α, β and γ are 0 ≦ a ≦ 0.5, 0.1 ≦ x ≦ 3, 0 ≦ y ≦ 1 respectively
7,0 ≦ z ≦ 10, 0.1 ≦ α ≦ 20, 0 ≦ β ≦ 20, 0 ≦ γ ≦ 20 are satisfied. ) , A nanocrystalline alloy ribbon having at least 50% of its structure composed of crystal grains having a grain size of 50 nm or less, S in an amount of 0.005 to 0.05 wt% , A
1 to 0.001 to 0.3 wt%, and according to the AES method
When measuring the concentration distribution,
A region having a high S concentration is formed within the region of 1 μm or less .
Ri, Pi of intensity corresponding to the S of the high realm concentrations of S - click value
However, 3 of the S concentration stabilizing part where the S concentration is almost constant
The inventors have found that the asymmetry of the BH loop is improved in the nano-crystalline alloy ribbon which is more than double and the magnetic core using the ribbon, and the present invention has been made. In the present invention, the asymmetry of the BH loop will be represented by the shift Hs of the DC BH loop. Hs was defined as follows using Hc1 and Hc2 shown in FIG. Hs = (Hc 1 + Hc 2 ) / 2 However, if the position of Hc 1, Hc 2 is the right side with respect to the B-axis and negative if the value of Hc 1, Hc 2 positive, left. The maximum applied magnetic field at the time of measurement was 8 A / m (0.1 Oe). Furthermore, B-H Le - coercive force Hc in the case flops asymmetric is defined as Hc = (Hc 1 -Hc 2) / 2. It means that the larger the Hs, the larger the asymmetry of the BH loop.

【0005】本発明においてSnやS濃度の高い領域が
形成していることがB−Hル−プの非対称性を改善する
上で重要なポイントとなっている。ナノ結晶合金の優れ
た軟磁性は均一微細な結晶粒が形成しているために得ら
れると考えられているが、表面に内部より粗大な結晶粒
が形成することは軟磁性の劣化につながり好ましくない
だけでなく、B−Hル−プが非対称になり好ましくな
い。このような粗大結晶粒は表面付近の非晶質化元素の
濃度変動が関係しているものと考えられるが、SnやS
を添加し表面近傍にSnやS濃度の高い領域が形成する
ことにより非晶質形成元素であるSi等の表面近傍の濃
度変化が小さくなり粗大な結晶粒を形成するのを防いで
いるものと思われる。この粗大な結晶粒は薄帯製造ある
いは熱処理の際に形成し、この結晶粒はbccFe相で
ある場合が多く、結晶粒が配向している場合もある。こ
のような結晶粒の生成は薄帯表面の酸化物形成と何らか
の関連があるものと考えられる。
In the present invention, the formation of a region having a high Sn or S concentration is an important point for improving the asymmetry of the BH loop. It is believed that the excellent soft magnetic properties of nanocrystalline alloys are obtained because of the formation of uniform and fine crystal grains, but the formation of coarser crystal grains than the inside on the surface is preferable because it leads to deterioration of soft magnetism. Not only that, but the BH loop becomes asymmetric, which is not preferable. It is considered that such coarse crystal grains are related to the concentration variation of the amorphizing element near the surface.
Is added to form a region having a high Sn or S concentration in the vicinity of the surface, the change in concentration of the amorphous forming element such as Si near the surface is reduced, and coarse crystal grains are prevented from being formed. Seem. The coarse crystal grains are formed during ribbon production or heat treatment, and the crystal grains are often in the bccFe phase, and the crystal grains may be oriented. It is considered that the formation of such crystal grains has some relation to the oxide formation on the ribbon surface.

【0006】本発明において特にSnまたはSの濃度の
高い領域の強度ピ−ク値がSnまたはS濃度安定部の値
の3倍以上である場合に非対称性改善の効果が大きい。
ここでSnまたはS濃度安定部とは、SnまたはS濃度
がほぼ一定の値を示す部分をいい、後述の実施例1に示
すようにAES法(オージェ電子分光法)による薄帯表
面からの濃度分布測定により観察することができる。さ
らに、B−Hル−プの非対称性改善効果はAlを0.0
001wt%以上0.3wt%以下含む合金系において
著しい。Alは安価な原料を用いた場合に不純物として
入りやすく、本発明は安価な原料を使用する場合に特に
著しい効果を発揮する。本発明に係わる代表的合金系と
しては、たとえばFe−Cu−Nb−Si−B系合金や
Fe−Cu−Zr−B系合金等が知られている。
In the present invention, the effect of improving the asymmetry is great especially when the intensity peak value in the region where the Sn or S concentration is high is 3 times or more the value of the Sn or S concentration stabilizing portion.
Here, the Sn or S concentration stabilizing portion refers to a portion where the Sn or S concentration shows a substantially constant value, and as shown in Example 1 described later, the concentration from the ribbon surface by the AES method (Auger electron spectroscopy). It can be observed by distribution measurement. Furthermore, the asymmetry improving effect of the BH loop is such that Al is 0.0
It is remarkable in the alloy system containing 001 wt% or more and 0.3 wt% or less. Al easily enters as an impurity when an inexpensive raw material is used, and the present invention exerts a remarkable effect particularly when an inexpensive raw material is used. Representative alloy system according to the present invention, For example other Fe-Cu-Nb-Si- B alloy and Fe-Cu-Zr-B based alloy and the like are known.

【0007】本発明合金の熱処理は磁場中において行う
ことも可能である。磁心の磁路方向に磁場中熱処理を行
った場合は本発明の効果が特に著しい。また、この場合
本発明合金ならびに磁心はB−H曲線の角形比も向上し
やすいという効果も得られる。もうひとつの本発明は超
急冷法により非晶質合金薄帯を得る工程と、これを熱処
理し、平均結晶粒径が50nm以下である結晶粒が組織
の少なくとも50%を占め、少なくとも片面の表面から
0.1μm以下の領域内にSnあるいは/およびSの多
い領域を形成する工程からなる上記ナノ結晶合金薄帯の
製造方法である。結晶粒を形成する熱処理の前に100
℃から350℃の温度に10分から1000時間保持す
る工程を含む場合は、本発明の合金を得ることが容易で
薄帯の製造条件の変動に起因する特性ばらつきを低減で
きかつ非対称性改善の効果を大きくできる。
The heat treatment of the alloy of the present invention can be performed in a magnetic field. The effect of the present invention is particularly remarkable when heat treatment is performed in a magnetic field in the magnetic path direction of the magnetic core. Further, in this case, the alloy of the present invention and the magnetic core also have the effect of easily improving the squareness ratio of the BH curve. Another aspect of the present invention is a process of obtaining an amorphous alloy ribbon by a super-quenching method, and heat-treating the ribbon, the crystal grains having an average crystal grain size of 50 nm or less occupy at least 50% of the structure, and at least one surface To 0.1 μm or less, a method for producing the above nanocrystalline alloy ribbon, comprising a step of forming a Sn or / and S-rich region. 100 before heat treatment to form grains
In the case of including a step of holding at a temperature of ℃ to 350 ℃ for 10 minutes to 1000 hours, it is easy to obtain the alloy of the present invention, it is possible to reduce the characteristic variation due to the fluctuation of the ribbon manufacturing conditions, and the effect of improving the asymmetry. Can be increased.

【0008】熱処理は通常はAr、He、窒素等の不活
性ガス雰囲気で行われる。しかし、通常はガス中には酸
素が含まれているのが普通であり、酸素の存在下で熱処
理が行われる。また、大気中や酸素の多い雰囲気におい
ても本発明の効果は得られる。
The heat treatment is usually performed in an atmosphere of an inert gas such as Ar, He or nitrogen. However, the gas usually contains oxygen, and the heat treatment is performed in the presence of oxygen. Further, the effects of the present invention can be obtained even in the air or an atmosphere containing a large amount of oxygen.

【0009】[0009]

【実施例】以下本発明を実施例にしたがって説明するが
本発明はこれらに限定されるものではない。 (実施例1)組成式Febal.Cu1Nb2Si12.29.1
(at%)の母合金および前記組成の合金にSnを0.1、
0.5wt%加えた母合金およびSnを加えない母合金
を高周波溶解により作製した。次にCu−Beロ−ルを
使用した単ロ−ル法で急冷し30mm幅の非晶質合金を
作製した。次にこの合金薄帯を外径35mm、内径35
mmのトロイダル状に巻き回し巻磁心を作製した。次に
この合金磁心を窒素ガス雰囲気中530℃で1時間熱処
理を行った。それぞれの磁心の直流B−H曲線を測定
し、さらに各磁心に用いられている薄帯の表面をAES
により分析した。B−H曲線のシフト量HsはSn無添
加の場合0.7A/m、Sn0.1wt%添加の場合0.1
A/m、Sn0.5wt%添加の場合0A/mでありSn
添加し表面から0.1μm以下の領域にSn濃度の高い
領域が形成している合金はB−H曲線のシフト量が小さ
くなり非対称性が改善された。図2にAES法による分
析結果を示す。表面から0.1μm以下の領域にSn濃
度の高い領域が形成している。また、ピ−ク値は薄帯厚
さSn濃度安定部、すなわちSn濃度がほぼ一定の部分
の3倍以上である。Snの濃度の高い領域が表面から
0.1μm以下の領域に形成している試料では非対称性
が小さく好ましい結果が得られた。一方、Snを含まな
い場合はB−Hル−プの非対称性が大きい。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. (Example 1) Compositional formula Fe bal. Cu 1 Nb 2 Si 12.2 B 9.1
(at%) of the master alloy and the alloy of the above composition with Sn of 0.1,
A master alloy containing 0.5 wt% and a master alloy containing no Sn were prepared by high frequency melting. Then, it was rapidly cooled by a single roll method using Cu-Be roll to prepare an amorphous alloy having a width of 30 mm. Next, use this alloy ribbon with an outer diameter of 35 mm and an inner diameter of 35
A toroidal coil having a diameter of 0.1 mm was wound to produce a wound magnetic core. Next, this alloy magnetic core was heat-treated at 530 ° C. for 1 hour in a nitrogen gas atmosphere. The DC BH curve of each magnetic core is measured, and the surface of the ribbon used for each magnetic core is AES.
Was analyzed by. The shift amount H s of the B-H curve is 0.7 A / m when Sn is not added, and 0.1 when Sn 0.1 wt% is added.
A / m and Sn 0.5 wt% is 0 A / m and Sn
In the alloy in which a region having a high Sn concentration was formed in a region of 0.1 μm or less from the surface after the addition, the shift amount of the BH curve was small and the asymmetry was improved. FIG. 2 shows the analysis result by the AES method. A region having a high Sn concentration is formed in a region of 0.1 μm or less from the surface. The peak value is three times or more that of the thin band thickness Sn concentration stable portion, that is, the portion where the Sn concentration is substantially constant. In the sample in which the region having a high Sn concentration is formed in the region of 0.1 μm or less from the surface, the asymmetry is small and a preferable result is obtained. On the other hand, when Sn is not contained, the BH loop has a large asymmetry.

【0010】(実施例2)組成式Febal.Cu1Nb2
10.89.1 (at%)の合金にSnを0.005、0.0
1、0.05、0.1、0.3、0.5、1、1.5wt%
加えた母合金を高周波溶解により作製した。次にCu−
Beロ−ルを使用した単ロ−ル法で急冷し30mm幅の
非晶質合金を作製した。次にこの合金薄帯を外径35m
m、内径35mmのトロイダル状に巻き回し巻磁心を作
製した。次にこの合金磁心を窒素ガス雰囲気中530℃
で1時間熱処理を行った。それぞれの磁心の直流B−H
曲線を測定し、さらに各磁心に用いられている薄帯の表
面をAES法により分析した。Snの自由面における偏
析状態およびB−Hル−プのシフト量Hsを表1に示
す。表面から0.1μm以下の領域にSn濃度の高い領
域が形成している。また、ピ−ク値はSn濃度安定部の
3倍以上である。Sn含有量が0.01wt%未満では
B−Hル−プの非対称性が大きい。一方、Sn含有量が
1wt%を超える場合は単ロ−ル法で作製した際に薄帯
が脆化し、連続的な薄帯製造ができなかった。これに対
してSnが0.01から1wt%の範囲の場合は非対称
性が小さく好ましい結果が得られた。
(Example 2) Compositional formula Fe bal. Cu 1 Nb 2 S
i 10.8 B 9.1 (at%) alloy with 0.005, 0.0
1, 0.05, 0.1, 0.3, 0.5, 1, 1.5 wt%
The added mother alloy was produced by high frequency melting. Then Cu-
It was rapidly cooled by a single roll method using Be roll to prepare a 30 mm wide amorphous alloy. Next, use this alloy ribbon with an outer diameter of 35 m.
m and an inner diameter of 35 mm were wound into a toroidal shape to prepare a wound magnetic core. Next, this alloy magnetic core is placed in a nitrogen gas atmosphere at 530 °
Was heat-treated for 1 hour. DC BH of each magnetic core
The curve was measured, and the surface of the ribbon used for each magnetic core was analyzed by the AES method. Table 1 shows the segregation state of Sn on the free surface and the shift amount H s of the BH loop . A region having a high Sn concentration is formed in a region of 0.1 μm or less from the surface. Moreover, the peak value is three times or more that of the Sn concentration stable portion. If the Sn content is less than 0.01 wt%, the B-H loop has a large asymmetry. On the other hand, when the Sn content exceeds 1 wt%, the ribbon becomes brittle when manufactured by the single roll method, and continuous ribbon production cannot be performed. On the other hand, when Sn is in the range of 0.01 to 1 wt%, the asymmetry is small and favorable results are obtained.

【0011】[0011]

【表1】 [Table 1]

【0012】(参考例) 組成式Febal.Cu1Nb2Si109.5 (at%)の合金にSを0.0005、0.001、0.00
5、0.01、0.03、0.05、0.1wt%加えた母
合金を高周波溶解により作製した。次にCu−Beロ−
ルを使用した単ロ−ル法で急冷し50mm幅の非晶質合
金を作製した。次にこの合金薄帯を外径35mm、内径
35mmのトロイダル状に巻き回し巻磁心を作製した。
次にこの合金磁心を窒素ガス雰囲気中530℃で1時間
熱処理を行った。それぞれの磁心の直流B−H曲線を測
定し、さらに各磁心に用いられている薄帯の表面をAE
S法により分析した。Sの自由面における偏析状態およ
びB−Hル−プのシフト量Hsを表2に示す。表面から
0.1μm以下の領域にS濃度の高い領域が形成されて
いる。また、ピ−ク値はS濃度安定部の3倍以上であ
る。S含有量が0.001wt%未満の合金薄帯ではB
−Hル−プの非対称性が大きい。一方、S含有量が0.
05wt%を超える場合は単ロ−ル法で作製した際に薄
帯が脆化し、連続的な薄帯製造が困難である。これに対
してSが0.001から0.05wt%の範囲でかつ薄帯
表面から0.1μm以下の領域にS濃度の高い領域が形
成している場合はHsが小さく(非対称性が小さく)好
ましい結果が得られた。
Reference Example An alloy having the composition formula Fe bal. Cu 1 Nb 2 Si 10 B 9.5 (at%) with S added to 0.0005, 0.001, 0.00
A master alloy containing 5, 0.01, 0.03, 0.05, and 0.1 wt% was prepared by high frequency melting. Next, Cu-Be
It was rapidly cooled by a single roll method using a roll to prepare an amorphous alloy with a width of 50 mm. Next, this alloy ribbon was wound into a toroidal shape having an outer diameter of 35 mm and an inner diameter of 35 mm to produce a wound magnetic core.
Next, this alloy magnetic core was heat-treated at 530 ° C. for 1 hour in a nitrogen gas atmosphere. The DC BH curve of each magnetic core was measured, and the surface of the ribbon used for each magnetic core was AE.
It analyzed by the S method. Table 2 shows the segregation state of S on the free surface and the shift amount H s of the BH loop . A region having a high S concentration is formed in a region of 0.1 μm or less from the surface. Further, the peak value is three times or more that of the S concentration stable portion. B in alloy ribbons with an S content of less than 0.001 wt%
The asymmetry of the -H loop is large. On the other hand, the S content is 0.
If it exceeds 05 wt%, the ribbon becomes brittle when manufactured by the single roll method, and continuous ribbon production is difficult. On the other hand, when S is in the range of 0.001 to 0.05 wt% and a high S concentration region is formed in the region of 0.1 μm or less from the ribbon surface, H s is small (the asymmetry is small. ) Good results have been obtained.

【0013】[0013]

【表2】 [Table 2]

【0014】(実施例) 表3に示す組成の母合金にSnあるいはSを添加し、単
ロ−ル法により幅50mmの非晶質合金薄帯を作製し
た。次にこの薄帯を外径60mm、内径40mmに巻き
回し、磁路方向に5Oeの磁場を印加しながら熱処理し
本発明および参考例のナノ結晶薄帯からなる磁心を作製
した。表3に示す組成の母合金にSnあるいはSを添加
し片面の表面から0.5μm以下の領域内にSnあるい
はSの濃度の高い領域が形成している場合とSnやSを
添加しない場合のB−Hル−プのシフト量Hsを示す。
SnあるいはSの濃度の高い領域が形成している場合に
B−Hル−プのシフト量が小さい。またAl,Zr,Ti
から選ばれた少なくとも1種の元素が0.0001wt
%以上0.3wt%以下含まれている場合に特にSnあ
るいはS添加のシフト量減少効果が大きいことが分か
る。
(Example 3 ) Sn or S was added to a mother alloy having the composition shown in Table 3, and an amorphous alloy ribbon having a width of 50 mm was produced by a single roll method. Next, this ribbon was wound around an outer diameter of 60 mm and an inner diameter of 40 mm, and heat-treated while applying a magnetic field of 5 Oe in the magnetic path direction to produce a magnetic core made of the nanocrystalline ribbon of the present invention and the reference example . When Sn or S is added to the master alloy having the composition shown in Table 3 and a region with a high Sn or S concentration is formed within a region of 0.5 μm or less from the surface of one side, and when Sn or S is not added The shift amount H s of the BH loop is shown.
When a region having a high Sn or S concentration is formed, the BH loop shift amount is small. In addition, Al, Zr, Ti
At least one element selected from 0.0001 wt
It can be seen that the effect of reducing the shift amount of Sn or S addition is particularly large when the content is from 0.3% to 0.3% by weight.

【0015】[0015]

【表3】 [Table 3]

【0016】(実施例) 表4に示す組成の母合金にSnあるいはSを添加し、単
ロ−ル法により幅50mmの非晶質合金薄帯を作製し
た。次にこの薄帯を外径60mm、内径40mmに巻き
回し、表4に示す温度、時間で大気中熱処理を行った。
次に磁路方向に5Oeの磁場を印加しながら結晶化温度
以上で熱処理し本発明および参考例のナノ結晶薄帯から
なる磁心を作製した。表4に示す組成の母合金にSnあ
るいはSを添加し片面の表面から0.1μm以下の領域
内にSnあるいはSの濃度の高い領域が形成している場
合とSnやSを添加しない場合のB−Hル−プのシフト
量Hsを示す。SnあるいはSの濃度の高い領域が形成
している場合にB−Hル−プのシフト量Hsが小さく、
B−H曲線の対称性が良好である。
Example 4 Sn or S was added to a mother alloy having the composition shown in Table 4, and an amorphous alloy ribbon having a width of 50 mm was produced by a single roll method. Next, this thin strip was wound around an outer diameter of 60 mm and an inner diameter of 40 mm, and heat-treated in the atmosphere at the temperature and time shown in Table 4.
Next, while applying a magnetic field of 5 Oe in the magnetic path direction, heat treatment was performed at a temperature equal to or higher than the crystallization temperature to produce a magnetic core made of the nanocrystalline ribbon of the present invention and the reference example . When Sn or S was added to the master alloy having the composition shown in Table 4 and a region having a high Sn or S concentration was formed within a region of 0.1 μm or less from the surface on one side, and when Sn or S was not added The shift amount H s of the BH loop is shown. When a region having a high Sn or S concentration is formed, the shift amount H s of the BH loop is small,
The symmetry of the BH curve is good.

【0017】[0017]

【表4】 [Table 4]

【0018】[0018]

【発明の効果】本発明によればB−Hル−プの非対称性
を改善したナノ結晶合金薄帯ならびに磁心およびナノ結
晶合金薄帯の製造方法を提供することができるためその
効果は著しいものがある。
According to the present invention, it is possible to provide a nanocrystalline alloy ribbon having improved BH loop asymmetry, a method for producing a magnetic core and a nanocrystalline alloy ribbon, and the effect is remarkable. There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】B−Hル−プのシフト量Hsの説明図。FIG. 1 is an explanatory diagram of a BH loop shift amount H s .

【図2】本発明のナノ結晶合金薄帯および比較例の自由
面表面から厚さ方向の主な元素の濃度分布を示す図。
FIG. 2 is a diagram showing concentration distributions of main elements in the thickness direction from the free surface of the nanocrystalline alloy ribbon of the present invention and the comparative example.

フロントページの続き (56)参考文献 特開 平3−53048(JP,A) 特開 平3−197651(JP,A) 特開 平5−78796(JP,A) 特開 平5−117818(JP,A) 特開 平4−329846(JP,A) 特開 平1−287250(JP,A) 特開 平5−222494(JP,A) 特開 平6−287721(JP,A) 特開 平6−220592(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 45/10 H01F 1/16 Continuation of front page (56) Reference JP-A-3-53048 (JP, A) JP-A-3-197651 (JP, A) JP-A-5-78796 (JP, A) JP-A-5-117818 (JP , A) JP 4-329846 (JP, A) JP 1-287250 (JP, A) JP 5-222494 (JP, A) JP 6-287721 (JP, A) JP 6-220592 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00-45/10 H01F 1/16

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 組成式(Fe1-aa)100-x-y-z-α-β-γ
xSiyzM'αM''βγ(at%) (但し、MはCo及び/またはNiであり、AはCu、
Auから選ばれる少なくとも一種の元素、M’はNb,
Mo,Ta,Ti,Zr,Hf,V,及びWからなる群
から選ばれた少なくとも1種の元素、M’’はCr,M
n,Al,白金族元素,Sc,Zn,Re、Agからな
る群から選ばれた少なくとも1種の元素、XはC,G
e,P,Ga,N,Oからなる群から選ばれた少なくと
も1種の元素であり、a,x,y,z,α,β及びγはそれぞれ0
≦a≦0.5,0.1≦x≦3,0≦y≦17,0≦z≦10,0.1≦α≦20,0
≦β≦20,0≦γ≦20を満たす。)により表される組成か
らなり、組織の少なくとも50%が粒径50nm以下の
結晶粒からなるナノ結晶合金薄帯であって、Snを0.
01から1wt%含有し、AES法による濃度分布測定
において少なくとも片面の表面から0.1μm以下の領
域内にSnの濃度が高い領域が形成しており、Snの濃
度の高い領域のSnに対応する強度のピ−ク値が、Sn
の濃度がほぼ一定の部分であるSn濃度安定部の3倍以
上であることを特徴とするB−Hル−プの非対称性を改
善したナノ結晶合金薄帯。
1. A composition formula (Fe 1-a M a) 100-xyz-α - β - γ
A x Si y B z M'α M '' β X γ (at%) (where M is Co and / or Ni, A is Cu,
At least one element selected from Au, M ′ is Nb,
At least one element selected from the group consisting of Mo, Ta, Ti, Zr, Hf, V, and W, M ″ is Cr, M
n, Al, platinum group element, at least one element selected from the group consisting of Sc, Zn, Re and Ag, X is C, G
It is at least one element selected from the group consisting of e, P, Ga, N and O, and a, x, y, z, α, β and γ are each 0
≤a ≤0.5,0.1 ≤x ≤3,0 ≤y ≤17,0 ≤z ≤10,0.1 ≤α ≤20,0
≦ β ≦ 20, 0 ≦ γ ≦ 20 are satisfied. ) Is a nanocrystalline alloy ribbon having a composition of at least 50% of which is composed of crystal grains having a grain size of 50 nm or less, and a Sn content of 0.
Containing 01 to 1 wt%, concentration distribution measurement by AES method
Has a concentration of at least Sn from the surface to 0.1μm or less in the region of one side region of high formation in, the Sn concentrated
The peak value of the intensity corresponding to Sn in the high frequency region is Sn.
3 times or more of the Sn concentration stable part where the concentration of Sn is almost constant
A nanocrystalline alloy ribbon having improved BH loop asymmetry characterized by the above .
【請求項2】 組成式(Fe1-aa)100-x-y-z-α-β-γ
xSiyzM'αM''βγ(at%) (但し、MはCo及び/またはNiであり、AはCu、
Auから選ばれる少なくとも一種の元素、M’はNb,
Mo,Ta,Ti,Zr,Hf,V,及びWからなる群
から選ばれた少なくとも1種の元素、M’’はCr,M
n,Al,白金族元素,Sc,Zn,Re、Agからな
る群から選ばれた少なくとも1種の元素、XはC,G
e,P,Ga,N,Oからなる群から選ばれた少なくと
も1種の元素であり、a,x,y,z,α,β及びγはそれぞれ0
≦a≦0.5,0.1≦x≦3,0≦y≦17,0≦z≦10,0.1≦α≦20,0
≦β≦20,0≦γ≦20を満たす。)により表される組成か
らなり、組織の少なくとも50%が粒径50nm以下の
結晶粒からなるナノ結晶合金薄帯であって、Sを0.0
05から0.05wt%、Alを0.0001から0.3
wt%含有し、AES法による濃度分布測定において
なくとも片面の表面から0.1μm以下の領域内にSの
濃度の高い領域が形成しており、Sの濃度の高い領 域の
Sに対応する強度のピ−ク値が、Sの濃度がほぼ一定の
部分であるS濃度安定部の3倍以上であることを特徴と
するB−Hル−プの非対称性を改善したナノ結晶合金薄
帯。
2. A composition formula (Fe 1-a M a) 100-xyz-α - β - γ
A x Si y B z M'α M '' β X γ (at%) (where M is Co and / or Ni, A is Cu,
At least one element selected from Au, M ′ is Nb,
At least one element selected from the group consisting of Mo, Ta, Ti, Zr, Hf, V, and W, M ″ is Cr, M
n, Al, platinum group element, at least one element selected from the group consisting of Sc, Zn, Re and Ag, X is C, G
It is at least one element selected from the group consisting of e, P, Ga, N and O, and a, x, y, z, α, β and γ are each 0
≤a ≤0.5,0.1 ≤x ≤3,0 ≤y ≤17,0 ≤z ≤10,0.1 ≤α ≤20,0
≦ β ≦ 20, 0 ≦ γ ≦ 20 are satisfied. ), A nanocrystalline alloy ribbon having a composition of at least 50% of which has a grain size of 50 nm or less, and S is 0.0
05 to 0.05 wt% , Al from 0.0001 to 0.3
containing wt%, even less <br/> without the concentration distribution measurement by AES method has a region with high concentration of S is formed from one side surface to 0.1μm or less in area, high realm concentrations of S of
The peak value of the intensity corresponding to S is such that the concentration of S is almost constant.
A nanocrystalline alloy ribbon having improved BH loop asymmetry, which is at least three times as large as the S concentration stable portion .
【請求項3】 Alを0.0001wt%以上0.3wt
%以下含む請求項1に記載のナノ結晶合金薄帯。
3. Al of 0.0001 wt% or more and 0.3 wt
% Or less, The nanocrystalline alloy ribbon according to claim 1 .
【請求項4】 請求項1乃至請求項のいずれかに記載
のナノ結晶合金薄帯から構成されたことを特徴とする磁
心。
4. A magnetic core comprising the nanocrystalline alloy ribbon according to any one of claims 1 to 3 .
【請求項5】 超急冷法により非晶質合金薄帯を得る工
程と、これを熱処理し平均結晶粒径が50nm以下であ
る結晶粒が組織の少なくとも50%を占め、少なくとも
片面の表面から0.1μm以下の領域内にSnまたは/
およびS濃度の高い領域を形成する工程からなる請求項
1乃至請求項に記載のナノ結晶合金薄帯の製造方法。
5. A step of obtaining an amorphous alloy ribbon by a super-quenching method, and a heat treatment of the ribbon to occupy at least 50% of the structure with crystal grains having an average crystal grain size of 50 nm or less, and 0 from at least one surface. Sn or / in the area of less than 0.1 μm
The method for producing a nanocrystalline alloy ribbon according to any one of claims 1 to 4 , comprising the step of forming a region having a high S concentration.
【請求項6】 結晶粒を形成する熱処理の前に100℃
から400℃の温度に10分から1000時間保持する
熱処理を行う請求項に記載のナノ結晶合金薄帯の製造
方法。
6. 100 ° C. before heat treatment to form grains
The method for producing a nanocrystalline alloy ribbon according to claim 5 , wherein the heat treatment is performed by holding at a temperature of 1 to 400 ° C. for 10 minutes to 1000 hours.
JP14753893A 1993-06-18 1993-06-18 Nanocrystalline alloy ribbon with improved asymmetry of BH loop and method for producing magnetic core and nanocrystalline alloy ribbon Expired - Lifetime JP3389972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14753893A JP3389972B2 (en) 1993-06-18 1993-06-18 Nanocrystalline alloy ribbon with improved asymmetry of BH loop and method for producing magnetic core and nanocrystalline alloy ribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14753893A JP3389972B2 (en) 1993-06-18 1993-06-18 Nanocrystalline alloy ribbon with improved asymmetry of BH loop and method for producing magnetic core and nanocrystalline alloy ribbon

Publications (2)

Publication Number Publication Date
JPH0718388A JPH0718388A (en) 1995-01-20
JP3389972B2 true JP3389972B2 (en) 2003-03-24

Family

ID=15432583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14753893A Expired - Lifetime JP3389972B2 (en) 1993-06-18 1993-06-18 Nanocrystalline alloy ribbon with improved asymmetry of BH loop and method for producing magnetic core and nanocrystalline alloy ribbon

Country Status (1)

Country Link
JP (1) JP3389972B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170178776A1 (en) * 2015-12-16 2017-06-22 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
US20180090251A1 (en) * 2016-09-29 2018-03-29 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
US20180090252A1 (en) * 2016-09-29 2018-03-29 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106636981A (en) * 2016-10-28 2017-05-10 上海理工大学 Soft magnet-based amorphous alloy product
JP6904034B2 (en) 2017-04-17 2021-07-14 セイコーエプソン株式会社 Soft magnetic powder, powder magnetic core, magnetic element and electronic equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2713364B2 (en) * 1988-05-11 1998-02-16 日立金属株式会社 Ultra-microcrystalline soft magnetic alloy with excellent heat resistance
JPH0353048A (en) * 1989-07-20 1991-03-07 Hitachi Metals Ltd Fe-base magnetic alloy
JPH03197651A (en) * 1989-12-25 1991-08-29 Daido Steel Co Ltd Fe-base high transmissible magnetic alloy
JPH089753B2 (en) * 1991-05-07 1996-01-31 新日本製鐵株式会社 Method for producing Fe-based amorphous alloy
JP2588450B2 (en) * 1991-09-26 1997-03-05 新日本製鐵株式会社 Amorphous alloy ribbon with improved crystallization resistance of surface layer and method for producing the same
JP3228427B2 (en) * 1991-10-22 2001-11-12 日立金属株式会社 Ultra-microcrystalline soft magnetic alloy
JPH05222494A (en) * 1992-02-13 1993-08-31 Nippon Steel Corp Amorphous alloy sheet steel for transformer iron core having high magnetic flux density
JP3434844B2 (en) * 1993-01-28 2003-08-11 新日本製鐵株式会社 Low iron loss, high magnetic flux density amorphous alloy
JP3441757B2 (en) * 1993-03-31 2003-09-02 新日本製鐵株式会社 Amorphous alloy ribbon with enhanced surface crystallization resistance

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170178776A1 (en) * 2015-12-16 2017-06-22 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
US10672547B2 (en) * 2015-12-16 2020-06-02 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
US11545285B2 (en) 2015-12-16 2023-01-03 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
US20180090251A1 (en) * 2016-09-29 2018-03-29 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
US20180090252A1 (en) * 2016-09-29 2018-03-29 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
EP3301690A1 (en) * 2016-09-29 2018-04-04 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
EP3301689A1 (en) * 2016-09-29 2018-04-04 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
CN107887093A (en) * 2016-09-29 2018-04-06 精工爱普生株式会社 Soft magnetic powder, compressed-core, magnetic element and electronic equipment
CN107887097A (en) * 2016-09-29 2018-04-06 精工爱普生株式会社 Soft magnetic powder, compressed-core, magnetic element and electronic equipment
CN107887093B (en) * 2016-09-29 2022-05-10 精工爱普生株式会社 Soft magnetic powder, dust core, magnetic element, and electronic device
US11894168B2 (en) 2016-09-29 2024-02-06 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device

Also Published As

Publication number Publication date
JPH0718388A (en) 1995-01-20

Similar Documents

Publication Publication Date Title
KR101147570B1 (en) Magnetic alloy, amorphous alloy ribbon, and magnetic part
KR101147571B1 (en) Iron-based soft magnetic alloy, thin ribbon of amorphous alloy, and magnetic part
EP0430085B1 (en) Magnetic alloy with ultrafine crystal grains and method of producing same
US5340413A (en) Fe-NI based soft magnetic alloys having nanocrystalline structure
SK284008B6 (en) Manufacturing process of a soft magnetic iron based alloy component with nanocrystalline structure
JPH01242755A (en) Fe-based magnetic alloy
US5211767A (en) Soft magnetic alloy, method for making, and magnetic core
JP2550449B2 (en) Amorphous alloy ribbon for transformer core with high magnetic flux density
JP3389972B2 (en) Nanocrystalline alloy ribbon with improved asymmetry of BH loop and method for producing magnetic core and nanocrystalline alloy ribbon
JPH062076A (en) Fe-base soft magnetic alloy and its manufacture
JPH07103453B2 (en) Alloy with excellent permeability and method for producing the same
JP2001295005A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
JP3705446B2 (en) Nanocrystallization heat treatment method for nanocrystalline alloys
JPH0917623A (en) Nano crystal alloy magnetic core and its manufacture
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JPH03271346A (en) Soft magnetic alloy
JPH04341544A (en) Fe base soft magnetic alloy
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
KR100710613B1 (en) Fe-BASED NANO CRYSTALLINE ALLOY AND METHOD FOR MANUFACTURING THE SAME
JPH0610105A (en) Fe base soft magnetic alloy
JPH0238520A (en) Manufacture of fe-base soft-magnetic alloy and magnetic core
JP2000144347A (en) Iron base soft magnetic alloy and control of magnetostriction therein

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

EXPY Cancellation because of completion of term