JP2008231534A5 - - Google Patents

Download PDF

Info

Publication number
JP2008231534A5
JP2008231534A5 JP2007074976A JP2007074976A JP2008231534A5 JP 2008231534 A5 JP2008231534 A5 JP 2008231534A5 JP 2007074976 A JP2007074976 A JP 2007074976A JP 2007074976 A JP2007074976 A JP 2007074976A JP 2008231534 A5 JP2008231534 A5 JP 2008231534A5
Authority
JP
Japan
Prior art keywords
ribbon
soft magnetic
magnetic
layer
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007074976A
Other languages
Japanese (ja)
Other versions
JP2008231534A (en
JP5445891B2 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from JP2007074976A external-priority patent/JP5445891B2/en
Priority to JP2007074976A priority Critical patent/JP5445891B2/en
Priority to US12/531,613 priority patent/US7935196B2/en
Priority to PCT/JP2008/053798 priority patent/WO2008114605A1/en
Priority to CN2008800093206A priority patent/CN101641455B/en
Priority to EP08721218.9A priority patent/EP2130936A4/en
Priority to KR1020097019698A priority patent/KR101162080B1/en
Publication of JP2008231534A publication Critical patent/JP2008231534A/en
Publication of JP2008231534A5 publication Critical patent/JP2008231534A5/ja
Publication of JP5445891B2 publication Critical patent/JP5445891B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

トランスや可飽和リアクトル等の磁心材料は、角形性が良好で磁化しやすい軟磁性材料が求められる。すなわち、最大印加磁場Hmで得られる磁束密度Bmと見かけ上の残留磁束密度Brの比、Br/Bmが高い値を有する軟磁気特性が必要となる。Fe基アモルファス薄帯はこの点に関しても非常に有用な性質を示すが、上述したようにFe基アモルファス薄帯の飽和磁束密度の上限が1.68T程度であり、より高い磁束密度を有し、損失の少ない軟磁性材料が求められている。また、ケイ素鋼板は、磁束密度は高いが、飽和性が悪い。最大印加磁場によっては磁束密度BmがFe基アモルファスよりも低くなることもあり、加えて、Br/Bmも低くなる。そこで、本発明では、特に500A/m以下の比較的低い磁場領域において磁化しやすく角形性が高い軟磁性薄帯を提供することを課題とする。 Magnetic core materials such as transformers and saturable reactors are required to be soft magnetic materials having good squareness and being easily magnetized. That is, a soft magnetic characteristic having a high value of Br / Bm, which is the ratio of the apparent magnetic flux density Br to the magnetic flux density Bm obtained with the maximum applied magnetic field Hm, is required. Although the Fe-based amorphous ribbon exhibits very useful properties in this respect as well, as described above, the upper limit of the saturation flux density of the Fe-based amorphous ribbon is about 1.68 T, and has a higher magnetic flux density . There is a need for soft magnetic materials with low loss . Silicon steel sheets have high magnetic flux density but poor saturation. Depending on the maximum applied magnetic field, the magnetic flux density Bm may be lower than that of the Fe-based amorphous, and in addition, Br / Bm is also low. Therefore, an object of the present invention is to provide a soft magnetic ribbon that is easily magnetized in a relatively low magnetic field region of 500 A / m or less and has high squareness.

本発明の軟磁性薄帯は、薄帯の内部に結晶粒径が60nm以下(0を含まず)の結晶粒が非晶質中に体積分率で30%以上分散した母相組織を有し、かつ前記母相組織と薄帯の表面との間にアモルファス層を有することを特徴とする。 The soft magnetic ribbon of the present invention has a matrix structure in which crystal grains having a crystal grain size of 60 nm or less (not including 0) are dispersed in an amorphous material at a volume fraction of 30% or more. And an amorphous layer is provided between the matrix structure and the surface of the ribbon .

この軟磁性薄帯は、薄帯の最表面に結晶組織から成る結晶層が形成され、前記結晶層の内部側に前記アモルファス層が形成されている軟磁性薄帯でもよい。
また、前記アモルファス層と母相組織の間に、前記母相組織の平均粒径よりも大きい結晶粒を含む粗大結晶粒層を有する軟磁性薄帯でもよい。
The soft magnetic ribbon, a crystal layer comprising a crystal structure on the outermost surface of the ribbon is formed, may be a soft magnetic ribbon where the amorphous layer on the inner side is formed of the crystalline layer.
Further, between the amorphous layer and the matrix structure, it may be a soft magnetic ribbon having the coarse crystal grain layer containing a large listening grain than the average grain size of the matrix structure.

本発明の軟磁性薄帯を用いた磁心は低損失で小型化に適しており、1.5T、50Hzにおける鉄損が0.5W/Kg以下の磁心を得ることができる。 The magnetic core using the soft magnetic ribbon of the present invention is low loss and suitable for miniaturization, and a magnetic core having an iron loss of 1.5 W / Kg or less at 1.5 T and 50 Hz can be obtained.

これらの軟磁性薄帯あるいは磁心を用いて、優れた軟磁気特性を有する磁性部品を得ることができる。 Using these soft magnetic ribbons or magnetic cores , magnetic parts having excellent soft magnetic properties can be obtained.

本発明の軟磁性薄帯は、薄帯の内部に結晶粒径が60nm以下(0を含まず)の結晶粒が非晶質中に体積分率で30%以上分散した母相組織を有し、かつ前記母相組織と薄帯の表面との間にアモルファス層を有するという特徴を持つ。これらの軟磁性薄帯は、ロール冷却により鋳造された厚さが100μm以下の合金薄帯などである。上記の本発明の軟磁性薄帯は、母相と異なる結晶組織(最表面の結晶層、アモルファス層、粗大結晶粒層)が同一薄帯内に存在しているため、従来得られなかった磁気特性を持つ軟磁性薄帯を実現できることを見出した。また、アモルファス層を有するので曲げに強いという特徴を持つ。 The soft magnetic ribbon of the present invention has a matrix structure in which crystal grains having a crystal grain size of 60 nm or less (not including 0) are dispersed in an amorphous material at a volume fraction of 30% or more. And having an amorphous layer between the matrix structure and the surface of the ribbon . These soft magnetic ribbons are alloy ribbons having a thickness of 100 μm or less cast by roll cooling. The soft magnetic ribbon of the present invention has a crystal structure different from the parent phase (outermost surface crystal layer, amorphous layer, coarse crystal grain layer) in the same ribbon, and thus has not been obtained conventionally. It has been found that a soft magnetic ribbon having characteristics can be realized. Moreover, since it has an amorphous layer, it has the characteristic that it is strong to bending.

図7(a)、(b)は本発明の軟磁性薄帯におけるロール冷却面側の表層断面を観察したものである。本発明の軟磁性薄帯は、薄帯の表面側(ロール冷却面およびその裏の自由面の表層部分)において、表面2からの深さ120nmより深い位置で結晶粒径が60nm以下(0を含まず)の結晶粒が非晶質中に体積分率で30%以上分散した母相組織Dを有し、かつこの母相組織Dと薄帯の表面2との間にアモルファス層Bを有する。そして、この軟磁性薄帯は、薄帯の最表面に結晶組織から成る結晶層Aが形成され、この結晶層Aの内部側に前記アモルファス層Bが形成されている。さらに、アモルファス層Bと母相組織Dの間に、母相組織の平均粒径よりも粒径が大きい結晶から成る粗大結晶粒層Cを有することもある。特に、この粗大結晶粒層Cを持つものは、角形性の良好な磁気特性を持つ。 FIGS. 7A and 7B are observations of the surface layer cross section on the roll cooling surface side in the soft magnetic ribbon of the present invention. The soft magnetic ribbon of the present invention has a crystal grain size of 60 nm or less at a position where the depth from the surface 2 is deeper than 120 nm on the surface side of the ribbon (the surface of the roll cooling surface and the free surface behind it). Crystal grains (not including) have a matrix structure D in which a volume fraction of 30% or more is dispersed in the amorphous material, and an amorphous layer B is formed between the matrix structure D and the surface 2 of the ribbon. Have. In the soft magnetic ribbon, a crystal layer A having a crystal structure is formed on the outermost surface of the ribbon, and the amorphous layer B is formed inside the crystal layer A. Further, a coarse crystal grain layer C made of crystals having a grain size larger than the average grain size of the matrix structure may be provided between the amorphous layer B and the matrix structure D. Particularly, those having this coarse crystal grain layer C have magnetic properties with good squareness.

本発明の軟磁性薄帯の板厚は、渦電流損失を低減させる効果を得るために100μm以下であることが好ましく、40μm以下がより好ましい。また、本発明において母相組織とは、周期的に繰り替えされる構造に類似性があり、結晶粒のサイズの分布が一様である結晶粒と粒界から成る組織を母相組織と称している。軟磁性薄帯では、薄帯の厚さの中間地点付近の組織を母相とする。
結晶粒径の測定は、電子顕微鏡による組織写真で観察される組織の長径と短径の平均値を取ったものである。平均粒径とは、その結晶粒径を30個以上測定した値の平均値である。
結晶粒の体積分率V V は、線分法、すなわち顕微鏡組織中に任意の直線を想定しそのテストラインの長さをLt、結晶相により占められる線の長さLcを測定し、結晶粒により占められる線の長さの割合LL=Lc/Lt×100より求められる。ここで、結晶粒の体積分率VV=LL ある。
In order to obtain the effect of reducing eddy current loss, the thickness of the soft magnetic ribbon of the present invention is preferably 100 μm or less, and more preferably 40 μm or less. In the present invention, the matrix structure is similar to a structure that is periodically repeated, and a structure composed of crystal grains and grain boundaries in which the distribution of crystal grain sizes is uniform is referred to as a matrix structure. Yes. In soft magnetic ribbons, the structure near the midpoint of the ribbon thickness is the parent phase.
The crystal grain size is measured by taking an average value of the major axis and the minor axis of the structure observed in the structure photograph taken with an electron microscope. The average grain size is an average value of values obtained by measuring 30 or more crystal grain sizes.
The volume fraction V V of the crystal grains is determined by the line segmentation method, that is, by assuming an arbitrary straight line in the microstructure, the length of the test line is Lt, and the length Lc of the line occupied by the crystal phase is measured. more required in proportion L L = L c / L t × 100 length of the line occupied by the. Here, the volume fraction of crystal grains V V = L L.

A元素(Cu、Au)の量は5原子%以下(0%を含まず)とする。本発明の合金組成におけるA元素は特に重要である。前述したように、A元素はFeとほぼ非固溶のため、熱処理や機械的振動、電気的衝撃、磁気的衝撃等の外的あるいは内的な要因によって、拡散を起こす。特に、薄帯表面と内部で温度分布や温度差が生じやすい熱処理を施した場合には、拡散が起き易い部位と相互の拡散が妨げられ易い部位が存在し、内部で組織は傾斜的、層状的に変質する。磁気的性質を制御するには、薄帯の厚さ、組成の制御、熱処理時の熱処理温度、熱処理時間、昇温速度、降温速度を制御することが有効であり、用途に合わせて、B−H曲線の形を変えられる。また、他の方法、振動等を与えること等でCu原子の拡散を促進することも可能である。
A元素の量は5原子%を超えるとA元素同士が凝集し、熱拡散が起こりにくくなる。好ましくは3原子%以下とする。また、A元素は、上記の効果を得るために0.1原子%以上、さらには0.5原子%以上、さらには0.8原子%以上を添加することが好ましい。A元素は原料コストを考慮するとCuを選択することが好ましい。
The amount of element A (Cu, Au) is 5 atomic % or less (excluding 0%). The element A in the alloy composition of the present invention is particularly important. As described above, since element A is almost insoluble in Fe, diffusion occurs due to external or internal factors such as heat treatment, mechanical vibration, electrical shock, and magnetic shock. In particular, when heat treatment is performed that tends to cause temperature distribution or temperature difference between the ribbon surface and the inside, there is a site where diffusion is likely to occur and a site where mutual diffusion is likely to be hindered. Will change. To control the magnetic properties, the thickness of the ribbon, the control of the composition, the heat treatment temperature during the heat treatment, heat treatment time, heating rate, an effective and benzalkonium control the cooling rate is, according to the application, The shape of the BH curve can be changed. It is also possible to promote the diffusion of Cu atoms by applying other methods, vibrations, or the like.
When the amount of the A element exceeds 5 atomic %, the A elements are aggregated, and thermal diffusion hardly occurs. Preferably it is 3 atomic % or less. In order to obtain the above effect, the element A is preferably added in an amount of 0.1 atomic% or more, further 0.5 atomic% or more, and further 0.8 atomic% or more. In consideration of the raw material cost, it is preferable to select Cu as the element A.

X元素(B,Si,S,C,P,Al,Ge,Ga,Be)はA元素(Cu,Au)が同一薄帯内に存在する本発明の軟磁性薄帯を形成するために不可欠な元素である。10原子%未満であるとアモルファスの形成を促進する効果が不十分である。また24原子%を超えると軟磁気特性が悪化してしまう。好ましい範囲は12原子%以上20原子%以下である。
特にBはアモルファスの形成を促進するために重要な元素であり添加することが好ましい。Bの濃度が10≦y≦20原子%であると、Feの含有量を高く維持しつつアモルファスが安定に得られる。
また、Si,S,C,P,Al,Ge,Ga,Beを添加すると、結晶磁気異方性の大きいFe−Bが析出開始する温度が高くなるため、熱処理温度を高温にできる。高温の熱処理を施すことで微結晶相の割合が増え、Bsが増加し、B−H曲線の角形性が改善される。また、試料表面の変質、変色を抑える効果がある。Si,S,C,P,Al,Ge,Ga,Beの添加量は、0原子%超〜7原子%とすることが好ましい。特にSiはこの効果が顕著であり、好ましい。
The element X (B, Si, S, C, P, Al, Ge, Ga, Be) is indispensable for forming the soft magnetic ribbon of the present invention in which the A element (Cu, Au) exists in the same ribbon. Element. If it is less than 10 atomic%, the effect of promoting the formation of amorphous is insufficient. On the other hand, if it exceeds 24 atomic%, the soft magnetic characteristics are deteriorated. A preferable range is 12 atom% or more and 20 atom% or less.
In particular, B is an important element for accelerating the formation of amorphous and is preferably added. When the concentration of B is 10 ≦ y ≦ 20 atomic%, an amorphous layer can be stably obtained while maintaining a high Fe content.
Further, when Si, S, C, P, Al, Ge, Ga, and Be are added, the temperature at which Fe—B having a large magnetocrystalline anisotropy starts to precipitate increases, so that the heat treatment temperature can be increased. By applying a high temperature heat treatment, the proportion of the microcrystalline phase increases, Bs increases, and the squareness of the BH curve is improved. In addition, there is an effect of suppressing deterioration and discoloration of the sample surface. The addition amount of Si, S, C, P, Al, Ge, Ga, and Be is preferably more than 0 atomic% to 7 atomic%. Particularly, Si is preferable since this effect is remarkable.

Feの一部をFeとA元素に共に固溶するNi、Coから選ばれた少なくとも一種以上の元素で置換してもよい。これらの元素を置換した軟磁性薄帯はアモルファスの形成能が高くなり、A元素の含有量を増加させることが可能である。A元素の含有量が増加することで、結晶組織の微細化が促進され軟磁気特性が改善される。また、Ni、Coを置換した場合には飽和磁束密度が増加する。これらの元素を多く置換すると、価格の高騰につながるため、Niの置換量は10原子%未満、好ましくは5原子%未満、さらには2原子%未満が適当であり、Coの場合は10原子%未満、好ましくは2原子%未満、より好ましくは1原子%未満が適当である。 A part of Fe may be substituted with at least one element selected from Ni and Co that are dissolved in Fe and A together. Soft magnetic ribbons substituted with these elements have a high ability to form an amorphous layer and can increase the content of element A. Increasing the content of element A promotes refinement of the crystal structure and improves soft magnetic properties. Further, when Ni and Co are replaced, the saturation magnetic flux density increases. Substituting a large amount of these elements leads to an increase in the price. Therefore, the amount of substitution of Ni is less than 10 atomic %, preferably less than 5 atomic %, more preferably less than 2 atomic %, and in the case of Co, 10 atomic %. Less than, preferably less than 2 atomic %, more preferably less than 1 atomic % is suitable.

Feの一部をTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、白金族元素、Ag、Zn、In、Sn、As、Sb、Sb、Bi、Y、N、O及び希土類元素から選ばれた少なくとも一種以上の元素で置換した場合、これらの元素はA元素やメタロイド元素と共に熱処理後も残留するアモルファス相に優先的に入るため、Fe濃度の高い微細結晶粒の生成を助ける働きをする。そのため、軟磁気特性の改善に寄与する。一方、本発明の軟磁性薄帯における実質的な磁性の担い手はFeであるため、Feの含有量を高く保つ必要があるが、これら、原子量の大きい元素を含有することは、単位重量あたりのFeの含有量が低下することになる。特に、置換する元素がNb、Zrの場合、置換量は5原子%未満程度、より好ましくは2原子%未満が適当であり、置換する元素がTa、Hfの場合、置換量は2.5原子%未満、より好ましくは1.2原子%未満が適当である。また、Mnを置換する場合は、飽和磁束密度の低下がおこるため、置換量は5原子%未満が妥当であり、より好ましくは2原子%未満である。
但し、特に高い飽和磁束密度を得るためには、これらの元素の総量が1.8原子%以下とすることが好ましい。また、総量が1.0原子%以下とすることがさらに好ましい。
Fe, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, platinum group elements, Ag, Zn, In, Sn, As, Sb, Sb, Bi, Y, N When substituted with at least one element selected from the group consisting of O, O and rare earth elements, these elements preferentially enter the amorphous phase remaining after heat treatment together with the A element and metalloid element. Helps to generate Therefore, it contributes to the improvement of soft magnetic characteristics. On the other hand, since the substantial magnetic player in the soft magnetic ribbon of the present invention is Fe, it is necessary to keep the content of Fe high. However, the inclusion of these elements having a large atomic weight per unit weight The Fe content will decrease. In particular, when the element to be substituted is Nb or Zr, the amount of substitution is less than about 5 atom %, more preferably less than 2 atom %. When the element to be substituted is Ta or Hf, the amount of substitution is 2.5 atom. %, More preferably less than 1.2 atomic % is suitable. Further, when Mn is substituted, the saturation magnetic flux density is lowered, so that the substitution amount is appropriately less than 5 atomic %, more preferably less than 2 atomic %.
However, in order to obtain a particularly high saturation magnetic flux density, the total amount of these elements is preferably 1.8 atomic% or less. Further, it is more preferable that the total amount is 1.0 atomic% or less.

本発明において、溶湯を急冷する方法としては、単ロール法の他、双ロール法、回転液中紡糸法、ガスアトマイズ法、水アトマイズ法などがあり、薄片や薄帯、粉末を製造することができる。また、溶湯急冷時の溶湯温度は、合金の融点よりも50℃〜300℃程度高い温度とするのが望ましい。
単ロール法などの超急冷法は、活性な金属を含まない場合は大気中あるいは局所Arあるいは窒素ガスなどの雰囲気中で行うことが可能であるが、活性な金属を含む場合はAr,Heなどの不活性ガス中、窒素ガス中あるいは減圧中、あるいはノズル先端部のロール表面付近のガス雰囲気を制御する。また、CO2ガスをロールに吹き付ける方法や、COガスをノズル近傍のロール表面付近で燃焼させながら合金薄帯製造を行う。
単ロール法の場合の冷却ロール周速は、15m/sから50m/s程度の範囲が望ましく、冷却ロール材質は、熱伝導が良好な純銅やCu−Be、Cu−Cr、Cu−Zr、Cu−Zr−Crなどの銅合金が適している。大量に製造する場合、板厚が厚い薄帯や広幅薄帯を製造する場合は、冷却ロールは水冷構造とした方が好ましい。
In the present invention, as a method for rapidly cooling the molten metal, there are a twin roll method, a spinning in spinning solution, a gas atomizing method, a water atomizing method and the like in addition to a single roll method, and it is possible to produce flakes, ribbons, and powders. . Further, it is desirable that the molten metal temperature at the time of rapid cooling of the molten metal is higher by about 50 to 300 ° C. than the melting point of the alloy.
The ultra-rapid cooling method such as the single roll method can be performed in the atmosphere or in an atmosphere such as local Ar or nitrogen gas when no active metal is contained, but when active metal is contained, Ar, He, etc. The gas atmosphere in the inert gas, nitrogen gas or reduced pressure, or near the roll surface of the nozzle tip is controlled. In addition, a method of spraying CO 2 gas onto the roll, or manufacturing an alloy ribbon while burning CO gas near the roll surface near the nozzle.
In the case of the single roll method, the peripheral speed of the cooling roll is desirably in the range of about 15 m / s to 50 m / s, and the material of the cooling roll is pure copper, Cu—Be, Cu—Cr, Cu—Zr, Cu with good heat conduction A copper alloy such as -Zr-Cr is suitable. When manufacturing in large quantities, when manufacturing a thin strip with a large plate thickness or a wide strip, it is preferable that the cooling roll has a water cooling structure.

本発明の軟磁性微結晶合金は、必要に応じて、SiO、MgO、Al等の粉末あるいは膜で合金薄帯表面を被覆する、化成処理により表面処理し絶縁層を形成する、アノード酸化処理により表面に酸化物絶縁層を形成し、薄帯と薄帯の層間の絶縁を行う等の処理を行うことにより好ましい結果が得られる。これは特に層間を渡る高周波における渦電流の影響を低減し、高周波における磁心損失を改善する効果があるためである。この効果は表面状態が良好でかつ広幅の薄帯から構成された磁心に使用した場合に特に著しい。更に、本発明の軟磁性薄帯から磁心を作製する際に必要に応じて含浸やコーティング等を行うことも可能である。本発明の軟磁性薄帯は高周波の用途として特にパルス状電流が流れるような応用に最も性能を発揮するが、センサや低周波の磁性部品の用途にも使用可能である。特に、磁気飽和が問題となる用途に優れた特性を発揮でき、ハイパワーのパワーエレクトロニクスの用途に特に適する。
使用時に磁化する方向とほぼ垂直な方向に磁界を印加しながら熱処理した本発明の軟磁性薄帯は、従来の高飽和磁束密度の材料よりも低い磁心損失が得られる。
If necessary, the soft magnetic microcrystalline alloy of the present invention covers the surface of the alloy ribbon with a powder or film of SiO 2 , MgO, Al 2 O 3, etc., and is surface-treated by chemical conversion treatment to form an insulating layer. an oxide insulating layer formed on the surface by anodic oxidation treatment, treatment particularly more preferred results performing such performing the interlayer insulation of the ribbon and ribbon is obtained. This is particularly because the effect of eddy currents at high frequencies across the layers is reduced and magnetic core loss at high frequencies is improved. This effect is particularly remarkable when used in a magnetic core having a good surface state and a wide ribbon. Furthermore, impregnation and coating can be performed as necessary when producing a magnetic core from the soft magnetic ribbon of the present invention. The soft magnetic ribbon of the present invention is most effective for high-frequency applications, particularly in applications where a pulsed current flows, but can also be used for applications of sensors and low-frequency magnetic parts. In particular, it can exhibit excellent characteristics in applications where magnetic saturation is a problem, and is particularly suitable for applications in high-power power electronics.
The soft magnetic ribbon of the present invention, which is heat-treated while applying a magnetic field in a direction substantially perpendicular to the direction of magnetization during use, has a lower magnetic core loss than a conventional high saturation magnetic flux density material.

以下本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
液体急冷法で1300℃に加熱した合金溶湯を周速32m/sで回転する外径300mmのCu-Be合金単ロールに溶湯を噴出し、厚さ約20μmのFebalCu1.5Si4B14 (原子%)の合金組成からなる薄帯を作製した。X線回折および透過電子顕微鏡(TEM)観察の結果、非晶質相中に微細結晶が体積分率で30%未満分散した組織であることが確認された。
この合金薄帯に熱処理を施した。熱処理のパターンは、300℃から最高温度までの平均昇温速度が100℃/min未満のものと、約200℃/minのものをそれぞれ行った。熱処理の保持温度は両方とも450℃で10分間とし、その後、放冷して本発明の軟磁性薄帯を得た。
図1は、熱処理時の300℃以上の平均昇温速度が100℃/min未満とした本発明の軟磁性薄帯(1−1)の透過型電子顕微鏡による薄帯表面近傍の組織写真である。図8にその模式図を示す。最表面から順に、ナノ結晶粒の結晶層A、アモルファス層B、母相組織Dの平均結晶粒径の約2倍粗大化した結晶粒から成る粗大結晶粒層C、母相組織Dの構造から成る。母相組織Dは平均粒径が約25nmの微細結晶粒が80%以上存在していた。軟磁性薄帯(1−1)は熱処理の際に、300℃以上の平均昇温速度を100℃/min未満に制御することにより、表面近傍で粗大化した結晶粒の粗大結晶粒が析出しやすくなる。また、図2には熱処理時の300℃以上の平均昇温速度が約200℃/minとした軟磁性薄帯(1−2)の試料の組織写真を示す。また、図9にその模式図を示す。この組織では最表面から順に、ナノ結晶粒の結晶層A、アモルファス相Bが見られ、次に粗大結晶粒層Cが僅かに見られる。さらにその内部側は母相組織Dが見られる。また、アモルファス層Bの領域も軟磁性薄帯(1−1)から比べると狭い。以上のように300℃以上の平均昇温速度を制御することにより表面近傍の層状構造を制御できる。
また、比較のために、液体急冷法で1300℃に加熱した合金溶湯を周速32m/sで回転する外径300mmのCu-Be合金単ロールに溶湯を噴出し、約20μmの組成式:FebalCu1.5Si4B14NbとFebalCu1.0BNb3.5である合金薄帯を作製した。これらの合金薄帯の表面を同様に観察したが、本願のようなアモルファス層は観察されず、図10に模式図を示すように、全体的にほぼ同じ大きさをもつナノ結晶合金であった。
Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
(Example 1)
The molten alloy heated to 1300 ° C. by the liquid quenching method was jetted onto a single roll of 300 mm outer diameter Cu—Be alloy rotating at a peripheral speed of 32 m / s, and about 20 μm thick Fe bal Cu 1.5 Si 4 B 14 ( A thin ribbon having an alloy composition of (at%) was prepared. As a result of X-ray diffraction and transmission electron microscope (TEM) observation, it was confirmed that the microstructure was a structure in which fine crystals were dispersed in an amorphous phase in a volume fraction of less than 30%.
This alloy ribbon was heat treated. As the heat treatment pattern, an average temperature rising rate from 300 ° C. to the maximum temperature was less than 100 ° C./min, and about 200 ° C./min, respectively. The holding temperature for both heat treatments was 450 ° C. for 10 minutes, and then allowed to cool to obtain the soft magnetic ribbon of the present invention.
FIG. 1 is a photograph of the structure of the soft ribbon (1-1) of the present invention in the vicinity of the surface of the ribbon obtained by a transmission electron microscope in which the average heating rate of 300 ° C. or higher during heat treatment was less than 100 ° C./min. . FIG. 8 shows a schematic diagram thereof. In order from the outermost surface, the crystal layer A nanocrystalline grains, an amorphous layer B, about twice the coarsened consisting coarsening crystal grain layer C having an average grain size of the matrix structure D, the matrix structure D structure Consists of. In the matrix structure D, 80% or more of fine crystal grains having an average grain size of about 25 nm were present. Soft magnetic ribbon (1-1) during heat treatment, by controlling the average heating rate of more than 300 ° C. to less than 100 ° C. / min, coarse crystal grain layer D of coarsened crystal grains near the surface Precipitates easily. Further, FIG. 2 shows a structure photograph of a sample of the soft magnetic ribbon (1-2) in which an average temperature rising rate of 300 ° C. or higher during heat treatment is about 200 ° C./min. Moreover, the schematic diagram is shown in FIG. In this structure, a crystal layer A of nanocrystal grains and an amorphous phase B are observed in order from the outermost surface, and then a coarse crystal grain layer C is slightly observed. Furthermore, the matrix structure D is seen on the inner side. The region of the amorphous layer B is also narrower than that of the soft magnetic ribbon (1-1). As described above, the layered structure in the vicinity of the surface can be controlled by controlling the average heating rate of 300 ° C. or higher.
For comparison, the molten alloy heated to 1300 ° C. by liquid quenching is jetted onto a single roll of 300 mm outer diameter Cu—Be alloy rotating at a peripheral speed of 32 m / s, and the composition formula of about 20 μm: Fe An alloy ribbon comprising bal Cu 1.5 Si 4 B 14 Nb 5 and Fe bal Cu 1.0 B 6 Nb 3.5 was prepared. Although the surfaces of these alloy ribbons were observed in the same manner, the amorphous layer as in the present application was not observed, and as shown in the schematic diagram of FIG. 10, the nanocrystalline alloy had almost the same size as a whole. .

(実施例2)
図3には本発明の軟磁性薄帯(1−1)について最大磁場Bmが80A/mのB-H曲線を示す。また、同一組成で300℃以上の平均昇温速度が200℃/minの軟磁性薄帯(1−2)のB−H曲線を点線で示す。これらの軟磁性薄帯は実施例1の図1、2に示した試料である。昇温速度の遅い軟磁性薄帯(1−1)のB-H曲線は、昇温速度の速い軟磁性薄帯(1−2)よりも角形性が良好であり、Br/B80は約94%と高い値となる。また、低い磁場で、大きな磁束密度が得られる。昇温速度の速い軟磁性薄帯(1−2)では、角形性を示すBr/B80は67%程度で、低磁場では飽和しにくいものである。図4には上記の2試料の、Bmを800A/mとした場合のB-H曲線を示す。B800は、約1.8Tと同程度であるが、1.5T以上のB-H曲線におけるヒステリシスで大きな違いが現れる。熱処理時の昇温速度の遅い軟磁性薄帯(1−1)では、1.5T以上の500A/mの磁場領域までヒステリシスが存在する。一方、昇温速度の速い軟磁性薄帯(1−2)では、この磁束密度の領域ではヒステリシスが減少している。一般的には、ヒステリシスは損失であり少ないことが望まれるが、使用する磁場および磁束密度の領域によっては、角形性が重要となる場合がある。図3、4の比較から1.5T以上の領域でヒステリシスが発生することとマイナーループの角形性の間には密接な関係があることがわかる。以上のように、300℃以上の平均昇温速度を制御することで、B−H曲線の形状を制御することが可能となる。
(Example 2)
Shows the B-H curve of the maximum magnetic field B m is 80A / m for the soft magnetic ribbon (1-1) of the present invention in FIG. In addition, a BH curve of a soft magnetic ribbon (1-2) having the same composition and an average temperature rising rate of 300 ° C. or higher of 200 ° C./min is shown by a dotted line. These soft magnetic ribbons are the samples shown in FIGS. The BH curve of the soft magnetic ribbon (1-1) with a slow rate of temperature rise has better squareness than the soft magnetic ribbon (1-2) with a fast rate of temperature rise, and B r / B 80 is The value is as high as about 94%. Moreover, a large magnetic flux density can be obtained with a low magnetic field. In the soft magnetic ribbon (1-2) having a high rate of temperature increase, the B r / B 80 exhibiting the squareness is about 67%, and is difficult to be saturated in a low magnetic field. FIG. 4 shows BH curves of the above two samples when B m is 800 A / m. B800 is about 1.8T, but a large difference appears in the hysteresis in the BH curve of 1.5T or more. In the soft magnetic ribbon (1-1) having a slow temperature rise rate during the heat treatment, hysteresis exists up to a magnetic field region of 500 A / m of 1.5 T or more. On the other hand, in the soft magnetic ribbon (1-2) having a high temperature rising rate, the hysteresis is reduced in the magnetic flux density region. In general, hysteresis is a loss and it is desirable that hysteresis be small, but squareness may be important depending on the magnetic field and magnetic flux density regions used. 3 and 4, it can be seen that there is a close relationship between the occurrence of hysteresis in the region of 1.5 T or more and the squareness of the minor loop. As described above, the shape of the BH curve can be controlled by controlling the average temperature rising rate of 300 ° C. or higher.

(実施例4)
実施例3と同様にして、表1に示す合金組成(原子%で表す。以下の表も同様)の軟磁性薄帯を製造した。この軟磁性薄帯の角形比Br/B8000、Br/B80を示す。表1に示すように、本発明の軟磁性薄帯はアモルファス層が形成されている。また、熱処理の昇温速度を遅くしたNo.4-1〜4-12はBr/B80が90%以上の高い値を示し、角形性が良好であることがわかる。また、Br/B8000とBr/B80に5〜20%程度の開きがあり、マイナーループを描いている場合と、フルループを描く場合で角形性に違いが現れる。組織制御により、薄帯表面近傍に母相の平均結晶粒の約2倍の大きさの粗大結晶粒から成る層を析出させた場合には、B−Hループの形状が変わり、角形性が良くなる。表1に示すように、組成が同じ場合でも粗大結晶粒層の有無によって、角形性に大きな違いが現れる。このような現象を用いて、磁場領域の違いを利用したスイッチング素子として有望となる。
Example 4
In the same manner as in Example 3, soft magnetic ribbons having the alloy composition shown in Table 1 (expressed in atomic%, the same applies to the following tables) were produced. The square ratios B r / B 8000 and B r / B 80 of this soft magnetic ribbon are shown. As shown in Table 1, the soft magnetic ribbon of the present invention has an amorphous layer. Further, Nanba4-1~4- 12 was slow heating rate of the heat treatment B r / B 80 is a high value of 90% or more, it can be seen that squareness is good. Further, there is an opening of about 5 to 20% between B r / B 8000 and B r / B 80 , and a difference appears in the squareness between when a minor loop is drawn and when a full loop is drawn. When a layer composed of coarse crystal grains approximately twice as large as the average grain size of the parent phase is deposited near the surface of the ribbon by structural control, the shape of the BH loop changes and the squareness is good. Become. As shown in Table 1, even when the composition is the same, a large difference appears in the squareness depending on the presence or absence of the coarse crystal grain layer. By using such a phenomenon, it is promising as a switching element utilizing the difference in the magnetic field region.

軟磁性薄帯の表面近傍に見られる層状構造を示す組織写真(平均昇温速度100℃/min未満)The structure | tissue photograph (average temperature increase rate of less than 100 degree-C / min) which shows the layered structure seen near the surface of a soft magnetic ribbon. 別の層状構造を示す組織写真(平均昇温速度200℃/min)The structure | tissue photograph (average temperature increase rate of 200 degrees C / min) which shows another layered structure. 熱処理の昇温速度を変えた試料を比較したB-H曲線(最大磁場80A/m)。B-H curve (maximum magnetic field 80A / m) comparing samples with different heating rates. 熱処理の昇温速度を変えた試料を比較したB-H曲線(最大磁場800A/m)。B-H curve (maximum magnetic field 800A / m) comparing samples with different heating rates. 実施例3の軟磁性薄帯のB-H曲線(最大磁場80A/m)。B-H curve of soft magnetic ribbon of Example 3 (maximum magnetic field 80 A / m). 軟磁性材の皮相電力の磁束密度依存性を示す図。The figure which shows the magnetic flux density dependence of the apparent electric power of a soft-magnetic material. 本発明の軟磁性薄帯の組織の状態を示す模式図。The schematic diagram which shows the state of the structure | tissue of the soft-magnetic ribbon of this invention. 図1の組織写真の模式図である。It is a schematic diagram of the structure | tissue photograph of FIG. 図2の組織写真の模式図である。It is a schematic diagram of the structure | tissue photograph of FIG. 従来の軟磁性薄帯の組織の状態を示す模式図である。It is a schematic diagram which shows the state of the structure | tissue of the conventional soft magnetic ribbon.

Claims (7)

薄帯の内部に結晶粒径が60nm以下(0を含まず)の結晶粒が非晶質中に体積分率で30%以上分散した母相組織を有し、かつ前記母相組織と薄帯の表面との間にアモルファス層を有することを特徴とする軟磁性薄帯。 The thin ribbon has a matrix structure in which crystal grains having a crystal grain size of 60 nm or less (not including 0) are dispersed in an amorphous material by 30% or more in volume fraction, and the matrix structure and the ribbon A soft magnetic ribbon characterized by having an amorphous layer between the surface and the surface. 前記軟磁性薄帯は、薄帯の最表面に結晶組織から成る結晶層が形成され、前記結晶層の内部側に前記アモルファス層が形成されていることを特徴とする請求項1に記載の軟磁性薄帯。 2. The soft magnetic ribbon according to claim 1, wherein a crystal layer having a crystal structure is formed on an outermost surface of the ribbon, and the amorphous layer is formed on an inner side of the crystal layer. Magnetic ribbon. 前記アモルファス層と母相組織の間に、前記母相組織の平均粒径よりも大きい結晶粒を含む粗大結晶粒層を有することを特徴とする請求項1又は請求項2に記載の軟磁性薄帯。 Between the amorphous layer and the matrix structure, soft of claim 1 or claim 2 characterized by having a coarse crystal grain layer containing a large listening grain than the average grain size of the matrix structure Ribbon. 前記軟磁性薄帯は、組成式:Fe100-x-y(但し、AはCu,Auから選ばれた少なくとも1種以上の元素、XはB,Si,S,C,P,Al,Ge,Ga,Beから選ばれた少なくとも一種以上の元素)で表され、原子%で、0<x≦5、10≦y≦24により表されることを特徴とする請求項1乃至請求項3の何れか1項に記載の軟磁性薄帯。 The soft magnetic ribbon has a composition formula: Fe 100-xy A x X y (where A is at least one element selected from Cu and Au, X is B, Si, S, C, P) And at least one element selected from Al, Ge, Ga, and Be), and expressed in terms of atomic% by 0 <x ≦ 5 and 10 ≦ y ≦ 24. soft magnetic ribbon according to any one of claims 3. 請求項1乃至請求項4の何れか1項に記載の軟磁性薄帯を用いた磁心。A magnetic core using the soft magnetic ribbon according to any one of claims 1 to 4. 磁束密度1.5T、周波数50Hzで測定した鉄損が0.5W/Kg以下であることを特徴とする請求項5に記載の磁心。6. The magnetic core according to claim 5, wherein the iron loss measured at a magnetic flux density of 1.5 T and a frequency of 50 Hz is 0.5 W / Kg or less. 請求項1乃至請求項4の何れか1項に記載の軟磁性薄帯、または請求項5又は6に記載の磁心を用いた磁性部品。A magnetic component using the soft magnetic ribbon according to any one of claims 1 to 4 or the magnetic core according to claim 5 or 6.
JP2007074976A 2007-03-22 2007-03-22 Soft magnetic ribbon, magnetic core, and magnetic parts Active JP5445891B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007074976A JP5445891B2 (en) 2007-03-22 2007-03-22 Soft magnetic ribbon, magnetic core, and magnetic parts
EP08721218.9A EP2130936A4 (en) 2007-03-22 2008-03-04 Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
PCT/JP2008/053798 WO2008114605A1 (en) 2007-03-22 2008-03-04 Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
CN2008800093206A CN101641455B (en) 2007-03-22 2008-03-04 Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
US12/531,613 US7935196B2 (en) 2007-03-22 2008-03-04 Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
KR1020097019698A KR101162080B1 (en) 2007-03-22 2008-03-04 Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007074976A JP5445891B2 (en) 2007-03-22 2007-03-22 Soft magnetic ribbon, magnetic core, and magnetic parts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009209241A Division JP5445924B2 (en) 2009-09-10 2009-09-10 Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon

Publications (3)

Publication Number Publication Date
JP2008231534A JP2008231534A (en) 2008-10-02
JP2008231534A5 true JP2008231534A5 (en) 2009-11-05
JP5445891B2 JP5445891B2 (en) 2014-03-19

Family

ID=39904690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007074976A Active JP5445891B2 (en) 2007-03-22 2007-03-22 Soft magnetic ribbon, magnetic core, and magnetic parts

Country Status (1)

Country Link
JP (1) JP5445891B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105580095B (en) * 2013-08-13 2017-07-18 日立金属株式会社 Fe bases amorphous transformer core and its manufacture method and transformer
JP6313956B2 (en) * 2013-11-11 2018-04-18 株式会社トーキン Nanocrystalline alloy ribbon and magnetic core using it
CN107109562B (en) 2014-12-22 2019-07-23 日立金属株式会社 Fe based soft magnetic alloy thin band and the magnetic core for using it
CN107043847B (en) 2016-02-09 2021-06-18 株式会社东北磁材研究所 Heat treatment device for laminated body of amorphous alloy thin strip and soft magnetic core
JP6517844B2 (en) * 2016-02-09 2019-05-22 株式会社東北マグネットインスティテュート Heat treatment apparatus and soft magnetic core for laminate of amorphous alloy ribbon
JP6160760B1 (en) * 2016-10-31 2017-07-12 Tdk株式会社 Soft magnetic alloys and magnetic parts
EP3722028A4 (en) 2017-12-07 2020-11-18 JFE Steel Corporation Method for producing atomized metal powder
KR102421220B1 (en) 2018-10-11 2022-07-14 제이에프이 스틸 가부시키가이샤 Method for producing water atomized metal powder
WO2020075815A1 (en) 2018-10-11 2020-04-16 Jfeスチール株式会社 Method for producing water-atomized metal powder
WO2022107411A1 (en) 2020-11-18 2022-05-27 Jfeスチール株式会社 Production method for water-atomized metal powder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3594123B2 (en) * 1999-04-15 2004-11-24 日立金属株式会社 Alloy ribbon, member using the same, and method of manufacturing the same
JP2003213331A (en) * 2002-01-25 2003-07-30 Alps Electric Co Ltd METHOD FOR MANUFACTURING SOFT MAGNETIC Fe ALLOY, AND SOFT MAGNETIC Fe ALLOY
JP4771215B2 (en) * 2005-03-29 2011-09-14 日立金属株式会社 Magnetic core and applied products using it

Similar Documents

Publication Publication Date Title
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5455040B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
KR101162080B1 (en) Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
JP5445890B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP2008231534A5 (en)
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
JP2008231533A5 (en)
KR20090113314A (en) Iron-based soft magnetic alloy, thin ribbon of amorphous alloy, and magnetic part
JPH044393B2 (en)
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JP2009174034A (en) Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same
JP2011195936A (en) ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND METHOD FOR PRODUCING THE SAME, AND MAGNETIC PART
JP4257629B2 (en) Fe-based amorphous alloy ribbon and magnetic component for nanocrystalline soft magnetic alloy
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JP4003166B2 (en) Co-based magnetic alloy and magnetic component using the same
JP3374981B2 (en) Nanocrystalline soft magnetic alloy and magnetic core with excellent short pulse characteristics
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JP2000144347A (en) Iron base soft magnetic alloy and control of magnetostriction therein
JPH08948B2 (en) Fe-based magnetic alloy
JP2008150637A (en) Magnetic alloy, amorphous alloy ribbon and magnetic parts
JPH0448053A (en) Fe-base soft-magnetic alloy and its production and magnetic core using the same