JPH01242755A - Fe-based magnetic alloy - Google Patents

Fe-based magnetic alloy

Info

Publication number
JPH01242755A
JPH01242755A JP6882388A JP6882388A JPH01242755A JP H01242755 A JPH01242755 A JP H01242755A JP 6882388 A JP6882388 A JP 6882388A JP 6882388 A JP6882388 A JP 6882388A JP H01242755 A JPH01242755 A JP H01242755A
Authority
JP
Japan
Prior art keywords
alloy
magnetic
crystal grains
magnetic alloy
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6882388A
Other languages
Japanese (ja)
Inventor
Katsuto Yoshizawa
克仁 吉沢
Kiyotaka Yamauchi
山内 清隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP6882388A priority Critical patent/JPH01242755A/en
Publication of JPH01242755A publication Critical patent/JPH01242755A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic alloy having low core loss, high magnetic permeability and small characteristic deterioration caused by strain, etc., by compositely adding specific ratios of Cu and one or more kinds of other specific elements to an alloy contg. Fe and B as basic components. CONSTITUTION:The Fe-based magnetic alloy is formed with the compsn. expressed by formula I. The formula I is shown by atom%, and M denotes Co and/or Ni, A denotes Cu and/or Ag, M' denotes one or more kinds of elements selected from Nb, Ta, Zr, Hf, Ti and Mo. In the formula, 0<=a<=0.3, 0.1<=x<=10, 1<=alpha<=30 and 5<=z<=17 are furthermore satisfied. At least 50% of the structure is regulated to fine crystal grains and the average grain size of the grain size measured by the maximum size is regulated to <=1,000Angstrom . The alloy having the compsn. expressed by formula II can furthermore be applied. In the formula II, M'' is selected from V, Cr, Mn, the platinum group, Au, etc., and beta is regulated to <=10. The Fe-based magnetic alloy has excellent soft magnetic characteristics and has the characteristics of low magnetostriction, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高周波トランス、チョークコイル。[Detailed description of the invention] [Industrial application field] The present invention relates to a high frequency transformer and a choke coil.

磁気ヘッド等の磁心材料に好適な良好な軟磁性を示す超
微細結晶粒組織を有するFe基磁性合金に関するもので
ある。
The present invention relates to an Fe-based magnetic alloy having an ultrafine grain structure that exhibits good soft magnetism and is suitable for magnetic core materials such as magnetic heads.

〔従来の技術] 従来、高周波トランス、チョークコイル、磁気ヘッド等
の磁心材料としては、うず電流積が少ない利点を有する
フェライトや、高飽和磁束密度の特長を有するケイ素鋼
、パーマロイ、Fe−Al!、−Si合金等が用いられ
ていた。
[Prior Art] Conventionally, as magnetic core materials for high frequency transformers, choke coils, magnetic heads, etc., ferrite, which has the advantage of low eddy current product, silicon steel, permalloy, Fe-Al!, which has the feature of high saturation magnetic flux density, and other materials have been used. , -Si alloy, etc. were used.

しかし、フェライトは飽和磁束密度が低く、温度特性も
悪いため、高周波トランスやチョークコイルに用いる場
合、磁心を小型化することが困難であるという欠点があ
った。ケイ素鋼は飽和磁束密度は高いが高周波磁気特性
に劣り、高周波令頁域ではコア損失による発熱が大きく
なってしまう問題がある。パーマロイは比較的バランス
がとれた材料であるが衝撃や変形により著しく軟磁気特
性が劣化する欠点がある。Fe−Al1−Si合金は、
脆化しているため薄板化が困難であり、超急冷法によら
なければ薄板化できない。しかし、脆化が著しいため張
力をかけると破断しゃすく巻磁心を作製したりするのは
著しく困難である。また、薄膜化しても熱膨張係数が大
きく特性が劣化したり膜がはがれやすい問題もある。
However, since ferrite has a low saturation magnetic flux density and poor temperature characteristics, it has the disadvantage that it is difficult to miniaturize the magnetic core when used in high frequency transformers and choke coils. Although silicon steel has a high saturation magnetic flux density, it has poor high-frequency magnetic properties and has the problem of increasing heat generation due to core loss in the high-frequency range. Although permalloy is a relatively well-balanced material, it has the disadvantage that its soft magnetic properties deteriorate significantly due to impact or deformation. The Fe-Al1-Si alloy is
Because it is brittle, it is difficult to make it into a thin sheet, and it can only be made into a thin sheet by ultra-quenching. However, it is extremely difficult to fabricate a broken wedge-wound magnetic core when tension is applied because the embrittlement is significant. Further, even when the film is made thinner, there are problems in that the coefficient of thermal expansion is large and the properties deteriorate and the film is easily peeled off.

近年これらの欠点をある程度改善できるものとして、非
晶質合金が注目を集め一部実用化されている。
In recent years, amorphous alloys have attracted attention and some have been put into practical use as materials that can improve these drawbacks to some extent.

非晶質合金は主としてFe系とCo系に大別され、Fe
系の非晶質合金は飽和磁束密度が高く、材料コストがC
o系に比べて安くつくという利点がある反面、−船釣に
高周波においてCo系非晶質合金よりコア損失が大きく
、透磁率も低いという問題がある。またree非晶質合
金は磁歪が著しく大きく、磁心として併用する場合磁心
がうなりを生じたり含浸やコーティング等を行うと著し
く特性が劣化する欠点がある。
Amorphous alloys are mainly divided into Fe-based and Co-based.
The amorphous alloy of the system has a high saturation magnetic flux density and the material cost is C
Although it has the advantage of being cheaper than the Co-based amorphous alloy, it has the problem of having a larger core loss and lower magnetic permeability than the Co-based amorphous alloy at high frequencies for boat fishing. In addition, the ree amorphous alloy has extremely large magnetostriction, and when used together as a magnetic core, the magnetic core generates beats, and when impregnated, coated, etc., the characteristics deteriorate significantly.

これに対してCo系非晶質合金は高周波のコア損失が小
さく、透磁率も高いが、コア損失や透磁率の経時変化が
大きく、飽和磁束密度も十分ではない欠点がある。さら
には高価なCoを主原料とするため価格的な不利は免れ
ない。
On the other hand, Co-based amorphous alloys have small core loss at high frequencies and high magnetic permeability, but have the drawbacks of large changes in core loss and magnetic permeability over time, and insufficient saturation magnetic flux density. Furthermore, since expensive Co is used as the main raw material, it is inevitably disadvantageous in terms of price.

このような状況下でFe基非晶質合金について種種の提
案がなされた。
Under these circumstances, various proposals have been made regarding Fe-based amorphous alloys.

特公昭60−17019号には、74〜84原子%のF
eと、8〜24原子%のBと、16原子%以下のSi及
び3原子%以下のCの内の少なくとも1つとからなる組
成を有し、その構造の少なくとも85%が非晶質金属素
地の形を有し、かつ非晶質金属素地の全体にわたって不
連続に分布された結晶質粒子群の析出物を有しており、
結晶質粒子群は0.05〜1μmの平均粒度及び1〜1
0μmの平均粒子間距離を有しており、粒子群は全体の
0.01〜0.3の平均容積分率を占めていることを特
徴とする鉄基含硼素磁性非晶質合金が開示されている。
Japanese Patent Publication No. 60-17019 states that 74 to 84 atomic% of F
e, at least one of 8 to 24 atomic % B, 16 atomic % or less Si, and 3 atomic % or less C, and at least 85% of its structure is an amorphous metal substrate. and has precipitates of crystalline particles distributed discontinuously throughout the amorphous metal matrix,
The crystalline particles have an average particle size of 0.05 to 1 μm and 1 to 1
An iron-based boron-containing magnetic amorphous alloy is disclosed, which has an average interparticle distance of 0 μm, and the particle groups occupy an average volume fraction of 0.01 to 0.3 of the whole. ing.

この合金の結晶質粒子群は磁壁のピンニング点として作
用する不連続な分布のα−(Fe、 Si)粒子群であ
るとされている。
The crystalline particles of this alloy are said to be discontinuously distributed α-(Fe, Si) particles that act as pinning points of the domain wall.

また特開昭60−52557号にはFe、Cub B 
cSja  (ただし75≦a≦85.Orb≦0.5
,10°≦C≦20、d≦10かつc+d≦30)から
なる低損失非晶質磁性合金が開示されている。この非晶
質合金は結晶化温度以下でかつキュリー温度以上で熱処
理される。
Also, in JP-A-60-52557, Fe, Cub B
cSja (however, 75≦a≦85.Orb≦0.5
, 10°≦C≦20, d≦10 and c+d≦30). This amorphous alloy is heat treated below the crystallization temperature and above the Curie temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

特公昭60−17019号のFe基基磁磁性合金らなる
磁心は不連続な結晶質粒子群の存在によりコア損失は減
少するが、それでもコア損失は依然大きく、特に磁歪が
大きいためうなりを生じたり、含浸コーティングを行う
ことによりコア損失、透磁率の著しい劣化を招く問題が
あり、カットコア等では高特性のものが得られていない
In the magnetic core made of the Fe-based magnetomagnetic alloy disclosed in Japanese Patent Publication No. 60-17019, the core loss is reduced due to the presence of discontinuous crystalline grain groups, but the core loss is still large, and in particular, the core loss is large, causing beats. However, impregnation coating causes core loss and significant deterioration of magnetic permeability, and cut cores and the like have not been able to provide high properties.

一方、特開昭60−52557号のFe基非晶質合金は
Cuを含有しこれを用いた磁心のコア損失は低下してい
るが、上記結晶粒子含有Fe基磁性合金を用いたけ心と
同様に満足ではない。さらにはコア損失の経時変化、透
磁率に関しても十分でないという間題がある。
On the other hand, the Fe-based amorphous alloy of JP-A No. 60-52557 contains Cu, and the core loss of the magnetic core using it is reduced, but it is similar to the core loss of the magnetic core using the Fe-based magnetic alloy containing crystal grains. Not satisfied with that. Furthermore, there are problems in terms of changes in core loss over time and magnetic permeability.

従って本発明の目的はコア損失が低く、透磁率が高く、
歪等による特性劣化の小さいFe基磁性合金を提供する
ことおよびその製造方法を提供することを目的とする。
Therefore, the purpose of the present invention is to achieve low core loss, high magnetic permeability,
It is an object of the present invention to provide an Fe-based magnetic alloy whose characteristics are less deteriorated due to strain and the like, and to provide a method for manufacturing the same.

〔問題点を解決するための手段] 上記目的に鑑み鋭意研究の結果、本発明者等はFeと非
晶質形成元素であるBを基本成分とする合金にCuと、
Nb、 W、 Ta、 Zr、■f、 Ti、 Moか
ら選ばれる少なくとも一種の元素とを複合添加すること
により、非晶質合金の適当な熱処理により、組織の大半
が微細結晶粒からなるFe基磁性合金が得られさらに、
この合金を用いた磁心が優れた特性を示すことを見い出
し本発明に想到した。
[Means for Solving the Problems] In view of the above objectives, as a result of intensive research, the present inventors added Cu to an alloy whose basic components are Fe and B, which is an amorphous forming element.
By adding at least one element selected from Nb, W, Ta, Zr, ■f, Ti, and Mo in combination, appropriate heat treatment of the amorphous alloy results in a Fe-based structure in which the majority of the structure is composed of fine crystal grains. A magnetic alloy is obtained, and further,
It was discovered that a magnetic core using this alloy exhibits excellent characteristics, and the present invention was conceived.

本発明のFe基磁性合金は一般式: %式%() (ただし、MはCO及び/又はNiであり、AはCu及
び/又は八gであり、M′はNb、  W、 Ta、 
Zr、 Hf。
The Fe-based magnetic alloy of the present invention has the general formula: % formula % () (where M is CO and/or Ni, A is Cu and/or 8g, and M' is Nb, W, Ta,
Zr, Hf.

Ti及びMoからなる群から選ばれた少なくとも1種の
元素であり、a、x、y、  α、及び2はそれぞれ、
0≦a≦0.3,0.1≦X≦10.5≦2≦17.1
≦α≦30を満たす。)により表される組成を有し、組
織の少なくとも50%が微細な結晶粒からなり、その結
晶粒が1000Å以下の平均粒径を有するものである。
At least one element selected from the group consisting of Ti and Mo, a, x, y, α, and 2 are each,
0≦a≦0.3, 0.1≦X≦10.5≦2≦17.1
≦α≦30 is satisfied. ), at least 50% of the structure consists of fine crystal grains, and the crystal grains have an average grain size of 1000 Å or less.

本発明に係るPe基磁性合金は、前記非晶質合金を急冷
することにより得る工程と、これを加熱し微細な結晶粒
を形成する熱処理工程に依っても得られる。
The Pe-based magnetic alloy according to the present invention can also be obtained by a step of rapidly cooling the amorphous alloy and a heat treatment step of heating it to form fine crystal grains.

本発明に用いられる合金において、Cu及び/又はAg
は必須元素であり、その含有量Xは0.1〜10原子%
の範囲である。0.1原子%より少ないとCu 、 A
gの添加によるコア損失低下、透磁率上昇の効果がほと
んどなく、一方10原子%より多いと飽和磁束密度の低
下や軟磁気特性の劣化をもたらすためである。本発明に
おいて特に好ましいCu及び/又はAgの含有量Xは0
.5〜2[子%であり、この範囲ではコア損失が特に小
さく透磁率も高い。
In the alloy used in the present invention, Cu and/or Ag
is an essential element, and its content X is 0.1 to 10 at%
is within the range of If it is less than 0.1 atomic%, Cu, A
This is because the addition of g has almost no effect of reducing core loss or increasing magnetic permeability, while if it is more than 10 atomic %, it causes a decrease in saturation magnetic flux density and deterioration of soft magnetic properties. In the present invention, the particularly preferable content X of Cu and/or Ag is 0
.. The core loss is particularly small and the magnetic permeability is high in this range.

Cu + Agのコア損失低下、透磁率上昇作用の原因
は明らかではないが次のように考えられる。
The cause of the core loss reduction and magnetic permeability increase effect of Cu + Ag is not clear, but it is thought to be as follows.

Cu 、 AgとFeの相互作用パラメータは正であり
、固溶度が低く、分離する傾向があるため非晶質状態の
合金を加熱するとFe原子同志またはCu + Ag原
子同志が寄り集まりクラスターを形成するため組成ゆら
ぎが生じる。このため部分的に結晶化しやすい領域が多
数でき、そこを核とした微細な結晶粒が生成される。こ
の結晶はFeを主成分とするものであり、FeとCu 
、 Agの固溶度はほとんどないため結晶化によりCu
 、 Agは微細結晶粒の周囲にはき出され、結晶粒周
辺のCu 、 Ag 濃度が高くなる。このため結晶粒
は成長しにくいと考えられる。
The interaction parameter between Cu, Ag and Fe is positive, their solid solubility is low, and they tend to separate, so when an amorphous alloy is heated, Fe atoms or Cu + Ag atoms come together to form clusters. This causes compositional fluctuations. For this reason, there are many regions that are easily crystallized locally, and fine crystal grains are generated with these regions as nuclei. This crystal has Fe as its main component, and Fe and Cu
, Since Ag has almost no solid solubility, Cu crystallizes.
, Ag is expelled around the fine crystal grains, and the Cu and Ag concentrations around the crystal grains increase. Therefore, it is considered that crystal grains are difficult to grow.

Cu 、 Ag添加により結晶核が多数できることと結
晶粒が成長しにくいため結晶粒微細化が起こると考えら
れるが、この作用はNb、 Ta、 W、 Mo、 Z
r。
It is thought that crystal grain refinement occurs due to the formation of a large number of crystal nuclei and the difficulty in grain growth due to the addition of Cu and Ag, but this effect is caused by Nb, Ta, W, Mo, and Z.
r.

Iff、 Ti等の存在により特に著しくなると考えら
れる。
It is thought that the presence of If, Ti, etc. makes this particularly significant.

Nb、 Ta、 W、 Mo、 Zr、 Hf、 Ti
等が存在しない場合は結晶粒はあまり微細化されず軟磁
気特性も悪い。Nb、 Moは特に効果が大きいが、こ
れらの元素の中でNbを添加した場合特に結晶粒が細く
なりやすく、軟磁気特性も優れたものが得られる“。
Nb, Ta, W, Mo, Zr, Hf, Ti
If these are not present, the crystal grains will not be made much finer and the soft magnetic properties will be poor. Nb and Mo are particularly effective, but when Nb is added among these elements, crystal grains tend to become thinner, and products with excellent soft magnetic properties can be obtained.

またFeを主成分とする微細結晶相が生ずるためFe基
非晶質合金に比べ磁歪が小さくなり、内部窓カー歪によ
る磁気異方性が小さくなることも軟磁気特性が改善され
る理由と考えられる。
In addition, since a fine crystal phase mainly composed of Fe is generated, the magnetostriction is smaller than that of Fe-based amorphous alloys, and the magnetic anisotropy due to internal window Kerr strain is also reduced, which is thought to be the reason why the soft magnetic properties are improved. It will be done.

CuやAgを添加しない場合は結晶粒は微細化されにく
(、化合物相が形成しやすいため結晶化により磁気特性
は劣化する場合が多い。
If Cu or Ag is not added, crystal grains are difficult to refine (and because compound phases are likely to form, magnetic properties often deteriorate due to crystallization.

Bは、本発明に係る合金の微細化に特に有用な元素であ
る。本発明に係るFe基基磁磁性合金、好ましくは、−
旦Bの添加効果により非晶質合金とした後で熱処理によ
り微細結晶粒を形成させることにより得られる。Bの含
有量zの限定理由は、2が17原子%以下でないと軟磁
気特性が得にくいためである。
B is a particularly useful element for refining the alloy according to the present invention. The Fe-based magnetic alloy according to the present invention, preferably -
It is obtained by forming an amorphous alloy due to the effect of adding B and then forming fine crystal grains by heat treatment. The reason for limiting the B content z is that it is difficult to obtain soft magnetic properties unless 2 is 17 atomic % or less.

本発明において、M′はCu + Agとの複合添加に
より析出する結晶粒を微細化する作用を有するものであ
り、Nb、 W、 Ta、 Zr、 Hf+ Tt及び
MOからなる群から選ばれた少なくとも1種の元素であ
る。
In the present invention, M' has the effect of refining the crystal grains precipitated by the combined addition with Cu + Ag, and M' is at least one selected from the group consisting of Nb, W, Ta, Zr, Hf + Tt, and MO. It is a type of element.

Nb等は合金の結晶化温度を上昇させ非晶質化を容易に
する作用を有するが、クラスターを形成し結晶化温度を
低下させる作用を有するCu + Agとの相互作用に
より析出する結晶粒が微細化するものと考えられる。M
′の含有量αは1〜30原子%であり、1原子%未満だ
と結晶粒微細化の効果が不十分であり、30原子%を超
えると飽和磁束密度の著しい低下を招く。好ましいM′
の含有量αは2〜15原子%である。なおM′としてN
bが磁気特性の面で最も好ましい。またM′の添加によ
りCo基高透磁率材料と同等の高い透磁率を存するよう
になる。
Nb etc. have the effect of increasing the crystallization temperature of the alloy and making it easier to become amorphous, but the crystal grains that precipitate due to interaction with Cu + Ag, which has the effect of forming clusters and lowering the crystallization temperature. It is thought that it will become finer. M
The content α of ' is 1 to 30 atomic %; if it is less than 1 atomic %, the effect of grain refinement will be insufficient, and if it exceeds 30 atomic %, the saturation magnetic flux density will be significantly lowered. Preferred M'
The content α is 2 to 15 at%. Note that M' is N
b is the most preferable in terms of magnetic properties. Furthermore, by adding M', the material has a high magnetic permeability equivalent to that of a Co-based high magnetic permeability material.

残部は不純物を除いて実質的にFeが主体であるが、F
eの一部は成分M(Co及び/又はNi)により置換さ
れていてもよい。Mの含有量aはO≦a≦3であるが、
好ましくは、0≦a≦0.1である。
The remainder is essentially Fe, excluding impurities, but F
A part of e may be replaced by component M (Co and/or Ni). The content a of M is O≦a≦3,
Preferably, 0≦a≦0.1.

aが0.3を超えると、コア損失が増加する場合がある
ためである。またM“の添加により、耐食性の改善、磁
気特性の改善、又は磁歪調整効果を得ることができる。
This is because when a exceeds 0.3, core loss may increase. Furthermore, by adding M, it is possible to improve corrosion resistance, improve magnetic properties, or obtain a magnetostriction adjustment effect.

M#が10原子%を超えると飽和磁束密度低下が著しい
。本発明に係る合金のうち特にO≦a≦0.1,0.5
≦X≦2.5≦”z≦12゜2≦α≦15の関係を有す
る場合特に高透磁率、低コア損失が得られやすい。
When M# exceeds 10 atomic %, the saturation magnetic flux density decreases significantly. Among the alloys according to the present invention, particularly O≦a≦0.1, 0.5
When the relationship of ≦X≦2.5≦”z≦12°2≦α≦15 is satisfied, high magnetic permeability and low core loss are particularly likely to be obtained.

上記組成を有する本発明に係るFe基基磁磁性合金また
組織の少なくとも50%以上が微細な結晶粒からなる。
At least 50% or more of the structure of the Fe-based magnetic alloy according to the present invention having the above composition is composed of fine crystal grains.

この結晶粒はα−Peを主体とするものでB等が固溶し
ていると考えられる。この結晶粒は1000Å以下と著
しく小さな平均粒径を有することを特徴とし、合金組織
中に均一に分布している。合金組織のうち微細結晶粒以
外の部分は主に非晶質である。なお微細結晶粒の割合が
実質的に100%になっても本発明の合金は十分に優れ
た磁気特性を示す。
It is thought that these crystal grains are mainly composed of α-Pe and B etc. are dissolved therein. These crystal grains are characterized by having an extremely small average grain size of 1000 Å or less, and are uniformly distributed in the alloy structure. The parts of the alloy structure other than the fine crystal grains are mainly amorphous. Note that even when the proportion of fine crystal grains becomes substantially 100%, the alloy of the present invention exhibits sufficiently excellent magnetic properties.

なお、N、O,S、P、Al、C等の不可避的不純物に
ついては所望の特性が劣化しない程度に含有していても
本発明の合金組成と同一とみなすこと力やできるのはも
ちろんである。
Note that it goes without saying that unavoidable impurities such as N, O, S, P, Al, and C can be considered to be the same as the alloy composition of the present invention even if they are contained to the extent that the desired properties are not deteriorated. be.

次に本発明の合金の製造方法について説明する。Next, a method for manufacturing the alloy of the present invention will be explained.

まず上記所定の組成の溶湯から、片ロール法、双ロール
法等の公知の液体急冷法によりリボン状の非晶質合金を
形成する。通常、片ロール法等により製造される非晶質
合金リボンの板厚は5〜1001!m程度であるが、板
厚が25μm以下のものが高周波において使用される磁
心用薄帯として特に適している。
First, a ribbon-shaped amorphous alloy is formed from a molten metal having the above-mentioned predetermined composition by a known liquid quenching method such as a single roll method or a twin roll method. Usually, the thickness of the amorphous alloy ribbon manufactured by the single roll method etc. is 5 to 100 mm! However, those having a thickness of 25 μm or less are particularly suitable as ribbons for magnetic cores used at high frequencies.

この非晶質合金は結晶相を含んでいてもよいが、後の熱
処理により微細な結晶粒を均一に生成するためには非晶
質であるのが望ましい。
Although this amorphous alloy may contain a crystalline phase, it is preferably amorphous in order to uniformly generate fine crystal grains during subsequent heat treatment.

熱処理は所定の形状に加工した非晶質合金リボンを真空
中または水素、窒素、計等の不活性ガス雰囲気中、又大
気中において一定時間保持し通常行う。熱処理温度及び
時間は非晶質合金リボンからなる磁心の形状、サイズ、
組成等により異なるが、−船釣に450°C〜700°
Cで5分から24時間程度が望ましい。熱処理温度が4
50°C未満であると結晶化が起こりにく(、熱処理に
時間がかかりすぎる。また700″Cより高いと粗大な
結晶粒が生成したり、不均一な形態の結晶粒が生成する
おそれがあり、微細な結晶粒を均一に得ることができな
くなる。また熱処理時間につい゛ては、5分未満では加
工した合金全体を均一な温度とすることが困難であり磁
気特性がばらつきやすく、24時間より長いと生産性が
悪くなるだけでなく結晶粒の過剰な成長や不均一な形態
の結晶粒の生成により磁気特性の低下が起こりやすい。
Heat treatment is usually carried out by holding an amorphous alloy ribbon processed into a predetermined shape in a vacuum, in an inert gas atmosphere such as hydrogen, nitrogen, gas, etc., or in the atmosphere for a certain period of time. The heat treatment temperature and time depend on the shape and size of the magnetic core made of amorphous alloy ribbon.
Although it varies depending on the composition etc. - 450°C to 700° for boat fishing
C for about 5 minutes to 24 hours. Heat treatment temperature is 4
If the temperature is less than 50°C, crystallization will be difficult to occur (the heat treatment will take too much time. If the temperature is higher than 700"C, coarse crystal grains or non-uniform crystal grains may be produced. In addition, if the heat treatment time is less than 5 minutes, it is difficult to bring the entire processed alloy to a uniform temperature, and the magnetic properties tend to vary, making it impossible to obtain fine crystal grains uniformly. If the length is longer, not only will productivity deteriorate, but also magnetic properties will tend to deteriorate due to excessive growth of crystal grains and generation of non-uniform crystal grains.

好ましい熱処理条件は、実用性及び均一な温度コントロ
ール等を考慮して、500〜650°Cで5分〜6時間
である。
Preferred heat treatment conditions are 500 to 650°C for 5 minutes to 6 hours, taking into account practicality, uniform temperature control, and the like.

熱処理雰囲気はAr+ Nz、I(z等の不活性ガス雰
囲気又は還元性雰囲気が望ましいが、大気中等の酸化性
雰囲気でも良い。冷却は空冷や炉冷等により、適宜行う
ことができる。また場合によっては多段の熱処理を行う
こともできる。また熱処理の際磁心材に電流を流したり
高周波磁界を印加し磁心を発熱させることにより磁心を
熱処理することもできる。
The heat treatment atmosphere is preferably an inert gas atmosphere such as Ar+Nz, I(z, etc.) or a reducing atmosphere, but may also be an oxidizing atmosphere such as air. Cooling can be performed as appropriate by air cooling, furnace cooling, etc. It is also possible to perform multi-stage heat treatment.Furthermore, during heat treatment, the magnetic core can be heat-treated by passing an electric current through the magnetic core material or applying a high-frequency magnetic field to generate heat in the magnetic core.

熱処理を直流あるいは交流等の磁場中で行うこともでき
る。更には磁場中熱処理により本磁心に用いられている
合金に磁気異方性を生じさせ特性向上をはかることがで
きる。磁場は熱処理の間中かける必要はなく、合金のキ
ュリー温度Tcより低い温度のときであればよい場合が
多い。本磁心の磁路方向に磁心が飽和する程度の磁場を
印加し熱処理した場合は、B−Hカーブの角形性が良い
ものが得られ、可飽和リアクトル用磁心、磁気スイッチ
、エキシマレーザ励起回路に用いられるパルス圧縮用コ
ア等に好適となる。一方磁路と直角方向に磁心がほぼ飽
和する強さの磁場を印加し熱処理した場合は、B−Hカ
ーブが傾斜し、低角形比で恒透6R率特性に優れたもの
が得られ、動作範囲が広がるので、トランスやノズルフ
ィルター、チョークコイル等に好適となる。また本発明
の磁心は回転磁場中熱処理を適用することも可能であり
、より高透磁率化が可能である。また磁場中熱処理の場
合も熱処理を2段階以上で行うことができる。
The heat treatment can also be performed in a magnetic field such as direct current or alternating current. Furthermore, magnetic anisotropy can be produced in the alloy used in the present magnetic core by heat treatment in a magnetic field, thereby improving properties. It is not necessary to apply a magnetic field throughout the heat treatment, and it is often sufficient to apply the magnetic field at a temperature lower than the Curie temperature Tc of the alloy. When this magnetic core is heat-treated by applying a magnetic field to the extent that the magnetic core is saturated in the magnetic path direction, a product with good B-H curve squareness can be obtained, which can be used as a magnetic core for saturable reactors, magnetic switches, and excimer laser excitation circuits. This makes it suitable for pulse compression cores and the like. On the other hand, when heat treatment is performed by applying a magnetic field with a strength that almost saturates the magnetic core in a direction perpendicular to the magnetic path, the B-H curve becomes sloped, a product with a low squareness ratio and excellent constant permeability 6R ratio characteristics is obtained, and the operation Since the range is widened, it is suitable for transformers, nozzle filters, choke coils, etc. Furthermore, the magnetic core of the present invention can also be subjected to heat treatment in a rotating magnetic field, thereby making it possible to further increase the magnetic permeability. Also, in the case of heat treatment in a magnetic field, the heat treatment can be performed in two or more stages.

また、張力や圧縮力を加えながら熱処理磁気特性を改善
することもできる。また本発明合金は無磁場中熱処理で
も低角形比恒透磁率特性が得やすい特徴がある。
Furthermore, the magnetic properties can be improved by heat treatment while applying tension or compression force. Furthermore, the alloy of the present invention has the characteristic that it is easy to obtain a constant magnetic permeability characteristic with a low squareness ratio even when heat-treated in a non-magnetic field.

また、本発明合金はスパッター法、蒸着°法等の気相急
冷法により非晶質合金膜を作製後これを熱処理し結晶化
されて製造することもできるし、膜をつける基板を加熱
しながら膜をつけ熱処理を行なわず直接微細結晶粒組織
からなる本発明Pe基磁性合金を得ることもできる。A
gを添加する場合は薄膜化した方がより好ましい結果を
得ることができる。
The alloy of the present invention can also be produced by forming an amorphous alloy film by a vapor phase rapid cooling method such as a sputtering method or a vapor deposition method, and then heat-treating the film to crystallize it, or by heating the substrate on which the film is to be applied. It is also possible to directly obtain the Pe-based magnetic alloy of the present invention having a fine grain structure without applying a film and performing heat treatment. A
When adding g, more preferable results can be obtained by making the film thinner.

また、アトマイズ法、キャビラーション法等により粉末
やフレーク状の本発明合金粉末を得ることもできる。
Further, the alloy powder of the present invention in the form of powder or flakes can also be obtained by an atomization method, a cavillation method, or the like.

回転液中紡糸法により線状の本発明合金を得ることも可
能である。
It is also possible to obtain a linear alloy of the present invention by spinning in a rotating liquid.

〔実施例〕〔Example〕

以下本発明を、実施例に従って説明するが、本発明はこ
れらに限定されるものではない。
The present invention will be described below with reference to Examples, but the present invention is not limited thereto.

皇旌■上 原子%でCu1%、NblO%、89%残部reからな
る合金溶湯を単ロール法により急冷し幅5m。
A molten alloy consisting of 1% Cu, 1% NblO, and the balance 89% Re was rapidly cooled to a width of 5 m using a single roll method.

厚さ18μmの合金薄帯を作製した。An alloy ribbon with a thickness of 18 μm was produced.

得られた合金はX線回折および透過電子顕wi、境によ
る組織観察の結果はぼ非晶質単相であることが確認され
た。この非晶質合金の結晶化温度は460°Cであった
The obtained alloy was confirmed to have an almost amorphous single phase by X-ray diffraction, transmission electron microscopy, and boundary observation. The crystallization temperature of this amorphous alloy was 460°C.

次にこの合金を外径19mm、内径15mに巻回し窒素
ガス雰囲気中590°Cに1時間保持後室温まで約10
0°C/ m inの冷却速度で冷却した。次にこのト
ロイダル磁心をフェノール樹脂製のコアケースに入れ磁
気特性を測定した。
Next, this alloy was wound to have an outer diameter of 19 mm and an inner diameter of 15 m, and was kept at 590°C for 1 hour in a nitrogen gas atmosphere, and then heated to room temperature for about 10 minutes.
Cooling was performed at a cooling rate of 0 °C/min. Next, this toroidal magnetic core was placed in a core case made of phenolic resin and its magnetic properties were measured.

飽和磁束密度Bsは12.2kG、角形比Br/Bsは
18%、保磁力Hcは9.2 A/m・、  1 kH
zにおける実効透磁率μelkは21000.100k
Hz 2kGにおけるコア損失W!100には560m
w7ccであった。この合金のミクロ組織を透過電子顕
微鏡により観察したところ10nm以下の粒径の超微細
な結晶組織からなることが確認された。ミクロ組織の概
略図を第1図に示す。この結晶粒は電子回折の結果bc
c構造のFeであることが確認された。
Saturation magnetic flux density Bs is 12.2 kG, squareness ratio Br/Bs is 18%, coercive force Hc is 9.2 A/m・, 1 kH
The effective permeability μelk at z is 21000.100k
Core loss W at Hz 2kG! 560m for 100
It was w7cc. When the microstructure of this alloy was observed using a transmission electron microscope, it was confirmed that it consisted of an ultrafine crystal structure with a grain size of 10 nm or less. A schematic diagram of the microstructure is shown in FIG. This crystal grain is the result of electron diffractionbc
It was confirmed that it was Fe with c structure.

本発明合金はBSが10kG以上と高いものが得られ高
透磁率、低損失であり、低角形比の特性が得やすいため
コモンモードチョークや高周波°トランス材とに適して
いる。また、低磁歪であり磁気ヘッド材にも適している
The alloy of the present invention has a high BS of 10 kG or more, has high magnetic permeability, low loss, and can easily obtain characteristics of a low squareness ratio, so it is suitable for common mode chokes and high frequency transformer materials. It also has low magnetostriction and is suitable for magnetic head materials.

側1殊i 原子%でCu1%、Nb8%、89%、残部reからな
る合金溶湯を単ロール法により急冷し、幅10mm、厚
さ12μmの合金薄帯を作製した。
A molten alloy consisting of Cu 1%, Nb 8%, 89% and the balance re at atomic % was rapidly cooled by a single roll method to produce an alloy ribbon having a width of 10 mm and a thickness of 12 μm.

X線回折の結果この合金はほぼ非晶質相からなっている
ことが確認された。
As a result of X-ray diffraction, it was confirmed that this alloy consisted of almost an amorphous phase.

次にこの合金から外径8mm、内径5mmのリング状の
試料を取り出し、真空中で550°Cに1時間保持し熱
処理を行った。次にこの合金の1 kHzにおける実効
透磁率μe+xを測定し更に100°Cに保持した恒温
槽中に試料を入れ経時変化を調べた。
Next, a ring-shaped sample with an outer diameter of 8 mm and an inner diameter of 5 mm was taken out of this alloy, and heat treated by holding it at 550° C. for 1 hour in a vacuum. Next, the effective magnetic permeability μe+x of this alloy at 1 kHz was measured, and the sample was placed in a constant temperature bath kept at 100°C to examine changes over time.

第2図にμmB1にはL時間経過後の値である。なお透
過電子顕微鏡による組織観察の結果ミクロ組織は実施例
1とほぼ同様であることが確認された。
In FIG. 2, μmB1 is the value after L time has elapsed. As a result of microstructure observation using a transmission electron microscope, it was confirmed that the microstructure was almost the same as that of Example 1.

本発明合金の経時変化は従来のCo基アモルファス合金
(Co−Pe−3i −B )等に比べ著しく小さい。
The aging of the alloy of the present invention is significantly smaller than that of conventional Co-based amorphous alloys (Co--Pe-3i-B).

1隻■工 第1表に示す組織の合金溶湯から単ロール法により厚さ
12μI2幅3mmの合金1帯を作製した。
One alloy strip having a thickness of 12 μI and a width of 3 mm was produced from a molten alloy having the structure shown in Table 1 by a single roll method.

X線回折の結果得られた合金は非晶質主体の合金である
ことが確認された。
The alloy obtained as a result of X-ray diffraction was confirmed to be a predominantly amorphous alloy.

次にこの合金を外径10mm、内径7I!ll11に巻
回しNtガス雰囲気中で熱処理後、100kHz 、 
 2.kGにおけるコア損失の120°Cの経時変化を
測定した。
Next, make this alloy into an outer diameter of 10mm and an inner diameter of 7I! After winding around ll11 and heat-treating in Nt gas atmosphere, 100kHz,
2. The 120°C time course of core loss in kG was measured.

得られた結果を第1表に示す。なお透過電子顕微鏡によ
る組織観察の結果得られた合金は実施例1と同様のミク
ロ組織を有していた。
The results obtained are shown in Table 1. Note that the alloy obtained as a result of structure observation using a transmission electron microscope had a microstructure similar to that of Example 1.

W。W.

第1表に示すように本発明合金のコア損失の経時変化は
、従来材より優れており、より信頼性の高い磁性部品を
作製できる。
As shown in Table 1, the change in core loss over time of the alloy of the present invention is superior to that of conventional materials, and more reliable magnetic parts can be produced.

次11津先 第2表に示す組成の厚さ3μmの合金膜をホトセラム基
板上にマグネトロンスパッタ装置゛を用い作製した。
Next, a 3 μm thick alloy film having the composition shown in Table 2 was prepared on a photoceram substrate using a magnetron sputtering device.

次にこの合金をN!ガス雰囲気中で熱処理し、IMll
zにおける実効透磁率μe4を測定した。また塩水噴霧
試験により耐食性を調べた。
Next, add this alloy to N! Heat treated in a gas atmosphere, IMll
The effective magnetic permeability μe4 at z was measured. Corrosion resistance was also investigated using a salt spray test.

得られた結果を第2表に示す。The results obtained are shown in Table 2.

本発明合金は、耐食性に優れ、透磁率が高いためVTR
用磁気ヘッドなどに適している。
The alloy of the present invention has excellent corrosion resistance and high magnetic permeability, so it is suitable for VTR.
Suitable for magnetic heads, etc.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、軟磁気特性に優れ、低磁歪のF e7
M 4n性合金を得ることができるためその°結果は著
しいものがある。
According to the present invention, Fe7 has excellent soft magnetic properties and low magnetostriction.
The results are remarkable since an M4n alloy can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る合金の透過電子顕微鏡により観察
したミクロ組織の概略図を示した図、第2図は本発明に
係る合金と従来のアモルファス合金の1kllzにおけ
る実効透磁率μe□の経時変化の一例を示した図である
。 第1図 保持時間(h)
Figure 1 shows a schematic diagram of the microstructure of the alloy according to the present invention observed using a transmission electron microscope, and Figure 2 shows the effective magnetic permeability μe□ at 1 kllz of the alloy according to the present invention and a conventional amorphous alloy over time. It is a figure showing an example of change. Figure 1 Retention time (h)

Claims (1)

【特許請求の範囲】 1、一般式: (Fe_1_−_aM_a)_1_0_0_−_x_−
_α_−_zA_xM′_αB_z(原子%)(ただし
、MはCo及び/又はNiであり、AはCu及び/又は
Agであり、M′はNb、Ta、Zr、Hf、Ti及び
Moからなる群から選ばれた少なくとも1種の元素であ
り、 a、x、α及びzはそれぞれ、 0≦a≦0.3、0.1≦x≦10、1≦α≦30、5
≦z≦17を満たす。) により表わされる組成を有し、組織の少なくとも50%
が微細な結晶粒からなり、前記結晶粒の最大寸法で測定
した粒径の平均が1000Å以下の平均粒径を有するこ
とを特徴とするFe基磁性合金。 2、一般式: (Fe_1_−_aM_a)_1_0_0_−_x_−
_α_−_β_−_zA_xM′_αM″_βB_z(
原子%)(ただし、MはCo及び/又はNiであり、A
はCu及び/又はAgであり、M′はNb、Ta、Zr
、Hf、Ti及びMoからなる群から選ばれた少なくと
も1種の元素、M″はV、Cr、Mn、白金属元素Au
、Zn、Sn、Reからなる群から選ばれた少なくとも
1種の元素であり、 a、x、α、β及びzはそれぞれ、 0≦a≦0.3、0.1≦x≦10、1≦α≦30、β
≦10、5≦z≦17を満たす。) により表わされる組成を有し、組織の少なくとも50%
が微細な結晶粒からなり、前記結晶粒の最大寸法で測定
した粒径の平均が1000Å以下の平均粒径を有するこ
とを特徴とするFe基磁性合金。 3、前記結晶粒の残部が非晶質であることを特徴とする
特許請求の範囲第1項ならびに第2項に記載のFe基磁
性合金。 4、前記組織が実質的に微細な結晶粒からなることを特
徴とする特許請求の範囲第1項ならびに第2項に記載の
Fe基磁性合金。 5、前記結晶粒の最大寸法で測定した粒径の平均が50
0Å以下であることを特徴とする特許請求の範囲第1項
乃至第4項に記載のFe基磁性合金。
[Claims] 1. General formula: (Fe_1_-_aM_a)_1_0_0_-_x_-
_α_-_zA_xM'_αB_z (atomic %) (where M is Co and/or Ni, A is Cu and/or Ag, and M' is from the group consisting of Nb, Ta, Zr, Hf, Ti, and Mo At least one selected element, a, x, α and z are respectively 0≦a≦0.3, 0.1≦x≦10, 1≦α≦30, 5
≦z≦17 is satisfied. ) and at least 50% of the tissue
An Fe-based magnetic alloy comprising fine crystal grains and having an average grain size of 1000 Å or less as measured by the maximum dimension of the crystal grains. 2. General formula: (Fe_1_-_aM_a)_1_0_0_-_x_-
_α_−_β_−_zA_xM′_αM″_βB_z(
%) (However, M is Co and/or Ni, and A
is Cu and/or Ag, M' is Nb, Ta, Zr
, Hf, Ti and Mo, M″ is V, Cr, Mn, platinum metal element Au
, Zn, Sn, and Re, and a, x, α, β, and z are respectively 0≦a≦0.3, 0.1≦x≦10, 1 ≦α≦30, β
Satisfies ≦10, 5≦z≦17. ) and at least 50% of the tissue
An Fe-based magnetic alloy comprising fine crystal grains and having an average grain size of 1000 Å or less as measured by the maximum dimension of the crystal grains. 3. The Fe-based magnetic alloy according to claims 1 and 2, wherein the remainder of the crystal grains is amorphous. 4. The Fe-based magnetic alloy according to claims 1 and 2, wherein the structure is substantially composed of fine crystal grains. 5. The average grain size measured at the maximum dimension of the crystal grains is 50
The Fe-based magnetic alloy according to any one of claims 1 to 4, wherein the Fe-based magnetic alloy has a thickness of 0 Å or less.
JP6882388A 1988-03-23 1988-03-23 Fe-based magnetic alloy Pending JPH01242755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6882388A JPH01242755A (en) 1988-03-23 1988-03-23 Fe-based magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6882388A JPH01242755A (en) 1988-03-23 1988-03-23 Fe-based magnetic alloy

Publications (1)

Publication Number Publication Date
JPH01242755A true JPH01242755A (en) 1989-09-27

Family

ID=13384817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6882388A Pending JPH01242755A (en) 1988-03-23 1988-03-23 Fe-based magnetic alloy

Country Status (1)

Country Link
JP (1) JPH01242755A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121629A (en) * 1990-09-13 1992-04-22 Alps Electric Co Ltd Force sensor
JPH04213804A (en) * 1990-11-27 1992-08-04 Alps Electric Co Ltd Fe-group soft magnetic alloy core
JPH04229603A (en) * 1990-09-07 1992-08-19 Alps Electric Co Ltd Magnetic head
JPH04229604A (en) * 1990-09-07 1992-08-19 Alps Electric Co Ltd Low-frequency transformer
JPH04272104A (en) * 1990-09-13 1992-09-28 Alps Electric Co Ltd Manufacture of ferrous soft magnetic alloy green compact and ferrous soft magnetic alloy powder
JPH04288803A (en) * 1991-03-18 1992-10-13 Alps Electric Co Ltd Low frequency transformer
JPH04289152A (en) * 1991-03-18 1992-10-14 Alps Electric Co Ltd Manufacture of ferrous soft magnetic alloy green compact and ferrous soft magnetic alloy powder
JPH056816A (en) * 1990-09-07 1993-01-14 Alps Electric Co Ltd Magnetic head
JPH0593249A (en) * 1990-04-24 1993-04-16 Alps Electric Co Ltd High saturation magnetic flux density ferrous soft magnetic alloy
EP0695812A1 (en) 1994-08-01 1996-02-07 Hitachi Metals, Ltd. Nanocrystalline alloy with insulating coating, magnetic core made thereof, and process for forming insulating coating on a nanocrystalline alloy
US5611871A (en) * 1994-07-20 1997-03-18 Hitachi Metals, Ltd. Method of producing nanocrystalline alloy having high permeability
US5635828A (en) * 1993-11-26 1997-06-03 Hitachi Metals, Ltd. Active filter circuit and power supply apparatus including same
US5741373A (en) * 1990-04-24 1998-04-21 Alps Electric Co., Ltd. Fe based soft magnetic alloy, magnetic materials containing same, and magnetic apparatus using the magnetic materials
JP2001329349A (en) * 2000-05-17 2001-11-27 Hitachi Metals Ltd Amorphous alloy ribbon for nano-crystalline soft magnetic alloy, and laminated magnetic core
US7141127B2 (en) 2003-01-17 2006-11-28 Hitachi Metals, Ltd. Low core loss magnetic alloy with high saturation magnetic flux density and magnetic parts made of same
WO2007125690A1 (en) 2006-04-28 2007-11-08 Hitachi Metals, Ltd. Magnetic core for current transformer, current transformer, and watt-hour meter
US7473325B2 (en) 2004-12-17 2009-01-06 Hitachi Metals, Ltd. Current transformer core, current transformer and power meter
WO2009123100A1 (en) 2008-03-31 2009-10-08 日立金属株式会社 Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, and magnetic core
JP2010050386A (en) * 2008-08-25 2010-03-04 Taihokohzai:Kk Heat-sensitive magnetic particle, its manufacturing method, and heat-sensitive magnetic fluid
US8083867B2 (en) 2006-01-04 2011-12-27 Hitachi Metals, Ltd. Amorphous alloy ribbon, nanocrystalline soft magnetic alloy and magnetic core consisting of nanocrystalline soft magnetic alloy
US8177923B2 (en) 2005-09-16 2012-05-15 Hitachi Metals, Ltd. Nano-crystalline, magnetic alloy, its production method, alloy ribbon and magnetic part
WO2015122527A1 (en) * 2014-02-17 2015-08-20 日立金属株式会社 Core for high-frequency transformer, and manufacturing method therefor
KR20170097041A (en) 2014-12-22 2017-08-25 히타치 긴조쿠 가부시키가이샤 Fe-BASED SOFT MAGNETIC ALLOY RIBBON AND MAGNETIC CORE COMPRISING SAME
EP3315629A1 (en) * 2016-10-31 2018-05-02 TDK Corporation Soft magnetic alloy and magnetic device

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593249A (en) * 1990-04-24 1993-04-16 Alps Electric Co Ltd High saturation magnetic flux density ferrous soft magnetic alloy
US5741373A (en) * 1990-04-24 1998-04-21 Alps Electric Co., Ltd. Fe based soft magnetic alloy, magnetic materials containing same, and magnetic apparatus using the magnetic materials
JPH04229603A (en) * 1990-09-07 1992-08-19 Alps Electric Co Ltd Magnetic head
JPH04229604A (en) * 1990-09-07 1992-08-19 Alps Electric Co Ltd Low-frequency transformer
JPH056816A (en) * 1990-09-07 1993-01-14 Alps Electric Co Ltd Magnetic head
JPH04272104A (en) * 1990-09-13 1992-09-28 Alps Electric Co Ltd Manufacture of ferrous soft magnetic alloy green compact and ferrous soft magnetic alloy powder
JPH04121629A (en) * 1990-09-13 1992-04-22 Alps Electric Co Ltd Force sensor
JPH04213804A (en) * 1990-11-27 1992-08-04 Alps Electric Co Ltd Fe-group soft magnetic alloy core
JPH04288803A (en) * 1991-03-18 1992-10-13 Alps Electric Co Ltd Low frequency transformer
JPH04289152A (en) * 1991-03-18 1992-10-14 Alps Electric Co Ltd Manufacture of ferrous soft magnetic alloy green compact and ferrous soft magnetic alloy powder
US5635828A (en) * 1993-11-26 1997-06-03 Hitachi Metals, Ltd. Active filter circuit and power supply apparatus including same
US5611871A (en) * 1994-07-20 1997-03-18 Hitachi Metals, Ltd. Method of producing nanocrystalline alloy having high permeability
EP0695812A1 (en) 1994-08-01 1996-02-07 Hitachi Metals, Ltd. Nanocrystalline alloy with insulating coating, magnetic core made thereof, and process for forming insulating coating on a nanocrystalline alloy
JP2001329349A (en) * 2000-05-17 2001-11-27 Hitachi Metals Ltd Amorphous alloy ribbon for nano-crystalline soft magnetic alloy, and laminated magnetic core
US7141127B2 (en) 2003-01-17 2006-11-28 Hitachi Metals, Ltd. Low core loss magnetic alloy with high saturation magnetic flux density and magnetic parts made of same
US7473325B2 (en) 2004-12-17 2009-01-06 Hitachi Metals, Ltd. Current transformer core, current transformer and power meter
US8177923B2 (en) 2005-09-16 2012-05-15 Hitachi Metals, Ltd. Nano-crystalline, magnetic alloy, its production method, alloy ribbon and magnetic part
US8182620B2 (en) 2005-09-16 2012-05-22 Hitachi Metals, Ltd. Nano-crystalline, magnetic alloy, its production method, alloy ribbon and magnetic part
US8083867B2 (en) 2006-01-04 2011-12-27 Hitachi Metals, Ltd. Amorphous alloy ribbon, nanocrystalline soft magnetic alloy and magnetic core consisting of nanocrystalline soft magnetic alloy
WO2007125690A1 (en) 2006-04-28 2007-11-08 Hitachi Metals, Ltd. Magnetic core for current transformer, current transformer, and watt-hour meter
US7837807B2 (en) 2006-04-28 2010-11-23 Hitachi Metals, Ltd. Magnetic core for current transformer, current transformer, and watt-hour meter
US8414712B2 (en) 2008-03-31 2013-04-09 Hitachi Metals, Ltd. Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, and magnetic core
WO2009123100A1 (en) 2008-03-31 2009-10-08 日立金属株式会社 Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, and magnetic core
JP2010050386A (en) * 2008-08-25 2010-03-04 Taihokohzai:Kk Heat-sensitive magnetic particle, its manufacturing method, and heat-sensitive magnetic fluid
WO2015122527A1 (en) * 2014-02-17 2015-08-20 日立金属株式会社 Core for high-frequency transformer, and manufacturing method therefor
CN106030732A (en) * 2014-02-17 2016-10-12 日立金属株式会社 Core for high-frequency transformer, and manufacturing method therefor
US20170011829A1 (en) * 2014-02-17 2017-01-12 Hitachi Metals, Ltd. Core for high-frequency transformer, and manufacturing method therefor
JPWO2015122527A1 (en) * 2014-02-17 2017-03-30 日立金属株式会社 Magnetic core for high-frequency transformer and manufacturing method thereof
CN106030732B (en) * 2014-02-17 2018-09-04 日立金属株式会社 High frequency transformer magnetic core and its manufacturing method
KR20170097041A (en) 2014-12-22 2017-08-25 히타치 긴조쿠 가부시키가이샤 Fe-BASED SOFT MAGNETIC ALLOY RIBBON AND MAGNETIC CORE COMPRISING SAME
US10546674B2 (en) 2014-12-22 2020-01-28 Hitachi Metals, Ltd. Fe-based soft magnetic alloy ribbon and magnetic core comprising same
EP3315629A1 (en) * 2016-10-31 2018-05-02 TDK Corporation Soft magnetic alloy and magnetic device
KR20180048377A (en) * 2016-10-31 2018-05-10 티디케이가부시기가이샤 Soft magnetic alloy and magnetic device
CN108022709A (en) * 2016-10-31 2018-05-11 Tdk株式会社 Non-retentive alloy and magnetic part
CN108022709B (en) * 2016-10-31 2020-04-14 Tdk株式会社 Soft magnetic alloy and magnetic component
US10748688B2 (en) 2016-10-31 2020-08-18 Tdk Corporation Soft magnetic alloy and magnetic device

Similar Documents

Publication Publication Date Title
JPH01242755A (en) Fe-based magnetic alloy
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5316921B2 (en) Fe-based soft magnetic alloy and magnetic component using the same
US4881989A (en) Fe-base soft magnetic alloy and method of producing same
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
JPH044393B2 (en)
JP2573606B2 (en) Magnetic core and manufacturing method thereof
JP2008231462A (en) Magnetic alloy, amorphous alloy strip and magnetic component
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JP3231149B2 (en) Noise filter
JP2848667B2 (en) Method for manufacturing ultra-thin soft magnetic alloy ribbon
JPH01247557A (en) Manufacture of hyperfine-crystal soft-magnetic alloy
JP2823203B2 (en) Fe-based soft magnetic alloy
JP2001295005A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
JPH0711396A (en) Fe base soft magnetic alloy
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JP2000119825A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP AND Fe BASE NANOCRYSTAL SOFT MAGNETIC ALLOY THIN STRIP USING THE SAME AND MAGNETIC CORE
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JPH01247556A (en) Fe-base magnetic alloy excellent in iso-permeability characteristic
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JPH0610105A (en) Fe base soft magnetic alloy
JPH0238520A (en) Manufacture of fe-base soft-magnetic alloy and magnetic core
JPH01156452A (en) Fe-based magnetic alloy