JPH03271346A - Soft magnetic alloy - Google Patents
Soft magnetic alloyInfo
- Publication number
- JPH03271346A JPH03271346A JP7113190A JP7113190A JPH03271346A JP H03271346 A JPH03271346 A JP H03271346A JP 7113190 A JP7113190 A JP 7113190A JP 7113190 A JP7113190 A JP 7113190A JP H03271346 A JPH03271346 A JP H03271346A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- soft magnetic
- crystal grains
- grain
- average
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001004 magnetic alloy Inorganic materials 0.000 title claims abstract description 25
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 5
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 5
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract 4
- 239000013078 crystal Substances 0.000 claims description 49
- 239000000203 mixture Substances 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 abstract description 22
- 239000000956 alloy Substances 0.000 abstract description 22
- 229910052796 boron Inorganic materials 0.000 abstract description 4
- 229910052748 manganese Inorganic materials 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 229910052802 copper Inorganic materials 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 15
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 230000035699 permeability Effects 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000001816 cooling Methods 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
- 238000009692 water atomization Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、微結晶粒を有するFe基基磁磁性合金関する
。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an Fe-based magnetomagnetic alloy having microcrystalline grains.
〈従来の技術〉
アモルファス合金は、高飽和磁束密度であるため、高周
波トランスや可飽和リアクトル、各種チョークコイルな
どの磁心、あるいは磁気ヘッド等に利用されている。<Prior Art> Since amorphous alloys have a high saturation magnetic flux density, they are used in magnetic cores of high frequency transformers, saturable reactors, various choke coils, and magnetic heads.
アモルファス合金は、通常、Feを主成分とするFe基
アモルファス合金と、COを主成分とするCO基アモル
ファス合金とに分類される。 Fe基アモルファス合金
は、飽和磁束密度が大きく材料が安価であるが、高周波
領域において損失が大きく、透磁率も低い。Amorphous alloys are generally classified into Fe-based amorphous alloys containing Fe as a main component and CO-based amorphous alloys containing CO as a main component. Fe-based amorphous alloys have a high saturation magnetic flux density and are inexpensive materials, but have large losses in high frequency regions and low magnetic permeability.
一方、Co基アモルファス合金は、高周波における磁気
特性は良好であるが、磁気特性の経時変化が大きく、ま
た、材料が高価である。On the other hand, Co-based amorphous alloys have good magnetic properties at high frequencies, but the magnetic properties change significantly over time, and the material is expensive.
このような事情から、特開昭64−39347号公報に
は、組織の少なくとも50%が微細な結晶粒からなり、
結晶粒の最大寸法で測定した粒径の平均が1000Å以
下の平均粒径を有するFe基基磁磁性合金開示されてい
る。 同公報によれば、微細結晶粒の周囲の部分は主に
非晶質であり、微細結晶粒の割合が実質的に100%に
なっても十分に優れた磁気特性を示すというものである
。 また、このFe基基磁磁性合金は、CO基アモルフ
ァス合金に匹敵する磁気特性が得られ、しかも、その経
時変化が抑えられるというものである。Under these circumstances, Japanese Patent Application Laid-Open No. 64-39347 discloses that at least 50% of the structure consists of fine crystal grains,
An Fe-based magnetomagnetic alloy is disclosed that has an average grain size of 1000 Å or less as measured by the largest grain size. According to the publication, the area around the fine crystal grains is mainly amorphous, and exhibits sufficiently excellent magnetic properties even when the proportion of fine crystal grains becomes substantially 100%. Further, this Fe-based magnetomagnetic alloy can obtain magnetic properties comparable to those of a CO-based amorphous alloy, and moreover, its change over time can be suppressed.
〈発明が解決しようとする課題〉
しかし、本発明者らの研究によれば、上記公報記載のF
e基基磁磁性合金、その組織構造のために下記のような
問題を生じる。<Problem to be solved by the invention> However, according to the research of the present inventors, the F described in the above publication
The following problems arise due to the structure of e-based magnetomagnetic alloys.
例えば、微細結晶粒の周囲の部分が、すなわち結晶粒界
が非晶質であると、この非晶質のキュリー温度付近で透
磁率が著しく低下する。 このため、発熱の多い高周波
用磁心では、透磁率の温度安定性が低くなる。 また、
非晶質がエージングにより構造変化を起こすため、組織
全体の平均的磁気特性が経時劣化してしまう。For example, if the area around fine crystal grains, that is, the grain boundaries, is amorphous, the magnetic permeability decreases significantly near the Curie temperature of this amorphous state. For this reason, in a high-frequency magnetic core that generates a lot of heat, the temperature stability of magnetic permeability becomes low. Also,
As amorphous materials undergo structural changes due to aging, the average magnetic properties of the entire structure deteriorate over time.
また、多結晶合金において、結晶粒の結晶格子の方向は
隣接する結晶粒の結晶格子の方向と異なるため、微細結
晶粒の割合が実質的に100%である場合、隣接する結
晶粒との境界で結晶格子の方向が急激に変わることにな
り、ここがピンニングサイトとなって特に高周波におい
て良好な磁気特性が得られない。In addition, in polycrystalline alloys, the direction of the crystal lattice of a crystal grain is different from the direction of the crystal lattice of adjacent crystal grains, so if the proportion of fine crystal grains is substantially 100%, the boundaries between adjacent crystal grains The direction of the crystal lattice changes rapidly, and this becomes a pinning site, making it difficult to obtain good magnetic properties, especially at high frequencies.
本発明はこのような事情からなされたものであり、高周
波領域での磁気特性が高く、しかも磁気特性の熱安定性
が高く経時変化が少ない軟磁性合金を提供することを目
的とする。The present invention was made under these circumstances, and an object of the present invention is to provide a soft magnetic alloy that has high magnetic properties in a high frequency region, has high thermal stability of magnetic properties, and has little change over time.
く課題を解決するための手段〉
このような目的は、下記(1)および(2)の本発明に
より達成される。Means for Solving the Problems> Such objects are achieved by the present invention described in (1) and (2) below.
(1〉下記式で表わされる原子比組成を有する軟磁性合
金であって、結晶粒と、結晶質の結晶粒界とを有し、各
結晶粒の最大径の平均が50〜200Åであり、隣接す
る結晶粒間の最短距離の平均が、前記各結晶粒の最大径
の平均の10〜50%であることを特徴とする軟磁性合
金。(1> A soft magnetic alloy having an atomic composition represented by the following formula, which has crystal grains and crystal grain boundaries, and the average maximum diameter of each crystal grain is 50 to 200 Å, A soft magnetic alloy characterized in that the average shortest distance between adjacent crystal grains is 10 to 50% of the average maximum diameter of each of the crystal grains.
[式]
%式%
(ただし、上記式において、MoはNiおよびCOから
選択される1種以上の元素を表わし、MlはNb、W、
TaおよびMOから選択される1種以上の元素を表わし
、M2は■、CrおよびMnから選択される1種以上の
元素を表わし、0≦a≦0.2、
O11≦X≦3゜
0≦y≦30゜
O≦Z≦25゜
5≦y+z≦30゜
0.1≦p≦30、
O≦q≦10、
である。)
(2)断面において、前記結晶粒界の面積を前記結晶粒
の面積で除した値が20〜100%である上記(1)に
記載の軟磁性合金。[Formula] %Formula% (However, in the above formula, Mo represents one or more elements selected from Ni and CO, and Ml represents Nb, W,
Represents one or more elements selected from Ta and MO, M2 represents one or more elements selected from ■, Cr and Mn, 0≦a≦0.2, O11≦X≦3゜0≦ y≦30°O≦Z≦25°5≦y+z≦30°0.1≦p≦30, O≦q≦10. ) (2) The soft magnetic alloy according to (1) above, wherein in a cross section, the area of the grain boundary divided by the area of the grain is 20 to 100%.
〈作用〉
本発明の軟磁性合金は、結晶粒界が結晶質であるだめ、
磁気特性の熱安定性が良好で経時変化が極めて少ない。<Function> The soft magnetic alloy of the present invention has crystalline grain boundaries;
The thermal stability of magnetic properties is good and there is very little change over time.
また、本発明における結晶粒界は、各結晶粒の境界にお
いて、ピンニングサイトが生じることを防ぐ作用を有す
る
そして、結晶粒の寸法と結晶粒界の寸法との関係を上記
のように構成するため、特に高周波領域において極めて
優れた磁気特性を示す。In addition, the grain boundaries in the present invention have the effect of preventing pinning sites from occurring at the boundaries of each grain, and the relationship between the grain size and the grain boundary size is configured as described above. , exhibits extremely excellent magnetic properties, especially in the high frequency range.
また、微細結晶粒を有するため、磁歪が極めて小さい。Moreover, since it has fine crystal grains, magnetostriction is extremely small.
〈具体的構成〉 以下、本発明の具体的構成を詳細に説明する。<Specific configuration> Hereinafter, the specific configuration of the present invention will be explained in detail.
本発明の軟磁性合金の原子比組成は、下記式%式%
[式]
%式%
ただし、上記式において、MoはNiおよびCoから選
択される1種以上の元素を表わし、MlはNb、W、T
aおよびMOから選択される1種以上の元素を表わし、
M2はV、CrおよびMnから選択される1種以上の元
素を表わし、
0≦a≦0.2゜
0.1≦X≦3、
O≦y≦30、
O≦2≦25゜
5≦y+z≦30゜
0、l≦p≦30゜
O≦q≦10゜
である。The atomic ratio composition of the soft magnetic alloy of the present invention is expressed by the following formula % Formula % [Formula] % Formula % However, in the above formula, Mo represents one or more elements selected from Ni and Co, Ml represents Nb, W,T
represents one or more elements selected from a and MO,
M2 represents one or more elements selected from V, Cr and Mn, 0≦a≦0.2゜0.1≦X≦3, O≦y≦30, O≦2≦25゜5≦y+z ≦30°0, l≦p≦30°O≦q≦10°.
上記組成の限定理由を説明する。The reasons for limiting the above composition will be explained.
Moの含有量を表わすaが上記範囲を超えると、鉄損が
増加する場合がある。When a representing the content of Mo exceeds the above range, iron loss may increase.
Cuは、後述する熱処理により微結晶相を形成する際に
、必須の元素である。 Cuの含有量を表わすXが上記
範囲を外れると、磁気特性が低下し、特に透磁率が低く
なってしまう。Cu is an essential element when forming a microcrystalline phase by heat treatment described below. If X representing the Cu content is outside the above range, the magnetic properties will deteriorate, particularly the magnetic permeability will become low.
Mlは、粗大結晶粒を生じさせず均一な微結晶相を得る
ために含有される。 また、Mlを含有することにより
、極めて高い透磁率が得られる。Ml is contained in order to obtain a uniform microcrystalline phase without producing coarse crystal grains. Furthermore, by containing Ml, extremely high magnetic permeability can be obtained.
Mlとしては、磁気特性が高くなることからNbおよび
/またはMoを用いることが好ましく、特にNbを必須
とすることが好ましい。As Ml, it is preferable to use Nb and/or Mo because the magnetic properties are improved, and it is particularly preferable to make Nb essential.
また、耐食性が向上することから、Wおよび/またはM
oを用いることが好ましい。In addition, since corrosion resistance is improved, W and/or M
It is preferable to use o.
M’の含有量を表わすpが上記範囲を外れると、磁気特
性が低下する。If p, which represents the content of M', is outside the above range, the magnetic properties will deteriorate.
SiおよびBは合金をアモルファス化するために含有さ
れる。 本発明では合金溶浸の高速急冷によりアモルフ
ァス合金を製造し、このアモルファス合金に熱処理を施
すことにより微細結晶粒を形成するため、SLおよびB
の少なくとも一方の含有は必須とされる。Si and B are contained to make the alloy amorphous. In the present invention, an amorphous alloy is produced by high-speed quenching of alloy infiltration, and fine crystal grains are formed by heat-treating this amorphous alloy.
The inclusion of at least one of these is essential.
Siの含有量を表わすy、Bの含有量を表わす2および
y+zが上記範囲を外れると、合金のアモルファス化が
困難となる他、磁気特性が低下する。If y representing the Si content, 2 representing the B content, and y+z are outside the above ranges, it will be difficult to make the alloy amorphous and the magnetic properties will deteriorate.
なお、SiおよびBの他、ガラス化元素としてC,Ge
、P、Ga、Sb、In%BeおよびAsから選ばれる
元素の1種以上が含有されていてもよい。 これらのガ
ラス化元素は、SiおよびBと共にアモルファス化を助
長する作用を示し、また、キュリー温度および磁歪の調
整作用も有する。 これらガラス化元素は、SLとBの
含有量の合計、すなわちy+Zの30%以下を置換する
ように含有されることが好ましい。In addition to Si and B, C and Ge are used as vitrification elements.
, P, Ga, Sb, In%Be, and As. These vitrifying elements, together with Si and B, have the effect of promoting amorphization, and also have the effect of adjusting the Curie temperature and magnetostriction. These vitrifying elements are preferably contained so as to replace 30% or less of the total content of SL and B, that is, y+Z.
M2は、軟磁性合金の耐食性、磁気特性等の向上および
磁歪の調整のために含有される。M2 is contained in order to improve the corrosion resistance and magnetic properties of the soft magnetic alloy, and to adjust the magnetostriction.
M2の含有量を表わすqが上記範囲を超えると、飽和磁
束密度が低下する。When q representing the content of M2 exceeds the above range, the saturation magnetic flux density decreases.
M2のうち、Crおよび■は耐食性向上効果が高く、こ
れらのうちの1種以上を含有することが好ましく、特に
、Crを必須とすることが好ましい、 なお、耐食性を
有意に向上させるためには、qは2以上、特に3以上で
あることが好ましい。Among M2, Cr and ■ have a high effect of improving corrosion resistance, and it is preferable to contain one or more of these, and it is particularly preferable to make Cr essential. Note that in order to significantly improve corrosion resistance, , q are preferably 2 or more, particularly 3 or more.
以上に挙げた元素の他、本発明の軟磁性合金には、Zr
、Hf、Ti、A11、白金族元素、Sc%Y、希土類
元素、Au、Zn%SnおよびReから選択される1種
以上の元素が含有されていてもよい。 これらの元素の
うちZr、HfおよびTiは、上記したMlと同様な作
用を有する。 また、A11、白金族元素、Sc、Y、
希土類元素、Au、Zn、SnおよびReは、上記した
M2と同様な作用を有する。 これらの元素が含有され
る場合、その含有量の合計は、上記式で表わされる組成
に対して10%以下であることが好ましい。In addition to the elements listed above, the soft magnetic alloy of the present invention also contains Zr.
, Hf, Ti, A11, platinum group elements, Sc%Y, rare earth elements, Au, Zn%Sn, and Re. Among these elements, Zr, Hf and Ti have the same effect as Ml described above. In addition, A11, platinum group elements, Sc, Y,
The rare earth elements, Au, Zn, Sn, and Re have the same effect as M2 described above. When these elements are contained, the total content is preferably 10% or less with respect to the composition represented by the above formula.
なお、軟磁性合金には、磁気特性に悪影響を与えない限
り、N、0、S等の不可避的不純物が含有されていても
よい。Note that the soft magnetic alloy may contain unavoidable impurities such as N, 0, and S, as long as they do not adversely affect the magnetic properties.
本発明の軟磁性合金は微細結晶粒を有し、かつ結晶質の
結晶粒界を有する。 結晶粒は、X線回折の結果によれ
ば、通常、α−Feのbcc構造に上記各元素が固溶し
た構造を有する。 また、結晶粒界の結晶構造は特定が
困難であるが、X線回折チャートにおいてα−Feのb
cc構造に由来するピークだけが観察されることから、
通常、結晶粒と同様にα−Feのbcc構造に上記各元
素が固溶した構造と考えられる。The soft magnetic alloy of the present invention has fine crystal grains and crystalline grain boundaries. According to the results of X-ray diffraction, the crystal grains usually have a structure in which each of the above elements is dissolved in a bcc structure of α-Fe. In addition, although it is difficult to identify the crystal structure of grain boundaries, the b
Since only the peak derived from the cc structure is observed,
Usually, it is considered to be a structure in which each of the above elements is dissolved in the bcc structure of α-Fe, similar to crystal grains.
本発明において、各結晶粒の最大径の平均は50〜20
0人とされ、隣接する結晶粒間の最短距離の平均、すな
わち結晶粒界の最小幅の平均は、各結晶粒の最大径の平
均の10〜50%、好ましくは10〜40%とされる。In the present invention, the average maximum diameter of each crystal grain is 50 to 20
The average shortest distance between adjacent grains, that is, the average minimum width of grain boundaries, is 10 to 50%, preferably 10 to 40%, of the average maximum diameter of each grain. .
結晶粒の寸法および結晶粒界の寸法をこのような範囲と
することにより、良好な磁気特性、特に高周波領域にお
ける高い透磁率が得られる。By setting the dimensions of the crystal grains and the dimensions of the crystal grain boundaries within such ranges, good magnetic properties, particularly high magnetic permeability in a high frequency region, can be obtained.
より詳細には、結晶粒界の幅が上記範囲未満となると、
ピンニングサイト防止効果が不十分となり、特に高周波
領域において高い透磁率が得られなくなる。More specifically, when the width of the grain boundary is less than the above range,
The pinning site prevention effect becomes insufficient, and high magnetic permeability cannot be obtained, especially in the high frequency region.
また、高周波領域において、より高い透磁率とするため
には、軟磁性合金の断面において、結晶粒界の面積を結
晶粒の面積で除した値が20〜100%、特に20〜8
0%であることが好ましい。In addition, in order to achieve higher magnetic permeability in the high frequency region, the value obtained by dividing the area of grain boundaries by the area of crystal grains in the cross section of the soft magnetic alloy must be 20 to 100%, especially 20 to 8
Preferably it is 0%.
なお、結晶粒および結晶粒界の寸法や面積は、透過型電
子顕微鏡により測定することができる。 この場合、結
晶粒が2個以上重なっていない視野において測定する。Note that the dimensions and areas of crystal grains and grain boundaries can be measured using a transmission electron microscope. In this case, measurement is performed in a visual field in which two or more crystal grains do not overlap.
結晶粒と結晶粒界とは、結晶格子の方向や各元素の固
溶状態の違いから濃度差が生じ、また、結晶粒内および
結晶粒界内に、結晶格子構造を認めることもできる。A difference in concentration occurs between crystal grains and grain boundaries due to differences in the direction of the crystal lattice and the solid solution state of each element, and a crystal lattice structure can also be observed within the crystal grains and within the grain boundaries.
以下、本発明の軟磁性合金の製造方法を説明する。The method for manufacturing the soft magnetic alloy of the present invention will be explained below.
本発明の軟磁性合金は、上記式で表わされる合金の溶湯
を急冷してアモルファス合金を得、次いで熱処理を施し
て上記結晶粒および結晶粒界を形成することにより製造
される。The soft magnetic alloy of the present invention is produced by rapidly cooling a molten metal of the alloy represented by the above formula to obtain an amorphous alloy, and then subjecting it to heat treatment to form the above crystal grains and grain boundaries.
合金溶湯を急冷する方法に特に制限はなく、片ロール法
や双ロール法、あるいはアトマイズ法や水アトマイズ法
等の各種急冷法から制限なく選択することができる。There is no particular restriction on the method for rapidly cooling the molten alloy, and it can be selected from various rapid cooling methods such as a single roll method, a twin roll method, an atomization method, a water atomization method, and the like.
急冷時の雰囲気に制限はなく、空気中、不活性ガス雰囲
気中等のいずれであってもよい。There are no restrictions on the atmosphere during quenching, and it may be in air, an inert gas atmosphere, or the like.
なお、片ロール法や双ロール法では薄帯状のアモルファ
ス合金が得られる。 これらの方法では、合金溶湯がロ
ール面に衝突する際に雰囲気中の気体を巻き込むため、
薄帯の厚さが薄くなるほどその表面性は悪化する。In addition, a ribbon-shaped amorphous alloy is obtained by the single-roll method or the twin-roll method. In these methods, when the molten alloy collides with the roll surface, it entrains gases in the atmosphere.
The thinner the ribbon, the worse its surface properties.
一方、薄帯状軟磁性合金を巻回して巻磁心とする場合、
薄帯の表面性が良好なほど高周波での磁気特性が良好と
なるので、このような用途に用いる場合、急冷は減圧状
態で行なうことが好ましい。 減圧の程度に特に制限は
ないが、例えば2 X I O’ 〜I X 10−’
Pa程度とすることが好ましい。On the other hand, when a ribbon-shaped soft magnetic alloy is wound to form a wound magnetic core,
The better the surface properties of the ribbon, the better its magnetic properties at high frequencies, so when used for such purposes, it is preferable to perform the rapid cooling under reduced pressure. There is no particular limit to the degree of pressure reduction, but for example, 2 X IO' to I X 10-'
It is preferable to set it to about Pa.
また、このように減圧雰囲気で急冷することにより、熱
処理時に結晶粒界の結晶化を良好に進めることができる
。Moreover, by rapidly cooling in a reduced pressure atmosphere in this way, crystallization of grain boundaries can be favorably promoted during heat treatment.
アモルファス合金に施される熱処理の温度および時間は
、熱処理されるアモルファス合金の組成、寸法などによ
っても変わるが、450〜700℃にて5分間〜24時
間であることが好ましい。The temperature and time of the heat treatment applied to the amorphous alloy varies depending on the composition, dimensions, etc. of the amorphous alloy to be heat treated, but is preferably 450 to 700°C for 5 minutes to 24 hours.
熱処理温度が上記範囲未満であると、微結晶粒を形成す
ることが困難となり、上記範囲を超えると結晶粒が粗大
となり、いずれも高い磁気特性を有する軟磁性合金が得
られない。If the heat treatment temperature is less than the above range, it will be difficult to form fine crystal grains, and if it exceeds the above range, the crystal grains will become coarse, making it impossible to obtain a soft magnetic alloy with high magnetic properties.
熱処理時間が上記範囲未満であると均一な加熱を行なう
ことが困難となり、また、上記範囲を超えると結晶粒が
粗大化し、いずれも高い磁気特性の軟磁性合金が得られ
ない。If the heat treatment time is less than the above range, it will be difficult to perform uniform heating, and if it exceeds the above range, the crystal grains will become coarse, making it impossible to obtain a soft magnetic alloy with high magnetic properties.
なお、より好ましい熱処理温度および熱処理時間は、5
00〜650℃にて5分間〜6時間である。
I熱処理の際の雰囲気に特に制限
はなく、空気中で行なってもよいが、真空中、あるいは
窒素、水素、Ar等の不活性ガス雰囲気中で行なうこと
が好ましい。In addition, the more preferable heat treatment temperature and heat treatment time are 5.
00 to 650°C for 5 minutes to 6 hours.
There is no particular restriction on the atmosphere during the I heat treatment, and the heat treatment may be carried out in air, but it is preferably carried out in vacuum or in an inert gas atmosphere such as nitrogen, hydrogen, or Ar.
ただし、結晶粒界の結晶質化が容易に行なえることから
、加圧した雰囲気中で熱処理を施すことが好ましい、
加圧の程度は、0.11M P a以上、特に0.2M
Pa〜IGPa程度とすることが好ましい。However, since the grain boundaries can be easily crystallized, it is preferable to perform the heat treatment in a pressurized atmosphere.
The degree of pressurization is 0.11M Pa or more, especially 0.2M
It is preferable to set it as about Pa-IGPa.
なお、この熱処理は、必要に応じて磁場中にて行なわれ
てもよい。Note that this heat treatment may be performed in a magnetic field if necessary.
本発明の軟磁性合金の形状に制限はなく、薄帯状や薄片
状、粒状等として各種用途に利用でき、あるいはこれら
を粉砕して粉体として利用してもよい。The shape of the soft magnetic alloy of the present invention is not limited, and it can be used for various purposes in the form of ribbons, flakes, granules, etc., or it may be crushed and used as powder.
また、本発明の軟磁性合金は、高周波トランス、可飽和
リアクトル、各種チョークコイルの磁心なと、特に高周
波での高い磁気特性が要求される用途に最適である。Furthermore, the soft magnetic alloy of the present invention is ideal for applications that require high magnetic properties, particularly at high frequencies, such as high frequency transformers, saturable reactors, and magnetic cores of various choke coils.
〈実施例〉
以下、具体的実施例を挙げて、本発明をさらに詳細に説
明する。<Examples> Hereinafter, the present invention will be explained in more detail by giving specific examples.
(Fea、 5coo、 x)yscu+Taasl+
Je (数字は原子比)で表わされる合金の溶湯を片ロ
ール法により急冷し、厚さlog、幅5mmのアモルフ
ァス合金薄帯を得た。 なお、急冷は5X10−”Pa
の真空中で行なった。(Fea, 5coo, x)yscu+Taasl+
A molten metal of an alloy represented by Je (numbers are atomic ratios) was rapidly cooled by a single roll method to obtain an amorphous alloy ribbon having a thickness of log and a width of 5 mm. In addition, the rapid cooling is performed at 5×10-”Pa
It was carried out in a vacuum.
このアモルファス合金薄帯に、500℃にて2時間熱処
理を施し、微細結晶粒を形成した。 熱処理は、IMP
aのArガス雰囲気中で行なった。This amorphous alloy ribbon was heat treated at 500° C. for 2 hours to form fine crystal grains. Heat treatment is IMP
The test was carried out in an Ar gas atmosphere (a).
この合金薄帯を研磨して測定用試料とし、透過型電子顕
微鏡により結晶粒の最大径の平均d、結晶粒界の最小幅
の平均t、結晶粒の面積81と結晶粒界の面積82とを
測定し、t/dおよびs 2 / s 1を求めた。
結果を下記表1に示す。This alloy ribbon was polished and used as a measurement sample, and the average maximum diameter d of the crystal grains, the average minimum width t of the grain boundaries, the area 81 of the crystal grains, and the area 82 of the grain boundaries were determined using a transmission electron microscope. was measured, and t/d and s 2 /s 1 were determined.
The results are shown in Table 1 below.
また、この測定用試料の透過型電子顕微鏡写真を第1図
に示す。 なお、第2図として、第1図のE−e付近を
拡大して結晶粒界の結晶格子構造を模式的に示す図を示
す。Furthermore, a transmission electron micrograph of this measurement sample is shown in FIG. In addition, FIG. 2 is a diagram schematically showing the crystal lattice structure of the grain boundaries by enlarging the area E-e in FIG. 1.
次いで、薄帯をトロイダル状に巻回し、磁心サンプルN
O43とした。Next, the ribbon is wound into a toroidal shape to form a magnetic core sample N.
It was set as O43.
このサンプルについて、100 kHzでの初透磁率μ
mを測定した。 結果を表1に示す。For this sample, the initial permeability μ at 100 kHz is
m was measured. The results are shown in Table 1.
また、急冷時の圧力および熱処理時の圧力を変更した他
は上記サンプルと同様にして、表1に示す磁心サンプル
を作製し、上記と同様な測定を行なった。 結果を表1
に示す。Further, magnetic core samples shown in Table 1 were prepared in the same manner as the above samples except that the pressure during quenching and the pressure during heat treatment were changed, and the same measurements as above were performed. Table 1 shows the results.
Shown below.
表 1
1(比較)121 5 11 500002
107 16 34 900003
98 33 71 1100004(比較)
8658131 60000以上の実施例から本
発明の効果が明らかである。Table 1 1 (comparison) 121 5 11 500002
107 16 34 900003
98 33 71 1100004 (comparison)
8658131 The effects of the present invention are clear from more than 60,000 examples.
なお、第2図に示されるように、第1図における結晶粒
界には格子間隔2人程度の結晶格子の存在が明らかであ
る。 また、結晶粒界における結晶格子は、
他のサンプルでも確認され
た。As shown in FIG. 2, it is clear that a crystal lattice with a lattice spacing of about 2 people exists at the grain boundaries in FIG. Crystal lattices at grain boundaries were also confirmed in other samples.
〈発明の効果〉
本発明の軟磁性合金は、結晶質の結晶粒界を有するため
、高周波での磁気特性が良好で、その経時変化が少ない
。<Effects of the Invention> Since the soft magnetic alloy of the present invention has crystalline grain boundaries, it has good magnetic properties at high frequencies and has little change over time.
第1図は、結晶構造を示す図面代用写真であって、本発
明の軟磁性合金の透過型電子顕微鏡写真である。
第2図は、第1図の一部を拡大して模式的に表わす説明
図である。FIG. 1 is a photograph substituted for a drawing showing the crystal structure, and is a transmission electron micrograph of the soft magnetic alloy of the present invention. FIG. 2 is an explanatory diagram schematically showing a part of FIG. 1 in an enlarged manner.
Claims (2)
金であって、結晶粒と、結晶質の結晶粒界とを有し、各
結晶粒の最大径の平均が50〜200Åであり、隣接す
る結晶粒間の最短距離の平均が、前記各結晶粒の最大径
の平均の10〜50%であることを特徴とする軟磁性合
金。 [式] (Fe_1_−_aM^0_a)_1_0_0_−_x
_−_y_−_z_−_p_−_qCu_xSi_yB
_zM^1_pM^2_q(ただし、上記式において、
M^0はNiおよびCoから選択される1種以上の元素
を表わし、M^1はNb、W、TaおよびMoから選択
される1種以上の元素を表わし、M^2はV、Crおよ
びMnから選択される1種以上の元素を表わし、0≦a
≦0.2、 0.1≦x≦3、 0≦y≦30、 0≦z≦25、 5≦y+z≦30、 0.1≦p≦30、 0≦q≦10、 である。)(1) A soft magnetic alloy having an atomic composition represented by the following formula, which has crystal grains and crystal grain boundaries, and the average maximum diameter of each crystal grain is 50 to 200 Å, A soft magnetic alloy characterized in that the average shortest distance between adjacent crystal grains is 10 to 50% of the average maximum diameter of each of the crystal grains. [Formula] (Fe_1_-_aM^0_a)_1_0_0_-_x
_−_y_−_z_−_p_−_qCu_xSi_yB
_zM^1_pM^2_q (However, in the above formula,
M^0 represents one or more elements selected from Ni and Co, M^1 represents one or more elements selected from Nb, W, Ta, and Mo, and M^2 represents V, Cr, and Mo. Represents one or more elements selected from Mn, 0≦a
≦0.2, 0.1≦x≦3, 0≦y≦30, 0≦z≦25, 5≦y+z≦30, 0.1≦p≦30, 0≦q≦10. )
の面積で除した値が20〜100%である請求項1に記
載の軟磁性合金。(2) The soft magnetic alloy according to claim 1, wherein in a cross section, a value obtained by dividing the area of the grain boundary by the area of the grain is 20 to 100%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7113190A JPH03271346A (en) | 1990-03-20 | 1990-03-20 | Soft magnetic alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7113190A JPH03271346A (en) | 1990-03-20 | 1990-03-20 | Soft magnetic alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03271346A true JPH03271346A (en) | 1991-12-03 |
Family
ID=13451716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7113190A Pending JPH03271346A (en) | 1990-03-20 | 1990-03-20 | Soft magnetic alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03271346A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006064920A1 (en) * | 2004-12-17 | 2006-06-22 | Hitachi Metals, Ltd. | Magnetic core for current transformer, current transformer and watthour meter |
US7583173B2 (en) * | 2004-10-29 | 2009-09-01 | Imphy Alloys | Nanocrystalline core for a current sensor, single and double-stage energy meters and current probes containing them |
JP5354101B2 (en) * | 2010-06-09 | 2013-11-27 | 新東工業株式会社 | Iron group based soft magnetic powder material |
WO2016083866A1 (en) * | 2014-11-25 | 2016-06-02 | Aperam | Basic module for magnetic core of an electrical transformer, magnetic core comprising said basic module, method for manufacturing said magnetic core, and transformer comprising said magnetic core |
-
1990
- 1990-03-20 JP JP7113190A patent/JPH03271346A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7583173B2 (en) * | 2004-10-29 | 2009-09-01 | Imphy Alloys | Nanocrystalline core for a current sensor, single and double-stage energy meters and current probes containing them |
WO2006064920A1 (en) * | 2004-12-17 | 2006-06-22 | Hitachi Metals, Ltd. | Magnetic core for current transformer, current transformer and watthour meter |
US7473325B2 (en) | 2004-12-17 | 2009-01-06 | Hitachi Metals, Ltd. | Current transformer core, current transformer and power meter |
JP4716033B2 (en) * | 2004-12-17 | 2011-07-06 | 日立金属株式会社 | Magnetic core for current transformer, current transformer and watt-hour meter |
JP5354101B2 (en) * | 2010-06-09 | 2013-11-27 | 新東工業株式会社 | Iron group based soft magnetic powder material |
WO2016083866A1 (en) * | 2014-11-25 | 2016-06-02 | Aperam | Basic module for magnetic core of an electrical transformer, magnetic core comprising said basic module, method for manufacturing said magnetic core, and transformer comprising said magnetic core |
US10515756B2 (en) | 2014-11-25 | 2019-12-24 | Aperam | Basic module for magnetic core of an electrical transformer, magnetic core comprising said basic module, method for manufacturing said magnetic core, and transformer comprising said magnetic core |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5288226B2 (en) | Magnetic alloys, amorphous alloy ribbons, and magnetic parts | |
JP5316920B2 (en) | Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components | |
US5340413A (en) | Fe-NI based soft magnetic alloys having nanocrystalline structure | |
EP3243206B1 (en) | Magnetic core based on a nanocrystalline magnetic alloy background | |
US7141127B2 (en) | Low core loss magnetic alloy with high saturation magnetic flux density and magnetic parts made of same | |
JPH03219009A (en) | Production of fe-base soft-magnetic alloy | |
JPH044393B2 (en) | ||
JPWO2008133302A1 (en) | Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon | |
JP3357386B2 (en) | Soft magnetic alloy, method for producing the same, and magnetic core | |
JP3231149B2 (en) | Noise filter | |
JPH01247557A (en) | Manufacture of hyperfine-crystal soft-magnetic alloy | |
EP0513385A1 (en) | Iron-base soft magnetic alloy | |
JPH062076A (en) | Fe-base soft magnetic alloy and its manufacture | |
JPH0711396A (en) | Fe base soft magnetic alloy | |
JPH02236259A (en) | Alloy excellent in iso-permeability and its production | |
JPH01290744A (en) | Fe-base soft-magnetic alloy | |
JPH03271346A (en) | Soft magnetic alloy | |
JPH0917623A (en) | Nano crystal alloy magnetic core and its manufacture | |
JP3389972B2 (en) | Nanocrystalline alloy ribbon with improved asymmetry of BH loop and method for producing magnetic core and nanocrystalline alloy ribbon | |
JP3322407B2 (en) | Fe-based soft magnetic alloy | |
JPH1046301A (en) | Fe base magnetic alloy thin strip and magnetic core | |
JP2934471B2 (en) | Ultra-microcrystalline magnetic alloy and its manufacturing method | |
JP3233289B2 (en) | Ultra-microcrystalline alloy ribbon and powder and magnetic core using the same | |
JP3058675B2 (en) | Ultra-microcrystalline magnetic alloy | |
KR100710613B1 (en) | Fe-BASED NANO CRYSTALLINE ALLOY AND METHOD FOR MANUFACTURING THE SAME |