JP2009174034A - Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same - Google Patents

Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same Download PDF

Info

Publication number
JP2009174034A
JP2009174034A JP2008016660A JP2008016660A JP2009174034A JP 2009174034 A JP2009174034 A JP 2009174034A JP 2008016660 A JP2008016660 A JP 2008016660A JP 2008016660 A JP2008016660 A JP 2008016660A JP 2009174034 A JP2009174034 A JP 2009174034A
Authority
JP
Japan
Prior art keywords
soft magnetic
amorphous soft
alloy
amorphous
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008016660A
Other languages
Japanese (ja)
Inventor
Katsuto Yoshizawa
克仁 吉沢
Kengo Takahashi
謙悟 高橋
Motoki Ota
元基 太田
Taku Miyamoto
卓 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008016660A priority Critical patent/JP2009174034A/en
Priority to PCT/JP2009/051254 priority patent/WO2009096382A1/en
Publication of JP2009174034A publication Critical patent/JP2009174034A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • H01F1/15375Making agglomerates therefrom, e.g. by pressing using a binder using polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an amorphous soft magnetic alloy having preferable soft magnetic characteristics, the strip thereof, the powders thereof, a low-loss magnetic core and a high-performance magnetic component using the alloy. <P>SOLUTION: The amorphous soft magnetic alloy includes Fe<SB>100-x-y-z</SB>Si<SB>x</SB>B<SB>y</SB>P<SB>z</SB>(atom%) as a main component (wherein x, y and z each satisfies the relation: 0.5≤x≤15, 5≤y≤25, z≤15 and 18≤x+y+z≤30), and contains, by mass based on the main component, ≥0.01 but ≤0.3% Mn, ≥0.0001 but ≤0.01% Al, ≥0.001 but ≤0.03% Ti, ≥0.005 but ≤0.2% Cu and ≥0.001 but ≤0.05% S. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、各種リアクトル、各種チョ−クコイル、各種トランス、モーター用鉄心、磁気シールド、磁気センサー、電流センサー等の磁性部品に用いられ、特にリアクトル、チョークコイルやトランスの磁心に好適な特性を有するアモルファス軟磁性合金、アモルファス軟磁性合金薄帯、アモルファス軟磁性合金粉末およびそれを用いた低損失の磁心並びにこれを用いた高性能な磁性部品に関する。   The present invention is used for magnetic components such as various reactors, various choke coils, various transformers, iron cores for motors, magnetic shields, magnetic sensors, current sensors, and the like, and particularly has characteristics suitable for magnetic cores of reactors, choke coils, and transformers. The present invention relates to an amorphous soft magnetic alloy, an amorphous soft magnetic alloy ribbon, an amorphous soft magnetic alloy powder, a low-loss magnetic core using the same, and a high-performance magnetic component using the same.

各種リアクトル、各種チョ−クコイル・インダクタ、各種トランス、モーター用鉄心、磁気シールド、磁気センサー、電流センサー等の磁性部品に用いられる磁性材料としては、けい素鋼、フェライト、アモルファス合金やナノ結晶合金材料等が知られている。フェライトは高周波特性に優れるが飽和磁束密度が低く、温度特性が劣り磁気的に飽和しやすい問題があり直流重畳特性に劣るため特にリアクトルなどに用いた場合小型化や大電流回路対応に課題がある。珪素鋼は、磁束密度が高い特長を有するが、高周波の用途に対しては磁心損失が大きいという問題があり、特に10kHzを超えるような周波数で使用する場合発熱が大きい問題がある。   Magnetic materials used in magnetic components such as various reactors, various choke coils and inductors, various transformers, motor cores, magnetic shields, magnetic sensors, and current sensors include silicon steel, ferrite, amorphous alloys, and nanocrystalline alloy materials. Etc. are known. Ferrite has excellent high-frequency characteristics, but has a low saturation magnetic flux density, poor temperature characteristics, and is likely to be magnetically saturated. Inferior direct current superposition characteristics, especially when used for reactors, there are problems in miniaturization and compatibility with large current circuits. . Silicon steel has a feature of high magnetic flux density, but has a problem of large magnetic core loss for high frequency applications, and particularly has a problem of large heat generation when used at a frequency exceeding 10 kHz.

Fe基ナノ結晶合金は優れた軟磁気特性を示すため、コモンモ−ドチョ−クコイル、高周波トランス、パルストランス等の磁心に使用されている。これらのFe基ナノ結晶合金は、通常液相や気相から急冷しアモルファス合金とした後、これを熱処理により微結晶化することにより作製されている。Fe基ナノ結晶合金はアモルファス合金を微結晶化したもので、Fe系アモルファス合金と同程度の高い飽和磁束密度と低磁歪で優れた軟磁気特性を示すことが知られている。しかし、ナノ結晶合金はNbやZrなどの高価な元素を多量に含み、アモルファス合金を製造する際、アモルファス軟磁性材料として使用されるアモルファス合金よりも製造が難しく、量産性は通常のアモルファス合金に劣っている。アモルファス合金を製造する方法としては、液相から急冷する方法としては単ロ−ル法、双ロ−ル法、遠心急冷法、回転液中紡糸法、アトマイズ法やキャビテーション法等が知られている。また、気相から急冷する方法としては、スパッタ法、蒸着法、イオンプレ−ティング法等が知られている。   Fe-based nanocrystalline alloys exhibit excellent soft magnetic properties, and are therefore used in magnetic cores such as common mode choke coils, high frequency transformers, and pulse transformers. These Fe-based nanocrystalline alloys are usually prepared by quenching from a liquid phase or a gas phase to form an amorphous alloy, and then microcrystallizing this by heat treatment. Fe-based nanocrystalline alloys are microcrystalline crystallization of amorphous alloys and are known to exhibit excellent soft magnetic properties with high saturation magnetic flux density and low magnetostriction comparable to those of Fe-based amorphous alloys. However, nanocrystalline alloys contain a large amount of expensive elements such as Nb and Zr, and are more difficult to produce than amorphous alloys used as amorphous soft magnetic materials when producing amorphous alloys. Inferior. As a method for producing an amorphous alloy, as a method for quenching from a liquid phase, a single roll method, a twin roll method, a centrifugal quench method, a spinning in a rotating liquid, an atomizing method, a cavitation method, and the like are known. . Further, as a method of quenching from the gas phase, a sputtering method, a vapor deposition method, an ion plating method and the like are known.

一方、現在実用化されているFe−Si−B系やCo−Fe−Si−B系などのアモルファス合金は、従来の結晶質軟磁性合金材料よりも軟磁性に優れるが、上述の単ロール法やアトマイズ法などの超急冷技術を用いて製造しなければならず、寸法の大きいものは完全なアモルファス合金製造が困難であり形状的な制約がある。現在生産されているアモルファス軟磁性合金は通常25μm程度の板厚の薄帯や、150μm程度の直径のワイヤーである。たとえば電力用のアモルファス合金薄帯は、商用の周波数すなわち50Hzや60Hzなど比較的低い周波数で使用される。これらの用途に使用する場合は、低鉄損であることとともに小型化の観点から飽和磁束密度(Bs)が高いことや占積率が高いことが要求される。アモルファス合金は前述のように25μm程度の板厚の材料が量産されているが、占積率を向上する観点からは、板厚を更に厚くすることが好ましいが、結晶化による磁気特性劣化などの問題がある。また、チョークコイルなどに用いられる圧粉磁心などに使用することを目的にアモルファス合金粉末の製造も行われているが、水アトマイズ法やガスアトマイズ法で製造した場合、大きな粒径の粉末は完全なアモルファスにはなりにくい。特に冷却速度の劣るガスアトマイズなどにより粉末を製造する場合は、粒径が大きい粉末は完全なアモルファス状態を実現することは困難であるため、特性の悪い粉末が混在しやすくなる。   On the other hand, currently available amorphous alloys such as Fe-Si-B and Co-Fe-Si-B are superior in soft magnetism to conventional crystalline soft magnetic alloy materials. Must be manufactured using an ultra-quenching technique such as an atomizing method or the like, and it is difficult to manufacture a completely amorphous alloy with a large size, and there is a shape limitation. Currently produced amorphous soft magnetic alloys are usually thin ribbons with a thickness of about 25 μm and wires with a diameter of about 150 μm. For example, amorphous alloy ribbons for electric power are used at commercial frequencies, that is, relatively low frequencies such as 50 Hz and 60 Hz. When used for these applications, it is required to have a low iron loss and a high saturation magnetic flux density (Bs) and a high space factor from the viewpoint of miniaturization. As described above, the amorphous alloy is mass-produced with a material having a thickness of about 25 μm. From the viewpoint of improving the space factor, it is preferable to increase the thickness further, but the magnetic properties are deteriorated due to crystallization. There's a problem. Amorphous alloy powder is also manufactured for the purpose of use in dust cores used in choke coils, etc., but when manufactured by the water atomization method or gas atomization method, powder with a large particle size is not completely produced. Hard to be amorphous. In particular, when a powder is produced by gas atomization or the like having a low cooling rate, it is difficult to realize a complete amorphous state for a powder having a large particle size, and therefore, a powder having poor characteristics is likely to be mixed.

このような課題に対して、特許文献1(特許第3929327号)、特許文献2(特開2007−92096号)や特許文献3(特開2007−231415号)に記載されているようなアモルファス形成能の高いFe基のアモルファス合金(金属ガラス)が報告されており、比較的大きな寸法のアモルファス合金や粉末が製造できることが報告されている。   In order to solve such a problem, amorphous formation as described in Patent Document 1 (Japanese Patent No. 3929327), Patent Document 2 (Japanese Patent Laid-Open No. 2007-92096) and Patent Document 3 (Japanese Patent Laid-Open No. 2007-231415) is performed. High performance Fe-based amorphous alloys (metallic glasses) have been reported, and it has been reported that amorphous alloys and powders with relatively large dimensions can be produced.

特許第3929327号公報Japanese Patent No. 3929327 特開2007−92096号公報JP 2007-92096 A 特開2007−231415号公報JP 2007-231415 A

しかしながら、これらの形成能が高いと報告されている組成の合金において、アモルファス合金を製造する際、純原料に変えてフェロアロイなどの工業原料を使用し検討を行ったところ、微量に含まれる元素量を調整せず製造すると、鋳造時の合金サイズが大きい場合、板厚が厚い場合や粒径が大きい場合に、合金を完全なアモルファス状態にすることが困難で、結晶相が形成し合金の軟磁気特性が劣化することが明らかとなった。これは、微量に含まれる元素が、結晶化を助長するためであると考えられる。したがって、微量の合金元素を調整することにより結晶相形成を抑制し軟磁気特性の劣化を抑える必要がある。
以上のように、工業レベルでも、結晶相が形成しにくく、合金サイズを大きくでき形状的な制約が小さく、軟磁気特性が劣化しにくく、優れた磁気特性を示すアモルファス軟磁性合金の実現が強く望まれている。
However, when producing amorphous alloys in alloys with compositions that are reported to have a high ability to form these materials, investigations were made using industrial raw materials such as ferroalloys instead of pure raw materials. If the alloy size during casting is large, if the plate thickness is large or the grain size is large, it is difficult to make the alloy completely amorphous, and a crystalline phase is formed and the alloy softens. It became clear that the magnetic properties deteriorated. This is considered to be because an element contained in a trace amount promotes crystallization. Therefore, it is necessary to suppress the formation of crystal phase and suppress the deterioration of soft magnetic properties by adjusting a small amount of alloy elements.
As described above, even at the industrial level, it is difficult to form a crystalline phase, the alloy size can be increased, the shape restrictions are small, soft magnetic properties are not easily deteriorated, and amorphous soft magnetic alloys exhibiting excellent magnetic properties are strongly realized. It is desired.

そこで、本発明は各種リアクトル、各種チョ−クコイル・インダクタ、各種トランス、モーター用鉄心、磁気シールド、磁気センサー、電流センサー等の磁性部品に用いられ、特にリアクトル、チョークコイルやトランスの磁心に好適な特性を有する量産に適し、アモルファス形成能が良好で優れた磁気特性を示すアモルファス軟磁性合金、アモルファス軟磁性合金薄帯、アモルファス軟磁性合金粉末およびそれを用いた低損失の磁心並びにこれを用いた高性能な磁性部品を提供することを目的とする。   Therefore, the present invention is used for magnetic components such as various reactors, various choke coils and inductors, various transformers, iron cores for motors, magnetic shields, magnetic sensors, and current sensors, and is particularly suitable for magnetic cores of reactors, choke coils, and transformers. Amorphous soft magnetic alloy, amorphous soft magnetic alloy ribbon, amorphous soft magnetic alloy powder, and low-loss magnetic core using the same and suitable for mass production with excellent characteristics, good amorphous forming ability and excellent magnetic properties An object is to provide a high-performance magnetic component.

上記問題点を解決するために鋭意検討の結果、本発明者らは、Fe100-x-y-zSi(原子%)を主成分とし、x、yおよびzはそれぞれ0.5≦x≦15、5≦y≦25、z≦15、18≦x+y+z≦30を満足し、該主成分に対しMnを0.01質量%以上0.3質量%以下、Alを0.0001質量%以上0.01質量%以下、Tiを0.001質量%以上0.03質量%以下、Cuを0.005質量%以上0.2質量%以下およびSを0.001質量%以上0.05質量%以下含有しているアモルファス軟磁性合金が、結晶相を形成しにくく優れた軟磁気特性を示すことを見出し本発明に想到した。 As a result of intensive studies to solve the above problems, the present inventors have Fe 100-x-yz Si x B y P z (atomic%) as a main component, and x, y, and z are each 0. 5 ≦ x ≦ 15, 5 ≦ y ≦ 25, z ≦ 15, 18 ≦ x + y + z ≦ 30, Mn is 0.01% by mass or more and 0.3% by mass or less with respect to the main component, and Al is 0.8%. 0001 mass% to 0.01 mass%, Ti 0.001 mass% to 0.03 mass%, Cu 0.005 mass% to 0.2 mass% and S 0.001 mass% to 0 The present inventors have found that an amorphous soft magnetic alloy containing 0.05 mass% or less hardly forms a crystal phase and exhibits excellent soft magnetic properties, and have arrived at the present invention.

本発明において、Siはアモルファス相形成を助ける効果があり、Si量xが0.5原子%未満では熱的安定性を著しく劣化し好ましくなく、Si量xが15原子%を超えると飽和磁束密度の著しい低下を招き好ましくない。このためSi量xは0.5≦x≦15(原子%)である必要がある。より望ましいSi量xの範囲は1≦x≦13(原子%)である。この範囲でよりアモルファスリボン作製が容易である。Bはアモルファス化に効果がある元素であり、B量yが5原子%未満ではアモルファス化が困難であり好ましくなく、B量yが25原子%を超えると飽和磁束密度の著しい低下を招き好ましくない。Pはアモルファス化に効果がある元素でありP量zは15原子%以下である必要がある。Pを含むことによりアモルファス形成能が向上するが、P量zが15原子%を超えると飽和磁束密度の著しい減少を招き好ましくない。Si量x、B量y、P量zの総和x+y+zは、18原子%以上30原子%以下である必要がある。これは、Si量x、B量y、P量zの総和x+y+zが、18原子%未満ではアモルファス形成能が劣り好ましくなく、30原子%を超えると飽和磁束密度の著しい低下を招き好ましくないためである。   In the present invention, Si has an effect of assisting the formation of an amorphous phase. When the Si amount x is less than 0.5 atomic%, the thermal stability is remarkably deteriorated, and when the Si amount x exceeds 15 atomic%, it is not preferable. This is not preferable because it causes a significant decrease. For this reason, the Si amount x needs to satisfy 0.5 ≦ x ≦ 15 (atomic%). A more preferable range of the Si amount x is 1 ≦ x ≦ 13 (atomic%). In this range, it is easier to produce an amorphous ribbon. B is an element effective for amorphization, and when the B amount y is less than 5 atomic%, it is difficult to form an amorphous material, and when the B amount y exceeds 25 atomic%, the saturation magnetic flux density is remarkably lowered. . P is an element effective for amorphization, and the P amount z needs to be 15 atomic% or less. Although the amorphous forming ability is improved by containing P, if the amount of P exceeds 15 atomic%, the saturation magnetic flux density is significantly decreased, which is not preferable. The sum x + y + z of the Si amount x, the B amount y, and the P amount z needs to be 18 atom% or more and 30 atom% or less. This is because if the sum x + y + z of Si amount x, B amount y, and P amount z is less than 18 atomic%, the amorphous forming ability is inferior, and if it exceeds 30 atomic%, the saturation magnetic flux density is significantly lowered, which is not preferable. is there.

MnはSとの共存することによりアモルファスの結晶化を抑制する元素であり、前記主成分に対しMn量が0.01重量未満では結晶化抑制効果がほとんどなく、0.3質量%を超えると脆化や溶解時の耐火物との反応が大きくなり、好ましくない。このためMn量は前記主成分に対して0.01質量%以上0.3質量%以下である必要がある。AlとTiであるが、完全に除去するのは困難な元素であり、アモルファス表面の結晶化を促進しアモルファス形成に害がある元素である。Al量を0.0001質量%以下にすることは難しく、Al量が0.01質量%を超えると結晶化しやすくなり好ましくない。このためAl量は0.001質量%以上0.01質量%以下である必要がある。Ti量を0.001質量%以下にすることは難しく、Ti量が0.03質量%を超えるとアモルファス合金表面が結晶化しやすくなり好ましくない。このためTi量は0.001質量%以上0.03質量%以下とする必要がある。CuおよびSはAlとTiを微量含む場合にある含有量の範囲で結晶化を抑制する元素であり、ともにある範囲で含有することが望ましい。Cu量が0.005質量%未満では結晶化を抑制する効果がなく、Cu量が0.2質量%を超えるとアモルファス形成能が低下し、肉厚形状や粒径の大きい形状ではアモルファス化が困難となる。このためCu量は0.005質量%以上0.2質量%以下である必要がある。S量が0.001質量%未満では結晶化を抑制する効果がなく、S量が0.05質量%を超えると著しい脆化を招き好ましくない。このためS量は0.001質量%以上0.05質量%以下である必要がある。   Mn is an element that suppresses amorphous crystallization by coexisting with S. When the amount of Mn is less than 0.01 wt% with respect to the main component, there is almost no crystallization suppressing effect. The reaction with the refractory during embrittlement or dissolution becomes large, which is not preferable. For this reason, the amount of Mn needs to be 0.01 mass% or more and 0.3 mass% or less with respect to the said main component. Al and Ti are elements that are difficult to remove completely, and are elements that promote the crystallization of the amorphous surface and are harmful to the formation of the amorphous. It is difficult to make the amount of Al 0.0001% by mass or less, and when the amount of Al exceeds 0.01% by mass, crystallization tends to occur, which is not preferable. For this reason, Al amount needs to be 0.001 mass% or more and 0.01 mass% or less. It is difficult to make the Ti content 0.001% by mass or less, and when the Ti content exceeds 0.03% by mass, the amorphous alloy surface is easily crystallized, which is not preferable. For this reason, the amount of Ti needs to be 0.001 mass% or more and 0.03 mass% or less. Cu and S are elements that suppress crystallization within a certain content range when a small amount of Al and Ti are contained, and it is desirable that both are contained within a certain range. If the amount of Cu is less than 0.005% by mass, there is no effect of suppressing crystallization, and if the amount of Cu exceeds 0.2% by mass, the amorphous forming ability decreases, and in the case of a thick shape or a shape having a large particle size, amorphization is not achieved. It becomes difficult. For this reason, the amount of Cu needs to be 0.005 mass% or more and 0.2 mass% or less. When the amount of S is less than 0.001% by mass, there is no effect of suppressing crystallization, and when the amount of S exceeds 0.05% by mass, significant embrittlement is caused, which is not preferable. For this reason, S amount needs to be 0.001 mass% or more and 0.05 mass% or less.

本発明において、Feの一部をCo、およびNiから選ばれた少なくとも1種の元素で置換することができる。CoやNiを置換することにより飽和磁束密度を変化させたり、磁歪を変化させることができる。また、磁界中熱処理を行なう場合には誘導磁気異方性を変化させることができる。
また、本発明において、Feの5原子%以下をCで置換することができる。Cで置換することによりアモルファス合金を製造する際の溶湯の粘性が下がり製造が容易となる。しかし、C量が5原子%を超えると、著しく経時変化が大きくなり好ましくない。より好ましいCの置換量は2原子%以下である。特に好ましいC量は1原子%以下である。
また、本発明において、Feの3原子%以下をCr、V、Nb、Mo、Ta、W、Zr、Hfから選ばれた少なくとも1種の元素で置換することができる。これらの元素を置換することにより、耐蝕性の改善、熱的安定性の向上や、軟磁気特性を向上することができる。
また、本発明において、Bの1原子%以下をGe、Ga、Snから選ばれた少なくとも1種の元素で置換することができる。これらの元素を置換することにより、磁気特性を調整することができるが、置換量が1原子%を超えると脆化しやすくなり好ましくない。
また、本発明合金は、酸素や窒素などの不純物を含むことができるが、多量に含むことは好ましくない。
In the present invention, a part of Fe can be substituted with at least one element selected from Co and Ni. By substituting Co or Ni, the saturation magnetic flux density can be changed or the magnetostriction can be changed. In addition, when performing heat treatment in a magnetic field, the induced magnetic anisotropy can be changed.
In the present invention, 5 atomic% or less of Fe can be substituted with C. By substituting with C, the viscosity of the molten metal at the time of producing an amorphous alloy is lowered and the production becomes easy. However, when the amount of C exceeds 5 atomic%, the change with time is remarkably increased. A more preferable substitution amount of C is 2 atomic% or less. A particularly preferable amount of C is 1 atomic% or less.
In the present invention, 3 atomic% or less of Fe can be substituted with at least one element selected from Cr, V, Nb, Mo, Ta, W, Zr, and Hf. By substituting these elements, it is possible to improve corrosion resistance, thermal stability, and soft magnetic properties.
In the present invention, 1 atomic% or less of B can be substituted with at least one element selected from Ge, Ga, and Sn. By substituting these elements, the magnetic properties can be adjusted. However, if the amount of substitution exceeds 1 atomic%, it tends to become brittle, which is not preferable.
The alloy of the present invention can contain impurities such as oxygen and nitrogen, but it is not preferable to contain a large amount.

本発明アモルファス軟磁性合金は、工業原料を使用して単ロール法や双ロール法などの液体急冷法により板厚が3μmから350μmの範囲にあるアモルファス軟磁性合金薄帯を得ることができ、幅が15mm以上の広幅合金薄帯を製造可能である。特に本発明アモルファス合金は、板厚が40μmから350μmの範囲にある板厚が厚い広幅のアモルファス軟磁性合金薄帯を得ることも可能である。
本発明の合金薄帯やワイヤーを製造する方法としては、単ロール法、双ロール法、回転液中防止法、溶融ガラス紡糸法などがある。また、溶湯急冷時の溶湯温度は、合金の融点よりも50℃〜300℃程度高い温度とするのが望ましい。
The amorphous soft magnetic alloy of the present invention can obtain an amorphous soft magnetic alloy ribbon having a thickness of 3 μm to 350 μm by a liquid quenching method such as a single roll method or a twin roll method using industrial raw materials. It is possible to produce a wide alloy ribbon having a thickness of 15 mm or more. In particular, the amorphous alloy of the present invention can provide a wide amorphous soft magnetic alloy ribbon having a thick plate thickness in the range of 40 μm to 350 μm.
Examples of the method for producing the alloy ribbon or wire of the present invention include a single roll method, a twin roll method, a rotating liquid prevention method, and a molten glass spinning method. Further, it is desirable that the molten metal temperature at the time of rapid cooling of the molten metal is higher by about 50 ° C. to 300 ° C. than the melting point of the alloy.

単ロール法などの超急冷法で薄帯を製造する場合、本発明合金薄帯は大気中あるいは局所Arあるいは窒素ガスなどの雰囲気中、あるいはAr,Heなどの不活性ガス中、窒素ガス中あるいは減圧中、あるいはノズル先端部のロール表面付近のガス雰囲気を制御しながら製造する。また、CO2ガスをロールに吹き付ける方法や、COガスをノズル近傍のロール表面付近で燃焼させながら合金薄帯製造を行う場合もある。 When a ribbon is produced by a rapid quenching method such as a single roll method, the alloy ribbon according to the present invention is used in the atmosphere, in an atmosphere such as local Ar or nitrogen gas, in an inert gas such as Ar or He, in nitrogen gas or Manufacture while reducing the pressure or controlling the gas atmosphere near the roll surface at the tip of the nozzle. Also, there are cases where CO 2 gas is blown onto the roll, or alloy ribbon production is performed while CO gas is burned near the roll surface near the nozzle.

単ロール法の場合の冷却ロール周速は、2m/sから80m/s程度の範囲が望ましく、冷却ロール材質は、熱伝導が良好な純銅やCu−Be、Cu−Cr、Cu−Zr、Cu−Zr−Cr、Cu−Zr−Si、Cu−Ni−Siなどの銅合金が適している。大量に薄帯を製造する場合、板厚が厚い薄帯や広幅薄帯を製造する場合は、冷却ロールは水冷構造とした方が好ましい。薄帯は熱処理後機械的に粉砕し粉末やフレーク状にして使用することもできる。   In the case of the single roll method, the peripheral speed of the cooling roll is desirably in the range of about 2 m / s to 80 m / s, and the cooling roll is made of pure copper, Cu—Be, Cu—Cr, Cu—Zr, Cu, which has good heat conduction. Copper alloys such as -Zr-Cr, Cu-Zr-Si, Cu-Ni-Si are suitable. When manufacturing a strip in a large amount, when manufacturing a strip having a large plate thickness or a wide strip, it is preferable that the cooling roll has a water cooling structure. The ribbon can be used after being heat-treated and mechanically pulverized into powder or flakes.

本発明アモルファス軟磁性合金は粉末を製造することが可能であり、工業原料を用いて粒径が350μm以下であるアモルファス軟磁性合金粉末を得ることができる。また、50%以上の粒子数の粉末が粒径30μm以上である粒径の大きいアモルファス軟磁性合金粉末を得ることができる。本発明アモルファス軟磁性合金粉末は、水アトマイズ法、ガスアトマイズ法、油アトマイズ法、ガスバブリング噴霧法、噴霧ロール・スプラット法、ロール噴霧法、遠心噴霧法、回転液体噴霧法、ガス急冷遠心噴霧法、噴霧ディスク・スプラット法などいろいろな方法で製造することができる。更に本発明アモルファス軟磁性合金粉末は、アトライタやビーズミルなどにより扁平化することもできる。   The amorphous soft magnetic alloy of the present invention can produce a powder, and an amorphous soft magnetic alloy powder having a particle size of 350 μm or less can be obtained using industrial raw materials. Further, it is possible to obtain an amorphous soft magnetic alloy powder having a large particle size in which a powder having a particle number of 50% or more has a particle size of 30 μm or more. The amorphous soft magnetic alloy powder of the present invention is a water atomizing method, a gas atomizing method, an oil atomizing method, a gas bubbling spray method, a spray roll splat method, a roll spray method, a centrifugal spray method, a rotating liquid spray method, a gas quench centrifugal spray method, It can be manufactured by various methods such as spray disk / splat method. Further, the amorphous soft magnetic alloy powder of the present invention can be flattened by an attritor or a bead mill.

また、本発明アモルファス合金は金型鋳造法、アーク溶解鋳造法、アーク溶解傾角鋳造方、高圧射出成形法、遠心鋳造法、ストリップキャスティングなどにより直径が200μmを超えるような棒状、板厚が200μmを超えるような板状のバルク形状のアモルファス軟磁性合金を製造することができる。   In addition, the amorphous alloy of the present invention has a rod shape with a diameter exceeding 200 μm and a plate thickness of 200 μm by die casting method, arc melting casting method, arc melting tilt casting method, high pressure injection molding method, centrifugal casting method, strip casting, etc. A plate-like bulk-shaped amorphous soft magnetic alloy can be produced.

熱処理は通常アルゴンガス、窒素ガス、ヘリウム等の不活性ガス中で行うが大気中熱処理や真空中熱処理も可能である。本発明の軟磁性合金は、熱処理工程の少なくとも一部の期間に合金に磁界や応力を印加することができる。磁界中熱処理や応力下熱処理を行うことにより、誘導磁気異方性を付与することができる。磁界中熱処理は、熱処理期間の少なくとも一部の期間十分な強さの磁界を印加して行う。印加する磁界の強さは、合金の形状にも依存し、合金が磁気的に飽和する十分な磁界を印加することが好ましい。薄帯の状態の場合、一般には薄帯の幅方向に印加する場合は1 kAm−1以上の磁界を、長手方向に印加する場合は80Am−1以上の磁界を印加する。印加する磁界は、直流、交流、繰り返しのパルス磁界のいずれを用いても良い。熱処理は、通常露点が−30℃以下の不活性ガス雰囲気中で行うことが望ましく、露点が−60℃以下の不活性ガス雰囲気中で熱処理を行うと、ばらつきが更に小さくより好ましい結果が得られる。熱処理の際の最高到達温度は、通常200℃から500℃の範囲である。一定温度に保持する熱処理パターンの場合は、一定温度での保持時間は通常は量産性の観点から100時間以下であり、好ましくは4時間以下である。熱処理の際の平均昇温速度は好ましくは0.1℃/minから10000℃/min、より好ましくは1℃/minから10000℃/min、特に好ましくは3000℃/minから10000℃/min、平均冷却速度は好ましくは0.1℃/minから10000℃/min、より好ましくは1℃/minから5000℃/minであり、この範囲で特に低磁心損失の合金が得られる。熱処理は1段ではなく多段の熱処理や複数回の熱処理を行うこともできる。更に、合金に直流、交流あるいはパルス電流を流して合金を発熱させ熱処理することもできる。また、熱処理の際に、張力や圧縮力をかけながら熱処理し、磁気特性を改良することができる。 The heat treatment is usually performed in an inert gas such as argon gas, nitrogen gas or helium, but heat treatment in the air or heat treatment in vacuum is also possible. The soft magnetic alloy of the present invention can apply a magnetic field or stress to the alloy during at least a part of the heat treatment step. Induction magnetic anisotropy can be imparted by performing heat treatment in a magnetic field or heat treatment under stress. The heat treatment in the magnetic field is performed by applying a magnetic field having a sufficient strength for at least a part of the heat treatment period. The strength of the magnetic field to be applied depends on the shape of the alloy, and it is preferable to apply a sufficient magnetic field at which the alloy is magnetically saturated. In the case of a ribbon, generally, a magnetic field of 1 kAm −1 or more is applied when applied in the width direction of the ribbon, and a magnetic field of 80 Am −1 or more is applied when applied in the longitudinal direction. As the magnetic field to be applied, any of direct current, alternating current, and a repetitive pulse magnetic field may be used. It is desirable to perform the heat treatment in an inert gas atmosphere having a dew point of −30 ° C. or lower. When the heat treatment is performed in an inert gas atmosphere having a dew point of −60 ° C. or lower, the variation is further reduced and a more preferable result is obtained. . The maximum temperature reached during the heat treatment is usually in the range of 200 ° C to 500 ° C. In the case of the heat treatment pattern held at a constant temperature, the holding time at the constant temperature is usually 100 hours or less, preferably 4 hours or less from the viewpoint of mass productivity. The average rate of temperature increase during the heat treatment is preferably 0.1 ° C./min to 10000 ° C./min, more preferably 1 ° C./min to 10000 ° C./min, particularly preferably 3000 ° C./min to 10000 ° C./min, average The cooling rate is preferably 0.1 ° C./min to 10000 ° C./min, more preferably 1 ° C./min to 5000 ° C./min, and an alloy having a particularly low magnetic core loss can be obtained within this range. The heat treatment is not limited to a single step, and a multi-step heat treatment or a plurality of heat treatments can be performed. Furthermore, the alloy can be heated and heat-treated by passing a direct current, an alternating current or a pulsed current through the alloy. In addition, during the heat treatment, the magnetic properties can be improved by applying heat treatment while applying tension or compressive force.

もう一つの本発明は、前記アモルファス軟磁性合金を用いた磁心である。磁心は、バルク状のものだけでなくアモルファス軟磁性合金薄帯やアモルファス軟磁性合金粉末を用いて製造することができる。本発明アモルファス軟磁性合金は必要に応じてSiO、MgO、Al等の粉末あるいは膜で合金薄帯表面、合金フレーク表面あるいは合金粉末表面を被覆する、化成処理により表面処理し表面に絶縁層を形成する、アノード酸化処理により表面に酸化物絶縁層を形成する、あるいは有機樹脂層を形成し層間絶縁を行う等の処理を行うことができ、このような処理を適用することにより、磁心の高周波特性が更に改善され、より好ましい結果が得られる。これは特に磁心やシートなどの部品を作製した際に、合金薄帯や合金フレークの層間あるいは合金粒子間を渡る高周波における渦電流の影響を低減し、高周波における損失を改善する効果があるためである。 Another aspect of the present invention is a magnetic core using the amorphous soft magnetic alloy. The magnetic core can be manufactured using not only a bulk type but also an amorphous soft magnetic alloy ribbon or amorphous soft magnetic alloy powder. The amorphous soft magnetic alloy of the present invention is coated with a powder or film of SiO 2 , MgO, Al 2 O 3 or the like as necessary, and the surface of the alloy ribbon, the surface of the alloy flakes or the surface of the alloy powder is surface-treated by chemical conversion treatment, and the surface is applied. An insulating layer is formed, an oxide insulating layer is formed on the surface by anodic oxidation treatment, or an organic resin layer is formed and interlayer insulation is performed. By applying such treatment, The high frequency characteristics of the magnetic core are further improved, and more preferable results are obtained. This is because, particularly when parts such as magnetic cores and sheets are produced, the effect of eddy currents at high frequencies across the layers of alloy ribbons and alloy flakes or between alloy particles is reduced and the loss at high frequencies is improved. is there.

本発明アモルファス軟磁性合金粉末を用いた本発明アモルファス軟磁性合金圧粉磁心は、工業原料を用いて製造した場合も磁心損失が小さく、特性ばらつきの小さいものが実現できる。本発明圧粉磁心は、本発明アモルファス軟磁性合金粉末に、エポキシ系樹脂、フェノール系樹脂やシリコーン系樹脂からなる絶縁性結着剤を添加し、更にステアリン酸亜鉛やステアリンサンAlなどの潤滑剤を混合しプレス機にて加圧成形し作製する。更に熱処理し磁気特性を改善することもできる。加圧成形は常温で行なう以外に、加熱し温間プレスやホットプレスあるいはプラズマ放電焼結などで行なうことができる。一軸の加圧力は400MPa以上2500MPa以下が望ましい。また、低融点ガラスなどを用いて加圧成形後、加熱により各粉末を結合させ圧粉磁心を製造することもできる。   The amorphous soft magnetic alloy powder magnetic core of the present invention using the amorphous soft magnetic alloy powder of the present invention has a small core loss and a small characteristic variation even when manufactured using industrial raw materials. The powder magnetic core of the present invention is obtained by adding an insulating binder composed of an epoxy resin, a phenol resin or a silicone resin to the amorphous soft magnetic alloy powder of the present invention, and further a lubricant such as zinc stearate or stearicsan Al. Are mixed and pressure molded with a press machine. Further, the magnetic properties can be improved by heat treatment. In addition to being performed at room temperature, the pressure molding can be performed by heating and warm pressing, hot pressing, plasma discharge sintering, or the like. The uniaxial pressure is preferably 400 MPa or more and 2500 MPa or less. Moreover, after pressure-molding using low melting glass etc., each powder is couple | bonded by heating and a powder magnetic core can also be manufactured.

また、本発明アモルファス軟磁性合金粉末表面にあらかじめSiO、AlやMgOなどの無機系絶縁皮膜を形成したり、SiO、Al、MgOなどの絶縁性微粒子で覆うなどの処理を行うとより、アモルファス合金粉末間の絶縁性が向上し、渦電流損失の低減により高周波特性が改善され好ましい結果が得られる。また、異なる範囲の粒径の粉末を分級しブレンドすることにより、圧粉磁心中のアモルファス合金粉末の充填率を向上することもできる。また、Fe系、Fe−Si系、Fe−Ni系、Fe−Cr系などの結晶質金属粉末と本発明アモルファス合金粉末を混合し圧粉磁心を製造することができる。この場合、結晶質金属粉末が変形しやすく、磁性粒子の充填率が向上し好ましいが、低損失の特徴を維持するためには、アモルファス合金粉末の体積分率は結晶質金属粉末よりも多い方が好ましい。 In addition, an inorganic insulating film such as SiO 2 , Al 2 O 3, or MgO is formed on the surface of the amorphous soft magnetic alloy powder of the present invention, or covered with insulating fine particles such as SiO 2 , Al 2 O 3 , or MgO. When the treatment is performed, the insulation between the amorphous alloy powders is improved, and the high-frequency characteristics are improved by reducing the eddy current loss, and a preferable result is obtained. Moreover, the filling rate of the amorphous alloy powder in the powder magnetic core can be improved by classifying and blending powders having different particle sizes. Further, a powder magnetic core can be produced by mixing crystalline metal powder such as Fe-based, Fe-Si-based, Fe-Ni-based, Fe-Cr-based and the like and the amorphous alloy powder of the present invention. In this case, it is preferable that the crystalline metal powder is easily deformed and the filling rate of the magnetic particles is improved, but in order to maintain the characteristics of low loss, the volume fraction of the amorphous alloy powder is larger than that of the crystalline metal powder. Is preferred.

もう一つの本発明は前記磁心を用いた磁性部品である。本発明磁心は低損失であるために、トランス、チョ−クコイル、モータなどに使用した場合、温度上昇が小さく低損失な磁性部品を実現でき、装置の効率向上に寄与する。また、比較的低い周波数で使用する場合、小型化にも寄与するため好ましい。   Another aspect of the present invention is a magnetic component using the magnetic core. Since the magnetic core of the present invention has a low loss, when used in a transformer, choke coil, motor, etc., a magnetic component with a small temperature rise and a low loss can be realized, which contributes to an improvement in the efficiency of the apparatus. Moreover, since it contributes also to size reduction when using it at a comparatively low frequency, it is preferable.

本発明によれば、各種リアクトル、各種チョ−クコイル・インダクタ、各種トランス、モーター用鉄心、磁気シールド、磁気センサー、電流センサー等の磁性部品に用いられ、特にリアクトル、チョークコイルやトランスの磁心に好適な特性を有する量産に適し、アモルファス形成能が良好で優れた磁気特性を示すアモルファス軟磁性合金、アモルファス軟磁性合金薄帯、アモルファス軟磁性合金粉末およびそれを用いた低損失の磁心並びにこれを用いた高性能な磁性部品を提供することができるため、その効果は著しいものがある。   According to the present invention, it is used for magnetic components such as various reactors, various choke coils / inductors, various transformers, iron cores for motors, magnetic shields, magnetic sensors, current sensors, etc., and particularly suitable for magnetic cores of reactors, choke coils and transformers. Amorphous soft magnetic alloy, amorphous soft magnetic alloy ribbon, amorphous soft magnetic alloy powder, and low-loss magnetic core using the same and suitable for mass production with excellent characteristics, good amorphous forming ability and excellent magnetic properties Therefore, the effect is remarkable.

以下、本発明を実施例にしたがって説明するが、本発明はこれらに限定されるものではない。
(実施例1)
表1に示す組成の板厚43μm、幅50mmの合金薄帯を水冷したCu−Cr合金製のロールを用い単ロール法により作製した。作製した軟磁性合金薄帯についてロール面側のX線回折および熱処理を行い磁気測定を行った。表1に結果を示す。本発明合金は結晶ピークは認められずX線回折の結果からはアモルファス単相であり、低い保磁力Hcを示した。これに対して本発明の合金組成から外れた軟磁性合金薄帯は、結晶ピークが認められ結晶相が形成した。また本発明の合金組成から外れた軟磁性合金薄帯は、Hcが大きく軟磁気特性に劣ることが確認された。
EXAMPLES Hereinafter, although this invention is demonstrated according to an Example, this invention is not limited to these.
Example 1
An alloy ribbon having a thickness of 43 μm and a width of 50 mm having the composition shown in Table 1 was prepared by a single roll method using a roll made of Cu—Cr alloy obtained by water cooling. The produced soft magnetic alloy ribbon was subjected to X-ray diffraction and heat treatment on the roll surface side and subjected to magnetic measurements. Table 1 shows the results. The alloy of the present invention did not show a crystal peak, and as a result of X-ray diffraction, it was an amorphous single phase and showed a low coercive force Hc. On the other hand, in the soft magnetic alloy ribbon deviating from the alloy composition of the present invention, a crystal peak was observed and a crystal phase was formed. In addition, it was confirmed that the soft magnetic alloy ribbon deviating from the alloy composition of the present invention has a large Hc and inferior soft magnetic properties.

Figure 2009174034
Figure 2009174034

(実施例2)
表2に示す組成の合金粉末をガスアトマイズ法により作製した。作製した合金粉末についてX線回折を行った。次にこの粉末を分球して30μm〜60μmの粒径の粉末を得た。
この合金粉末のX線回折を行った。本発明合金粉末は、アモルファス合金に特有のハローパターンを示した。一方、本発明外の合金粉末は結晶ピークが認められアモルファス相以外に結晶相が形成していることが確認された。次に、この合金粉末を熱処理した。X線回折の結果アモルファス特有のハローパターンが確認された。この合金粉末の保磁力Hcを軟磁性材料用の振動型磁力計(VSM)により測定した。得られた結果を表2に示す。本発明合金粉末は結晶ピークは認められず、X線回折の結果からはアモルファス単相と考えられ、また、低いHcを示した。これに対して本発明の合金組成から外れた軟磁性合金粉末は、結晶ピークが認められ結晶相が形成した。また本発明の合金組成から外れた軟磁性合金粉末は、Hcが大きく軟磁気特性に劣ることが確認された。
(Example 2)
Alloy powders having the compositions shown in Table 2 were produced by the gas atomization method. The produced alloy powder was subjected to X-ray diffraction. Next, this powder was spheroidized to obtain a powder having a particle size of 30 μm to 60 μm.
This alloy powder was subjected to X-ray diffraction. The alloy powder of the present invention exhibited a halo pattern unique to an amorphous alloy. On the other hand, a crystal peak was observed in the alloy powder outside the present invention, and it was confirmed that a crystal phase was formed in addition to the amorphous phase. Next, this alloy powder was heat-treated. As a result of X-ray diffraction, a halo pattern peculiar to amorphous was confirmed. The coercive force Hc of the alloy powder was measured with a vibration magnetometer (VSM) for soft magnetic materials. The obtained results are shown in Table 2. The alloy powder of the present invention did not have a crystal peak, was considered to be an amorphous single phase from the results of X-ray diffraction, and exhibited low Hc. On the other hand, in the soft magnetic alloy powder deviated from the alloy composition of the present invention, a crystal peak was observed and a crystal phase was formed. Further, it was confirmed that the soft magnetic alloy powder deviated from the alloy composition of the present invention has a large Hc and inferior in soft magnetic properties.

Figure 2009174034
Figure 2009174034

(実施例3)
金型鋳造法によりFebal.Si12(原子%)を主成分とし、Mn0.12質量%、Al0.0009質量%、Tiを0.003質量%、Cuを0.15%、Sを0.005質量%含む厚さ150μmのリング形状のバルク状合金を作製した。X線回折の結果アモルファス合金特有のハローパターンを示した。次にこの合金に熱処理を行い磁気特性評価およびX線回折を行った。X線回折の結果アモルファス合金特有のハローパターンを示した。Hcは2.9A/mであり、低い値を示した。比較のために、主成分が同じでMn0.16質量%、Al0.12質量%、Tiを0.15質量%、Cuを0.02%、Sを0.002質量%含む、厚さ150μmのリング形状の本発明外の組成の試料を作製した。この本発明の合金組成から外れる軟磁性合金の試料は、Hcが19.4A/mと大きく、X線回折の結果結晶ピークが確認された。
(Example 3)
Fe bal. Si 9 B 12 P 5 (atomic%) as a main component, Mn 0.12% by mass, Al 0.0009% by mass, Ti 0.003% by mass, Cu 0.15% and S 0.005% by mass A ring-shaped bulk alloy having a thickness of 150 μm was produced. As a result of X-ray diffraction, a halo pattern peculiar to amorphous alloys was shown. Next, this alloy was heat-treated, and magnetic characteristics evaluation and X-ray diffraction were performed. As a result of X-ray diffraction, a halo pattern peculiar to amorphous alloys was shown. Hc was 2.9 A / m, indicating a low value. For comparison, the main components are the same, Mn 0.16% by mass, Al 0.12% by mass, Ti 0.15% by mass, Cu 0.02%, S 0.002% by mass, 150 μm thick A ring-shaped sample outside the present invention was prepared. The sample of the soft magnetic alloy deviating from the alloy composition of the present invention had a large Hc of 19.4 A / m, and a crystal peak was confirmed as a result of X-ray diffraction.

(実施例4)
Febal.Si10120.5(原子%)を主成分とし、Mn0.11質量%、Al0.0010質量%、Tiを0.008質量%、Cuを0.14%、Sを0.006質量%含む幅150mm厚さ50μmの本発明アモルファス合金薄帯を水冷したCu−Cr−Zr合金製ロールを用いた単ロール法により作製した。X線回折の結果アモルファス特有のハローパターンが確認された。次にこの合金薄帯表面にポリイミド樹脂を塗布し2枚重ねした後に加熱圧着して積層帯を作製した。ポリイミド樹脂接着層の厚さは約1μmであった。このアモルファス積層帯を外径25mm内径20mmのリング状に加工し、80枚積層して積層コアを作製した。積層コアを450℃で1時間熱処理を行った。更に積層コアに巻線をほどこし20kHz、0.2Tにおける磁心損失を測定した。磁心損失は28W/kgであった。比較のためにFebal.Si10120.5(原子%)を主成分とし、Mn0.11質量%、Al0.154質量%、Tiを0.15質量%、Cuを0.02%、Sを0.002質量%含む本発明外のアモルファス合金薄帯を作製した。同様のプロセスで積層コアを作製し20kHz、0.2Tにおける磁心損失を測定した結果、磁心損失は112W/kgであり本発明の積層コアよりも鉄損が大きく劣っていた。また、実施例4の磁心の磁路の一部を切断してギャップを形成し、巻線を行いチョークコイルを作製した。直流重畳特性を測定した結果、フェライトのチョークコイルと比べて直流重畳特性が優れていることが確認された。
Example 4
Fe bal. Si 10 B 12 P 4 C 0.5 (atomic%) as a main component, Mn 0.11% by mass, Al 0.0010% by mass, Ti 0.008% by mass, Cu 0.14%, S 0. The amorphous alloy ribbon of the present invention having a width of 150 mm and a thickness of 50 μm containing 006% by mass was prepared by a single roll method using a water-cooled Cu—Cr—Zr alloy roll. As a result of X-ray diffraction, a halo pattern peculiar to amorphous was confirmed. Next, a polyimide resin was applied to the surface of the alloy ribbon, and two sheets were stacked, and then heat-pressed to prepare a laminated strip. The thickness of the polyimide resin adhesive layer was about 1 μm. This amorphous laminated band was processed into a ring shape having an outer diameter of 25 mm and an inner diameter of 20 mm, and 80 sheets were laminated to produce a laminated core. The laminated core was heat-treated at 450 ° C. for 1 hour. Further, a winding was applied to the laminated core, and the core loss at 20 kHz and 0.2 T was measured. The magnetic core loss was 28 W / kg. For comparison, Fe bal. Si 10 B 12 P 4 C 0.5 (atomic%) as a main component, Mn 0.11% by mass, Al 0.154% by mass, Ti 0.15% by mass, Cu 0.02%, and S 0.0. An amorphous alloy ribbon outside the present invention containing 002% by mass was produced. As a result of producing a laminated core by the same process and measuring the magnetic core loss at 20 kHz and 0.2 T, the magnetic core loss was 112 W / kg, which was much inferior to the laminated core of the present invention. Further, a part of the magnetic path of the magnetic core of Example 4 was cut to form a gap, and winding was performed to produce a choke coil. As a result of measuring the DC superposition characteristics, it was confirmed that the DC superposition characteristics were superior to those of the ferrite choke coil.

(実施例5)
Febal.Si1011Cr0.5(原子%)を主成分とし、Mn0.16質量%、Al0.0006質量%、Tiを0.005質量%、Cuを0.09%、Sを0.004質量%含む組成の軟磁性合金粉末を水アトマイズ法により作製した。次にこの粉末を分球して30μm〜60μmの粒径の粉末を得た。この合金粉末のX線回折を行った。本発明合金は、アモルファス合金に特有のハローパターンを示した。次に、この粉末にシリコーン系樹脂からなる絶縁性結着剤を添加し、更に潤滑剤としてステアリン酸亜鉛を混合しプレス機にて加圧成形し圧粉磁心を作製した。この圧粉磁心を450℃で1時間熱処理した。熱処理後の圧粉磁心の100kHz, 0.1Tにおける磁心損失を測定した。磁心損失は220kW/m3で低い値を示した。比較のため、Febal.Si1011Cr0.5(原子%)を主成分とし、Mn0.18質量%、Al0.19質量%、Tiを0.15質量%、Cuを0.02%、Sを0.002質量%含む組成の本発明の合金組成から外れる軟磁性合金粉末を同様のプロセスで作製し、更にこの軟磁性合金粉末を用い同様なプロセスにより圧粉磁心を作製した。熱処理後の圧粉磁心の100kHz, 0.1Tにおける磁心損失を測定した結果、磁心損失は1500kW/m3であり著しく高い値を示した。
(Example 5)
Fe bal. Si 10 B 11 P 5 Cr 0.5 (atomic%) as a main component, Mn 0.16% by mass, Al 0.0006% by mass, Ti 0.005% by mass, Cu 0.09%, and S 0.0. A soft magnetic alloy powder having a composition containing 004% by mass was produced by a water atomization method. Next, this powder was spheroidized to obtain a powder having a particle size of 30 μm to 60 μm. This alloy powder was subjected to X-ray diffraction. The alloy of the present invention exhibited a halo pattern unique to amorphous alloys. Next, an insulating binder composed of a silicone resin was added to the powder, and zinc stearate as a lubricant was further mixed and pressure-molded with a press to prepare a dust core. The dust core was heat treated at 450 ° C. for 1 hour. The core loss at 100 kHz, 0.1 T of the dust core after the heat treatment was measured. The magnetic core loss was a low value of 220 kW / m 3 . For comparison, Fe bal. Si 10 B 11 P 5 Cr 0.5 (atomic%) as a main component, Mn 0.18% by mass, Al 0.19% by mass, Ti 0.15% by mass, Cu 0.02% and S 0.0. A soft magnetic alloy powder having a composition containing 002% by mass deviating from the alloy composition of the present invention was produced by the same process, and a powder magnetic core was produced by the same process using this soft magnetic alloy powder. As a result of measuring the core loss at 100 kHz and 0.1 T of the dust core after the heat treatment, the core loss was 1500 kW / m 3 , which was a remarkably high value.

各種リアクトル、各種チョ−クコイル・インダクタ、各種トランス、モーター用鉄心、磁気シールド、磁気センサー、電流センサー等の磁性部品に用いられ、特にリアクトル、チョークコイルやトランスの磁心に好適な特性を有する量産に適し、アモルファス形成能が良好で優れた磁気特性を示すアモルファス軟磁性合金、アモルファス軟磁性合金薄帯、アモルファス軟磁性合金粉末およびそれを用いた低損失の磁心並びにこれを用いた高性能な磁性部品を提供できる。
Used for magnetic parts such as various reactors, various choke coils / inductors, various transformers, motor cores, magnetic shields, magnetic sensors, current sensors, etc. Especially for mass production with characteristics suitable for magnetic cores of reactors, choke coils and transformers Amorphous soft magnetic alloy, amorphous soft magnetic alloy ribbon, amorphous soft magnetic alloy powder, low-loss magnetic core using the same, and high-performance magnetic parts using the same Can provide.

Claims (13)

Fe100-x-y-zSi(原子%)を主成分とし、x、yおよびzはそれぞれ0.5≦x≦15、5≦y≦25、z≦15、18≦x+y+z≦30を満足し、該主成分に対しMnを0.01質量%以上0.3質量%以下、Alを0.0001質量%以上0.01質量%以下、Tiを0.001質量%以上0.03質量%以下、Cuを0.005質量%以上0.2質量%以下およびSを0.001質量%以上0.05質量%以下含有していることを特徴とするアモルファス軟磁性合金。 Fe 100-x-y-z Si x B y P z (atomic%) is the main component, and x, y, and z are 0.5 ≦ x ≦ 15, 5 ≦ y ≦ 25, z ≦ 15, and 18 ≦, respectively. x + y + z ≦ 30 is satisfied, Mn is 0.01% by mass to 0.3% by mass, Al is 0.0001% by mass to 0.01% by mass, and Ti is 0.001% by mass or more with respect to the main component. An amorphous soft magnetic alloy characterized by containing 0.03% by mass or less, Cu by 0.005% by mass to 0.2% by mass and S by 0.001% by mass to 0.05% by mass. Feの一部をCo、およびNiから選ばれた少なくとも1種の元素で置換したことを特徴とする請求項1に記載のアモルファス軟磁性合金。 The amorphous soft magnetic alloy according to claim 1, wherein a part of Fe is substituted with at least one element selected from Co and Ni. Feの5原子%以下をCで置換したことを特徴とする請求項1又は請求項2に記載のアモルファス軟磁性合金。 The amorphous soft magnetic alloy according to claim 1 or 2, wherein 5 atomic% or less of Fe is substituted by C. Feの3原子%以下をCr、V、Nb、Mo、Ta、W、Zr、Hfから選ばれた少なくとも1種の元素で置換したことを特徴とする請求項1乃至請求項3のいずれかに記載のアモルファス軟磁性合金。 4. The element according to claim 1, wherein 3 atomic% or less of Fe is substituted with at least one element selected from Cr, V, Nb, Mo, Ta, W, Zr, and Hf. The amorphous soft magnetic alloy described. Bの1原子%以下をGe、Ga、Snから選ばれた少なくとも1種の元素で置換したことを特徴とする請求項1乃至請求項3のいずれかに記載のアモルファス軟磁性合金。 The amorphous soft magnetic alloy according to any one of claims 1 to 3, wherein 1 atomic% or less of B is substituted with at least one element selected from Ge, Ga, and Sn. 請求項1乃至請求項5のいずれかに記載のアモルファス軟磁性合金からなり、板厚が3μmから350μmの範囲にあることを特徴とするアモルファス軟磁性合金薄帯。 An amorphous soft magnetic alloy ribbon comprising the amorphous soft magnetic alloy according to any one of claims 1 to 5 and having a plate thickness in a range of 3 µm to 350 µm. 板厚が40μmから350μmの範囲にあることを特徴とする請求項6に記載のアモルファス軟磁性合金薄帯。 The amorphous soft magnetic alloy ribbon according to claim 6, wherein the plate thickness is in the range of 40 µm to 350 µm. 請求項1乃至請求項5のいずれかに記載のアモルファス軟磁性合金からなり、粒径が350μm以下であることを特徴とするアモルファス軟磁性合金粉末。 An amorphous soft magnetic alloy powder comprising the amorphous soft magnetic alloy according to any one of claims 1 to 5 and having a particle size of 350 µm or less. 50%以上の粒子数の粉末が粒径30μm以上であることを特徴とする請求項8に記載のアモルファス軟磁性合金粉末。 The amorphous soft magnetic alloy powder according to claim 8, wherein the powder having a particle number of 50% or more has a particle size of 30 μm or more. 請求項1乃至請求項5のいずれかに記載のアモルファス軟磁性合金を用いたことを特徴とする磁心。 A magnetic core comprising the amorphous soft magnetic alloy according to any one of claims 1 to 5. 請求項6又は請求項7に記載のアモルファス軟磁性合金薄帯を用いたことを特徴とする磁心。 A magnetic core using the amorphous soft magnetic alloy ribbon according to claim 6 or 7. 請求項8又は請求項9に記載のアモルファス軟磁性合金粉末を用いたことを特徴とする磁心。 A magnetic core comprising the amorphous soft magnetic alloy powder according to claim 8 or 9. 請求項10乃至請求項12に記載の磁心を用いたことを特徴とする磁性部品。 A magnetic component using the magnetic core according to claim 10.
JP2008016660A 2008-01-28 2008-01-28 Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same Withdrawn JP2009174034A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008016660A JP2009174034A (en) 2008-01-28 2008-01-28 Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same
PCT/JP2009/051254 WO2009096382A1 (en) 2008-01-28 2009-01-27 Amorphous soft magnetic alloy, amorphous soft magnetic alloy ribbon, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008016660A JP2009174034A (en) 2008-01-28 2008-01-28 Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same

Publications (1)

Publication Number Publication Date
JP2009174034A true JP2009174034A (en) 2009-08-06

Family

ID=40912735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008016660A Withdrawn JP2009174034A (en) 2008-01-28 2008-01-28 Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same

Country Status (2)

Country Link
JP (1) JP2009174034A (en)
WO (1) WO2009096382A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098817A1 (en) 2011-01-17 2012-07-26 アルプス・グリーンデバイス株式会社 Fe-BASED AMORPHOUS ALLOY POWDER, DUST CORE USING THE Fe-BASED AMORPHOUS ALLOY POWDER, AND COIL-EMBEDDED DUST CORE
WO2012146967A1 (en) * 2011-04-25 2012-11-01 Toyota Jidosha Kabushiki Kaisha Magnetic core powder, dust core, and manufacturing method for dust core
WO2013108735A1 (en) * 2012-01-18 2013-07-25 日立金属株式会社 Dust core, coil component, and method for producing dust core
WO2014054093A1 (en) * 2012-10-01 2014-04-10 株式会社日立製作所 Dust core and process for producing same
CN104073749A (en) * 2014-06-18 2014-10-01 安泰科技股份有限公司 Iron-based amorphous magnetically soft alloy with uniform element distribution and preparation method thereof
JP2015061052A (en) * 2013-09-20 2015-03-30 太陽誘電株式会社 Magnetic material and electronic component using the same
JP2015127436A (en) * 2013-12-27 2015-07-09 井上 明久 High magnetic flux density soft-magnetic iron base amorphous alloy having high extensibility and workability
WO2016084741A1 (en) * 2014-11-25 2016-06-02 日立金属株式会社 Amorphous alloy ribbon and method for manufacturing same
CN106067368A (en) * 2015-04-24 2016-11-02 三星电机株式会社 Coil block and manufacture method thereof
JP2017034091A (en) * 2015-07-31 2017-02-09 Jfeスチール株式会社 Production method of soft magnetic dust core and soft magnetic dust core
WO2018150952A1 (en) 2017-02-16 2018-08-23 株式会社トーキン Soft magnetic powder, dust magnetic core, magnetic part, and method for producing dust magnetic core
WO2022244819A1 (en) 2021-05-18 2022-11-24 日本製鉄株式会社 Fe-based amorphous alloy and fe-based amorphous alloy thin strip
CN115551804A (en) * 2020-05-27 2022-12-30 松下知识产权经营株式会社 Inorganic structure and method for producing same
US11814707B2 (en) 2017-01-27 2023-11-14 Tokin Corporation Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic component and dust core

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157355A (en) * 2012-01-26 2013-08-15 Tdk Corp Dust core
CN107236911A (en) * 2017-07-31 2017-10-10 青岛云路先进材料技术有限公司 A kind of Fe-based amorphous alloy
KR102281002B1 (en) * 2018-01-12 2021-07-23 티디케이 가부시기가이샤 Soft magnetic alloy and magnetic device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291019A (en) * 1992-04-13 1993-11-05 Nippon Steel Corp Manufacture of fe-based amorphous alloy
JP3434844B2 (en) * 1993-01-28 2003-08-11 新日本製鐵株式会社 Low iron loss, high magnetic flux density amorphous alloy
JP3441757B2 (en) * 1993-03-31 2003-09-02 新日本製鐵株式会社 Amorphous alloy ribbon with enhanced surface crystallization resistance
JP3644062B2 (en) * 1995-01-13 2005-04-27 Jfeスチール株式会社 Low boron amorphous alloy with excellent soft magnetic properties
JPH09263914A (en) * 1996-03-29 1997-10-07 Nippon Steel Corp Inexpensive iron base master alloy
JP4562022B2 (en) * 2004-04-22 2010-10-13 アルプス・グリーンデバイス株式会社 Amorphous soft magnetic alloy powder and powder core and electromagnetic wave absorber using the same
JP4849545B2 (en) * 2006-02-02 2012-01-11 Necトーキン株式会社 Amorphous soft magnetic alloy, amorphous soft magnetic alloy member, amorphous soft magnetic alloy ribbon, amorphous soft magnetic alloy powder, and magnetic core and inductance component using the same

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012098817A1 (en) * 2011-01-17 2014-06-09 アルプス・グリーンデバイス株式会社 Fe-based amorphous alloy powder, powder core using the Fe-based amorphous alloy powder, and coil-enclosed powder core
CN103298966A (en) * 2011-01-17 2013-09-11 阿尔卑斯绿色器件株式会社 Fe-based amorphous alloy powder, dust core using the Fe-based amorphous alloy powder, and coil-embedded dust core
JP5458452B2 (en) * 2011-01-17 2014-04-02 アルプス・グリーンデバイス株式会社 Fe-based amorphous alloy powder, powder core using the Fe-based amorphous alloy powder, and coil-enclosed powder core
WO2012098817A1 (en) 2011-01-17 2012-07-26 アルプス・グリーンデバイス株式会社 Fe-BASED AMORPHOUS ALLOY POWDER, DUST CORE USING THE Fe-BASED AMORPHOUS ALLOY POWDER, AND COIL-EMBEDDED DUST CORE
WO2012146967A1 (en) * 2011-04-25 2012-11-01 Toyota Jidosha Kabushiki Kaisha Magnetic core powder, dust core, and manufacturing method for dust core
WO2013108735A1 (en) * 2012-01-18 2013-07-25 日立金属株式会社 Dust core, coil component, and method for producing dust core
CN104067358A (en) * 2012-01-18 2014-09-24 日立金属株式会社 Dust core, coil component, and method for producing dust core
US10312004B2 (en) 2012-01-18 2019-06-04 Hitachi Metals, Ltd. Metal powder core comprising copper powder, coil component, and fabrication method for metal powder core
KR101805348B1 (en) * 2012-01-18 2017-12-06 히타치 긴조쿠 가부시키가이샤 Dust core, coil component, and method for producing dust core
EP2806433A4 (en) * 2012-01-18 2015-09-09 Hitachi Metals Ltd Dust core, coil component, and method for producing dust core
US9704627B2 (en) 2012-01-18 2017-07-11 Hitachi Metals, Ltd. Metal powder core comprising copper powder, coil component, and fabrication method for metal powder core
WO2014054093A1 (en) * 2012-10-01 2014-04-10 株式会社日立製作所 Dust core and process for producing same
JPWO2014054093A1 (en) * 2012-10-01 2016-08-25 株式会社日立製作所 Powder magnetic core and manufacturing method thereof
JP2015061052A (en) * 2013-09-20 2015-03-30 太陽誘電株式会社 Magnetic material and electronic component using the same
JP2015127436A (en) * 2013-12-27 2015-07-09 井上 明久 High magnetic flux density soft-magnetic iron base amorphous alloy having high extensibility and workability
CN104073749A (en) * 2014-06-18 2014-10-01 安泰科技股份有限公司 Iron-based amorphous magnetically soft alloy with uniform element distribution and preparation method thereof
CN104073749B (en) * 2014-06-18 2017-03-15 安泰科技股份有限公司 Uniform iron base amorphous magnetically-soft alloy of a kind of Elemental redistribution and preparation method thereof
WO2016084741A1 (en) * 2014-11-25 2016-06-02 日立金属株式会社 Amorphous alloy ribbon and method for manufacturing same
JPWO2016084741A1 (en) * 2014-11-25 2017-08-10 日立金属株式会社 Amorphous alloy ribbon and manufacturing method thereof
CN106067368A (en) * 2015-04-24 2016-11-02 三星电机株式会社 Coil block and manufacture method thereof
JP2016208002A (en) * 2015-04-24 2016-12-08 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil electronic component and method of manufacturing the same
US10734152B2 (en) 2015-04-24 2020-08-04 Samsung Electro-Mechanics Co., Ltd. Coil component and method of manufacturing the same
CN106067368B (en) * 2015-04-24 2018-07-27 三星电机株式会社 Coil block and its manufacturing method
KR20180034532A (en) * 2015-07-31 2018-04-04 제이에프이 스틸 가부시키가이샤 Method for producing soft magnetic dust core, and soft magnetic dust core
CN107851507A (en) * 2015-07-31 2018-03-27 杰富意钢铁株式会社 The manufacture method and soft magnetism compressed-core of soft magnetism compressed-core
TWI602203B (en) * 2015-07-31 2017-10-11 Jfe Steel Corp Soft magnetic powder magnetic core manufacturing method and soft magnetic powder magnetic core
WO2017022227A1 (en) * 2015-07-31 2017-02-09 Jfeスチール株式会社 Method for producing soft magnetic dust core, and soft magnetic dust core
KR102121181B1 (en) * 2015-07-31 2020-06-10 제이에프이 스틸 가부시키가이샤 Method of manufacturing soft magnetic dust core and soft magnetic dust core
CN107851507B (en) * 2015-07-31 2020-06-26 杰富意钢铁株式会社 Method for producing soft magnetic dust core, and soft magnetic dust core
JP2017034091A (en) * 2015-07-31 2017-02-09 Jfeスチール株式会社 Production method of soft magnetic dust core and soft magnetic dust core
US11814707B2 (en) 2017-01-27 2023-11-14 Tokin Corporation Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic component and dust core
WO2018150952A1 (en) 2017-02-16 2018-08-23 株式会社トーキン Soft magnetic powder, dust magnetic core, magnetic part, and method for producing dust magnetic core
US10847291B2 (en) 2017-02-16 2020-11-24 Tokin Corporation Soft magnetic powder, dust core, magnetic compound and method of manufacturing dust core
CN115551804A (en) * 2020-05-27 2022-12-30 松下知识产权经营株式会社 Inorganic structure and method for producing same
WO2022244819A1 (en) 2021-05-18 2022-11-24 日本製鉄株式会社 Fe-based amorphous alloy and fe-based amorphous alloy thin strip
KR20230169307A (en) 2021-05-18 2023-12-15 닛폰세이테츠 가부시키가이샤 Fe-based amorphous alloy and Fe-based amorphous alloy strip

Also Published As

Publication number Publication date
WO2009096382A1 (en) 2009-08-06

Similar Documents

Publication Publication Date Title
JP2009174034A (en) Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP4584350B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP4815014B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same
JP6181346B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP5445890B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP2008196006A (en) Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY THIN STRIP, METHOD FOR PRODUCING Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AND MAGNETIC COMPONENT
JP5429613B2 (en) Nanocrystalline soft magnetic alloys and magnetic cores
JP5305126B2 (en) Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component
KR20190101411A (en) Soft Magnetic Powders, Fe-based Nanocrystalline Alloy Powders, Magnetic Components, and Consolidated Magnetic Cores
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JP2008231533A5 (en)
JP5916983B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP2008231534A5 (en)
JP2016104900A (en) Metallic soft magnetic alloy, magnetic core, and production method of the same
JP2000328206A (en) Soft magnetic alloy strip and magnetic core using the same, its apparatus and production
KR102231316B1 (en) Fe-based alloy composition, soft magnetic material, magnetic member, electrical/electronic related parts and devices
JP2010150602A (en) Fe-BASED SOFT MAGNETIC THIN STRIP AND HIGH-FREQUENCY MAGNETIC CORE USING THE SAME
JP2007092096A (en) Amorphous magnetic alloy
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP2000119825A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP AND Fe BASE NANOCRYSTAL SOFT MAGNETIC ALLOY THIN STRIP USING THE SAME AND MAGNETIC CORE
JP2016027656A (en) Manufacturing method of powder magnetic core

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100219