JP2007270271A - Soft magnetic alloy, its manufacturing method, and magnetic component - Google Patents

Soft magnetic alloy, its manufacturing method, and magnetic component Download PDF

Info

Publication number
JP2007270271A
JP2007270271A JP2006097685A JP2006097685A JP2007270271A JP 2007270271 A JP2007270271 A JP 2007270271A JP 2006097685 A JP2006097685 A JP 2006097685A JP 2006097685 A JP2006097685 A JP 2006097685A JP 2007270271 A JP2007270271 A JP 2007270271A
Authority
JP
Japan
Prior art keywords
alloy
soft magnetic
magnetic
magnetic alloy
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006097685A
Other languages
Japanese (ja)
Inventor
Katsuto Yoshizawa
克仁 吉沢
Motoki Ota
元基 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006097685A priority Critical patent/JP2007270271A/en
Publication of JP2007270271A publication Critical patent/JP2007270271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a software magnetic alloy containing fine crystals of nano-scale, and having the high saturated magnetic flux density, excellent soft magnetic characteristic, and especially excellent AC magnetic characteristic, and its manufacturing method. <P>SOLUTION: The soft magnetic alloy manufacturing method comprises: a step of manufacturing an Fe-based alloy having a structure in which crystal grains having the mean grain size of ≤ 20 nm in an amorphous mother phase are dispersed with the mean crystalline intergranular distance of ≤ 50 nm by quenching a molten alloy containing Fe and metalloid elements; and a step of forming a structure in which crystal grains of the body-centered cubicle structure of the mean grain size of ≤ 50 nm are dispersed at ≥ 30% in terms of the volume fraction in an amorphous mother phase by heating the Fe-based alloy to perform the heat treatment. The soft magnetic alloy is manufactured by using the manufacturing method. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、各種トランス、リアクトル・チョークコイル、ノイズ対策部品、レーザ電源や加速器などに用いられるパルスパワー磁性部品、通信用パルストランス、モータ磁心、発電機、磁気センサ、アンテナ磁心、電流センサ、磁気シールド、電磁波吸収シート、ヨーク材等に用いられるナノスケールの微細な結晶粒を含む高飽和磁束密度でかつ優れた軟磁気特性、特に優れた交流磁気特性を示す軟磁性合金、その製造方法ならびに磁性部品に関する。   The present invention includes various transformers, reactor / choke coils, noise countermeasure components, pulse power magnetic components used in laser power supplies and accelerators, communication pulse transformers, motor cores, generators, magnetic sensors, antenna cores, current sensors, magnetic Soft magnetic alloy with high saturation magnetic flux density and fine soft magnetic properties including nanoscale fine crystal grains used in shields, electromagnetic wave absorbing sheets, yoke materials, etc., and particularly its production method and magnetism Regarding parts.

各種トランス、モータ、発電機、リアクトル・チョ−クコイル、ノイズ対策部品、レーザ電源、加速器用パルスパワー磁性部品、各種センサ、磁気シールド、磁気回路用ヨーク等に用いられる軟磁性材料としては、珪素鋼、フェライト、非晶質合金やFeCuNbSiB系合金やFeZrB系合金に代表されるFe基ナノ結晶合金等が知られている。フェライト材料は飽和磁束密度が低くキュリー温度が低いため、動作磁束密度を大きく設計するハイパワーの用途の磁心などに使用した場合、磁心サイズが大きくなる問題や金属系軟磁性材料に比べて温度特性が悪くなる問題がある。珪素鋼は、材料が安価で磁束密度が高く低周波の用途では小型化の面で有利であるが、磁心損失が大きいという問題があり、特に高周波の用途では渦電流損失が増加するために磁心損失が著しく大きくなる問題がある。Fe基やCo基の非晶質合金(アモルファス合金)は、通常液相や気相から超超急冷し製造され、結晶粒が存在しないために本質的に結晶磁気異方性が存在せず優れた軟磁気特性を示すことが知られている。非晶質合金は低損失で透磁率が高く電力用変圧器、チョークコイル、磁気ヘッドや電流センサなどの磁心材料として使用されている。また、通常板厚は5μm〜50μm程度であり、渦電流損失が低いため高周波の応用に適する。しかし、Fe基非晶質合金は磁歪が大きく騒音の問題や樹脂などで含浸した場合に樹脂含浸により発生する応力により磁気特性が劣化する問題がある。また、飽和磁束密度もCoなど高価な元素を添加しない場合、1.7T未満であり、不十分である。Co基非晶質合金は低磁歪で高透磁率であるが、飽和磁束密度が1T以下と低く、直流が重畳する用途や低周波の用途では磁心が大きくなってしまう問題や100℃を超えると経時変化が大きくなるという問題がある。また、Coが高価なため用途が限定される。   Silicon steel is used as a soft magnetic material for various transformers, motors, generators, reactor choke coils, noise countermeasure parts, laser power supplies, pulse power magnetic parts for accelerators, various sensors, magnetic shields, magnetic circuit yokes, etc. Ferrite, amorphous alloys, FeCuNbSiB alloys and Fe-based nanocrystalline alloys represented by FeZrB alloys are known. Ferrite materials have a low saturation magnetic flux density and a low Curie temperature, so when used in high-power applications such as high-power magnetic cores designed to have a high operating magnetic flux density, the temperature characteristics compared to the problems of large magnetic core size and metal-based soft magnetic materials There is a problem that makes it worse. Silicon steel is advantageous in terms of downsizing in low-frequency applications where the material is inexpensive and magnetic flux density is high, but there is a problem that the core loss is large, especially in high-frequency applications, because the eddy current loss increases, There is a problem that the loss becomes remarkably large. Fe-based and Co-based amorphous alloys (amorphous alloys) are usually manufactured by ultra-rapid cooling from the liquid phase or gas phase, and are essentially free of crystalline magnetic anisotropy due to the absence of crystal grains. It is known to exhibit soft magnetic properties. Amorphous alloys have low loss and high magnetic permeability, and are used as magnetic core materials for power transformers, choke coils, magnetic heads and current sensors. Further, the plate thickness is usually about 5 μm to 50 μm, and since eddy current loss is low, it is suitable for high frequency applications. However, the Fe-based amorphous alloy has a large magnetostriction, and there is a problem of noise, and when impregnated with a resin or the like, there is a problem that magnetic characteristics are deteriorated due to a stress generated by the resin impregnation. In addition, the saturation magnetic flux density is less than 1.7 T when an expensive element such as Co is not added, which is insufficient. Co-based amorphous alloys have low magnetostriction and high magnetic permeability, but the saturation magnetic flux density is as low as 1T or less, and there is a problem that the magnetic core becomes large in applications where DC is superimposed or in low frequency applications. There is a problem that the change with time becomes large. Moreover, since Co is expensive, the use is limited.

Fe基ナノ結晶合金は、Co基非晶質合金に匹敵する優れた軟磁気特性とFe基非晶質合金に匹敵する高い飽和磁束密度を示すことが知られており、コモンモ−ドチョ−クコイルなどのノイズ対策部品、高周波トランス、パルストランス、電流センサ等の磁心に使用されている。代表的組成系は特公平4-4393号公報や特開平1-242755号公報に記載のFe−Cu−(Nb,Ti,Zr,Hf,Mo,W,Ta)−Si−B系合金やFe−Cu−(Nb,Ti,Zr,Hf,Mo,W,Ta)−B系合金等が知られている。これらのFe基ナノ結晶合金は、通常液相や気相から急冷し非晶質合金とした後、これを熱処理により微結晶化することにより作製されている。液相から急冷する方法としては単ロ−ル法、双ロ−ル法、遠心急冷法、回転液中紡糸法、アトマイズ法やキャビテーション法等が知られている。また、気相から急冷する方法としては、スパッタ法、蒸着法、イオンプレ−ティング法等が知られている。Fe基ナノ結晶合金はこれらの方法により作製した非晶質合金を微結晶化したもので、非晶質合金にみられるような熱的不安定性がほとんどなく、Fe系非晶質合金と同程度の高い飽和磁束密度と低磁歪で優れた軟磁気特性を示すことが知られている。更にナノ結晶合金は経時変化が小さく、温度特性にも優れていることが知られている。
特公平4−4393号公報(第5頁右欄31行目〜43行目、図1) 特公平1−242755号公報(第3頁左上欄15〜右上欄5行目)
Fe-based nanocrystalline alloys are known to exhibit excellent soft magnetic properties comparable to Co-based amorphous alloys and high saturation magnetic flux densities comparable to Fe-based amorphous alloys, such as common mode choke coils. It is used for magnetic cores such as noise countermeasure parts, high-frequency transformers, pulse transformers, and current sensors. Typical composition systems are Fe-Cu- (Nb, Ti, Zr, Hf, Mo, W, Ta) -Si-B alloys and Fe-Cu- (Nb, Ti, Zr, Hf, Mo, W, Ta) alloys described in JP-B-4-4393 and JP-A-1-242755. -Cu- (Nb, Ti, Zr, Hf, Mo, W, Ta) -B alloys and the like are known. These Fe-based nanocrystalline alloys are usually produced by rapidly cooling from a liquid phase or a gas phase to form an amorphous alloy and then microcrystallizing it by heat treatment. As a method of quenching from the liquid phase, a single roll method, a twin roll method, a centrifugal quench method, a spinning in spinning solution, an atomizing method, a cavitation method, and the like are known. Further, as a method of quenching from the gas phase, a sputtering method, a vapor deposition method, an ion plating method and the like are known. Fe-based nanocrystalline alloy is a microcrystallized amorphous alloy produced by these methods, and there is almost no thermal instability as found in amorphous alloys. It is known that it exhibits excellent soft magnetic characteristics with a high saturation magnetic flux density and low magnetostriction. Furthermore, nanocrystalline alloys are known to have little change over time and excellent temperature characteristics.
Japanese Examined Patent Publication No. 4-4393 (page 5, right column, lines 31-43, FIG. 1) Japanese Examined Patent Publication No. 1-2242755 (page 3, upper left column 15 to upper right column, fifth line)

しかし、Fe基非晶質合金の飽和磁束密度Bsは、Coなどの高価な元素を添加しない場合、飽和磁束密度を上昇させるためにFe量を増加するとキュリー温度が低下してくるため、室温における飽和磁束密度Bsが1.7Tを超えるのは困難であり、Fe基非晶質合金はBsが珪素鋼よりもかなり低いため、電力用変圧器などの低周波の用途や優れた直流重畳特性が要求されるリアクトル(パワーチョーク)などの用途では、磁心体積が増加する課題がある。
珪素鋼板は、鉄損がFe基非晶質合金よりも大きいため、省エネルギーの観点から課題がある。また、珪素鋼板は高周波において渦電流損失が増加するため、従来の非晶質合金やナノ結晶軟磁性合金に比べ磁心損失の面で劣っている。
Fe−Cu−(Nb,Ti,Zr,Hf,Mo,W,Ta)−Si−B系合金やFe−Cu−(Nb,Ti,Zr,Hf,Mo,W,Ta)−B系合金に代表される従来のFe基ナノ結晶軟磁性合金は、Coを添加せず広幅材の製造が可能な合金では、Fe基非晶質合金と同様室温における飽和磁束密度が1.73T未満であり、磁心体積が増加するため、更なる高飽和磁束密度化が望まれている。 従来のFe−Cu−(Nb,Ti,Zr,Hf,Mo,W,Ta)−Si−B系合金やFe−Cu−(Nb,Ti,Zr,Hf,Mo,W,Ta)−B系合金は、一旦できる限り全体が非晶質相である合金を製造した後、CuとNbなどの元素の複合効果によりナノ結晶化させることにより製造される。
Cuは、熱処理によりクラスタを形成し、これが体心立方構造の結晶相(bcc相)の不均一核形成サイトとなり、更にNbなどの元素が非晶質層を安定化させ、bcc相の結晶粒成長を抑え、ナノ結晶粒が分散したナノ結晶合金が実現するために、優れた軟磁気特性が得られると考えられている。しかし、飽和磁束密度を増加させるためにはFe量を増加しなければならず、非磁性元素であるNbなどの量を減らす必要がある。しかしながら、従来の非晶質化後熱処理によりナノ結晶化させる製造方法では、Nbなどを減らすと結晶粒が粗大になり、軟磁気特性が大幅に劣化する問題があった。熱処理前に生ずる結晶粒は、結晶粒径が大きく、熱処理後の軟磁気特性を劣化させるため、できる限り急冷後の熱処理前の合金中には結晶が存在せず、完全な非晶質状態を実現する方が望ましいことが知られていた。このため、単ロール法などの超急冷法で完全な非晶質合金を製造するためには、Fe量をあまり増加することはできず、高飽和磁束密度化と軟磁気特性の両立には限界があった。
Fe−BやFe−Si−B系に代表されるFe基非晶質合金を結晶化させると、飽和磁束密度は上昇するが、結晶粒が粗大化してしまい、軟磁性が著しく劣化する問題がある。
また、Fe−B系やFe−Si−B系でFe量を増加し、直接結晶材を製造すると、化合物相の形成や体心立方構造のFe相(bccFe相)の結晶粒が粗大化し、軟磁性が得られない問題がある。
However, the saturation magnetic flux density Bs of the Fe-based amorphous alloy is such that when an expensive element such as Co is not added, increasing the amount of Fe to increase the saturation magnetic flux density lowers the Curie temperature. It is difficult for the saturation magnetic flux density Bs to exceed 1.7T, and the Fe-based amorphous alloy has a much lower Bs than silicon steel, so low-frequency applications such as power transformers and excellent DC superposition characteristics are required. In applications such as reactors (power chokes) that are used, there is a problem that the core volume increases.
The silicon steel sheet has a problem from the viewpoint of energy saving because the iron loss is larger than that of the Fe-based amorphous alloy. In addition, silicon steel sheets are inferior in terms of magnetic core loss compared to conventional amorphous alloys and nanocrystalline soft magnetic alloys because eddy current loss increases at high frequencies.
Fe-Cu- (Nb, Ti, Zr, Hf, Mo, W, Ta) -Si-B alloy and Fe-Cu- (Nb, Ti, Zr, Hf, Mo, W, Ta) -B alloy A typical conventional Fe-based nanocrystalline soft magnetic alloy is an alloy that can produce a wide material without adding Co, and the saturation magnetic flux density at room temperature is less than 1.73 T as in the case of an Fe-based amorphous alloy. Since the volume increases, further higher saturation magnetic flux density is desired. Conventional Fe-Cu- (Nb, Ti, Zr, Hf, Mo, W, Ta) -Si-B based alloys and Fe-Cu- (Nb, Ti, Zr, Hf, Mo, W, Ta) -B based An alloy is manufactured by once producing an alloy that is entirely in an amorphous phase as much as possible, and then nanocrystallizing it by the combined effect of elements such as Cu and Nb.
Cu forms a cluster by heat treatment, which becomes a heterogeneous nucleation site of a crystal phase (bcc phase) of a body-centered cubic structure, and further, an element such as Nb stabilizes the amorphous layer, and crystal grains of the bcc phase It is considered that excellent soft magnetic properties can be obtained in order to realize a nanocrystalline alloy in which growth is suppressed and nanocrystalline grains are dispersed. However, in order to increase the saturation magnetic flux density, the amount of Fe must be increased, and the amount of Nb, which is a nonmagnetic element, must be reduced. However, in the conventional manufacturing method in which nanocrystallization is performed by heat treatment after amorphization, there is a problem that when Nb or the like is reduced, crystal grains become coarse and soft magnetic characteristics are greatly deteriorated. The crystal grains generated before the heat treatment have a large crystal grain size and deteriorate the soft magnetic properties after the heat treatment.Therefore, as much as possible, there is no crystal in the alloy before the heat treatment after the rapid cooling, and a completely amorphous state is obtained. It was known that it would be preferable to realize it. For this reason, in order to produce a complete amorphous alloy by a rapid quenching method such as a single roll method, the amount of Fe cannot be increased so much, and there is a limit to achieving both high saturation magnetic flux density and soft magnetic properties. was there.
When an Fe-based amorphous alloy typified by Fe-B or Fe-Si-B system is crystallized, the saturation magnetic flux density increases, but the crystal grains become coarse and the soft magnetism deteriorates significantly. is there.
Further, when the amount of Fe is increased in the Fe-B system or Fe-Si-B system and the crystal material is directly manufactured, the formation of the compound phase and the grain of the Fe phase (bccFe phase) having a body-centered cubic structure are coarsened, There is a problem that soft magnetism cannot be obtained.

以上のように、従来のFe基ナノ結晶軟磁性合金やFe基非晶質合金は、飽和磁束密度は1.73T未満であり、超急冷法により製造された高Bsの結晶材料は軟磁性が著しく劣るという問題があり、従来のFe基ナノ結晶軟磁性合金やFe基非晶質合金よりも高飽和磁束密度で珪素鋼板よりも磁心損失が低く、高透磁率で優れた軟磁気特性を示す軟磁性合金の製造方法の実現が強く望まれている。
そこで、本発明は高飽和磁束密度で優れた軟磁気特性、特に優れた交流磁気特性を示す軟磁性合金の製造方法を提供することを目的とする。
As described above, the conventional Fe-based nanocrystalline soft magnetic alloy and Fe-based amorphous alloy have a saturation magnetic flux density of less than 1.73 T, and the high Bs crystal material manufactured by the ultra-quenching method has soft magnetic properties. There is a problem that it is remarkably inferior, it has a higher saturation magnetic flux density than conventional Fe-based nanocrystalline soft magnetic alloys and Fe-based amorphous alloys, lower core loss than a silicon steel sheet, and exhibits excellent soft magnetic properties with high permeability. Realization of a method for producing a soft magnetic alloy is strongly desired.
Therefore, an object of the present invention is to provide a method for producing a soft magnetic alloy exhibiting excellent soft magnetic properties at a high saturation magnetic flux density, particularly excellent alternating magnetic properties.

本発明は、Feおよび半金属元素を含む合金溶湯を急冷し、非晶質母相中に平均粒径30nm以下(0nmを含まず)の結晶粒が非晶質母相中に体積分率で0%超30%未満で分散した組織からなるFe基合金を作製する工程と、前記Fe基合金に熱処理を行い平均粒径50nm以下の体心立方構造の結晶粒が非晶質母相中に体積分率で30%以上分散した組織とする工程からなる軟磁性合金の製造方法である。この製造方法で製造された合金は、従来のナノ結晶軟磁性合金や非晶質合金よりも高飽和磁束密度で優れた軟磁気特性、特に優れた交流磁気特性を示す。   The present invention rapidly quenches a molten alloy containing Fe and a metalloid element, and crystal grains having an average grain size of 30 nm or less (not including 0 nm) are contained in the amorphous matrix by a volume fraction in the amorphous matrix. A process for producing an Fe-based alloy having a structure in which the structure is dispersed in an amount of more than 0% and less than 30%, and heat treatment is performed on the Fe-based alloy so that body-centered cubic crystal grains having an average grain size of 50 nm or less are contained in the amorphous matrix. This is a method for producing a soft magnetic alloy comprising a step of forming a structure in which a volume fraction is 30% or more dispersed. The alloy produced by this production method exhibits superior soft magnetic properties, particularly excellent alternating magnetic properties, at a high saturation magnetic flux density than conventional nanocrystalline soft magnetic alloys and amorphous alloys.

合金溶湯を急冷した際、非晶質母相中に平均粒径30nm以下の結晶粒が非晶質母相中に体積分率で0%超30%未満で分散した組織のFe基合金を作製することにより、結晶粒が粗大化するFe量の多い組成において、その後熱処理を行っても結晶粒径の著しい増加が起こらず、従来のFe基ナノ結晶合金やFe基非晶質合金よりも高飽和磁束密度でありながら、優れた軟磁気特性を示すことを見出した。従来、完全な非晶質相からなる合金を熱処理し結晶化させた方が優れた軟磁性を示すと考えられていたが、鋭意検討の結果Fe量が多い合金においては、完全な非晶質合金を作製するのではなく、むしろ非晶質母相(マトリックス)中に微細な結晶粒が分散した合金を作製した後に熱処理を行い、結晶化を進めた方が熱処理後より微細な結晶粒組織となり優れた軟磁気特性が実現できることを見出した。熱処理前の非晶質母相中に分散する結晶粒の平均粒径は30nm以下である必要がある。
この理由は、熱処理前の状態で平均粒径がこの範囲を超えている場合、熱処理を行うと結晶粒が大きくなりすぎる、不均一な結晶粒組織となるなどが原因で軟磁性が劣化するためである。好ましくは、非晶質母相中に分散する結晶粒の平均粒径は20nm以下である。この範囲で、より優れた軟磁気特性を実現できる。また、平均結晶粒間距離(各結晶の重心と重心の距離)は通常50nm以下である。平均結晶粒間距離が大きいと熱処理後の結晶粒の結晶粒径分布が広くなる。また、熱処理後に非晶質母相中に分散する体心方構造の結晶粒は、平均粒径50nm以下、体積分率で30%以上分散している必要がある。結晶粒の平均粒径が50nmを超えると軟磁気特性が劣化し、結晶粒の体積分率が30%未満では、非晶質の割合が多く高飽和磁束密度が得にくいためである。より好ましい結晶粒の平均粒径は、30nm以下、より好ましい結晶粒の体積分率は50%以上である。この範囲で、より軟磁性が優れ、Fe基非晶質合金に比べて磁歪の低い合金を実現できる。
When the molten alloy is quenched, an Fe-based alloy with a structure in which grains with an average grain size of 30 nm or less are dispersed in the amorphous matrix in a volume fraction of more than 0% and less than 30% in the amorphous matrix As a result, in a composition with a large amount of Fe in which the crystal grains become coarser, the crystal grain size does not increase significantly even after subsequent heat treatment, which is higher than that of conventional Fe-based nanocrystalline alloys and Fe-based amorphous alloys. It has been found that it exhibits excellent soft magnetic properties while having a saturation magnetic flux density. Conventionally, it was thought that an alloy consisting of a completely amorphous phase was heat treated and crystallized to show excellent soft magnetism. However, as a result of intensive studies, an alloy with a large amount of Fe is completely amorphous. Rather than making an alloy, it is better to heat-treat after producing an alloy in which fine crystal grains are dispersed in an amorphous matrix (matrix). And found that excellent soft magnetic properties can be realized. The average grain size of the crystal grains dispersed in the amorphous matrix before the heat treatment needs to be 30 nm or less.
The reason for this is that if the average grain size exceeds this range before the heat treatment, the soft magnetism deteriorates due to the crystal grains becoming too large or a non-uniform grain structure when the heat treatment is performed. It is. Preferably, the average grain size of the crystal grains dispersed in the amorphous matrix is 20 nm or less. Within this range, more excellent soft magnetic characteristics can be realized. Further, the average distance between crystal grains (the center-to-center distance of each crystal) is usually 50 nm or less. When the average inter-grain distance is large, the crystal grain size distribution of the crystal grains after the heat treatment becomes wide. The body-centered crystal grains dispersed in the amorphous matrix after the heat treatment must have an average particle size of 50 nm or less and a volume fraction of 30% or more. This is because if the average grain size of the crystal grains exceeds 50 nm, the soft magnetic characteristics deteriorate, and if the volume fraction of the crystal grains is less than 30%, the amorphous fraction is large and it is difficult to obtain a high saturation magnetic flux density. A more preferable average grain size of crystal grains is 30 nm or less, and a more preferable volume fraction of crystal grains is 50% or more. Within this range, it is possible to realize an alloy that is more excellent in soft magnetism and has a lower magnetostriction than an Fe-based amorphous alloy.

本発明において、軟磁性合金が3原子%以下のCu、Auから選ばれた少なくとも1種の元素を含む場合、非晶質母相中に平均粒径30 nm以下の結晶粒が非晶質母相中に体積分率で0%超30%未満で分散した組織を実現しやすい。Cu、Auから選ばれた少なくとも1種の元素を含む場合、急冷後の熱処理前の合金中にCuやAu濃度の高い非晶質状態のクラスタや面心立方構造(fcc構造)の結晶粒が存在する場合がある。特にCu、Auから選ばれた少なくとも1種の元素を1原子%超、2原子%未満の場合、優れた軟磁気特性が得られるためより好ましい結果が得られる。   In the present invention, when the soft magnetic alloy contains at least one element selected from Cu and Au of 3 atomic% or less, crystal grains having an average grain size of 30 nm or less are present in the amorphous matrix. It is easy to realize a structure in which the volume fraction in the phase is more than 0% and less than 30%. In the case of containing at least one element selected from Cu and Au, an amorphous state cluster or a face-centered cubic structure (fcc structure) with a high Cu or Au concentration is present in the alloy before the heat treatment after quenching. May exist. In particular, when at least one element selected from Cu and Au is more than 1 atomic% and less than 2 atomic%, excellent soft magnetic characteristics can be obtained, and more preferable results can be obtained.

軟磁性合金が80原子%以上のFeを含む場合、高飽和磁束密度の軟磁性合金を製造可能であるため、より好ましい結果が得られる。   When the soft magnetic alloy contains 80 atomic% or more of Fe, a soft magnetic alloy having a high saturation magnetic flux density can be produced, and thus a more preferable result can be obtained.

軟磁性合金がB、Si、P、CおよびGeから選ばれた少なくとも1種の半金属元素を含む場合、溶湯を急冷することにより非晶質化が可能であり、非晶質母相中に平均粒径30 nm以下の結晶粒が非晶質母相中に体積分率で30%未満で分散した組織を実現できる。   When the soft magnetic alloy contains at least one metalloid element selected from B, Si, P, C and Ge, it can be amorphized by quenching the molten metal, and in the amorphous matrix It is possible to realize a structure in which crystal grains having an average particle size of 30 nm or less are dispersed in an amorphous matrix at a volume fraction of less than 30%.

軟磁性合金の組成が、組成式:Fe100-x-yAX(原子%)で表され、ここで、AはCu、Auから選ばれる1種以上の元素、XはB、Si、P、C、Geから選ばれる1種以上の元素、0≦x≦3、12≦y≦20、高飽和磁束密度で優れた軟磁気特性を実現することができる。Bは高飽和磁束密度で優れた軟磁性を実現するのに有効な元素であり、X元素としてBを12原子%以上20原子%以下含む場合より優れた磁気特性が実現され、より好ましい結果が得られる。AとXの元素量の和は、x+y≦20とすることが好ましい。 The composition of the soft magnetic alloy is represented by a composition formula: Fe 100-xy A x X y (atomic%), where A is one or more elements selected from Cu and Au, X is B, Si One or more elements selected from P, C, Ge, 0 ≦ x ≦ 3, 12 ≦ y ≦ 20, high saturation magnetic flux density, and excellent soft magnetic characteristics can be realized. B is an element effective for realizing an excellent soft magnetism at a high saturation magnetic flux density, and a magnetic property superior to a case where B is contained in an amount of 12 atomic% or more and 20 atomic% or less as an X element, and more preferable results are obtained. can get. The sum of the element amounts of A and X is preferably x + y ≦ 20.

また、軟磁性合金のA量xが0.5≦x≦2である場合、熱処理前の段階で非晶質母相中に平均粒径30 nm以下の結晶粒が非晶質母相中に体積分率で30%未満で分散した組織を容易に実現でき、熱処理後に特に優れた軟磁気特性を実現でき、より好ましい結果が得られる。Cuの効果はまだ十分明らかになっていないが、Cuクラスタあるいはfcc Cuがbcc Fe結晶粒の生成に寄与しているとと考えられる。Cuクラスタあるいはfcc Cuが不均一核生成サイトになっている可能性がある。   Further, when the amount of A of the soft magnetic alloy is 0.5 ≦ x ≦ 2, crystal grains having an average grain size of 30 nm or less are present in the amorphous matrix before the heat treatment. A structure dispersed with a volume fraction of less than 30% can be easily realized, and particularly excellent soft magnetic properties can be realized after heat treatment, and more preferable results can be obtained. Although the effect of Cu has not been clarified yet, it is thought that Cu clusters or fcc Cu contributes to the formation of bcc Fe crystal grains. Cu clusters or fcc Cu may be heterogeneous nucleation sites.

上記製法により、飽和磁束密度が1.73T以上でかつ軟磁性を示す、高飽和磁束密度で優れた軟磁性を示し、20kHz, 0.2Tにおける磁心損失が20W/kg以下である低損失の軟磁性合金を実現できる。
また、保磁力Hcは200A/m以下、さらには100A/m以下の軟磁性合金を実現できる。また、交流比初透磁率μkが3000以上、さらには5000以上の軟磁性合金を実現できる。
The above-mentioned manufacturing method shows a soft magnetic property with a saturation magnetic flux density of 1.73 T or more and soft magnetism, excellent soft magnetism at a high saturation magnetic flux density, and low loss soft magnetism with a core loss of 20 W / kg or less at 20 kHz and 0.2 T. An alloy can be realized.
Also, a soft magnetic alloy having a coercive force Hc of 200 A / m or less, and further 100 A / m or less can be realized. In addition, a soft magnetic alloy having an AC ratio initial permeability μk of 3000 or more, further 5000 or more can be realized.

また、Feの一部をCo、Niから選ばれた少なくとも1種の元素で置換しても良い。Co、Niを置換することにより誘導磁気異方性の大きさを制御することが可能である。高角形比のB-Hループやより直線性の良いB-Hループを得ることができ、可飽和リアクトル用磁心や、電流センサ用磁心などにより適した特性を実現できる。   Further, a part of Fe may be substituted with at least one element selected from Co and Ni. It is possible to control the magnitude of the induced magnetic anisotropy by substituting Co and Ni. A B-H loop with a high squareness ratio and a B-H loop with better linearity can be obtained, and more suitable characteristics can be realized with a saturable reactor magnetic core and a current sensor magnetic core.

また、飽和磁束密度の著しい低下が生じない範囲でFeの一部をCr、Mn、Zn、As、Se、S、O、N、Sb、Sn、In、Cd、Ag、Bi、Mg、Sc、Re、Ag、白金族元素、Y、希土類元素から選ばれた少なくとも1種の元素で置換しても良い。これらの元素を置換することにより、耐食性を改善する、あるいは電気抵抗率や磁気特性を調整・改善することができる。
また、本発明の製造方法により作製した軟磁性合金の体心立方構造の結晶相は、Feを主体としているが、合金組成によってはSi,B,Al,GeやZr等を固溶する場合がある。また、一部にCuやAuを含む面心立方構造の相(fcc相)も存在しても良い。
In addition, a part of Fe is within a range in which the saturation magnetic flux density does not significantly decrease, Cr, Mn, Zn, As, Se, S, O, N, Sb, Sn, In, Cd, Ag, Bi, Mg, Sc, It may be substituted with at least one element selected from Re, Ag, platinum group elements, Y, and rare earth elements. By substituting these elements, the corrosion resistance can be improved, or the electrical resistivity and magnetic properties can be adjusted and improved.
The crystal phase of the body-centered cubic structure of the soft magnetic alloy produced by the production method of the present invention is mainly Fe, but depending on the alloy composition, Si, B, Al, Ge, Zr, etc. may be dissolved. is there. In addition, a face-centered cubic structure phase (fcc phase) partially containing Cu or Au may exist.

本発明製造方法により作製された本発明合金においては、磁心損失は、化合物相が存在しない方が低く望ましいが、化合物相を一部に含んでも良い。   In the alloy of the present invention produced by the manufacturing method of the present invention, it is desirable that the magnetic core loss is low in the absence of the compound phase, but the compound phase may be partially included.

本発明において、溶湯を急冷する方法としては、単ロール法、双ロール法、回転液中防止法、ガスアトマイズ法、水アトマイズ法などがあり、薄帯や粉末を製造することができる。また、溶湯急冷時の溶湯温度は、合金の融点よりも50℃〜300℃程度高い温度とするのが望ましい。
単ロール法などの超急冷法は、活性な金属を含まない場合は大気中あるいは局所Arあるいは窒素ガスなどの雰囲気中で行うことが可能であるが、活性な金属を含む場合はAr,Heなどの不活性ガス中、窒素ガス中あるいは減圧中、あるいはノズル先端部のロール表面付近のガス雰囲気を制御し、CO2ガスをロールに吹き付ける方法や、COガスをノズル近傍のロール表面付近で燃焼させながら合金薄帯製造を行う。
単ロール法の場合の冷却ロール周速は、15m/sから50m/s程度の範囲が望ましく、冷却ロール材質は、熱伝導が良好な純銅やCu−Be、Cu−Cr、Cu−Zr、Cu−Zr−Crなどの銅合金が適している。大量に製造する場合、板厚が厚い薄帯や広幅薄帯を製造する場合は、冷却ロールは水冷構造とした方が好ましい。
In the present invention, as a method for rapidly cooling the molten metal, there are a single roll method, a twin roll method, a rotating liquid prevention method, a gas atomization method, a water atomization method, and the like, and a ribbon or powder can be produced. Further, it is desirable that the molten metal temperature at the time of rapid cooling of the molten metal is higher by about 50 ° C. to 300 ° C. than the melting point of the alloy.
The ultra-rapid cooling method such as the single roll method can be performed in the atmosphere or in an atmosphere such as local Ar or nitrogen gas when no active metal is contained, but when active metal is contained, Ar, He, etc. In the inert gas, nitrogen gas or reduced pressure, or by controlling the gas atmosphere near the roll surface at the nozzle tip, the CO 2 gas is blown onto the roll, or the CO gas is burned near the roll surface near the nozzle. While manufacturing the alloy ribbon.
In the case of the single roll method, the peripheral speed of the cooling roll is desirably in the range of about 15 m / s to 50 m / s, and the cooling roll is made of pure copper, Cu—Be, Cu—Cr, Cu—Zr, Cu, which has good heat conduction. A copper alloy such as -Zr-Cr is suitable. When manufacturing in large quantities, when manufacturing a thin strip with a large plate thickness or a wide strip, it is preferable that the cooling roll has a water cooling structure.

熱処理は通常アルゴンガス、窒素ガス、ヘリウム等の不活性ガス中で行う。熱処理により体心立方構造のFeを主体とする結晶粒の体積分率が増加し、飽和磁束密度が上昇する。また、熱処理により磁歪も低減する。本発明の軟磁性合金は、磁界中熱処理を行うことにより、誘導磁気異方性を付与することができる。磁界中熱処理は、熱処理期間の少なくとも一部の期間合金が飽和するのに十分な強さの磁界を印加してを行う。合金磁心の形状にも依存するが、一般には薄帯の幅方向(環状磁心の場合:磁心の高さ方向)に印加する場合は8 kAm−1以上の磁界を、長手方向(環状磁心の場合は磁路方向)印加する場合は80Am−1以上の磁界を印加する。印加する磁界は、直流、交流、繰り返しのパルス磁界のいずれを用いても良い。磁界は200℃以上の温度領域で通常20分以上印加する。昇温中、一定温度に保持中および冷却中も印加した方が、良好な一軸の誘導磁気異方性が付与されるので、より望ましい直流あるいは交流ヒステリシスループ形状が実現される。磁界中熱処理の適用により高角形比あるいは低角形比の直流ヒステリシスループを示す合金が得られる。磁界中熱処理を適用しない場合、本発明合金は中程度の角形比の直流ヒステリシスループとなる。熱処理は、通常露点が−30℃以下の不活性ガス雰囲気中で行うことが望ましく、露点が−60℃以下の不活性ガス雰囲気中で熱処理を行うと、ばらつきが更に小さくより好ましい結果が得られる。熱処理の際の最高到達温度は、通常300℃から600℃の範囲である。一定温度に保持する熱処理パターンの場合は、一定温度での保持時間は通常は量産性の観点から100時間以下であり、好ましくは4時間以下である。熱処理の際の平均昇温速度は好ましくは0.1℃/minから200℃/min、より好ましくは0.1℃/minから100℃/min、平均冷却速度は好ましくは0.1℃/minから3000℃/min、より好ましくは0.1℃/minから100℃/minであり、この範囲で特に低磁心損失の合金が得られる。熱処理は1段ではなく多段の熱処理や複数回の熱処理を行うこともできる。更に、合金に直流、交流あるいはパルス電流を流して合金を発熱させ熱処理することもできる。また、熱処理の際に、張力や圧縮力をかけながら熱処理し、磁気特性を改善することができる。 The heat treatment is usually performed in an inert gas such as argon gas, nitrogen gas, or helium. By heat treatment, the volume fraction of crystal grains mainly composed of Fe having a body-centered cubic structure is increased, and the saturation magnetic flux density is increased. Moreover, magnetostriction is also reduced by the heat treatment. The soft magnetic alloy of the present invention can be provided with induced magnetic anisotropy by performing a heat treatment in a magnetic field. The heat treatment in a magnetic field is performed by applying a magnetic field having a strength sufficient to saturate the alloy for at least a part of the heat treatment period. Although it depends on the shape of the alloy magnetic core, generally, a magnetic field of 8 kAm −1 or more is applied in the longitudinal direction (in the case of an annular core) when applied in the width direction of the ribbon (in the case of an annular core: the height direction of the core). (Magnetic path direction) When applying, apply a magnetic field of 80 Am −1 or more. As the magnetic field to be applied, any of direct current, alternating current, and repetitive pulse magnetic field may be used. A magnetic field is usually applied for 20 minutes or more in a temperature range of 200 ° C. or more. A better uniaxial induction magnetic anisotropy is imparted when the temperature is increased, maintained at a constant temperature and during cooling, so that a more desirable DC or AC hysteresis loop shape is realized. By applying heat treatment in a magnetic field, an alloy exhibiting a DC hysteresis loop with a high squareness ratio or a low squareness ratio can be obtained. When no heat treatment in a magnetic field is applied, the alloy of the present invention becomes a DC hysteresis loop with a medium squareness ratio. It is desirable to perform the heat treatment in an inert gas atmosphere having a dew point of −30 ° C. or lower. When the heat treatment is performed in an inert gas atmosphere having a dew point of −60 ° C. or lower, the variation is further reduced and more preferable results are obtained. . The maximum temperature reached during the heat treatment is usually in the range of 300 ° C to 600 ° C. In the case of the heat treatment pattern held at a constant temperature, the holding time at the constant temperature is usually 100 hours or less, preferably 4 hours or less from the viewpoint of mass productivity. The average heating rate during the heat treatment is preferably from 0.1 ° C / min to 200 ° C / min, more preferably from 0.1 ° C / min to 100 ° C / min, and the average cooling rate is preferably 0.1 ° C / min. To 3000 ° C./min, more preferably 0.1 ° C./min to 100 ° C./min. In this range, an alloy having a particularly low magnetic core loss can be obtained. The heat treatment is not limited to a single step, and a multi-step heat treatment or a plurality of heat treatments can be performed. Furthermore, the alloy can be heated and heat-treated by passing a direct current, an alternating current or a pulsed current through the alloy. Further, during the heat treatment, the magnetic properties can be improved by heat treatment while applying tension or compressive force.

もう一つの本発明は、前記製造方法により製造され、平均粒径50nm以下の体心立方構造の結晶粒が非晶質母相中に体積分率で30%以上分散した組織からなる軟磁性合金である。本発明合金は、1.73T以上の高飽和磁束密度と20kHz、0.2Tにおける磁心損失が20W/kg以下の優れた交流磁気特性を示す。   Another aspect of the present invention is a soft magnetic alloy produced by the above production method and comprising a structure in which body-centered cubic crystal grains having an average grain size of 50 nm or less are dispersed in an amorphous matrix by a volume fraction of 30% or more It is. The alloy of the present invention exhibits a high saturation magnetic flux density of 1.73 T or more and excellent AC magnetic characteristics with a core loss of 20 W / kg or less at 20 kHz and 0.2 T.

本発明合金において、より好ましい結晶粒の平均粒径は、30nm以下、より好ましい結晶粒の体積分率は50%以上である。この範囲で、より軟磁性が優れ、Fe基非晶質合金に比べて磁歪の低い合金を実現できる。   In the alloy of the present invention, a more preferable average grain size of crystal grains is 30 nm or less, and a more preferable volume fraction of crystal grains is 50% or more. Within this range, it is possible to realize an alloy that is more excellent in soft magnetism and has a lower magnetostriction than an Fe-based amorphous alloy.

本発明軟磁性合金は必要に応じてSiO、MgO、Al等の粉末あるいは膜で合金薄帯あるいは粉末表面を被覆する、化成処理により表面処理し絶縁層を形成する、アノード酸化処理により表面に酸化物絶縁層を形成する、あるいは有機樹脂層を形成し層間絶縁を行う等の処理を行うことができ、このような処理により更に高周波特性が改善されより好ましい結果が得られる。これは特に磁心を作製した際に、層間あるいは粒子間を渡る高周波における渦電流の影響を低減し、高周波における磁心損失を改善する効果があるためである。この効果は表面状態が良好でかつ広幅の薄帯から構成された磁心や粉末を固化した圧粉磁心に使用した場合に特に著しい。
本発明軟磁性合金は、必要に応じて含浸やコーティング等を行うことも可能である。エポキシ樹脂やアクリル樹脂、ポリイミド樹脂などの樹脂により含浸する、あるいは合金を接着するなどして巻磁心カットコアや積層コアとして使用することができる。磁心は、一般的には樹脂ケースなどに入れる、あるいはコーティングして使用される。また、切断してカットコアとする場合もある。前記合金を粉砕して粉末やフレーク状にしたものを水ガラスや樹脂などで固めた圧粉磁心や前記合金から作られた粉末やフレークを樹脂などと混ぜてシート状にし使用される場合もある。
The soft magnetic alloy of the present invention is formed by coating the alloy ribbon or powder surface with a powder or film of SiO 2 , MgO, Al 2 O 3, etc. as necessary, forming a surface treatment by chemical conversion treatment, and forming an insulating layer. Thus, a treatment such as forming an oxide insulating layer on the surface or forming an organic resin layer and performing interlayer insulation can be performed. By such treatment, the high frequency characteristics are further improved, and a more preferable result can be obtained. This is because, particularly when a magnetic core is manufactured, the effect of eddy currents at high frequencies across layers or particles is reduced, and the magnetic core loss at high frequencies is improved. This effect is particularly remarkable when used in a magnetic core having a good surface state and a wide thin ribbon or a powder magnetic core obtained by solidifying powder.
The soft magnetic alloy of the present invention can be impregnated or coated as necessary. It can be used as a wound core cut core or a laminated core by impregnating with a resin such as an epoxy resin, an acrylic resin, or a polyimide resin, or by bonding an alloy. In general, the magnetic core is used in a resin case or by being coated. Moreover, it may cut | disconnect and it may be set as a cut core. In some cases, a powder magnetic core obtained by crushing the alloy into powder or flakes and solidifying with water glass or resin, or powder or flakes made from the alloy are mixed with a resin to form a sheet. .

もう一つの本発明は、前記軟磁性合金を用いた磁性部品である。本発明軟磁性合金は、商用周波数や比較的低い周波数においても低い磁心損失を示すため、変圧器用鉄心、モータ鉄心、リアクトル用鉄心などにも適しており、高性能な磁性部品を実現できる。   Another aspect of the present invention is a magnetic component using the soft magnetic alloy. Since the soft magnetic alloy of the present invention exhibits low magnetic core loss even at commercial frequencies and relatively low frequencies, it is suitable for transformer iron cores, motor iron cores, reactor iron cores, and the like, and can realize high-performance magnetic parts.

本発明によれば、高飽和磁束密度でかつ優れた軟磁気特性、特に優れた交流磁気特性を示す軟磁性合金の製造方法および軟磁性合金ならびに磁性部品を提供できるため、その効果は著しいものがある。   According to the present invention, it is possible to provide a method for producing a soft magnetic alloy, a soft magnetic alloy and a magnetic component exhibiting a high saturation magnetic flux density and excellent soft magnetic characteristics, particularly excellent AC magnetic characteristics. is there.

以下、本発明を実施例にしたがって説明するが、本発明はこれらに限定されるものではない。
(実施例1)
合金組成がFebal.Cu1.35B14Si2(原子%)の1250℃に加熱された合金溶湯をスリット状のノズルから周速30m/sで回転する外径300mmのCu-Be合金ロールに噴出し、幅5mm、厚さ18μmの合金薄帯を作製した。作製した合金薄帯のX線回折と透過電子顕微鏡(TEM)観察を行った結果、非晶質母相中に結晶粒が分布した組織からなることが確認された。図1に透過電子顕微鏡により観察した合金薄帯内部のミクロ組織を、図2に合金薄帯内部のミクロ組織の模式図を示す。電子顕微鏡観察によるミクロ組織から平均粒径5.5nm程度の微細な結晶粒が、非晶質母相(マトリックス)中に体積分率で4.8%含まれていることが確認された。
次に、作製した合金薄帯を外径19mm、内径15mmに巻き回し、巻磁心を作製した。この巻磁心を、窒素ガス雰囲気中の炉に挿入し、巻磁心の高さ方向に240KA/mの磁界を印加しながら室温から420℃まで7.5℃/minの昇温速度で加熱し、420℃で60分保持後平均冷却速度1.2℃/minで200℃まで冷却し、炉から取り出して室温まで冷却し磁界中熱処理を行った。熱処理後の試料の磁気特性を測定した。また、熱処理した試料のX線回折と透過電子顕微鏡(TEM)観察を行った。図3に熱処理後の試料のX線回折パターン、図4に透過電子顕微鏡により観察した合金薄帯内部のミクロ組織を、図5に合金薄帯内部のミクロ組織の模式図を示す。観察したミクロ組織とX線回折から、平均粒径約14nm程度の微細な体心立方構造の結晶粒が非晶質相中に分散しており、組織の60%を占めていることが確認された。また、結晶粒の組成を調査したところFeを主体とした体心立方構造(bcc構造)の結晶粒であることが確認された。
表1に熱処理を行った後の飽和磁束密度Bs、保磁力Hc、1kHzにおける交流比初透磁率μ1k、20kHz,0.2Tにおける磁心損失Pcm、平均結晶粒径Dを示す。比較のために、合金溶湯を急冷した後の合金が完全な非晶質合金であったFebal.B14Si2(原子%)合金を熱処理し結晶化させた後の磁気特性と結晶粒径D(比較例1)、従来から知られている非晶質合金を熱処理しナノ結晶化させ製造した代表的なナノ結晶軟磁性合金であるFebal.Cu1Nb3Si13.5B9(原子%)合金(比較例2)とFebal.Nb7B9(原子%)合金(比較例3)の磁気特性と結晶粒径、典型的なFe基非晶質合金であるFebal.B13Si9合金(原子%)(比較例4)、6.5mass%珪素鋼帯(50μm)(比較例5)の磁気特性を示す。
本発明製造方法により作製された合金は、1.73T以上の高い飽和磁束密度Bsを示し、従来のFe基非晶質合金や従来のFe基ナノ結晶合金よりも高いBsを示す。また、完全な非晶質合金であったFebal.Si2B14(原子%)合金を熱処理し結晶化させて場合は、軟磁性が著しく劣っており、特に20kHz, 0.2Tにおける磁心損失Pcmは大きすぎ、通常の装置では励磁できず測定できなかった。従来の6.5mass%珪素鋼帯よりも1kHzにおける交流比初透磁率μ1kが高く、磁心損失Pcmが低いため、パワーチョークコイル、高周波トランスなどに適した特性を有している。
EXAMPLES Hereinafter, although this invention is demonstrated according to an Example, this invention is not limited to these.
Example 1
A molten alloy with an alloy composition of Fe bal. Cu 1.35 B 14 Si 2 (atomic%) heated to 1250 ° C is ejected from a slit nozzle to a Cu-Be alloy roll with an outer diameter of 300 mm rotating at a peripheral speed of 30 m / s. An alloy ribbon having a width of 5 mm and a thickness of 18 μm was produced. As a result of X-ray diffraction and transmission electron microscope (TEM) observation of the produced alloy ribbon, it was confirmed that the alloy ribbon was composed of a structure in which crystal grains were distributed in the amorphous matrix. FIG. 1 shows a microstructure inside the alloy ribbon observed with a transmission electron microscope, and FIG. 2 shows a schematic diagram of the microstructure inside the alloy ribbon. It was confirmed that fine crystal grains having an average particle diameter of about 5.5 nm were contained in the amorphous matrix (matrix) by a volume fraction of 4.8% from the microstructure by electron microscope observation.
Next, the produced alloy ribbon was wound around an outer diameter of 19 mm and an inner diameter of 15 mm to produce a wound core. This winding core is inserted into a furnace in a nitrogen gas atmosphere and heated from room temperature to 420 ° C at a heating rate of 7.5 ° C / min while applying a magnetic field of 240 KA / m in the height direction of the winding core. After holding for 60 minutes, it was cooled to 200 ° C. at an average cooling rate of 1.2 ° C./min, removed from the furnace, cooled to room temperature, and subjected to heat treatment in a magnetic field. The magnetic properties of the sample after heat treatment were measured. Moreover, the X-ray diffraction and transmission electron microscope (TEM) observation of the heat-processed sample were performed. FIG. 3 shows an X-ray diffraction pattern of the heat-treated sample, FIG. 4 shows a microstructure inside the alloy ribbon observed with a transmission electron microscope, and FIG. 5 shows a schematic diagram of the microstructure inside the alloy ribbon. From the observed microstructure and X-ray diffraction, it was confirmed that fine body-centered cubic crystal grains with an average particle size of about 14 nm were dispersed in the amorphous phase, accounting for 60% of the structure. It was. Further, when the composition of the crystal grains was investigated, it was confirmed that the crystal grains had a body-centered cubic structure (bcc structure) mainly composed of Fe.
Table 1 shows the saturation magnetic flux density Bs, coercive force Hc, AC ratio initial permeability μ 1k at 1 kHz, magnetic core loss P cm at 20 kHz, 0.2 T, and average grain size D after heat treatment. For comparison, magnetic properties and grain size after heat treatment and crystallization of Fe bal. B 14 Si 2 (atomic%) alloy, which was a completely amorphous alloy after quenching the molten alloy D (Comparative Example 1), Fe bal. Cu 1 Nb 3 Si 13.5 B 9 (atomic%), which is a typical nanocrystalline soft magnetic alloy produced by heat-treating and crystallizing a conventionally known amorphous alloy . ) Magnetic properties and grain size of alloy (Comparative Example 2) and Fe bal. Nb 7 B 9 (Atom%) alloy (Comparative Example 3), typical Fe-based amorphous alloy Fe bal. B 13 Si The magnetic characteristics of 9 alloy (atomic%) (Comparative Example 4) and 6.5 mass% silicon steel strip (50 μm) (Comparative Example 5) are shown.
The alloy produced by the production method of the present invention exhibits a high saturation magnetic flux density Bs of 1.73 T or more, and exhibits a higher Bs than conventional Fe-based amorphous alloys and conventional Fe-based nanocrystalline alloys. In addition, when Fe bal. Si 2 B 14 (atomic%) alloy, which was a completely amorphous alloy, is heat-treated and crystallized, the soft magnetism is remarkably inferior, especially the core loss P at 20 kHz, 0.2 T. cm was too large to be measured because it could not be excited by a normal device. Since the AC ratio initial permeability μ 1k at 1 kHz is higher and the core loss Pcm is lower than the conventional 6.5 mass% silicon steel strip, it has characteristics suitable for power choke coils, high frequency transformers, and the like.

また、本発明合金の飽和磁歪定数λsを測定した結果、λsは+14×10-6であった。磁歪をFe基非晶質合金の1/2以下に低減できることが分った。このため、含浸、接着などを行った場合、Fe基非晶質合金に比べて軟磁気特性の劣化を抑えることができ、パワーチョークコイル用カットコアやモータ鉄心材料に適することが分った。
次に、本発明合金を用いた、パワーチョークを試作し評価した結果、圧粉磁心やFe基アモルファス合金から作製されたチョークコイルよりも優れた直流重畳特性を示し、高性能なチョークコイルが実現できることが確認された。
As a result of measuring the saturation magnetostriction constant λs of the alloy of the present invention, λs was + 14 × 10 −6 . It has been found that the magnetostriction can be reduced to 1/2 or less of the Fe-based amorphous alloy. For this reason, it has been found that when impregnation or adhesion is performed, deterioration of soft magnetic properties can be suppressed as compared with Fe-based amorphous alloys, and it is suitable for power choke coil cut cores and motor core materials.
Next, as a result of trial manufacture and evaluation of a power choke using the alloy of the present invention, it showed a DC superposition characteristic superior to that of a choke coil made from a dust core or an Fe-based amorphous alloy, and realized a high-performance choke coil It was confirmed that it was possible.

(実施例2)
実施例1に示した、本発明合金からなる巻磁心の50Hzにおける単位重量当たりの磁心損失(鉄損)PcmのBm依存性を測定した。その結果を図6に示す。比較のために、従来の方向性電磁鋼板、Fe基非晶質合金巻磁心の磁心損失PcmのBm依存性も示す。本発明製造方法により製造した本発明合金からなる巻磁心は、Fe基非晶質合金からなる巻磁心に匹敵する低磁心損失を示し、高飽和磁束密度であるため、1.5T以上になると、Fe基非晶質合金よりも低い鉄心損失となり、1.65T程度の磁束密度まで磁心損失の急激な増加が起こらない。このため、トランスなどに使用する場合に設計磁束密度を従来のFe基非晶質合金よりも高くでき、トランスを小型化できる。また、高磁束密度領域まで方向性電磁鋼板よりも磁心損失が低いため、省エネの面でも優れた性能を有している。
(Example 2)
The Bm dependence of the core loss (iron loss) Pcm per unit weight at 50 Hz of the wound core made of the alloy of the present invention shown in Example 1 was measured. The result is shown in FIG. For comparison, the Bm dependence of the core loss Pcm of a conventional grain-oriented electrical steel sheet and an Fe-based amorphous alloy wound core is also shown. The wound core made of the alloy of the present invention manufactured by the manufacturing method of the present invention shows a low magnetic core loss comparable to the wound core made of an Fe-based amorphous alloy and has a high saturation magnetic flux density. The core loss is lower than that of the Fe-based amorphous alloy, and the core loss does not increase rapidly until the magnetic flux density is about 1.65T. For this reason, when used for a transformer or the like, the designed magnetic flux density can be made higher than that of a conventional Fe-based amorphous alloy, and the transformer can be miniaturized. Moreover, since the magnetic core loss is lower than that of the grain-oriented electrical steel sheet up to the high magnetic flux density region, it has excellent performance in terms of energy saving.

(実施例3)
実施例1に示した、本発明合金からなる巻磁心の0.2Tにおける単位重量当たりの磁心損失(鉄損)Pcmの周波数依存性を測定した。その結果を図7に示す。比較のために、従来の6.5mass%珪素鋼板、Fe基非晶質合金の磁心損失Pcmの周波数依存性も示す。本発明合金は高飽和磁束密度材でありながら、従来のFe基材料よりも低い磁心損失を示すため、高周波で使用される、リアクトル・チョークコイル、トランスなどの磁心材料にも適していることが分る。また、交流比初透磁率を1kHzから100kHzまで測定したところ、100kHzまで6000以上の値が得られ、Fe基非晶質合金や6.5mass%珪素鋼板よりも高周波の透磁率も高いことが確認された。このため、コモンモードチョークなどの各種チョークコイル、パルストランスなどの各種トランス、磁気シールド材、アンテナ磁心などにも適することが分った。
(Example 3)
The frequency dependence of the core loss (iron loss) Pcm per unit weight at 0.2 T of the wound core made of the alloy of the present invention shown in Example 1 was measured. The result is shown in FIG. For comparison, the frequency dependence of the core loss Pcm of a conventional 6.5 mass% silicon steel sheet and Fe-based amorphous alloy is also shown. Although the alloy of the present invention is a high-saturation magnetic flux density material and exhibits a lower core loss than conventional Fe-based materials, it should be suitable for magnetic core materials such as reactors, choke coils and transformers used at high frequencies. I understand. Moreover, when the AC ratio initial permeability was measured from 1 kHz to 100 kHz, a value of 6000 or more was obtained up to 100 kHz, and it was confirmed that the high-frequency permeability was higher than that of Fe-based amorphous alloys and 6.5 mass% silicon steel sheets. It was. For this reason, it has been found that it is suitable for various choke coils such as a common mode choke, various transformers such as a pulse transformer, a magnetic shield material, and an antenna core.

(実施例4)
表2に示す組成の1300℃に加熱した合金溶湯を周速32m/sで回転する外径300mmのCu-Be合金ロールに噴出し合金薄帯を作製した。作製した合金薄帯は幅5mm、厚さ約21μmである。X線回折および透過電子顕微鏡(TEM)観察の結果、非晶質母相中に体積分率で30%未満で分散した組織であることが確認された。
次に、これらの作製した合金薄帯を外径19mm、内径15mmに巻き回し巻磁心を作製した後、窒素ガス雰囲気中の炉に挿入し、室温から400℃まで8.5℃/minの昇温速度で加熱し、410℃で60分保持後室温まで空冷し冷却した。平均冷却速度は30℃/min以上であると見積もられた。次に熱処理後の試料の磁気特性を測定した。更に、熱処理した合金のX線回折と透過電子顕微鏡観察を行った。X線回折の結晶ピーク半価幅から平均結晶粒径Dを見積もった。また、透過電子顕微鏡によりミクロ構造を観察した結果、どの試料も粒径60nm以下の体心立方構造の微細な結晶粒が組織の30%以上を占めていることが確認された。
表2に熱処理を行った後の合金試料の飽和磁束密度Bs、保磁力Hc、20kHz, 0.2Tにおける磁心損失Pcmを測定した。飽和磁束密度Bs、また、比較のために本発明とは異なる製造法により製造した合金の特性も比較して示す。Febal.B6合金は、Bsは高いが、熱処理前の段階で非晶質相は存在せず、結晶が100%を占めていた。また結晶粒径も100nmと見積もられた。Hcが非常に大きく、軟磁性が劣っているため、磁心損失Pcmが大きすぎ、測定磁束密度レベルまで励磁が困難でPcmの測定ができなかった。従来のナノ結晶軟磁性合金は一旦非晶質化した後に熱処理によりナノ結晶化してものであり、熱処理前の段階ではできるだけ完全な非晶質であることが望まれていた。典型的なナノ結晶軟磁性合金であるFebal.Cu1Nb3Si13.5B9合金はBsが1.24T、Febal.Nb7B9合金は1.52Tと本発明製造方法により作製した合金に比べて、Bsが低い。結晶粒の体積分率はそれぞれ75%と70%、平均結晶粒径はそれぞれ12nmと9nmであった。以上のように、本発明製造方法により製造された合金は、高Bsでありながら優れた軟磁性を示す合金が実現できることが明らかとなった。
Example 4
An alloy ribbon was produced by spraying a molten alloy heated to 1300 ° C having the composition shown in Table 2 onto a Cu-Be alloy roll with an outer diameter of 300 mm rotating at a peripheral speed of 32 m / s. The produced alloy ribbon has a width of 5 mm and a thickness of about 21 μm. As a result of X-ray diffraction and transmission electron microscope (TEM) observation, it was confirmed that the structure was dispersed in the amorphous matrix at a volume fraction of less than 30%.
Next, these produced alloy ribbons were wound to an outer diameter of 19 mm and an inner diameter of 15 mm to prepare a wound core, which was then inserted into a furnace in a nitrogen gas atmosphere, and a temperature increase rate of 8.5 ° C./min from room temperature to 400 ° C. The mixture was heated at 410 ° C. for 60 minutes, cooled to room temperature and cooled. The average cooling rate was estimated to be over 30 ℃ / min. Next, the magnetic properties of the sample after the heat treatment were measured. Further, the heat-treated alloy was subjected to X-ray diffraction and observation with a transmission electron microscope. The average crystal grain size D was estimated from the crystal peak half width of X-ray diffraction. Moreover, as a result of observing the microstructure with a transmission electron microscope, it was confirmed that in each sample, fine crystal grains having a body-centered cubic structure with a particle size of 60 nm or less occupy 30% or more of the structure.
Table 2 shows the saturation magnetic flux density Bs, the coercive force Hc, and the magnetic core loss P cm at 20 kHz, 0.2 T of the alloy sample after the heat treatment. The saturation magnetic flux density Bs and the characteristics of an alloy manufactured by a manufacturing method different from the present invention are also shown for comparison. The Fe bal. B 6 alloy had a high Bs, but there was no amorphous phase before the heat treatment, and the crystal accounted for 100%. The crystal grain size was also estimated to be 100 nm. Since Hc was very large and soft magnetism was inferior, the core loss Pcm was too large, and excitation to the measured magnetic flux density level was difficult, and Pcm could not be measured. Conventional nanocrystalline soft magnetic alloys are once amorphized and then nanocrystallized by heat treatment, and it has been desired to be as completely amorphous as possible before the heat treatment. Fe bal. Cu 1 Nb 3 Si 13.5 B 9 alloy, which is a typical nanocrystalline soft magnetic alloy, has Bs of 1.24T, Fe bal. Nb 7 B 9 alloy is 1.52T, compared to the alloy produced by the manufacturing method of the present invention. Bs is low. The volume fraction of crystal grains was 75% and 70%, respectively, and the average crystal grain size was 12 nm and 9 nm, respectively. As described above, it has been clarified that the alloy manufactured by the manufacturing method of the present invention can realize an alloy exhibiting excellent soft magnetism while having high Bs.

(実施例5)
合金組成がFebal.Cu1.35Si2B14(原子%)の1250℃に加熱された合金溶湯をスリット状のノズルから周速30m/sで回転する外径300mmのCu-Be合金ロールに噴出し、幅5mm、厚さ18μmの合金薄帯を作製した。作製した合金薄帯のX線回折と透過電子顕微鏡(TEM)観察を行った結果、非晶質母相中に結晶粒が分布した組織からなることが確認された。電子顕微鏡観察によるミクロ組織から平均粒径5.5nm程度の微細な結晶粒が、平均結晶粒間距離24nmで非晶質母相(マトリックス)中に分布していることが確認された。
次に、作製した合金薄帯を120mmに切断した。この試料を、あらかじめ昇温した窒素ガス雰囲気中の管状炉に挿入し、60分保持後炉から取り出し空冷し、磁気特性の熱処理温度依存性を検討した。熱処理の平均冷却速度は30℃/min以上とした。また、熱処理後の試料のX線回折と透過電子顕微鏡(TEM)観察を行った。観察したミクロ組織とX線回折から、330℃以上の熱処理温度では、平均粒径50nm以下の微細な体心立方構造の結晶粒が非晶質相中に体積分率で30%以上分散した組織であることが確認された。また、結晶粒の組成を調査したところFeを主体とした体心立方構造(bcc構造)の結晶粒であることが確認された。
また、比較のために本発明の製造方法とは異なる製造を行い比較した。合金組成がFebal.Si2B14(原子%)の1250℃に加熱された合金溶湯をスリット状のノズルから周速33m/sで回転する外径300mmのCu-Be合金ロールに噴出し、幅5mm、厚さ18μmの合金薄帯を作製した。作製した合金薄帯のX線回折と透過電子顕微鏡(TEM)観察を行った結果、結晶粒は存在せず非晶質単相であることが確認された。次に、作製した合金薄帯を120mmに切断し、同様な熱処理を行い磁気特性の熱処理温度依存性を検討した。
図8に飽和磁束密度Bsの熱処理温度依存性を、図9に保磁力Hcの熱処理温度依存性を示す。本発明の製造方法では、330℃を超えるとBsが上昇し、Hcの増加も起こらず、高Bsで優れた軟磁性を示す軟磁性合金が420℃を中心とする熱処理温度で実現する。これに対して、非晶質単相状態の合金を熱処理した場合は、結晶化により急激にHcが増加し、良好な軟磁性が得られないことが分る。
以上のように、非晶質母相中に平均粒径30nm以下の結晶粒が、体積分率で30%以下、平均結晶粒間距離で50nm以下に分布した組織を有する合金を熱処理し、平均粒径50nm以下の体心立方構造の結晶粒が非晶質母相中に体積分率で30%以上分散した組織とする本発明製造方法により製造したFeを主体とする合金は高Bsで優れた軟磁性を示すことが分った。
(Example 5)
A molten alloy with an alloy composition of Fe bal. Cu 1.35 Si 2 B 14 (atomic%) heated to 1250 ° C is ejected from a slit-shaped nozzle onto a Cu-Be alloy roll with an outer diameter of 300 mm rotating at a peripheral speed of 30 m / s. An alloy ribbon having a width of 5 mm and a thickness of 18 μm was produced. As a result of X-ray diffraction and transmission electron microscope (TEM) observation of the produced alloy ribbon, it was confirmed that the alloy ribbon was composed of a structure in which crystal grains were distributed in the amorphous matrix. It was confirmed that fine crystal grains having an average particle diameter of about 5.5 nm were distributed in the amorphous matrix (matrix) with an average inter-grain distance of 24 nm from the microstructure by electron microscope observation.
Next, the produced alloy ribbon was cut into 120 mm. This sample was inserted into a tube furnace in a nitrogen gas atmosphere heated in advance, held for 60 minutes, taken out from the furnace and air-cooled, and the dependence of the magnetic properties on the heat treatment temperature was examined. The average cooling rate of the heat treatment was 30 ° C./min or more. Moreover, the X-ray diffraction and transmission electron microscope (TEM) observation of the sample after heat processing were performed. From the observed microstructure and X-ray diffraction, at a heat treatment temperature of 330 ° C. or higher, a fine body-centered cubic crystal grain with an average particle size of 50 nm or less is dispersed in a volume fraction of 30% or more in the amorphous phase. It was confirmed that. Further, when the composition of the crystal grains was investigated, it was confirmed that the crystal grains had a body-centered cubic structure (bcc structure) mainly composed of Fe.
For comparison, a production different from the production method of the present invention was performed for comparison. A molten alloy heated to 1250 ° C with an alloy composition of Fe bal. Si 2 B 14 (atomic%) was ejected from a slit-shaped nozzle onto a Cu-Be alloy roll with an outer diameter of 300 mm rotating at a peripheral speed of 33 m / s. An alloy ribbon having a width of 5 mm and a thickness of 18 μm was produced. As a result of X-ray diffraction and transmission electron microscope (TEM) observation of the produced alloy ribbon, it was confirmed that there was no crystal grain and it was an amorphous single phase. Next, the produced alloy ribbon was cut into 120 mm and subjected to the same heat treatment to examine the heat treatment temperature dependence of the magnetic properties.
FIG. 8 shows the heat treatment temperature dependence of the saturation magnetic flux density Bs, and FIG. 9 shows the heat treatment temperature dependence of the coercive force Hc. In the production method of the present invention, when the temperature exceeds 330 ° C., Bs rises, Hc does not increase, and a soft magnetic alloy exhibiting high Bs and excellent soft magnetism is realized at a heat treatment temperature centered at 420 ° C. On the other hand, when an amorphous single-phase alloy is heat-treated, Hc increases rapidly due to crystallization, and good soft magnetism cannot be obtained.
As described above, an alloy having a structure in which a crystal grain having an average grain size of 30 nm or less in the amorphous matrix is distributed to a volume fraction of 30% or less and an average crystal grain distance of 50 nm or less is heat-treated, and the average An alloy mainly composed of Fe produced by the production method of the present invention having a structure in which body-centered cubic structure grains having a particle size of 50 nm or less are dispersed in a volume fraction of 30% or more in an amorphous matrix is excellent in high Bs. It has been found that it exhibits soft magnetism.

(実施例6)
合金組成がFebal.Cu1.25Si2B14(原子%)の1250℃に加熱された合金溶湯をスリット状のノズルから回転する外径300mmのCu-Be合金ロールに噴出し、幅5mmで非晶質母相中の結晶粒体積分率の異なる合金薄帯を作製し結晶粒体積分率を透過電子顕微鏡像より求めた。次にこの合金薄帯を外径19mm内径15mmに巻き回し巻磁心を作製し410℃で1時間の熱処理を行い、熱処理後の飽和磁束密度Bs、保磁力Hcを測定した。なお、熱処理後の合金の結晶粒体積分率は30%以上であり、Bsは1.8T〜1.87Tを示した。
表3に熱処理後のHcを示す。熱処理前の合金中に結晶粒が存在しない合金を熱処理し熱処理後非晶質母相中の結晶粒が60%になるように熱処理した場合、保磁力Hcは750A/mと著しく大きくなった。熱処理前における非晶質母相中の結晶粒の体積分率が30%未満の合金を熱処理した場合、熱処理後のHcは小さく、本発明製造方法により高Bsで軟磁性に優れた合金が実現できることが確認された。これに対して、熱処理前における非晶質母相中の結晶粒の体積分率が30%以上の合金を熱処理し残りの非晶質相を結晶化させた合金では、粗大化した結晶粒が存在するようになりHcが増加する傾向を示すことが分った。
以上のように、Fe量の多い高Bs材で熱処理前の急冷したままの状態で微細な結晶粒が0%超30%未満分散した組織の合金を熱処理し、更に結晶化を進めた合金の軟磁性は、完全な非晶質状態の合金や結晶粒が30%以上存在する合金よりも優れていることが分った。
(Example 6)
A molten alloy with an alloy composition of Fe bal. Cu 1.25 Si 2 B 14 (atomic%) heated to 1250 ° C is ejected from a slit-shaped nozzle onto a rotating Cu-Be alloy roll with a diameter of 300 mm. Alloy ribbons with different grain volume fractions in the crystalline matrix were prepared, and the grain volume fractions were determined from transmission electron microscope images. Next, this alloy ribbon was wound around an outer diameter of 19 mm and an inner diameter of 15 mm to produce a wound core, which was heat-treated at 4 ° C. for 1 hour, and the saturated magnetic flux density Bs and coercive force Hc after the heat treatment were measured. The crystal grain volume fraction of the alloy after the heat treatment was 30% or more, and Bs was 1.8T to 1.87T.
Table 3 shows the Hc after the heat treatment. When an alloy having no crystal grains in the alloy before the heat treatment was heat treated so that the crystal grains in the amorphous matrix were 60% after the heat treatment, the coercive force Hc was remarkably increased to 750 A / m. When heat treatment is performed on an alloy whose volume fraction of crystal grains in the amorphous matrix before heat treatment is less than 30%, Hc after heat treatment is small, and the present manufacturing method realizes an alloy with high Bs and excellent soft magnetism. It was confirmed that it was possible. In contrast, in an alloy in which the volume fraction of crystal grains in the amorphous matrix before heat treatment is 30% or more and the remaining amorphous phase is crystallized, the coarsened crystal grains are It has been found that it tends to increase and Hc tends to increase.
As described above, a high Bs material with a large amount of Fe is heat-treated with an alloy having a structure in which fine crystal grains are dispersed in an amount of more than 0% and less than 30% in a rapidly cooled state before heat treatment, and further crystallization of the alloy It has been found that soft magnetism is superior to an alloy in a completely amorphous state or an alloy having 30% or more of crystal grains.

本発明によれば、飽和磁束密度でかつ優れた軟磁気特性、特に優れた交流磁気特性を示す軟磁性合金の製造方法および軟磁性合金ならびに磁性部品を提供できるためその効果は著しいものがある。   According to the present invention, it is possible to provide a soft magnetic alloy manufacturing method, a soft magnetic alloy and a magnetic component which exhibit a saturation magnetic flux density and excellent soft magnetic characteristics, particularly excellent AC magnetic characteristics, and the effects are remarkable.

本発明に係わる合金溶湯を急冷した後の合金の透過電子顕微鏡(TEM)により観察された合金薄帯内部のミクロ組織の一例を示した図である。It is the figure which showed an example of the microstructure inside the alloy ribbon observed by the transmission electron microscope (TEM) of the alloy after quenching the molten alloy concerning this invention. 本発明に係わる合金溶湯を急冷した後の合金薄帯内部のミクロ組織の模式図である。It is a schematic diagram of the microstructure inside the alloy ribbon after quenching the molten alloy according to the present invention. 本発明により製造した熱処理後の合金のX線回折パターンの一例を示した図である。It is the figure which showed an example of the X-ray-diffraction pattern of the alloy after the heat processing manufactured by this invention. 本発明により製造した熱処理後の合金の透過電子顕微鏡により観察したミクロ組織の一例を示した図である。It is the figure which showed an example of the microstructure observed with the transmission electron microscope of the alloy after the heat processing manufactured by this invention. 本発明により製造した熱処理後の合金の透過電子顕微鏡により観察したミクロ組織の一例を示した図である。It is the figure which showed an example of the microstructure observed with the transmission electron microscope of the alloy after the heat processing manufactured by this invention. 本発明合金からなる巻磁心および従来材料からなる磁心の50Hzにおける単位重量当たりの磁心損失(鉄損)PcmのBm依存性の一例を示した図である。FIG. 6 is a diagram showing an example of Bm dependence of a core loss (iron loss) Pcm per unit weight at 50 Hz of a wound core made of an alloy of the present invention and a magnetic core made of a conventional material. 本発明合金からなる巻磁心および従来材料からなる磁心の0.2Tにおける単位重量当たりの磁心損失(鉄損)Pcmの周波数依存性の一例を示した図である。FIG. 4 is a diagram showing an example of frequency dependence of a core loss (iron loss) Pcm per unit weight at 0.2 T of a wound core made of an alloy of the present invention and a magnetic core made of a conventional material. 本発明に係わる合金および本発明製造方法ではない製造方法の合金の飽和磁束密度Bsの熱処理温度依存性の一例を示した図である。It is the figure which showed an example of the heat processing temperature dependence of the saturation magnetic flux density Bs of the alloy which concerns on this invention, and the alloy of the manufacturing method which is not this invention manufacturing method. 本発明に係わる合金および本発明製造方法ではない製造方法の合金の保磁力Hcの熱処理温度依存性の一例を示した図である。It is the figure which showed an example of the heat treatment temperature dependence of the coercive force Hc of the alloy which concerns on this invention, and the alloy of the manufacturing method which is not this invention manufacturing method.

Claims (10)

Feおよび半金属元素を含む合金溶湯を急冷し、非晶質母相中に平均粒径30nm以下(0nmを含まず)の結晶粒が非晶質母相中に体積分率で0%超30%未満で分散した組織からなるFe基合金を作製する工程と、前記Fe基合金に熱処理を行い平均粒径50nm以下の体心立方構造の結晶粒が非晶質母相中に体積分率で30%以上分散した組織とする工程からなることを特徴とする軟磁性合金の製造方法。 The alloy melt containing Fe and metalloid elements is quenched, and crystal grains with an average grain size of 30 nm or less (not including 0 nm) in the amorphous matrix are more than 0% in volume fraction in the amorphous matrix. A process for producing an Fe-based alloy having a structure dispersed at less than%, and heat-treating the Fe-based alloy so that body-centered cubic crystal grains having an average grain size of 50 nm or less are contained in an amorphous matrix at a volume fraction. A method for producing a soft magnetic alloy comprising a step of forming a structure in which 30% or more is dispersed. 軟磁性合金が3原子%以下のCu、Auから選ばれた少なくとも1種の元素を含むことを特徴とする請求項1に記載のナノ結晶軟磁性合金の製造方法。 The method for producing a nanocrystalline soft magnetic alloy according to claim 1, wherein the soft magnetic alloy contains at least one element selected from Cu and Au of 3 atomic% or less. 軟磁性合金が80原子%以上のFeを含むことを特徴とする請求項1又は請求項2に記載の軟磁性合金の製造方法。 3. The method for producing a soft magnetic alloy according to claim 1, wherein the soft magnetic alloy contains 80 atomic% or more of Fe. 軟磁性合金がB、Si、P、CおよびGeから選ばれた少なくとも1種の半金属元素を含むことを特徴とする請求項1乃至請求項3のいずれかに記載の軟磁性合金の製造方法。 4. The method for producing a soft magnetic alloy according to claim 1, wherein the soft magnetic alloy contains at least one metalloid element selected from B, Si, P, C and Ge. . 軟磁性合金の組成が、組成式:Fe100-x-yAX(原子%)で表され、ここで、AはCu、Auから選ばれる1種以上の元素、XはB、Si、P、C、Geから選ばれる1種以上の元素、0≦x≦3、12≦y≦20であることを特徴とする請求項1乃至請求項4のいずれかに記載の軟磁性合金の製造方法。 The composition of the soft magnetic alloy is represented by a composition formula: Fe 100-xy A x X y (atomic%), where A is one or more elements selected from Cu and Au, X is B, Si The soft magnetic alloy according to claim 1, wherein one or more elements selected from the group consisting of P, C, Ge, 0 ≦ x ≦ 3, and 12 ≦ y ≦ 20. Production method. 軟磁性合金のA量xが0.5≦x≦2であることを特徴とする請求項5に記載の軟磁性合金の製造方法。 6. The method for producing a soft magnetic alloy according to claim 5, wherein the A amount x of the soft magnetic alloy is 0.5 ≦ x ≦ 2. 請求項1乃至請求項6のいずれかに記載の製造方法により製造され、平均粒径50nm以下の体心立方構造の結晶粒が非晶質母相中に体積分率で30%以上分散した組織からなることを特徴とする軟磁性合金。 A structure produced by the production method according to any one of claims 1 to 6, wherein body-centered cubic crystal grains having an average grain size of 50 nm or less are dispersed in an amorphous matrix by 30% or more by volume fraction A soft magnetic alloy comprising: 飽和磁束密度が1.73T以上であることを特徴とする請求項7に記載の軟磁性合金。 The soft magnetic alloy according to claim 7, wherein a saturation magnetic flux density is 1.73 T or more. 20kHz, 0.2Tにおける磁心損失が20 W/kg以下であることを特徴とする請求項7又は請求項8に記載の軟磁性合金。 The soft magnetic alloy according to claim 7 or 8, wherein the core loss at 20kHz, 0.2T is 20 W / kg or less. 請求項7乃至請求項9のいずれかに記載の軟磁性合金を用いたことを特徴とする磁性部品。 A magnetic part using the soft magnetic alloy according to claim 7.
JP2006097685A 2006-03-31 2006-03-31 Soft magnetic alloy, its manufacturing method, and magnetic component Pending JP2007270271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006097685A JP2007270271A (en) 2006-03-31 2006-03-31 Soft magnetic alloy, its manufacturing method, and magnetic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006097685A JP2007270271A (en) 2006-03-31 2006-03-31 Soft magnetic alloy, its manufacturing method, and magnetic component

Publications (1)

Publication Number Publication Date
JP2007270271A true JP2007270271A (en) 2007-10-18

Family

ID=38673369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006097685A Pending JP2007270271A (en) 2006-03-31 2006-03-31 Soft magnetic alloy, its manufacturing method, and magnetic component

Country Status (1)

Country Link
JP (1) JP2007270271A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114605A1 (en) * 2007-03-22 2008-09-25 Hitachi Metals, Ltd. Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
WO2008129803A1 (en) * 2007-03-20 2008-10-30 Nec Tokin Corporation Soft magnetic alloy, magnetic component using the same, and their production methods
WO2010021130A1 (en) 2008-08-22 2010-02-25 Makino Akihiro ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND MANUFACTURING METHOD THEREFOR, AND MAGNETIC COMPONENT
WO2010084900A1 (en) 2009-01-23 2010-07-29 アルプス電気株式会社 Iron-based soft magnetic alloy and dust core comprising the iron-based soft magnetic alloy
US8277579B2 (en) 2006-12-04 2012-10-02 Tohoku Techno Arch Co., Ltd. Amorphous alloy composition
RU2483135C1 (en) * 2009-08-24 2013-05-27 Нек Токин Корпорейшн ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND METHOD OF ITS MAKING
WO2016009696A1 (en) * 2014-07-14 2016-01-21 愛知時計電機株式会社 Electromagnetic flow meter and core
KR20170082468A (en) * 2016-01-06 2017-07-14 한양대학교 에리카산학협력단 Method for manufacturing Fe based soft magnetic alloy
KR20170082470A (en) * 2016-01-06 2017-07-14 한양대학교 에리카산학협력단 Fe based soft magnetic alloy and magnetic materials comprising the same
JP2017141508A (en) * 2016-02-09 2017-08-17 国立大学法人東北大学 Amorphous alloy ribbon laminate heat treatment apparatus and soft magnetic core
JP2019060020A (en) * 2015-07-31 2019-04-18 株式会社村田製作所 Soft magnetic material and manufacturing method therefor
US10636567B2 (en) 2016-02-09 2020-04-28 Tohoku Magnet Institute Co., Ltd. Heat treatment apparatus for laminated body of amorphous alloy ribbon and soft magnetic core
JP2020072182A (en) * 2018-10-31 2020-05-07 Tdk株式会社 Magnetic core and coil component
WO2021010714A1 (en) * 2019-07-12 2021-01-21 주식회사 아모그린텍 Method for manufacturing fe-based soft magnetic alloy and fe-based soft magnetic alloy manufactured thereby
WO2021145741A1 (en) * 2020-01-16 2021-07-22 코오롱인더스트리 주식회사 Alloy composition, alloy powder, alloy ribbon, inductor, and motor

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277579B2 (en) 2006-12-04 2012-10-02 Tohoku Techno Arch Co., Ltd. Amorphous alloy composition
WO2008129803A1 (en) * 2007-03-20 2008-10-30 Nec Tokin Corporation Soft magnetic alloy, magnetic component using the same, and their production methods
JP5632608B2 (en) * 2007-03-20 2014-11-26 Necトーキン株式会社 Soft magnetic alloy, magnetic component using the same, and manufacturing method thereof
US8287665B2 (en) 2007-03-20 2012-10-16 Nec Tokin Corporation Soft magnetic alloy, magnetic part using soft magnetic alloy, and method of manufacturing same
WO2008114605A1 (en) * 2007-03-22 2008-09-25 Hitachi Metals, Ltd. Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
US7935196B2 (en) 2007-03-22 2011-05-03 Hitachi Metals, Ltd. Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
US8491731B2 (en) 2008-08-22 2013-07-23 Akihiro Makino Alloy composition, Fe-based nano-crystalline alloy and forming method of the same and magnetic component
EP2243854A1 (en) * 2008-08-22 2010-10-27 Akihiro Makino ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND MANUFACTURING METHOD THEREFOR, AND MAGNETIC COMPONENT
RU2509821C2 (en) * 2008-08-22 2014-03-20 Акихиро МАКИНО ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND METHOD OF ITS MAKING AND MAGNETIC ASSY
EP2243854A4 (en) * 2008-08-22 2014-07-09 Akihiro Makino ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND MANUFACTURING METHOD THEREFOR, AND MAGNETIC COMPONENT
WO2010021130A1 (en) 2008-08-22 2010-02-25 Makino Akihiro ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND MANUFACTURING METHOD THEREFOR, AND MAGNETIC COMPONENT
EP2390377A4 (en) * 2009-01-23 2016-06-01 Alps Green Devices Co Ltd Iron-based soft magnetic alloy and dust core comprising the iron-based soft magnetic alloy
WO2010084900A1 (en) 2009-01-23 2010-07-29 アルプス電気株式会社 Iron-based soft magnetic alloy and dust core comprising the iron-based soft magnetic alloy
US9287028B2 (en) 2009-08-24 2016-03-15 Nec Tokin Corporation Alloy composition, Fe-based nano-crystalline alloy and forming method of the same
US9850562B2 (en) 2009-08-24 2017-12-26 Tohoku Magnet Institute Co., Ltd Fe-based nano-crystalline alloy
RU2483135C1 (en) * 2009-08-24 2013-05-27 Нек Токин Корпорейшн ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND METHOD OF ITS MAKING
WO2016009696A1 (en) * 2014-07-14 2016-01-21 愛知時計電機株式会社 Electromagnetic flow meter and core
US11851738B2 (en) 2015-07-31 2023-12-26 Murata Manufacturing Co., Ltd. Soft magnetic material and method for manufacturing the same
JP2019060020A (en) * 2015-07-31 2019-04-18 株式会社村田製作所 Soft magnetic material and manufacturing method therefor
KR101905411B1 (en) * 2016-01-06 2018-10-08 한양대학교 에리카산학협력단 Method for manufacturing Fe based soft magnetic alloy
KR101906914B1 (en) 2016-01-06 2018-10-11 한양대학교 에리카산학협력단 Fe based soft magnetic alloy and magnetic materials comprising the same
KR20170082470A (en) * 2016-01-06 2017-07-14 한양대학교 에리카산학협력단 Fe based soft magnetic alloy and magnetic materials comprising the same
KR20170082468A (en) * 2016-01-06 2017-07-14 한양대학교 에리카산학협력단 Method for manufacturing Fe based soft magnetic alloy
JP2017141508A (en) * 2016-02-09 2017-08-17 国立大学法人東北大学 Amorphous alloy ribbon laminate heat treatment apparatus and soft magnetic core
US10636567B2 (en) 2016-02-09 2020-04-28 Tohoku Magnet Institute Co., Ltd. Heat treatment apparatus for laminated body of amorphous alloy ribbon and soft magnetic core
JP2020072182A (en) * 2018-10-31 2020-05-07 Tdk株式会社 Magnetic core and coil component
US11657949B2 (en) 2018-10-31 2023-05-23 Tdk Corporation Magnetic core and coil component
WO2021010714A1 (en) * 2019-07-12 2021-01-21 주식회사 아모그린텍 Method for manufacturing fe-based soft magnetic alloy and fe-based soft magnetic alloy manufactured thereby
WO2021145741A1 (en) * 2020-01-16 2021-07-22 코오롱인더스트리 주식회사 Alloy composition, alloy powder, alloy ribbon, inductor, and motor

Similar Documents

Publication Publication Date Title
JP5664934B2 (en) Soft magnetic alloy and magnetic component using the same
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JP5182601B2 (en) Magnetic core made of amorphous alloy ribbon, nanocrystalline soft magnetic alloy and nanocrystalline soft magnetic alloy
JP5455040B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5445890B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
KR101147571B1 (en) Iron-based soft magnetic alloy, thin ribbon of amorphous alloy, and magnetic part
KR101162080B1 (en) Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
JP5429613B2 (en) Nanocrystalline soft magnetic alloys and magnetic cores
JP2009263775A (en) Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, magnetic core, and method for producing the nanocrystal soft magnetic alloy
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JP4547671B2 (en) High saturation magnetic flux density low loss magnetic alloy and magnetic parts using the same
JP2008196006A (en) Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY THIN STRIP, METHOD FOR PRODUCING Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AND MAGNETIC COMPONENT
JP2009174034A (en) Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same
JP3719449B2 (en) Nanocrystalline alloy, method for producing the same, and magnetic core using the same
JP2008231534A5 (en)
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP2012021190A (en) Amorphous alloy thin strip, and magnetic component having amorphous alloy thin strip
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JP4003166B2 (en) Co-based magnetic alloy and magnetic component using the same
JP2945122B2 (en) Fe-based soft magnetic alloy and method for producing the same
JP2008150637A (en) Magnetic alloy, amorphous alloy ribbon and magnetic parts