JP2588450B2 - Amorphous alloy ribbon with improved crystallization resistance of surface layer and method for producing the same - Google Patents

Amorphous alloy ribbon with improved crystallization resistance of surface layer and method for producing the same

Info

Publication number
JP2588450B2
JP2588450B2 JP3248094A JP24809491A JP2588450B2 JP 2588450 B2 JP2588450 B2 JP 2588450B2 JP 3248094 A JP3248094 A JP 3248094A JP 24809491 A JP24809491 A JP 24809491A JP 2588450 B2 JP2588450 B2 JP 2588450B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
concentration
ribbon
alloy ribbon
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3248094A
Other languages
Japanese (ja)
Other versions
JPH0578796A (en
Inventor
駿 佐藤
利男 山田
昌浩 藤倉
渡 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3248094A priority Critical patent/JP2588450B2/en
Publication of JPH0578796A publication Critical patent/JPH0578796A/en
Priority to US08/286,246 priority patent/US5456770A/en
Application granted granted Critical
Publication of JP2588450B2 publication Critical patent/JP2588450B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、軟磁気特性、高耐食
性、高強度など非晶質合金の特性を活かした用途に用い
られる非晶質合金において、その表面層が結晶化に対し
て高い耐性を有する非晶質合金薄帯およびその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous alloy used for applications utilizing the properties of an amorphous alloy such as soft magnetic properties, high corrosion resistance and high strength, wherein the surface layer has a high crystallization resistance. The present invention relates to an amorphous alloy ribbon having resistance and a method for producing the same.

【0002】[0002]

【従来の技術】非晶質合金は原子の配列が不規則な構造
をもつ合金で、特定の組成の合金を液相や気相から急冷
することにより作製できる。液相から急冷する方法は一
般に液体急冷法とよばれ、薄帯をつくる単ロール急冷
法、遠心急冷法、双ロール法、線をつくる液中紡糸法、
粉をつくるアトマイズ法、キャビテーション法が液体急
冷法の代表的な製造法として知られている。
2. Description of the Related Art An amorphous alloy is an alloy having a structure in which the arrangement of atoms is irregular, and can be produced by rapidly cooling an alloy having a specific composition from a liquid phase or a gas phase. The method of quenching from the liquid phase is generally called liquid quenching, which is a single-roll quenching method for forming ribbons, a centrifugal quenching method, a twin-roll method, a submerged spinning method for forming a wire,
The atomizing method and cavitation method for producing powder are known as typical production methods of the liquid quenching method.

【0003】非晶質合金は、原子配列の不規則性によ
り、従来の結晶質合金では得られない特徴的な性質を有
する。軟磁気特性、高耐食性、高強度は実用的観点から
もすぐれた非晶質合金の特性である。このような非晶質
合金の特性を活かした応用がこれまでに数多く提案さ
れ、実用化されている。磁気コア、磁気フィルター、磁
気シールド、センサー、強度材料、複合材料はその代表
例である。
[0003] Amorphous alloys have characteristic properties that cannot be obtained with conventional crystalline alloys due to irregularities in the atomic arrangement. Soft magnetic properties, high corrosion resistance and high strength are properties of an amorphous alloy that are excellent from a practical viewpoint. Many applications utilizing the properties of such amorphous alloys have been proposed and put to practical use. Magnetic cores, magnetic filters, magnetic shields, sensors, strength materials, and composite materials are typical examples.

【0004】一方、非晶質合金には欠点もある。特に実
用的に問題となるのが熱的安定性である。非晶質合金は
高温の安定相を凍結した非平衡相であるため、温度を上
げると結晶化して、非晶質合金本来のすぐれた性質が失
われてしまう。熱的安定性を高めるために従来とられて
きた手段は、合金組成の適正な選定および結晶化温度を
高める効果を示す元素の添加であった。これらの方法は
熱的安定性を高めるために有効ではあるが、目的とする
特性を犠牲にしてバランスをとった組成であった。この
ため、非晶質合金本来のすぐれた性質を十分に活用して
いなかった。
On the other hand, amorphous alloys also have disadvantages. Particularly problematic in practice is thermal stability. Since an amorphous alloy is a non-equilibrium phase obtained by freezing a high-temperature stable phase, it is crystallized when the temperature is increased, and the excellent properties of the amorphous alloy are lost. The means conventionally taken to increase the thermal stability have been the proper selection of the alloy composition and the addition of elements that have the effect of increasing the crystallization temperature. Although these methods are effective for increasing the thermal stability, the compositions were balanced at the expense of the desired properties. For this reason, the excellent properties inherent in amorphous alloys have not been fully utilized.

【0005】[0005]

【発明が解決しようとする課題】本発明は、非晶質合金
のすぐれた特性と熱的安定性をともに保持する非晶質合
金薄帯およびその製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an amorphous alloy ribbon which retains both excellent characteristics and thermal stability of an amorphous alloy, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記のとおりである。 (1) Ma b Sic d e を主成分とし、該主成
分に対しSnを0.01〜1.0重量%含有しており、
片面冷却法で作製され、該薄帯の表面から薄帯の厚み方
向に測った距離が0.1μm以下の範囲にある表面層内
に、厚み方向に測った幅が0.03μm以下のSn濃度
偏析層を形成し、かつ該偏析層のSnのピーク濃度がバ
ルクにおけるSn濃度の5倍以上であり、結晶化耐性を
高めたことを特徴とする非晶質合金薄帯。ただし、Mは
Fe、Co、Niの少なくとも1種、XはMo、Nb、
Ta、W、Cr、V、Mn、Cuの少なくとも1種で、
a:60〜90(原子%、以下同じ)、b:0超〜6、
c:1〜19、d:7〜20,e:0超〜4、a+b+
c+d+e=100である。(2) M a b Si c d を主成分とし、該主成分に
対しSnを0.01〜1.0重量%含有しており、片面
冷却法で作製され、該薄帯の表面から薄帯の厚み方向に
測った距離が0.1μm以下の範囲にある表面層内に、
厚み方向に測った幅が0.03μm以下のSn濃度偏析
層を形成し、かつ、該偏析層のSnのピーク濃度がバル
クにおけるSn濃度の5倍以上であり、結晶化耐性を高
めたことを特徴とする非晶質合金薄帯。 ただし、MはF
e、Co、Niの少なくとも1種、XはMo、Nb、T
a、W、Cr、V、Mn、Cuの少なくとも1種で、
a:60〜90(原子%、以下同じ)、b:0超〜6、
c:1〜19、d:7〜20、a+b+c+d=100
である。
The gist of the present invention is as follows. (1) a M a X b Si c B d C e as a main component, and contains 0.01 to 1.0 wt% of Sn to main component,
Fabricated by single-sided cooling method, the thickness direction of the ribbon is measured from the surface of the ribbon.
In the surface layer whose distance measured in the direction is within 0.1μm or less
The Sn concentration whose width measured in the thickness direction is 0.03 μm or less
A segregation layer is formed, and the Sn peak concentration of the segregation layer is
An amorphous alloy ribbon having an Sn concentration of 5 times or more in luc and having improved crystallization resistance. Here, M is at least one of Fe, Co, and Ni, and X is Mo, Nb,
At least one of Ta, W, Cr, V, Mn, and Cu;
a: 60 to 90 (atomic%, the same applies hereinafter), b: more than 0 to 6,
c: 1 to 19, d: 7 to 20, e: more than 0 to 4, a + b +
c + d + e = 100. (2) a M a X b Si c B d as a main component, the main component
On the other hand, it contains 0.01 to 1.0% by weight of Sn,
Made by cooling method, from the surface of the ribbon in the thickness direction of the ribbon
In the surface layer where the measured distance is in the range of 0.1 μm or less,
Sn concentration segregation whose width measured in the thickness direction is 0.03 μm or less
And the peak concentration of Sn in the segregation layer is
5 times higher than the Sn concentration in the
Amorphous alloy ribbon. Where M is F
e, at least one of Co, Ni, and X is Mo, Nb, T
a, W, Cr, V, Mn, at least one of Cu,
a: 60 to 90 (atomic%, the same applies hereinafter), b: more than 0 to 6,
c: 1 to 19, d: 7 to 20, a + b + c + d = 100
It is.

【0007】(3) 急冷後の非晶質合金薄帯を100
〜300℃の温度に0.5〜1000時間保持すること
を特徴とする前項1または2記載の非晶質合金薄帯の製
造方法すなわち、本発明の非晶質合金薄帯は、薄帯表
面に結晶化を抑制する薄いSnの偏析層を付与したこと
を特徴とする。非晶質合金は結晶化温度以上に加熱する
と結晶化する。しかし、結晶化は合金全体で同時に進行
するのではなく、薄帯の表面から開始する。この事例
は、Fiedler著のGeneral Electr
ic Report No.81、81CRD199
(1981年発行)に示されている。片面冷却法で作成
された薄帯の場合、自由面(冷却基板に接する面と反対
の面)から結晶化する。自由面が基板側の面より冷却速
度が遅いためと考えられる。自由面であれ、基板面であ
れ、結晶化を開始する温度は、その非晶質合金の結晶化
温度よりかなり低い。Fujinamiらはメスバウア
ー分析法を用いてFe−Si−B−C非晶質合金の結晶
化挙動を解析し、表面層の結晶化は示差熱分析で求めら
れる通常のバルクの結晶化温度に比べて50℃も低い温
度で開始することを明らかにした(Journal o
f Non−Crystalline Solids
Vol.69、P361(1985年発行))。
(3) The amorphous alloy ribbon after quenching is 100
3. The method for producing an amorphous alloy ribbon according to the above 1 or 2 , wherein the amorphous alloy ribbon is maintained at a temperature of 300 to 300 [deg.] C. for 0.5 to 1000 hours . That is, the amorphous alloy ribbon of the present invention is characterized in that a thin Sn segregation layer for suppressing crystallization is provided on the surface of the ribbon. Amorphous alloys crystallize when heated above the crystallization temperature. However, crystallization does not proceed simultaneously throughout the alloy, but rather starts at the surface of the ribbon. This case is described in General Electr by Fiedler.
ic Report No. 81, 81 CRD199
(Issued in 1981). In the case of a ribbon formed by the single-sided cooling method, crystallization is performed from a free surface (a surface opposite to a surface in contact with a cooling substrate). This is probably because the free surface has a lower cooling rate than the surface on the substrate side. The temperature at which crystallization begins, whether on the free surface or the substrate surface, is significantly lower than the crystallization temperature of the amorphous alloy. Analyzed the crystallization behavior of an Fe-Si-BC amorphous alloy using Moessbauer analysis, and found that the crystallization of the surface layer was lower than the normal bulk crystallization temperature determined by differential thermal analysis. Starting at a temperature as low as 50 ° C. (Journal o
f Non-Crystalline Solids
Vol. 69, P361 (issued in 1985).

【0008】表面層が内部より低い温度で結晶化する結
果として、非晶質合金は結晶化温度よりもかなり低い温
度で本来の特性が劣化する。これを防止するために、従
来は、熱的安定性を高める元素を数%添加したり、主成
分の組成を変更する方法に頼っていた。しかし、この方
法では熱的安定性以外の要求特性を阻害することは、従
来技術の項で述べたとおりである。
[0008] As a result of the surface layer crystallizing at a lower temperature than the interior, amorphous alloys lose their intrinsic properties at temperatures much lower than the crystallization temperature. In order to prevent this, conventionally, a method of adding a few percent of an element for improving the thermal stability or changing the composition of the main component has been used. However, this method impairs required characteristics other than thermal stability, as described in the section of the prior art.

【0009】本発明の非晶質合金は、Snの偏析層を表
面に形成し、要求特性を損なわずに熱的安定性を向上さ
せたものである。Snの表面偏析層を形成するための具
体的方法は、主成分に微量のSnを添加することであ
る。必要なSnの添加量は0.01〜1.0重量%、好
ましくは0.1〜0.5重量%の微量であるから主成分
の所要特性をほとんど損なわない。むしろ磁気特性や耐
食性は著しく向上する副次的効果を生む。
The amorphous alloy of the present invention has a Sn segregation layer formed on the surface to improve the thermal stability without impairing the required characteristics. A specific method for forming the surface segregation layer of Sn is to add a small amount of Sn to the main component. The necessary addition amount of Sn is as small as 0.01 to 1.0% by weight, preferably 0.1 to 0.5% by weight, so that the required characteristics of the main component are hardly impaired. Rather, it produces a secondary effect of significantly improving magnetic properties and corrosion resistance.

【0010】次に本発明の非晶質合金の構成について詳
しい説明をする。主成分はMa b Sic d e また
はM a b Si c d で表示される。ただし、MはF
e、Co、Niの少なくとも1種、XはMo、Nb、T
a、W、Cr、V、Mn、Cuの少なくとも1種で、
a:60〜90(原子%以下同じ)、b:0超〜6、
c:1〜19、d:7〜20、e:0超〜4、a+b+
c+d(+e)=100である。
Next, the constitution of the amorphous alloy of the present invention will be described in detail. Main component also M a X b Si c B d C e
It is displayed in M a X b Si c B d . Where M is F
e, at least one of Co, Ni, and X is Mo, Nb, T
a, W, Cr, V, Mn, at least one of Cu,
a: 60 to 90 (atomic% or less), b: more than 0 to 6,
c: 1 to 19, d: 7 to 20, e: more than 0 to 4, a + b +
c + d (+ e) = 100.

【0011】Fe、Co、Niは要求特性に合わせて6
0〜90原子%の範囲で選定する。例えば、高い磁束密
度が要求される磁性材料の場合、Feを主成分とし、必
要に応じて、Co、Niを1〜15原子%の範囲でFe
と置換する。高い透磁率を必要とする際は、Coを主成
分とし、これにFeおよびNiを1〜10原子%の範囲
でCoと置換する。
[0011] Fe, Co, and Ni are 6 in accordance with required characteristics.
It is selected in the range of 0 to 90 atomic%. For example, in the case of a magnetic material requiring a high magnetic flux density, Fe is a main component, and if necessary, Co and Ni are added in a range of 1 to 15 atomic%.
Replace with When high magnetic permeability is required, Co is used as a main component, and Fe and Ni are substituted with Co in a range of 1 to 10 atomic%.

【0012】X元素は、特性改善および副次効果を目的
として添加する。例えば、バルクの結晶化温度の向上、
耐食性の向上、機械的性質の向上を図るものである。本
発明においては、X元素は0超〜6原子%の範囲に限定
する。上限は主として改善効果と経済性の観点から規定
した。半金属元素のSi、Bは非晶質形成に不可欠な構
成元素である。上記の金属元素の種類と量に応じて、S
i:1〜19(原子%),B:7〜20(原子%)の範
囲から選定する。SiおよびBがこの範囲から外れると
非晶質化が極めて困難になる。Cは冷却基板材質として
よく用いられるCuなどと溶湯との濡れ性を向上させ、
性状のよい薄帯を形成させるために添加する。Cを0.
01原子%程度の少量を含有させることによっても効果
が現れる。しかし、4原子%を超えると熱的安定性が低
下するとともに飽和磁束密度が低下する。したがって、
C:0超〜4(原子%)の範囲に規定した。
[0012] The element X is added for the purpose of improving characteristics and secondary effects. For example, increasing the bulk crystallization temperature,
The purpose is to improve corrosion resistance and mechanical properties. In the present invention, the X element is limited to a range of more than 0 to 6 atomic%. The upper limit is specified mainly from the viewpoint of improvement effect and economy. The metalloid elements Si and B are constituent elements indispensable for forming an amorphous phase. Depending on the type and amount of the above metal element, S
i: 1 to 19 (at.%), B: 7 to 20 (at.%). When Si and B are out of this range,
Amorphization becomes extremely difficult. C is for cooling board material
Improves the wettability between the commonly used Cu etc. and the molten metal,
It is added to form a ribbon having good properties. C to 0.
Effective even by containing as little as 01 atomic%
Appears. However, when the content exceeds 4 atomic%, thermal stability is low.
And the saturation magnetic flux density decreases. Therefore,
C: Specified in the range of more than 0 to 4 (atomic%).

【0013】本発明の特徴とする結晶化耐性の高いSn
偏析層は、薄帯表面から深さ方向に測定して0.1μm
以下の表面層に形成する。これより内部に形成すると合
金固有のすぐれた性質を損なう。また偏析層の厚さは
0.03μm以下とする。これより厚くすると同様に合
金本来のすぐれた性質が失われる。さらに、Snの偏析
量はピーク値がバルク(薄帯内部)の5倍以上、好まし
くは10倍以上とする。Snの偏析量はピーク値がバル
ク(薄帯内部)の5倍を下まわると結晶化に対する耐性
が十分に発現しない。Sn偏析層の状態は、各種の表面
分析法によって測定できる。例えば、グロー放電発光分
光法(GDS)やオージェ分光法(AES)、あるいは
2次イオン質量分析法(SIMS)などを用いて検出で
きる。
The present invention features Sn having high crystallization resistance.
The segregation layer is 0.1 μm measured from the ribbon surface in the depth direction.
It is formed on the following surface layer. If formed inside, the excellent properties inherent to the alloy are impaired. The thickness of the segregation layer is set to 0.03 μm or less. If the thickness is larger than this, the excellent properties inherent in the alloy are also lost. Further, the amount of Sn segregation has a peak value at least 5 times, preferably at least 10 times, that of the bulk (inside the ribbon). If the peak value of the Sn segregation is less than 5 times the bulk (inside the ribbon), the resistance to crystallization will not be sufficiently exhibited. The state of the Sn segregation layer can be measured by various surface analysis methods. For example, it can be detected using glow discharge emission spectroscopy (GDS), Auger spectroscopy (AES), or secondary ion mass spectrometry (SIMS).

【0014】GDSにより測定した本発明の非晶質合金
についてその板厚方向の表面分析結果を図1に示す。図
1は組成がFe78Si1210(原子%)である非晶質薄
帯の自由面を示したものである。Snの偏析層には2つ
のタイプがあり、(a)はSnのピークが単一のタイ
プ、(b)は複数のタイプの例を示す。(c)はSnの
偏析のない従来材の表面層である。Snの偏析に対応し
て基本組成の分布も変化する様子が認られる。特にSi
が内部にシフトすると、Feの分布が2段になってい
る。Snの偏析層の存在が結晶化耐性を高めるメカニズ
ムは今のところ明らかではないが、Snの偏析層それ自
身だけでなく上記のような主成分の存在状態が寄与して
いるものと推測される。
FIG. 1 shows the results of surface analysis in the thickness direction of the amorphous alloy of the present invention measured by GDS. FIG. 1 shows the free surface of an amorphous ribbon having a composition of Fe 78 Si 12 B 10 (atomic%). There are two types of Sn segregation layers, (a) shows an example of a single type of Sn peak, and (b) shows an example of a plurality of types. (C) is a surface layer of a conventional material without Sn segregation. It can be seen that the distribution of the basic composition changes in response to the segregation of Sn. Especially Si
Shifts inward, the distribution of Fe becomes two steps. The mechanism by which the presence of the Sn segregation layer enhances the crystallization resistance is not clear at present, but it is presumed that not only the Sn segregation layer itself but also the existence state of the main component as described above contributes. .

【0015】本発明のSn濃度偏析層を形成する方法
は、0.01〜1.0重量%のSnを添加した合金を、
片面冷却法を用いて急冷することからなる。このように
Snの添加量を規定する理由は次とおりである。Sn
が0.01重量%未満では結晶化耐性をもつのに十分な
偏析層が形成されず、また1.0重量%を超えるとバル
クのSn濃度が高くなりすぎ、基本成分が本来有する優
れた性質が失われるからである。上記の組成範囲のSn
を添加して、片面冷却法で薄帯を製造しても、1ロット
の中でSnの濃化度合にバラツキが生じ、その結果、S
n濃度偏析層が本発明で規定するものになっていない領
域が発生してしまう場合がある。この場合には、100
〜300℃の温度に0.5〜1000時間保持すること
(エージング処理)によって有効なSn偏析層が形成さ
れる。
The method of forming a Sn concentration segregation layer according to the present invention comprises the steps of:
It consists of quenching using a single-sided cooling method. The reason for defining the amount of Sn added as described above is as follows. Sn
If less than 0.01% by weight, a segregation layer sufficient to have crystallization resistance will not be formed, and if more than 1.0% by weight, the Sn concentration in the bulk will be too high, and the excellent properties inherent in the basic component will be obtained. Is lost. Sn in the above composition range
, The production of ribbons by the single-sided cooling method, one lot
, The concentration of Sn varies, and as a result, S
Area where the n concentration segregation layer is not specified in the present invention
There may be areas. In this case, 100
Hold at a temperature of ~ 300 ° C for 0.5-1000 hours
(Aging treatment) forms an effective Sn segregation layer
It is.

【0016】本発明で採用する片面冷却法は公知の単ロ
ール急冷法であるが、ベルト法、遠心急冷法などを用い
ることもできる。上記の範囲のSnを加えた所定の基本
組成をもつ合金は融点以上に加熱され、溶解されたの
ち、ノズルを介して移動する冷却基板の上に噴出せしめ
られる。ノズルは、スリットノズル、多重スリットノズ
ルあるいはラップした多孔ノズルを用いることができ
る。多重スリットノズルは50μm以上の厚肉材の製造
に有効である。鋳造する雰囲気は大気中、不活性ガス
中、真空中のいずれでもよい。以上説明した製造方法は
板厚に対して幅が広い形状の薄帯あるいは箔状の繊維に
対して適用するものであるが、本発明は噴霧した液滴を
冷却基板に衝突させて得られるフレーク状の薄片あるい
は粉末にも適用できる。
The single-side cooling method used in the present invention is a known single-roll quenching method, but a belt method, a centrifugal quenching method, or the like can also be used. An alloy having a predetermined basic composition to which Sn in the above range is heated to a temperature equal to or higher than the melting point, is melted, and is ejected onto a cooling substrate moving through a nozzle. As the nozzle, a slit nozzle, a multi-slit nozzle or a wrapped multi-hole nozzle can be used. The multi-slit nozzle is effective for producing a thick material having a thickness of 50 μm or more. The atmosphere for casting may be any of air, inert gas, and vacuum. The manufacturing method described above is applied to a ribbon or a foil-like fiber having a wide shape with respect to the plate thickness, but the present invention relates to a flake obtained by causing sprayed droplets to collide with a cooling substrate. It can also be applied to flakes or powders.

【0017】急冷された本発明の非晶質合金は、用途に
よっては熱処理される。従来の熱処理は合金のバルクの
結晶化温度よりかなり低い温度で行われるが、表面結晶
化耐性のすぐれた本発明の材料では従来より高い温度を
採用できる。この結果、急冷による残留歪みの解放が十
分になされるため磁気特性は従来より大幅に向上する。
The quenched amorphous alloy of the present invention is heat-treated for some applications. The conventional heat treatment is performed at a temperature considerably lower than the crystallization temperature of the bulk of the alloy, but a higher temperature can be employed in the material of the present invention having excellent surface crystallization resistance. As a result, the residual strain is sufficiently released by the rapid cooling, so that the magnetic characteristics are significantly improved.

【0018】[0018]

【実施例】以下、実施例に基づいて説明する。 実施例1 基本組成Fe84Si2 14(原子%)の合金にSnを
0.05、0.1、0.3、0.5重量%の各量を加え
た母合金を高周波溶解したのち、0.6mm幅のスリット
ノズルを介してCuロールで急冷し、25mm幅の長尺の
薄帯を作製した。作製した薄帯はX線回折によりいずれ
も非晶質特有のハローを示すことを確認した。それぞれ
の薄帯の表面をGDS法を用いて分析した。Snの自由
面における偏析状態を表1に示した。いずれの合金にお
いてもSnは表面から0.02μm以下の浅い層に偏析
し、ピークの高さは内部に比べて10倍以上の高濃度で
ある。またピークの半値幅、すなわち偏析層の厚みは単
一ピークの場合0.003μmから0.01μm、2ピ
ークの場合、半値幅の和が0.01μmから0.02μ
m程度である。
Embodiments will be described below with reference to embodiments. Example 1 After subjecting a mother alloy obtained by adding Sn, 0.05, 0.1, 0.3 and 0.5% by weight to an alloy having a basic composition of Fe 84 Si 2 B 14 (atomic%) to high frequency melting, Then, it was quenched with a Cu roll through a slit nozzle having a width of 0.6 mm to produce a long ribbon having a width of 25 mm. It was confirmed by X-ray diffraction that all of the prepared ribbons exhibited halo peculiar to amorphous. The surface of each ribbon was analyzed using the GDS method. Table 1 shows the state of segregation on the free surface of Sn. In any of the alloys, Sn segregates from the surface into a shallow layer of 0.02 μm or less, and the concentration of the peak is at least 10 times higher than that of the inside. The half width of the peak, that is, the thickness of the segregation layer is 0.003 μm to 0.01 μm in the case of a single peak, and the sum of the half widths is 0.01 μm to 0.02 μm in the case of two peaks.
m.

【0019】本発明の上記の非晶質薄帯を320℃で6
0分、窒素中で磁場焼鈍したのち、再びX線回折法で調
べたところ、いずれも非晶質状態を保持していた。焼鈍
後の試料を単板試験器で磁気測定した。結果を同じく表
1に示されている。50Hz、1.3Tにおける鉄損
(W13/50 )、および10eにおける透磁率(Bl)と
もに電力トランスの鉄心に使用可能なすぐれた特性であ
る。
The above-mentioned amorphous ribbon of the present invention is prepared at 320 ° C. for 6 hours.
After magnetic field annealing in nitrogen for 0 minutes, the film was again examined by the X-ray diffraction method. The sample after annealing was subjected to magnetic measurement using a single plate tester. The results are also shown in Table 1. Both the core loss (W 13/50 ) at 50 Hz and 1.3 T and the magnetic permeability (Bl) at 10 e are excellent characteristics that can be used for the core of a power transformer.

【0020】一方、比較のために作製した同一基本組成
でSnを添加しない合金およびSnが本発明の規定する
範囲以下の合金は、GDS測定の結果Snの偏析層が認
められないか、あるいは偏析量がきわめて少なかった。
また320℃、60分の焼鈍によって自由面の結晶化が
X線回折により認められた。磁気特性も表1の比較例に
示すように、Snの偏析層をもつ本発明の非晶質薄帯に
比べて大幅に劣っている。
On the other hand, for alloys prepared for comparison and having the same basic composition and to which Sn is not added, and alloys having Sn less than the range specified by the present invention, no Sn segregation layer was observed or the segregation was confirmed by GDS measurement. The amount was very small.
Further, crystallization of the free surface was observed by X-ray diffraction after annealing at 320 ° C. for 60 minutes. As shown in the comparative example of Table 1, the magnetic properties are also significantly inferior to the amorphous ribbon of the present invention having a Sn segregation layer.

【0021】実施例2 表2に示す基本組成の合金にSnを所定量添加した母合
金を用いて、実施例1と同一の方法で薄帯を作製した。
鋳造ままの薄帯自由面におけるSn偏析層の存在状態は
表2に示すとおりである。なお、一部の合金に対しては
エージング処理を行った。エージングの有無は表3(表
2のつづき)の備考欄に記載されている。これらの薄帯
をそれぞれの結晶化開始温度(Tx)より60℃低い温
度で60分、窒素雰囲気中で熱処理した。その結果を表
3に示す。焼鈍後、薄帯の自由面をX線で調べたとこ
ろ、いずれもハローパターンであり、結晶化していない
ことが分かった。
Example 2 A ribbon was produced in the same manner as in Example 1 by using a mother alloy obtained by adding a predetermined amount of Sn to an alloy having the basic composition shown in Table 2.
Table 2 shows the state of the Sn segregation layer on the free surface of the as-cast ribbon. The aging treatment was performed on some alloys. The presence or absence of aging is described in the remarks column of Table 3 (continued from Table 2). These ribbons were heat-treated in a nitrogen atmosphere at a temperature 60 ° C. lower than the respective crystallization start temperatures (Tx) for 60 minutes. Table 3 shows the results. After annealing, the free surface of the ribbon was examined by X-ray, and it was found that each had a halo pattern and was not crystallized.

【0022】一方、同一基本組成でSnの偏析層がない
比較材は、同じ条件の焼鈍によって結晶化することが認
められた。
On the other hand, it was confirmed that the comparative material having the same basic composition and having no Sn segregation layer crystallized by annealing under the same conditions.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【発明の効果】以上説明したように、本発明のSnの表
面偏析層を有する非晶質合金薄帯は結晶化に対する耐性
が強い。この特徴により磁気材料においては、高い温度
の熱処理が可能になり、すぐれた磁気特性が得られる。
また錆の発生が抑制されるため取扱いが容易となり、実
用上の効果はきわめて大きい。
As described above, the amorphous alloy ribbon having a surface segregation layer of Sn of the present invention has high resistance to crystallization. Due to this feature, a magnetic material can be heat-treated at a high temperature, and excellent magnetic properties can be obtained.
Further, since the generation of rust is suppressed, handling becomes easy, and the practical effect is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非晶質合金薄帯の表面深さ方向の主要
元素の濃度分布を示す図である。ただし、(c)は比較
例である。
FIG. 1 is a view showing a concentration distribution of a main element in a surface depth direction of an amorphous alloy ribbon of the present invention. However, (c) is a comparative example.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 45/04 C22C 45/04 C C22F 1/00 C22F 1/00 B H01F 1/153 H01F 1/14 C (72)発明者 大橋 渡 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式会社 先端技術研究所内 (56)参考文献 特開 昭59−182938(JP,A)Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication location C22C 45/04 C22C 45/04 C C22F 1/00 C22F 1/00 B H01F 1/153 H01F 1/14 C ( 72) Inventor Wataru Ohashi 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture Nippon Steel Corporation Advanced Technology Research Laboratories (56) References JP-A-59-182938 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Ma b Sic d e を主成分とし、
該主成分に対しSnを0.01〜1.0重量%含有して
おり、片面冷却法で作製され、該薄帯の表面から薄帯の
厚み方向に測った距離が0.1μm以下の範囲にある表
面層内に、厚み方向に測った幅が0.03μm以下のS
n濃度偏析層を形成し、かつ該偏析層のSnのピーク濃
度がバルクにおけるSn濃度の5倍以上であり、結晶化
耐性を高めたことを特徴とする非晶質合金薄帯。ただ
し、MはFe、Co、Niの少なくとも1種、XはM
o、Nb、Ta、W、Cr、V、Mn、Cuの少なくと
も1種で、a:60〜90(原子%、以下同じ)、b:
0超〜6、c:1〜19、d:7〜20、e:0超
4、a+b+c+d+e=100である。
[Claim 1] as a main component M a X b Si c B d C e,
It contains 0.01 to 1.0% by weight of Sn with respect to the main component, and is produced by a single-sided cooling method .
Tables where the distance measured in the thickness direction is within 0.1 μm
In the surface layer, S having a width measured in the thickness direction of 0.03 μm or less
An n concentration segregation layer is formed, and the Sn peak concentration of the segregation layer is
An amorphous alloy ribbon having a degree of at least five times the Sn concentration in the bulk and having enhanced crystallization resistance. Here, M is at least one of Fe, Co and Ni, and X is M
at least one of o, Nb, Ta, W, Cr, V, Mn and Cu, a: 60 to 90 (atomic%, the same applies hereinafter), b:
Over 0 to 6, c: 1 to 19, d: 7 to 20, e: Over 0 to
4, a + b + c + d + e = 100.
【請求項2】 a b Si c d を主成分とし、該主
成分に対しSnを0.01〜1.0重量%含有してお
り、片面冷却法で作製され、該薄帯の表面から薄帯の厚
み方向に測った距離が0.1μm以下の範囲にある表面
層内に、厚み方向に測った幅が0.03μm以下のSn
濃度偏析層を形成し、かつ該偏析層のSnのピーク濃度
がバルクにおけるSn濃度の5倍以上であり、結晶化耐
性を高めたことを特徴とする非晶質合金薄帯。 ただし、
MはFe、Co、Niの少なくとも1種、XはMo、N
b、Ta、W、Cr、V、Mn、Cuの少なくとも1種
で、a:60〜90(原子%、以下同じ)、b:0超〜
6、c:1〜19、d:7〜20、a+b+c+d=1
00である。
Wherein the main component M a X b Si c B d , main
0.01 to 1.0% by weight of Sn
And produced by a single-sided cooling method.
Surface whose distance measured in the viewing direction is within 0.1 μm or less
In the layer, Sn whose width measured in the thickness direction is 0.03 μm or less is used.
Forming a concentration segregation layer, and Sn peak concentration of the segregation layer
Is at least 5 times the Sn concentration in the bulk,
Amorphous alloy ribbon characterized by enhanced properties. However,
M is at least one of Fe, Co, and Ni, and X is Mo, N
at least one of b, Ta, W, Cr, V, Mn, and Cu
A: 60 to 90 (atomic%, the same applies hereinafter), b: over 0 to
6, c: 1 to 19, d: 7 to 20, a + b + c + d = 1
00.
【請求項3】 急冷後の非晶質合金薄帯を100〜30
0℃の温度に0.5〜1000時間保持することを特徴
とする請求項1または2記載の非晶質合金薄帯の製造方
法。
3. The quenched amorphous alloy ribbon is 100 to 30%.
0 claim 1 or 2 method for producing an amorphous alloy ribbon, wherein the holding 0.5 to 1000 hours at a temperature of ° C..
JP3248094A 1991-07-30 1991-09-26 Amorphous alloy ribbon with improved crystallization resistance of surface layer and method for producing the same Expired - Lifetime JP2588450B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3248094A JP2588450B2 (en) 1991-09-26 1991-09-26 Amorphous alloy ribbon with improved crystallization resistance of surface layer and method for producing the same
US08/286,246 US5456770A (en) 1991-07-30 1994-08-08 Amorphous magnetic alloy with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3248094A JP2588450B2 (en) 1991-09-26 1991-09-26 Amorphous alloy ribbon with improved crystallization resistance of surface layer and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0578796A JPH0578796A (en) 1993-03-30
JP2588450B2 true JP2588450B2 (en) 1997-03-05

Family

ID=17173127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3248094A Expired - Lifetime JP2588450B2 (en) 1991-07-30 1991-09-26 Amorphous alloy ribbon with improved crystallization resistance of surface layer and method for producing the same

Country Status (1)

Country Link
JP (1) JP2588450B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3389972B2 (en) * 1993-06-18 2003-03-24 日立金属株式会社 Nanocrystalline alloy ribbon with improved asymmetry of BH loop and method for producing magnetic core and nanocrystalline alloy ribbon
JP2006196520A (en) * 2005-01-11 2006-07-27 Hitachi Metals Ltd Magnetic shield
CN113365764B (en) * 2019-03-26 2023-06-16 株式会社博迈立铖 Amorphous alloy ribbon, amorphous alloy powder, nanocrystalline alloy powder magnetic core, and method for producing nanocrystalline alloy powder magnetic core
DE102019123500A1 (en) 2019-09-03 2021-03-04 Vacuumschmelze Gmbh & Co. Kg Metal tape, method for producing an amorphous metal tape and method for producing a nanocrystalline metal tape
CN113385856A (en) * 2021-06-12 2021-09-14 广东博杰特新材料科技有限公司 Ternary boride Mo2NiB2Alloy welding material and production process thereof

Also Published As

Publication number Publication date
JPH0578796A (en) 1993-03-30

Similar Documents

Publication Publication Date Title
US7282103B2 (en) Iron-base amorphous alloy thin strip excellent in soft magnetic properties, iron core manufactured by using said thin strip, and mother alloy for producing rapidly cooled and solidified thin strip
US4306908A (en) Ferromagnetic amorphous alloy
KR20020041292A (en) Fe-BASED AMORPHOUS ALLOY THIN STRIP AND CORE PRODUCED USING THE SAME
US6077367A (en) Method of production glassy alloy
JP2550449B2 (en) Amorphous alloy ribbon for transformer core with high magnetic flux density
JP2778719B2 (en) Iron-based amorphous magnetic alloy containing cobalt
JP2588450B2 (en) Amorphous alloy ribbon with improved crystallization resistance of surface layer and method for producing the same
JP3434844B2 (en) Low iron loss, high magnetic flux density amorphous alloy
JP4037989B2 (en) Fe-based amorphous alloy ribbon with ultrathin oxide layer
Walter et al. Crystallization of amorphous Fe75Si15B10 ribbon and powder
US4362581A (en) Magnetic alloy
JPH07310149A (en) Ferrous amorphous alloy thin strip
JP3441757B2 (en) Amorphous alloy ribbon with enhanced surface crystallization resistance
US5456770A (en) Amorphous magnetic alloy with high magnetic flux density
JP3124690B2 (en) Iron-based amorphous alloy excellent in magnetic properties and embrittlement resistance and method for producing the same
JPS6286146A (en) High permeability amorphous alloy having high corrosion resistance, strength and wear resistance and method for modifying magnetic characteristic of said alloy
JP2812574B2 (en) Low frequency transformer
JPH08283919A (en) Iron-base amorphous alloy foil and its production
TWI822046B (en) Fe-based amorphous alloy and Fe-based amorphous alloy thin strip
JP2812569B2 (en) Low frequency transformer
JPH05222494A (en) Amorphous alloy sheet steel for transformer iron core having high magnetic flux density
JPH05132744A (en) Production of amorphous alloy strip having high saturation magnetic flux density and amorphous alloy iron core
CN117321239A (en) Fe-based amorphous alloy and Fe-based amorphous alloy ribbon
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
JPH01142049A (en) Fe-based magnetic alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 15

EXPY Cancellation because of completion of term