JP5305126B2 - Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component - Google Patents

Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component Download PDF

Info

Publication number
JP5305126B2
JP5305126B2 JP2008082670A JP2008082670A JP5305126B2 JP 5305126 B2 JP5305126 B2 JP 5305126B2 JP 2008082670 A JP2008082670 A JP 2008082670A JP 2008082670 A JP2008082670 A JP 2008082670A JP 5305126 B2 JP5305126 B2 JP 5305126B2
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
dust core
magnetic powder
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008082670A
Other languages
Japanese (ja)
Other versions
JP2008294411A (en
Inventor
卓 宮本
克仁 吉沢
元基 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008082670A priority Critical patent/JP5305126B2/en
Publication of JP2008294411A publication Critical patent/JP2008294411A/en
Application granted granted Critical
Publication of JP5305126B2 publication Critical patent/JP5305126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

各種リアクトル、ノイズ対策、各種モータ、各種発電機等に用いられる高磁束密度で低損失な圧粉磁心、それを用いた磁性部品に関する。
The present invention relates to a dust core having a high magnetic flux density and a low loss, which is used in various reactors, noise countermeasures, various motors, various generators, and the like, and a magnetic component using the same.

各種リアクトル、ノイズ対策、各種モータ、各種発電機等に用いられる圧粉磁心やそれを製造する軟磁性粉末には、鉄粉、ケイ素鋼、Fe-Si-Al合金、アモルファス合金やナノ結晶合金材料等が用いられている。   For powder magnetic cores used in various reactors, noise countermeasures, various motors, various generators, etc. and soft magnetic powders that produce them, iron powder, silicon steel, Fe-Si-Al alloys, amorphous alloys and nanocrystalline alloy materials Etc. are used.

各種リアクトル、ノイズ対策、各種モータ、各種発電機等の磁心材料には、高磁束密度で低損失な軟磁性材料が求められており、近年、その形状は製品の形態に合わせて、小型化並びに複雑化してきている。従来のケイ素鋼板やアモルファス薄帯などの2次元的な自由度しかもたない材料から、より自由度の高い3次元的な設計が可能となる軟磁性粉末材料を用いた圧粉磁心に注目が集まっている。また、軟磁性粉末から成る圧粉磁心は、粉末間の絶縁処理を適切に施す、または粉末の形状を扁平化することによって渦電流損失を低減できるという特長を有している。   For magnetic core materials such as various reactors, noise countermeasures, various motors, various generators, etc., soft magnetic materials with high magnetic flux density and low loss have been demanded. It is getting complicated. Attention has been focused on powder magnetic cores that use soft magnetic powder materials that enable three-dimensional design with a higher degree of freedom from materials that have only two-dimensional freedom, such as conventional silicon steel sheets and amorphous ribbons. ing. Further, the dust core made of soft magnetic powder has a feature that eddy current loss can be reduced by appropriately performing insulation treatment between powders or flattening the shape of the powder.

圧粉磁心は一般的に以下のような手順において製造される。所定の組成の軟磁性合金に機械粉砕やアトマイズ法を適用して、軟磁性粉末を得る。その軟磁性粉末間の絶縁をとるため、例えば、水ガラスやリン酸シリコーン樹脂、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂等の絶縁材料でかつ結着能力を有する材料を混合して粉末表面に絶縁層を形成させ、絶縁被膜で被覆された軟磁性粉末を製造する。絶縁層の形成には、例えばシリカやアルミナ粉末等の極小粒径なセラミックス粉末を混合して、圧粉した際に軟磁性粉末間の隙間に存在させることによって、絶縁するという方法、または、TEOS等の金属アルコキシドを粉末表面に付着させ、熱処理を施すことによって、絶縁層を形成させる方法等が行われている。
圧粉磁心は絶縁被覆させた軟磁性粉末に、例えばステアリン酸亜鉛等の潤滑剤とともに金型に充填し、プレス成形して所定の形状に製造される。また、プレス成形時の成形歪みが粉末に導入されるが、所定の温度で焼鈍することにより成形歪みを除去し、性能の向上を図っている。
A dust core is generally manufactured in the following procedure. By applying mechanical pulverization or atomization to a soft magnetic alloy having a predetermined composition, a soft magnetic powder is obtained. In order to insulate the soft magnetic powder, for example, an insulating material such as water glass, silicone phosphate resin, phenol resin, epoxy resin, polyimide resin and the like having a binding ability are mixed to form an insulating layer on the powder surface. To produce a soft magnetic powder coated with an insulating film. For the formation of the insulating layer, for example, a method of insulating by mixing a ceramic powder having a very small particle size such as silica or alumina powder and allowing it to be present in the gaps between the soft magnetic powders when compacted, or TEOS For example, a method of forming an insulating layer by attaching a metal alkoxide or the like to the powder surface and performing a heat treatment is performed.
The dust core is manufactured in a predetermined shape by filling a soft magnetic powder with an insulating coating into a mold together with a lubricant such as zinc stearate and press-molding it. Moreover, although the molding distortion at the time of press molding is introduced into the powder, the molding distortion is removed by annealing at a predetermined temperature to improve the performance.

このような圧粉磁心を前述した用途に用いる場合、使用時における磁心損失が小さいこと、また磁心の磁束密度が高いことが重要である。磁心損失が小さくなれば、電力エネルギーのロスが小さくなり、高効率となり省エネルギー化が図られる。また、磁束密度が高くなれば、直流重畳特性等が改善され圧粉磁心を小型化することが可能となり、製品の小型化が図れるばかりでなく、圧粉磁心の周辺の部品も小型化できることによる材料費の削減や、回路の省スペース化により設計上の自由度が向上することも期待できる。   When such a dust core is used in the above-described applications, it is important that the core loss during use is small and the magnetic flux density of the core is high. If the magnetic core loss is reduced, the loss of power energy is reduced, resulting in higher efficiency and energy saving. In addition, if the magnetic flux density is increased, the DC superposition characteristics and the like can be improved, and the powder magnetic core can be downsized. Not only can the product be downsized, but also the parts around the powder magnetic core can be downsized. It is also expected that design flexibility will be improved by reducing material costs and saving circuit space.

磁心損失は、通常、ヒステリシス損失と渦電流損失に分離される。ヒステリシス損失は金属磁性粉組成および組織、またはプレス成形時に生じた金属磁性粉の歪み等に影響を受ける。渦電流損失は金属磁性粉粒子サイズや金属粉末粒子間の絶縁性に影響を受ける。ヒステリシス損失は保磁力と相関がある。低磁心損失な圧粉磁心を得るためには、低保磁力な軟磁性粉末が求められる。   The core loss is usually separated into hysteresis loss and eddy current loss. The hysteresis loss is affected by the metal magnetic powder composition and structure, or the distortion of the metal magnetic powder generated during press molding. Eddy current loss is affected by the size of metal magnetic powder particles and the insulation between metal powder particles. Hysteresis loss is correlated with coercivity. In order to obtain a dust core having a low magnetic core loss, a soft magnetic powder having a low coercive force is required.

圧粉磁心用の軟磁性粉末として、最も用いられているのは鉄粉であるが、さらに低損失、特に低ヒステリシス損を有する圧粉磁心を得たい場合には、鉄よりも保磁力の小さいケイ素鋼の粉末が用いられ、さらにヒステリシス損を低減したい場合はFe-Si-Al合金、アモルファス合金、ナノ結晶合金の粉末が用いられている。アモルファス合金やナノ結晶合金の粉末を得るためには、たとえば、急冷薄帯を機械的に粉砕して得る方法、アトマイズにて直接粉末を得る方法等が適用されている。   The most used soft magnetic powder for dust cores is iron powder. However, if you want to obtain a dust core with lower loss, especially low hysteresis loss, the coercive force is smaller than iron. Silicon steel powder is used, and in order to further reduce hysteresis loss, Fe-Si-Al alloy, amorphous alloy, and nanocrystalline alloy powders are used. In order to obtain an amorphous alloy or nanocrystalline alloy powder, for example, a method of mechanically pulverizing a quenched ribbon, a method of directly obtaining a powder by atomization, or the like is applied.

急冷薄帯を機械的に粉砕して得る場合には、まず、たとえば単ロール法や双ロール法などにて急冷薄帯を作製し、その後、たとえばディスクミル、ボールミル、ピンミルなどの粉砕機を用いて粉砕し粉末を得る。しかし、良好な磁気特性を得られる急冷薄帯は、一般に粉砕しづらく、粉砕前に脆化熱処理を施す必要があること、また、粉砕によって粉末に粉砕歪みが導入されることなどから、急冷薄帯での良好な磁気特性が粉末に反映されない場合がある。   When the quenched ribbon is obtained by mechanical pulverization, first, for example, the quenched ribbon is produced by a single roll method or a twin roll method, and then a pulverizer such as a disk mill, a ball mill, or a pin mill is used. To obtain a powder. However, a quenched ribbon that provides good magnetic properties is generally difficult to pulverize and needs to be subjected to an embrittlement heat treatment before pulverization, and because pulverization distortion is introduced into the powder by pulverization. Good magnetic properties in the band may not be reflected in the powder.

アモルファス合金やナノ結晶合金の粉末をアトマイズにて製造する場合には、一般に、アトマイズ装置の急冷速度によって、その組成が限定され、磁気特性にも影響が出る。たとえば、従来のFe基ナノ結晶合金の場合、Nb等の飽和磁束密度を低下させる元素を含むため、飽和磁束密度が低下し、高磁束密度の圧粉磁心が得られない問題がある。   When an amorphous alloy or nanocrystalline alloy powder is manufactured by atomization, the composition is generally limited by the rapid cooling rate of the atomization apparatus, and the magnetic characteristics are affected. For example, in the case of a conventional Fe-based nanocrystalline alloy, since it contains an element that lowers the saturation magnetic flux density such as Nb, there is a problem that the saturation magnetic flux density is lowered and a dust core with a high magnetic flux density cannot be obtained.

非特許文献1では、アトマイズ装置の冷却機構の改善を行い急冷速度を向上させ、従来のアトマイズでは得られなかった組成のアモルファス粉末を製造することが出来たとしている。そのアモルファス粉末を用いて非特許文献2では低損失な圧粉磁心を得ている。   In Non-Patent Document 1, it is said that the cooling mechanism of the atomizing apparatus is improved to increase the rapid cooling rate, and amorphous powder having a composition that cannot be obtained by conventional atomization can be produced. Non-Patent Document 2 uses the amorphous powder to obtain a low-loss dust core.

しかし、Fe基アモルファス軟磁性粉末および従来のFe基ナノ結晶軟磁性粉末を用いて製造した圧粉磁心は低損失を示すが、材料自体の飽和磁束密度が1.68T以下であり、Fe粉、ケイ素鋼粉より飽和磁束密度が低い。圧粉磁心の磁束密度は材料の飽和磁束密度に占積率をかけたものになる。Fe基アモルファス軟磁性粉末はFe粉、ケイ素鋼粉などの結晶質材料と比較して、硬く成形性も悪いため、圧粉磁心の占積率をパーマロイ、Fe等の結晶質材のように高くし、圧粉磁心の磁束密度を高めることが困難である。   However, although the powder magnetic core manufactured using the Fe-based amorphous soft magnetic powder and the conventional Fe-based nanocrystalline soft magnetic powder shows low loss, the saturation flux density of the material itself is 1.68 T or less, Fe powder, silicon Saturation magnetic flux density is lower than steel powder. The magnetic flux density of the dust core is obtained by multiplying the saturation magnetic flux density of the material by the space factor. Fe-based amorphous soft magnetic powder is hard and has poor moldability compared to crystalline materials such as Fe powder and silicon steel powder, so the space factor of the dust core is as high as that of crystalline materials such as Permalloy and Fe. However, it is difficult to increase the magnetic flux density of the dust core.

KUBITA TECHNICAL REPORT No.29 7〜13頁KUBITA TECHNICAL REPORT No.29 7-13 電気学会マグネティックス研究会資料 MAG-98, 201-215 73〜78頁IEEJ Magnetics Study Group Material MAG-98, 201-215, pages 73-78

本発明は、Fe基アモルファス粉末を用いた圧粉磁心と同等またはそれ以下の低損失でかつ高磁束密度の圧粉磁心を得ることを目的とするまた、圧粉磁心とした時に効率良くかつ安定してコア損失を低減させることができる熱処理工程を提供することを課題とする
An object of the present invention is to obtain a dust core having a low loss and a high magnetic flux density equivalent to or less than a dust core using an Fe-based amorphous powder . It is another object of the present invention to provide a heat treatment process that can efficiently and stably reduce core loss when a dust core is formed .

本発明は、平均粒径が300μm以下で、組成式:Fe100-x-yAX(但し、AはCu,Auから選ばれた少なくとも一種以上の元素、XはB,Si,S,C,P,Al,Ge,Ga,Beから選ばれた少なくとも一種以上の元素)で表され、原子%で、0<x≦5、10≦y≦24により表される軟磁性粉末を用いた圧粉磁心であって、
前記軟磁性粉末が、結晶粒径が2nm以上60nm以下の結晶粒が非晶質中に体積分率で30%以上分散した母相組織を有し、最表面に結晶組織から成る結晶層が形成され、かつ前記結晶層と前記母相組織の間にアモルファス層を有し、
前記軟磁性粉末の占積率が70.0%以上であることを特徴とする圧粉磁心。
The present invention has an average particle size of 300 μm or less and a composition formula: Fe 100-xy A x X y (where A is at least one element selected from Cu and Au, X is B, Si, S , C, P, Al, Ge, Ga, and Be), and a soft magnetic powder represented by 0 <x ≦ 5 and 10 ≦ y ≦ 24 in atomic% is used. A dust core,
The soft magnetic powder has a matrix structure in which crystal grains having a crystal grain size of 2 nm or more and 60 nm or less are dispersed in an amorphous material at a volume fraction of 30% or more, and a crystal layer composed of the crystal structure is formed on the outermost surface. And having an amorphous layer between the crystal layer and the matrix structure,
A dust core, wherein the soft magnetic powder has a space factor of 70.0% or more.

本発明に用いる軟磁性粉末はアモルファス層と母相組織の間に、前記母相組織の平均粒径よりも粒径が大きい結晶から成る粗大結晶粒層を有するものでもよい。
Soft magnetic powder used in the present invention, between the amorphous layer and the matrix structure, or may have a coarse crystal grain layer composed of the particle diameter than the average grain size of the matrix structure is large crystals.

本発明に用いる軟磁性粉末は、形状が扁平であっても良く、厚さが10μm以下でアスペクト比が30以上のものが好ましい。アスペクト比が大きい扁平粉末を用いると圧粉磁心の渦電流損を低減させることができる。
The soft magnetic powder used in the present invention may have a flat shape, and preferably has a thickness of 10 μm or less and an aspect ratio of 30 or more. When flat powder having a large aspect ratio is used, eddy current loss of the dust core can be reduced.

本発明に用いる軟磁性粉末は、金属溶湯を噴霧し、その後直ちに冷却媒体に接触させて急冷する二段階急冷製法を用いて製造されたものでもよい。または、単ロール法、双ロール法あるいはストリップキャスティング法によって製造された急冷薄帯あるいはフレークを粉砕して製造されたものでもよい。
Soft magnetic powder used in the present invention, by spraying the molten metal, may be one produced by using a two-stage quench process of quenching thereafter brought immediately into contact with the cooling medium. Alternatively , it may be produced by pulverizing a quenched ribbon or flake produced by a single roll method, a twin roll method or a strip casting method.

製造方法として、前記軟磁性粉末が、結晶粒径が60nm以下(0を含まず)の結晶粒が非晶質中に体積分率で30%以上分散した母相組織を有し、最表面に結晶組織から成る結晶層が形成され、かつ前記結晶層と前記母相組織の間にアモルファス層を有するように、300℃以上の平均昇温速度が100℃/min以上、最高温度Tが軟磁性粉末の結晶化温度−30℃≦T≦結晶化温度+50℃で熱処理されることが好ましい。軟磁気特性に優れる低損失で高磁束密度な圧粉磁心を作製できる。 The production method, the soft magnetic powder has a grain size of 60nm or less (not including 0) crystal grains dispersed matrix structure with a volume fraction of 30% or more in the amorphous, the outermost surface An average temperature increase rate of 300 ° C. or higher is 100 ° C./min or higher and a maximum temperature T is soft magnetic so that a crystal layer composed of a crystal structure is formed and an amorphous layer is provided between the crystal layer and the matrix structure. Heat treatment is preferably performed at a crystallization temperature of the powder −30 ° C. ≦ T ≦ crystallization temperature + 50 ° C. It is possible to produce a dust core having a low magnetic loss and a high magnetic flux density, which has excellent soft magnetic properties.

前記熱処理は、300℃以上の平均昇温速度が100℃/min以上となるように行うことが好ましく、さらに好ましくは300℃以上の平均昇温速度が150℃/min以上とするとよい。   The heat treatment is preferably performed so that an average temperature rising rate of 300 ° C. or higher is 100 ° C./min or higher, and more preferably, an average temperature rising rate of 300 ° C. or higher is 150 ° C./min or higher.

前記熱処理は、最高温度Tが軟磁性粉末の、結晶化温度−30℃≦T≦結晶化温度+50℃であることが好ましく、さらには−10℃≦T≦結晶化温度+30℃とすることが好ましい。例えば、結晶化温度が430℃の軟磁性粉末Aでは、最高温度TAを400℃≦TA≦480℃とすることがよく、さらには420℃≦TA≦460℃とすることがよい。   In the heat treatment, the maximum temperature T is preferably a crystallization temperature of −30 ° C. ≦ T ≦ crystallization temperature + 50 ° C., more preferably −10 ° C. ≦ T ≦ crystallization temperature + 30 ° C. preferable. For example, in the soft magnetic powder A having a crystallization temperature of 430 ° C., the maximum temperature TA is preferably 400 ° C. ≦ TA ≦ 480 ° C., and more preferably 420 ° C. ≦ TA ≦ 460 ° C.

前記熱処理は、最高温度に昇温後、300℃以下に冷却する温度サイクルを複数回くり返す熱処理パターンで行うことで、軟磁気特性に優れる低損失で高磁束密度な圧粉磁心を安定して作製できる。サイクルを繰り返す方法としては、例えば、箱型炉などで1サイクルを1工程として、その工程を数回に分けて行うようでもよいし、例えば、連続炉などで数サイクルを1工程として連続的に行うようでもよい。   The heat treatment is performed in a heat treatment pattern in which a temperature cycle of cooling to 300 ° C. or lower is repeated a plurality of times after raising the temperature to the maximum temperature, thereby stably producing a dust core having a low loss and a high magnetic flux density that excels in soft magnetic properties. Can be made. As a method of repeating the cycle, for example, one cycle may be performed in a box furnace or the like, and the process may be performed in several times. For example, a continuous furnace or the like may be performed continuously in several cycles as one process. It may be done.

本発明製造方法を用いて圧粉磁心を作製することで0.1T、10kHzにおける磁心損失が5.0W/kg以下の軟磁気特性に優れた圧粉磁心を得ることができる。
By making the powder magnetic core using the manufacturing method of the present invention, it is possible to obtain 0.1 T, core loss of 10kHz is excellent dust core following soft magnetic characteristics 5.0 W / kg.

本発明圧粉磁心を用いることで、高性能磁性部品を得ることができる。
By using the dust core of the present invention, it is possible to obtain a high-performance magnetic parts.

本発明の軟磁性粉末は、平均粒径が300μm以下であり、結晶粒径が60nm以下(0を含まず)の結晶粒が非晶質中に体積分率で30%以上分散した母相組織を有し、かつ粉末の表面側にアモルファス層を有するという特徴を持つ。上記の本発明の軟磁性粉末は、母相と異なる組織が内部に存在しているため、従来のアモルファス粉末、ナノ結晶粉末では得られなかった高飽和磁束密度、低保磁力を併せ持つ軟磁性粉末を実現できることを見出した。   The soft magnetic powder of the present invention has an average particle size of 300 μm or less and a crystal structure having crystal grains of 60 nm or less (excluding 0) dispersed in an amorphous material by 30% or more by volume fraction. And having an amorphous layer on the surface side of the powder. Since the soft magnetic powder of the present invention has a structure different from that of the parent phase inside, the soft magnetic powder having a high saturation magnetic flux density and a low coercive force which cannot be obtained by conventional amorphous powder and nanocrystal powder. It was found that can be realized.

本発明の軟磁性粉末は、図2(a)、(b)に示すように、粉末の表面2より深さ120nmの位置で結晶粒径が60nm以下(0を含まず)の結晶粒が非晶質中に体積分率で30%以上分散した母相組織Dを有し、かつ粉末の表面側にアモルファス層Bを有する。このアモルファス層は、粉末の周囲全体に観察されることもあるし、薄帯形状から粉砕した軟磁性粉末は一部のみ観察されることも有る。この軟磁性粉末は、最表面に結晶組織から成る結晶層Aが形成され、結晶層Aの内部側に前記アモルファス層Bが形成されているものも有る。さらに、アモルファス層Bと母相組織Dの間に、母相組織の平均粒径よりも粒径が大きい結晶から成る粗大結晶粒層Cを有することもある。   As shown in FIGS. 2A and 2B, the soft magnetic powder of the present invention has a crystal grain size of 60 nm or less (excluding 0) at a position 120 nm deep from the surface 2 of the powder. It has a matrix structure D in which a volume fraction of 30% or more is dispersed in the crystal and has an amorphous layer B on the surface side of the powder. This amorphous layer may be observed over the entire periphery of the powder, or only a part of the soft magnetic powder pulverized from the ribbon shape may be observed. Some of the soft magnetic powders have a crystal layer A formed of a crystal structure on the outermost surface and the amorphous layer B formed on the inner side of the crystal layer A. Further, a coarse crystal grain layer C made of crystals having a grain size larger than the average grain size of the matrix structure may be provided between the amorphous layer B and the matrix structure D.

アモルファス層が発現する理由を以下に推定する。本合金系は、Feを主成分としかつCu及び/又はAu(以下、A元素)が必須である。Feとほぼ非固溶のA元素は、凝集してナノオーダーのクラスターを形成し、結晶粒の核生成を助ける。表面から離れた部分では、A元素は均一に分散しやすく、そのためにナノ結晶の母相組織Dが形成される。また、非固溶の性質から、最表面ではA元素が偏析しやすくA元素の濃度が高くなり、母相と同様に結晶組織が形成される。一方、最表面の直下内部では、A元素が表面側に取られる分、A元素の濃度が低くなる。そのため、この領域では結晶粒の核生成が起きずにアモルファス層となる。本発明の軟磁性粉末は、熱処理によって微結晶粒層を析出させるが、上述のようにA元素の分布により微結晶粒の核の濃度が決まる。そのため、表面近傍に核が現れにくくなり、アモルファス層ができると思われる。   The reason why the amorphous layer appears is estimated below. This alloy system has Fe as a main component and Cu and / or Au (hereinafter referred to as element A) is essential. The element A, which is almost non-solid solution with Fe, aggregates to form nano-order clusters and assists in the nucleation of crystal grains. In the portion away from the surface, the A element is easily dispersed uniformly, and therefore a nanocrystalline matrix structure D is formed. In addition, due to the non-solid solution property, the A element tends to segregate on the outermost surface, and the concentration of the A element becomes high, and a crystal structure is formed in the same manner as the parent phase. On the other hand, in the interior immediately below the outermost surface, the concentration of the A element is lowered by the amount of the A element taken on the surface side. Therefore, in this region, nucleation of crystal grains does not occur and an amorphous layer is formed. In the soft magnetic powder of the present invention, a fine crystal grain layer is deposited by heat treatment, and the concentration of microcrystal grain nuclei is determined by the distribution of element A as described above. For this reason, nuclei are unlikely to appear near the surface, and an amorphous layer appears to be formed.

また、粗大結晶粒層Cが発現する理由を以下に推定する。アモルファス層のさらに内側では、A元素の濃度は母相組織となる領域ほど高くなく、核生成も少ない。ナノ結晶粒の粒径は核の濃度と結晶粒成長のスピードの兼ね合いで決まる。A元素の濃度が均一な母相組織の領域では昇温速度の違いによる組織の違いは現れにくいが、A元素の少ないCの領域では、昇温速度が遅ければ、A元素の熱拡散に十分な時間が与えられて核が減る。そのため、結晶粒が粗大化し易くなり、粗大結晶粒層Cが形成される。例えば、昇温速度を速くすると、粗大結晶粒層Cの結晶粒は微細になり、平均粒径が母相に近づく。また、粗大結晶粒層Cの幅は減少する。昇温速度を制御することにより、組織制御がなされ、用途に合わせた磁気的性質が得られる。
ここで、粗大結晶粒層Cとは、母相組織の平均結晶粒径に対して1.5倍以上の部分を指すものとする。また、粗大結晶粒層Cの平均結晶粒径は、母相組織の平均結晶粒径の2倍以下とすることが好ましい。
Further, the reason why the coarse crystal grain layer C appears is estimated as follows. Further inside the amorphous layer, the concentration of the A element is not as high as that of the region that forms the matrix structure, and nucleation is also low. The grain size of nanocrystal grains is determined by the balance between the concentration of nuclei and the speed of grain growth. In the region of the matrix structure in which the concentration of the A element is uniform, the difference in structure due to the difference in the heating rate does not appear easily. However, in the C region where the A element is low, if the heating rate is slow, it is sufficient for the thermal diffusion of the A element. Given the time, the number of nuclei decreases. Therefore, the crystal grains are easily coarsened, and the coarse crystal grain layer C is formed. For example, when the rate of temperature increase is increased, the crystal grains of the coarse crystal grain layer C become fine and the average grain size approaches the parent phase. Further, the width of the coarse crystal grain layer C decreases. By controlling the rate of temperature rise, the structure is controlled and magnetic properties suitable for the application can be obtained.
Here, the coarse crystal grain layer C refers to a portion that is 1.5 times or more the average crystal grain size of the matrix structure. Moreover, it is preferable that the average crystal grain size of the coarse crystal grain layer C is not more than twice the average crystal grain size of the parent phase structure.

結晶粒径の測定は、電子顕微鏡による組織写真で観察される組織の長径と短径の平均値を取ったものである。平均粒径とは、その結晶粒径を30個以上した値の平均値である。
結晶粒の体積分率は、線分法、すなわち顕微鏡組織中に任意の直線を想定しそのテストラインの長さをLt、結晶相により占められる線の長さLcを測定し、結晶粒により占められる線の長さの割合LL=Lc/Lt×100求めることにより求められる。ここで、結晶粒の体積分率VV=LLある。
The crystal grain size is measured by taking an average value of the major axis and the minor axis of the structure observed in the structure photograph taken with an electron microscope. The average particle size is an average value of 30 or more crystal grain sizes.
The volume fraction of crystal grains is determined by the line segment method, that is, assuming an arbitrary straight line in the microstructure, the length of the test line is Lt, the length Lc of the line occupied by the crystal phase is measured, and is occupied by the crystal grains. It is calculated | required by calculating | requiring the ratio of the length of the line LL = Lc / Lt * 100. Here, the volume fraction of crystal grains is V V = L L.

本発明圧粉磁心は、飽和磁束密度が1.4T以上の圧粉磁心が得られる。本発明に用いる軟磁性粉末をVSMで測定した場合の粉末の飽和磁束密度は1.80T以上であり、圧粉磁心における軟磁性粉末の占積率は70.0%以上となる。また、本発明の軟磁性粉末を用いた圧粉磁心は、アスペクト比が大きく、球状のアモルファス粉末を用いた圧粉磁心の場合よりも渦電流損失が低減できる。 With the dust core of the present invention, a dust core having a saturation magnetic flux density of 1.4 T or more can be obtained. When the soft magnetic powder used in the present invention is measured by VSM, the saturation magnetic flux density of the powder is 1.80 T or more, and the space factor of the soft magnetic powder in the dust core is 70.0% or more. In addition, the dust core using the soft magnetic powder of the present invention has a large aspect ratio and can reduce eddy current loss compared to a dust core using a spherical amorphous powder.

母相組織中の結晶粒は体積分率で50%以上、さらには60%以上分散したものが好ましい。平均結晶流径は60nm以下である必要があるが、特に望ましい平均結晶粒径は2nmから25nmであり、この範囲において特に低い保磁力および磁心損失が得られる。
前述の本発明合金中に形成する微結晶粒は主にFeを主体とする体心立方構造(bcc)の結晶相であり、Si,B,AlやGe等が固溶しても良い。また、規則格子を含んでも良い。前記結晶相以外の残部は主にアモルファス相であるが、実質的に結晶相だけからなる合金も本発明に含まれる。一部にCuを含む面心立方構造の相(fcc相)も存在する場合がある。
また、アモルファス相が結晶粒の周囲に存在する場合、抵抗率が高くなり、結晶粒成長の抑制により結晶粒が微細化され、より好ましい軟磁気特性が得られる。
本発明の軟磁性粉末において化合物相が存在しない場合により低い磁心損失を示すが、化合物相を一部に含んでも良い。
The crystal grains in the matrix structure preferably have a volume fraction of 50% or more, more preferably 60% or more. Although the average crystal flow diameter needs to be 60 nm or less, the particularly desirable average crystal grain diameter is 2 nm to 25 nm, and particularly low coercive force and magnetic core loss are obtained in this range.
The fine crystal grains formed in the above-described alloy of the present invention have a body-centered cubic (bcc) crystal phase mainly composed of Fe, and Si, B, Al, Ge, etc. may be dissolved therein. Further, a regular lattice may be included. The balance other than the crystalline phase is mainly an amorphous phase, but an alloy consisting essentially of the crystalline phase is also included in the present invention. There may be a face-centered cubic phase (fcc phase) partially containing Cu.
Further, when an amorphous phase is present around the crystal grains, the resistivity is increased, the crystal grains are refined by suppressing the crystal grain growth, and more preferable soft magnetic characteristics can be obtained.
The soft magnetic powder of the present invention shows lower magnetic core loss when no compound phase is present, but the compound phase may be partially included.

本発明の軟磁性粉末は、組成式:Fe100-x-yAX(但し、AはCu,Auから選ばれた少なくとも一種以上の元素XはB,Si,S,C,P,Al,Ge,Ga,Beから選ばれた少なくとも一種以上の元素)で表され、原子%で、0≦x≦5、10≦y≦24により表されるものが好ましい。以下にその限定理由を述べる。 The soft magnetic powder of the present invention has a composition formula: Fe 100-xy A x X y (where A is at least one element X selected from Cu and Au is B, Si, S, C, P, And at least one element selected from Al, Ge, Ga, and Be) and those represented by 0% x≤5 and 10≤y≤24 in atomic% are preferable. The reason for limitation will be described below.

A元素(Cu、Au)の量は5%以下(0%を含まず)とする。本発明の合金組成におけるA元素は特に重要である。前述したように、A元素はFeとほぼ非固溶のため、熱処理によって拡散を起こす。特に、粉末表面と内部で温度分布や温度差が生じやすい熱処理を施した場合には、拡散が起き易い部位と相互の拡散が妨げられ易い部位が存在し、内部で組織は傾斜的、層状的に変質する。磁気的性質を制御するには、粉末の大きさ、組成の制御、熱処理時の熱処理温度、熱処理時間、昇温速度、降温速度を制御するとことが有効である。
A元素の量は好ましくは3%以下とする。また、A元素は、上記の効果を得るために0.1原子%以上、さらには0.5原子%以上、さらには0.8原子%以上を添加することが好ましい。A元素は原料コストを考慮するとCuを選択することが好ましい。
The amount of element A (Cu, Au) is 5% or less (excluding 0%). The element A in the alloy composition of the present invention is particularly important. As described above, since the A element is almost non-solid solution with Fe, it diffuses by heat treatment. In particular, when heat treatment is performed that tends to cause temperature distribution or temperature difference between the powder surface and the inside, there are sites where diffusion is likely to occur and sites where mutual diffusion is likely to be hindered, and the internal structure is inclined and layered. It changes to. In order to control the magnetic properties, it is effective to control the size of the powder, the composition, the heat treatment temperature during heat treatment, the heat treatment time, the temperature raising rate, and the temperature lowering rate.
The amount of element A is preferably 3% or less. In order to obtain the above effect, the element A is preferably added in an amount of 0.1 atomic% or more, further 0.5 atomic% or more, and further 0.8 atomic% or more. In consideration of the raw material cost, it is preferable to select Cu as the element A.

X元素(B,Si,S,C,P,Al,Ge,Ga,Be)はA元素(Cu,Au)が同一粉末内に存在する本発明の軟磁性粉末を形成するために不可欠な元素である。10原子%未満であるとアモルファスの形成を促進する効果が不十分である。また24原子%を超えると軟磁気特性が悪化してしまう。好ましい範囲は12原子%以上20原子%以下である。
特にBはアモルファスの形成を促進するために重要な元素であり添加することが好ましい。Bの濃度が10≦y≦20原子%であると、Feの含有量を高く維持しつつアモルファス相が安定に得られる。
また、Si,S,C,P,Al,Ge,Ga,Beを添加すると、結晶磁気異方性の大きいFe-Bが析出開始する温度が高くなるため、熱処理温度を高温にできる。高温の熱処理を施すことで微結晶相の割合が増え、BSが増加する。また、試料表面の変質、変色を抑える効果がある。Si,S,C,P,Al,Ge,Ga,Beの添加量は、0原子%超〜7原子%とすることが好ましい。特にSiはこの効果が顕著であり、好ましい。
X element (B, Si, S, C, P, Al, Ge, Ga, Be) is an element indispensable for forming the soft magnetic powder of the present invention in which A element (Cu, Au) is present in the same powder. It is. If it is less than 10 atomic%, the effect of promoting the formation of amorphous is insufficient. On the other hand, if it exceeds 24 atomic%, the soft magnetic characteristics are deteriorated. A preferable range is 12 atom% or more and 20 atom% or less.
In particular, B is an important element for promoting the formation of amorphous and is preferably added. When the concentration of B is 10 ≦ y ≦ 20 atomic%, an amorphous phase can be stably obtained while maintaining a high Fe content.
Further, when Si, S, C, P, Al, Ge, Ga, and Be are added, the temperature at which Fe—B having a large magnetocrystalline anisotropy starts to precipitate increases, so that the heat treatment temperature can be increased. By applying a high-temperature heat treatment, the proportion of the microcrystalline phase increases and B S increases. In addition, there is an effect of suppressing deterioration and discoloration of the sample surface. The addition amount of Si, S, C, P, Al, Ge, Ga, and Be is preferably more than 0 atomic% to 7 atomic%. Particularly, Si is preferable since this effect is remarkable.

Feの一部をFeとA元素に共に固溶するNi、Coから選ばれた少なくとも一種以上の元素で置換してもよい。これらの元素を置換した軟磁性粉末はアモルファス相の形成能が高くなり、A元素の含有量を増加させることが可能である。A元素の含有量が増加することで、結晶組織の微細化が促進され軟磁気特性が改善される。また、Ni,Coを置換した場合には飽和磁束密度が増加する。これらの元素を多く置換すると、価格の高騰につながるため、Niの置換量は10%未満、好ましくは5%未満、さらには2%未満が適当であり、Coの場合は10%未満、好ましくは2%未満、より好ましくは1%未満が適当である。   A part of Fe may be substituted with at least one element selected from Ni and Co that are dissolved in Fe and A elements together. Soft magnetic powders substituted with these elements have a high ability to form an amorphous phase and can increase the content of element A. Increasing the content of element A promotes refinement of the crystal structure and improves soft magnetic properties. In addition, when Ni and Co are replaced, the saturation magnetic flux density increases. Substituting a large amount of these elements leads to an increase in the price. Therefore, the amount of substitution of Ni is less than 10%, preferably less than 5%, more preferably less than 2%. In the case of Co, less than 10%, preferably Less than 2%, more preferably less than 1% is suitable.

Feの一部をTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、白金族元素、Ag、Zn、In、Sn、As、Sb、Sb、Bi、Y、N、O及び希土類元素から選ばれた少なくとも一種以上の元素で置換した場合、これらの元素はA元素やメタロイド元素と共に熱処理後も残留するアモルファス相に優先的に入るため、Fe濃度の高い微細結晶粒の生成を助ける働きをする。そのため、軟磁気特性の改善に寄与する。一方、本発明合金における実質的な磁性の担い手はFeであるため、Feの含有量を高く保つ必要があるが、これら、原子量の大きい元素を含有することは、単位重量あたりのFeの含有量が低下することになる。特に、置換する元素がNb,Zrの場合、置換量は5%未満程度、より好ましくは2%未満が適当であり、置換する元素がTa,Hfの場合、置換量は2.5%未満、より好ましくは1.2%未満が適当である。また、Mnを置換する場合は飽和磁束密度の低下がおこるため、置換量は5%未満が妥当であり、より好ましくは2%未満である。
但し、特に高い飽和磁束密度を得るためには、これらの元素の総量が1.8原子%以下とすることが好ましい。また、総量が1.0原子%以下とすることがさらに好ましい。
Part of Fe is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, platinum group elements, Ag, Zn, In, Sn, As, Sb, Sb, Bi, Y, N When substituted with at least one element selected from O, O, and rare earth elements, these elements preferentially enter the amorphous phase that remains after heat treatment together with the A element and metalloid element, so that fine grains with high Fe concentration Helps to generate Therefore, it contributes to the improvement of soft magnetic characteristics. On the other hand, since the substantial magnetic player in the alloy of the present invention is Fe, it is necessary to keep the Fe content high. However, the inclusion of these elements having a large atomic weight means the Fe content per unit weight. Will drop. In particular, when the element to be substituted is Nb or Zr, the substitution amount is less than about 5%, more preferably less than 2%. When the element to be substituted is Ta or Hf, the substitution amount is less than 2.5%, More preferably, it is less than 1.2%. Further, when Mn is replaced, the saturation magnetic flux density is lowered, so that the replacement amount is appropriately less than 5%, more preferably less than 2%.
However, in order to obtain a particularly high saturation magnetic flux density, the total amount of these elements is preferably 1.8 atomic% or less. Moreover, it is more preferable that the total amount is 1.0 atomic% or less.

本発明の具体的な製造方法は、100℃/sec以上の冷却速度で急冷し、非晶質相中に平均粒径30nm以下の結晶粒が非晶質相中に体積分率で0%超30%未満で分散した組織のFe基合金を作製後、これを加工し、結晶化温度の近傍で熱処理を施し、平均粒径が60nm以下の微結晶組織を形成することによって得られる。   A specific production method of the present invention is a method in which quenching is performed at a cooling rate of 100 ° C./sec or more, and crystal grains having an average particle size of 30 nm or less are contained in the amorphous phase in a volume fraction of more than 0%. It is obtained by producing a Fe-based alloy having a structure dispersed at less than 30%, and then processing this and performing a heat treatment in the vicinity of the crystallization temperature to form a microcrystalline structure having an average grain size of 60 nm or less.

本発明において、溶湯を急冷する方法としては、単ロール法の他、双ロール法、回転液中防止法、ガスアトマイズ法、水アトマイズ法、ガスまたは水などにより金属溶湯を噴霧し、直後に水または水冷円盤、水冷ロールなどの冷却媒体に接触させて急冷する二段階の冷却を連続的に行う二段階急冷製法などがあり、薄片や薄帯、粉末を製造することができる。また、溶湯急冷時の溶湯温度は、合金の融点よりも50℃〜300℃程度高い温度とするのが望ましい。
単ロール法や冷却ロールを用いる二段階急冷製法などの超急冷法は、活性な金属を含まない場合は大気中あるいは局所Arあるいは窒素ガスなどの雰囲気中で行うことが可能であるが、活性な金属を含む場合はAr,Heなどの不活性ガス中、窒素ガス中あるいは減圧中、あるいはノズル先端部のロール表面付近のガス雰囲気を制御する。また、CO2ガスをロールに吹き付ける方法や、COガスをノズル近傍のロール表面付近で燃焼させながら合金粉末製造を行う。
冷却ロール周速は、単ロール法では30〜50m/s、冷却ロールを用いる二段急冷製法では10〜50m/s程度の範囲が望ましく、冷却ロール材質は、熱伝導が良好な純銅やCu−Be、Cu−Cr、Cu−Zr、Cu−Zr−Crなどの銅合金が適している。大量に製造する場合、冷却ロールは水冷構造とした方が好ましい。
In the present invention, as a method of rapidly cooling the molten metal, in addition to the single roll method, a twin roll method, a rotating liquid prevention method, a gas atomizing method, a water atomizing method, gas or water spraying the molten metal, immediately after water or There is a two-stage quenching method in which two-stage cooling is performed continuously by bringing it into contact with a cooling medium such as a water-cooled disk or a water-cooled roll, and flakes, ribbons, and powders can be produced. Further, it is desirable that the molten metal temperature at the time of rapid cooling of the molten metal is higher by about 50 ° C. to 300 ° C. than the melting point of the alloy.
The ultra-quenching method such as the single roll method or the two-stage quenching method using a cooling roll can be carried out in the atmosphere or in an atmosphere such as local Ar or nitrogen gas if it does not contain an active metal. In the case of containing a metal, the gas atmosphere in the vicinity of the roll surface at the nozzle tip is controlled in an inert gas such as Ar or He, in nitrogen gas or under reduced pressure. Also, alloy powder is produced while CO 2 gas is blown onto the roll and CO gas is burned near the roll surface near the nozzle.
The cooling roll peripheral speed is preferably in the range of 30-50 m / s in the single roll method, and in the range of 10-50 m / s in the two-stage quenching method using the cooling roll, and the cooling roll material is pure copper or Cu- Copper alloys such as Be, Cu—Cr, Cu—Zr, and Cu—Zr—Cr are suitable. When manufacturing in large quantities, it is preferable that the cooling roll has a water cooling structure.

一般にFe基アモルファス合金またはナノ結晶合金を形成するのに必要な冷却速度(105℃/sec)以上の急冷により、本願発明の軟磁性粉末が提供される。105℃/sec以上の冷却速度を有する急冷方法としては、単ロール法、水アトマイズ法、ガスで水や油などの冷却媒体に粉体を噴霧したのち沈降させる方法、さらに、後述する、ガスで回転させた水冷円盤に粉体を吹き付けて急冷する方法などがある。 Generally, the soft magnetic powder of the present invention is provided by rapid cooling at a cooling rate (10 5 ° C / sec) or more necessary for forming an Fe-based amorphous alloy or nanocrystalline alloy. As a rapid cooling method having a cooling rate of 10 5 ° C / sec or more, a single roll method, a water atomizing method, a method of spraying a powder onto a cooling medium such as water or oil with a gas and then settling, There are methods such as spraying powder onto a water-cooled disk rotated at a rapid cooling.

金属溶湯から直接、急冷による非平行相を有する粉末を作製できる方法として、高圧ガスなどで金属溶湯を噴霧し、さらに、回転させた水冷円盤などの冷却媒体に接触させて急冷するものが好ましい。本発明では、これを二段階急冷法(以後、二段急冷と略す)と呼ぶ。二段急冷では金属溶湯を高圧ガスで噴霧する過程と、金属溶湯粒が水冷円盤に密着されて急冷される過程とが連続的に行われる。前過程は金属溶湯を分断しつつ冷却する過程でもあり、高圧ガスの圧力やガスを噴出する噴霧口の設定を変更することにより、作製する粉末の粒度分布を制御することができる。後過程は前過程で分断された金属溶湯粒を急冷する過程であり、水冷円盤の回転数や表面の密着性などによって急冷組織を制御できる。   As a method for producing a powder having a non-parallel phase by rapid cooling directly from the molten metal, a method in which the molten metal is sprayed with a high-pressure gas or the like and further brought into contact with a cooling medium such as a rotated water-cooled disk is preferably used. In the present invention, this is called a two-stage quenching method (hereinafter abbreviated as two-stage quenching). In the two-stage rapid cooling, the process of spraying the molten metal with high-pressure gas and the process of rapidly cooling the molten metal particles in close contact with the water-cooled disk are performed. The pre-process is also a process of cooling while dividing the molten metal, and the particle size distribution of the powder to be produced can be controlled by changing the pressure of the high-pressure gas and the setting of the spray port for ejecting the gas. The post-process is a process of rapidly cooling the molten metal particles divided in the pre-process, and the rapid cooling structure can be controlled by the number of rotations of the water-cooled disk and surface adhesion.

高圧ガスは、不活性ガス(例えば窒素やアルゴン、ヘリウム)であればどのようなものでも用いることが可能である。また、ガスの温度は規定しないが、噴霧後、水冷円盤に接触する前に金属溶湯が冷却されてしまうと所望の急冷組織が得られないため、あまり低温でないことが望ましい。後述の本願発明では常温で使用している。   As the high-pressure gas, any inert gas (for example, nitrogen, argon, helium) can be used. Moreover, although the temperature of gas is not prescribed | regulated, since a desired rapid cooling structure | tissue will not be obtained if the molten metal is cooled before spraying and contacting a water-cooled disk, it is desirable that it is not too low temperature. In the present invention described later, it is used at room temperature.

水冷円盤の形状は、金属溶湯を噴霧し吹き付ける面が、噴霧方向に対して垂直方向であるお盆状でも良いし、噴霧方向と角度を持たせた円錐形でも良い。お盆状の場合には、ディスク状の薄い粉末ができ、円錐形の場合には、楕円形で厚さの薄い粉末ができる。このように水冷円盤の形状を変更することによって、粉末の形状を制御することも可能である。   The shape of the water-cooled disk may be a tray shape in which the surface on which the molten metal is sprayed and sprayed is perpendicular to the spraying direction, or a conical shape having an angle with the spraying direction. In the case of a tray, a thin disc-shaped powder is formed. In the case of a cone, a thin powder having an elliptical shape is formed. In this way, the shape of the powder can be controlled by changing the shape of the water-cooled disk.

二段急冷によって作製された粉末の厚みは1〜10μm程度で、単ロール法で作製されるアモルファスリボンよりも厚さが半分以下であるため、二段急冷は単ロール法よりも効率の良い急冷が可能であり、均一な非平行組織が得られる。   The thickness of the powder produced by the two-stage quenching is about 1 to 10 μm, and the thickness is less than half that of the amorphous ribbon produced by the single-roll method. Therefore, the two-stage quenching is more efficient than the single-roll method. And a uniform non-parallel texture is obtained.

軟磁性粉末を得る方法としては、単ロール法、双ロール法あるいはストリップキャスティング法によって製造された急冷薄帯あるいはフレークを粉砕して得ることも出来る。薄帯の粉砕方法としては、ディスクミルやボールミルまたはピンミルなどの一般的な粉砕設備を用いることが出来る。粉砕の工程は、後述する熱処理をする前でも後でも良い。また、粉砕工程によって粉末に導入される粉砕歪みを除去するための熱処理を別途行っても良い。   As a method for obtaining the soft magnetic powder, it is also possible to obtain by pulverizing a quenched ribbon or flakes produced by a single roll method, a twin roll method or a strip casting method. As a method for pulverizing the ribbon, general pulverization equipment such as a disk mill, a ball mill, or a pin mill can be used. The pulverization step may be performed before or after the heat treatment described later. Moreover, you may perform separately the heat processing for removing the grinding | pulverization distortion introduce | transduced into a powder by a grinding | pulverization process.

本発明の軟磁性粉末は、合金粉末表面を被覆処理する化成処理により表面に絶縁層を形成する、アノード酸化処理により表面に酸化物絶縁層を形成し粉末間絶縁を行う等の処理を行うとより好ましい結果が得られる。絶縁層は有機または無機バインダーの様なものでも良いし、酸素雰囲気、窒素雰囲気中にて熱処理することで粉末表面を酸化または窒化して形成しても良い。これは特に粉末間を渡る高周波における渦電流の影響を低減し、高周波における磁心損失を改善する効果があるためである。   When the soft magnetic powder of the present invention is subjected to a treatment such as forming an insulating layer on the surface by a chemical conversion treatment for coating the surface of the alloy powder, forming an oxide insulating layer on the surface by an anodic oxidation treatment, and insulating between powders. More favorable results are obtained. The insulating layer may be an organic or inorganic binder, or may be formed by oxidizing or nitriding the powder surface by heat treatment in an oxygen atmosphere or nitrogen atmosphere. This is particularly because the effect of eddy currents at high frequencies across the powder is reduced and magnetic core loss at high frequencies is improved.

本発明の軟磁性微結晶粉末を圧粉磁心に成形する際には、冷間成形、温間成形、静水圧成形、プラズマ焼結成形、磁場中成形などいずれで行って良い。特に、プラズマ焼結成形を行うと占積率を高める効果と損失を低減する効果が顕著に得られる。また、磁場中成形を行うと扁平粉の配列を揃えることも可能となり、高透磁率、損失低減の効果が得られる。   When the soft magnetic microcrystalline powder of the present invention is formed into a powder magnetic core, it may be any of cold forming, warm forming, isostatic pressing, plasma sintering forming, magnetic field forming, and the like. In particular, when plasma sintering is performed, the effect of increasing the space factor and the effect of reducing the loss are remarkably obtained. In addition, when molding is performed in a magnetic field, it is possible to align the flat powder arrangement, and the effect of high magnetic permeability and loss reduction can be obtained.

本発明の軟磁性粉末は、300℃以上の平均昇温速度が100℃/min以上となるような熱処理を施すことで優れた軟磁気特性を実現する。この熱処理を施す場合は、前記の急冷により得た非晶質相中に平均粒径30nm以下の結晶粒が非晶質相中に体積分率で0%超30%未満で分散した組織のFe基軟磁性粉末を成形して、圧粉体としてから行うことが好ましい。   The soft magnetic powder of the present invention realizes excellent soft magnetic properties by performing a heat treatment such that an average temperature rising rate of 300 ° C. or higher is 100 ° C./min or higher. In the case of performing this heat treatment, Fe having a structure in which crystal grains having an average particle size of 30 nm or less are dispersed in the amorphous phase with a volume fraction of more than 0% and less than 30% in the amorphous phase obtained by the rapid cooling described above. It is preferable that the base soft magnetic powder is formed into a green compact.

前記の熱処理を圧粉体としてから施す場合では、熱処理によって、微結晶組織が形成されるのと同時に、成形時に粉末に導入される成形歪みが除去される。アモルファス相から微結晶が生成するには、組織構造の変化が起こり、その構造変化が成形歪みの除去に効果的な役割を果たしている。圧粉体に成形歪みが残留すると、残留度合いに応じて保磁力が増大し、損失が増大する。成形歪みの除去は圧粉磁心製造方法において、最も重要な課題である。   In the case where the heat treatment is performed as a green compact, a microcrystalline structure is formed by the heat treatment, and at the same time, molding distortion introduced into the powder during molding is removed. In order to produce microcrystals from the amorphous phase, the structure structure changes, and the structure change plays an effective role in removing molding strain. When molding distortion remains in the green compact, the coercive force increases according to the degree of residual, and the loss increases. The removal of molding distortion is the most important issue in the method of manufacturing a dust core.

300℃以上の平均昇温速度が100℃/min以上となるような熱処理においては、昇温速度が比較的速いため、熱処理炉の構造やプログラム設定によっては、炉の設定温度と試料の実温との間に差が生じることがある。本発明の圧粉磁心においては、粉末の結晶化温度を炉の設定温度とし、試料の実温が「結晶化温度−30℃≦T≦結晶化温度+50℃」とすることが好ましい。さらに好ましくは、試料の実温が「結晶化温度−10℃≦T≦結晶化温度+30℃」がよい。   In the heat treatment in which the average temperature rise rate of 300 ° C. or higher is 100 ° C./min or higher, the temperature rise rate is relatively fast. Therefore, depending on the structure of the heat treatment furnace and the program setting, the furnace set temperature and the actual sample temperature There may be a difference between In the powder magnetic core of the present invention, it is preferable that the crystallization temperature of the powder is a set temperature of the furnace, and the actual temperature of the sample is “crystallization temperature−30 ° C. ≦ T ≦ crystallization temperature + 50 ° C.”. More preferably, the actual temperature of the sample is “crystallization temperature−10 ° C. ≦ T ≦ crystallization temperature + 30 ° C.”.

本発明の軟磁性粉末であって結晶化温度が460℃の粉末を成形した圧粉体の熱処理においては、図3に示すように、試料の最高到達温度を430〜510℃とすることで0.1T、10kHzの条件で10W/kg以下の低損失を実現できる。さらには、試料の最高到達温度を450〜490℃とすることで、5W/kg以下の低損失を実現できる。   In the heat treatment of the green compact obtained by molding the soft magnetic powder of the present invention and having a crystallization temperature of 460 ° C., as shown in FIG. .Low loss of 10 W / kg or less can be realized under the conditions of 1T and 10 kHz. Furthermore, the low loss of 5 W / kg or less is realizable by making the maximum temperature of a sample into 450-490 degreeC.

試料の実温が「結晶化温度−30℃」よりも低い場合は、微結晶化が促進されず、本発明の軟磁性粉末組織が得られないばかりでなく、成形歪みも完全に除去できないため、磁心損失が十分に低減できない。試料の実温が「結晶化温度+50℃」よりも高い場合は、結晶が粗大化してしまい本発明の軟磁性粉末組織が得られないため、磁心損失が十分に低減できない。   When the actual temperature of the sample is lower than “crystallization temperature −30 ° C.”, microcrystallization is not promoted, and not only the soft magnetic powder structure of the present invention is obtained, but also the molding strain cannot be completely removed. The core loss cannot be reduced sufficiently. When the actual temperature of the sample is higher than “crystallization temperature + 50 ° C.”, the crystal becomes coarse and the soft magnetic powder structure of the present invention cannot be obtained, so that the magnetic core loss cannot be sufficiently reduced.

前記の熱処理は、1サイクルでも優れた軟磁気特性を有する圧粉磁心を製造できるが、数サイクル繰り返すことで、安定した製造が可能となる。前記の熱処理は昇温速度が比較的高いため、試料の大きさや形状によっては、例えば試料の表面近傍と内部など、部分により温度差が生じる可能性がある。繰り返し熱処理を行うことで粉体全体に均一な熱が与えられて、磁心損失が低い本発明の軟磁性粉末が得られる。   The heat treatment can produce a dust core having excellent soft magnetic characteristics even in one cycle, but can be stably produced by repeating several cycles. Since the above heat treatment has a relatively high rate of temperature increase, depending on the size and shape of the sample, there may be a temperature difference depending on the portion such as the vicinity of the surface of the sample and the inside of the sample. By repeatedly performing the heat treatment, uniform heat is applied to the entire powder, and the soft magnetic powder of the present invention with low magnetic core loss is obtained.

図4に示す試料にように、1サイクルで磁心損失が28W/kgであったものが、2サイクル以上熱処理を繰り返すことによって、5W/kg以下まで低減できた。これは、1サイクル目では試料全体にわたって均一な微結晶化が行えず、部分的にアモルファス相が残留したためである。2サイクル以上の熱処理を繰り返すことによって、微結晶化が促進されて、磁心損失が低減する。   As in the sample shown in FIG. 4, the magnetic core loss of 28 W / kg in one cycle could be reduced to 5 W / kg or less by repeating the heat treatment for two cycles or more. This is because in the first cycle, uniform microcrystallization cannot be performed over the entire sample, and an amorphous phase partially remains. By repeating the heat treatment for two cycles or more, microcrystallization is promoted and the magnetic core loss is reduced.

本発明の熱処理方法によると、図4に示すように、3〜4サイクル目の磁心損失はほとんど変化しておらず、本発明の範囲においては、サイクル数を増やすことによって、微結晶化した部分の組織が粗大化することがなく、磁心損失が劣化することはない。量産現場において、試料を大量に一度に熱処理する際は、炉内における温度分布などの影響や、試料間の重量の差違などの影響から試料全てに均一な熱処理を施すことは難しいが、本発明の熱処理方法によれば、熱処理サイクルを必要数回繰り返すことにより、安定して優れた軟磁気特性を有する圧粉磁心を製造できる。   According to the heat treatment method of the present invention, as shown in FIG. 4, the core loss at the 3rd to 4th cycles hardly changes, and within the scope of the present invention, the portion crystallized by increasing the number of cycles. The structure of the core does not become coarse, and the core loss does not deteriorate. At the mass production site, when heat-treating a large amount of samples at once, it is difficult to perform uniform heat treatment on all samples due to the effects of temperature distribution in the furnace and the difference in weight between samples. According to this heat treatment method, a dust core having stable and excellent soft magnetic properties can be produced by repeating the heat treatment cycle several times as necessary.

本発明によれば、大電流用の各種リアクトル、アクティブフィルタ用チョ−クコイル、平滑チョークコイル、電磁シールド材料などのノイズ対策部品、モータ、発電機等に用いられる高飽和磁束密度で低保磁力の軟磁性粉末およびそれを用いた高磁束密度で低損失なの圧粉磁心を実現することができるため、その効果は著しいものがある。   According to the present invention, various types of reactors for large currents, choke coils for active filters, smooth choke coils, electromagnetic shielding materials and other noise countermeasure parts, motors, generators, etc., high saturation magnetic flux density and low coercive force. Since the soft magnetic powder and the powder magnetic core with high magnetic flux density and low loss using the same can be realized, the effect is remarkable.

以下本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
単ロール法において、1360℃に加熱した合金溶湯を、周速30m/sで回転する水冷されたCuロールに噴射し、厚さ18〜20μmのFebalCu1.5Si5B13合金薄帯を作製した。合金薄帯を所定の温度にて脆化処理した後に粉砕し、厚さ18〜20μm、粒径300μm以下の扁平粉末を作製した。X線回折および透過電子顕微鏡(TEM)により断面観察の結果、非晶質相中に微細結晶が体積分率で30%未満分散した組織であることが確認した。
作製した粉末にTEOS処理を施すことによって厚さ0.1〜0.2μmのSiO2被膜を粉末表面に均一に形成させ、絶縁被覆軟磁性扁平粉末を得た。さらに潤滑剤であるZn-St粉末を混合し、金型に充填して、10〜20ton/cm2の圧力でプレス成形を行った。
得られた成形体を300℃以上の平均昇温速度が300℃/min以上となるような条件にて、熱処理を行い、ナノ結晶構造を持つ軟磁性粉末からなる圧粉磁心を得た。圧粉成形してから熱処理を施すことは、成形時に粉末に加えられる歪みを完全に除去するのに有効である。表1に0.1T、10kHzにおける磁心損失Pcm、粉末の飽和磁束密度Bs、圧粉磁心の占積率を示す。圧粉磁心の見かけの磁束密度は、粉末の飽和磁束密度×占積率である。本発明の軟磁性粉末を用いて製造された圧粉磁心は、アモルファス圧粉磁心並の磁心損失を有し、かつケイ素鋼粉末圧粉磁心と同様の磁束密度を有するという優れた磁気特性を持つ。
Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
Example 1
In the single roll method, molten alloy heated to 1360 ° C is sprayed onto a water-cooled Cu roll rotating at a peripheral speed of 30 m / s to produce a 18 to 20 μm thick Fe bal Cu 1.5 Si 5 B 13 alloy ribbon. did. The alloy ribbon was embrittled at a predetermined temperature and then pulverized to produce a flat powder having a thickness of 18 to 20 μm and a particle size of 300 μm or less. As a result of cross-sectional observation by X-ray diffraction and transmission electron microscope (TEM), it was confirmed that the structure was a structure in which fine crystals were dispersed in an amorphous phase by a volume fraction of less than 30%.
The prepared powder was subjected to TEOS treatment to uniformly form a SiO2 film having a thickness of 0.1 to 0.2 [mu] m on the powder surface to obtain an insulating coated soft magnetic flat powder. Furthermore, Zn-St powder as a lubricant was mixed, filled in a mold, and press-molded at a pressure of 10 to 20 ton / cm 2 .
The obtained molded body was heat-treated under conditions such that the average temperature rising rate of 300 ° C. or higher was 300 ° C./min or higher to obtain a dust core made of soft magnetic powder having a nanocrystal structure. Applying heat treatment after compacting is effective to completely remove the strain applied to the powder during molding. Table 1 shows the core loss Pcm at 0.1 T and 10 kHz, the saturation magnetic flux density Bs of the powder, and the space factor of the dust core. The apparent magnetic flux density of the powder magnetic core is the saturation magnetic flux density of the powder × the space factor. The dust core produced using the soft magnetic powder of the present invention has excellent magnetic properties such as having a core loss comparable to that of an amorphous dust core and having a magnetic flux density similar to that of a silicon steel powder dust core. .

(実施例2)
二段階急冷製法において、1400℃に加熱した合金溶湯を6.0MPaの窒素ガスにて噴霧し、その直後に周速10m/sで回転する外径380mm、回転軸と45°の傾斜面をもつ円錐形のCu-Cr合金水冷円錐ロータに溶湯を吹き付け、厚さ1〜5μmのFebalCu1.5Si4B14合金扁平粉末を作製した。扁平粉末はアスペクト比が30以上を有し、形状は楕円形である。楕円形状の長径は500μm以上のものも得られるが、成形性を考慮して、長径が300μm以下の粉末のみを採用した。X線回折および透過電子顕微鏡(TEM)により断面観察の結果、非晶質相中に微細結晶が体積分率で30%未満分散した組織であることを確認した。
作製した粉末にTEOS処理を施すことによって厚さ0.1〜0.2μmのSiO2被膜を粉末表面に均一に形成させ、絶縁被覆軟磁性扁平粉末を得た。さらに潤滑剤であるZn-St粉末を混合し、金型に充填して、10〜20ton/cm2の圧力でプレス成形を行った。
得られた成形体を300℃以上の平均昇温速度が100℃/min以上となるような条件にて、熱処理を行い、圧粉磁心を得た。表1に0.1T、10kHzにおける磁心損失Pcm、粉末の飽和磁束密度Bs、圧粉磁心の占積率を示す。
(Example 2)
In a two-stage quenching method, molten alloy heated to 1400 ° C is sprayed with 6.0 MPa of nitrogen gas, and immediately after that, a cone with an outer diameter of 380 mm rotating at a peripheral speed of 10 m / s, a rotating shaft and a 45 ° inclined surface Molten metal was sprayed onto a Cu-Cr alloy water-cooled conical rotor of a shape to produce a flat powder of Fe bal Cu 1.5 Si 4 B 14 alloy having a thickness of 1 to 5 μm. The flat powder has an aspect ratio of 30 or more and has an elliptical shape. Although an ellipse with a major axis of 500 μm or more can be obtained, only powder having a major axis of 300 μm or less was adopted in consideration of moldability. As a result of cross-sectional observation by X-ray diffraction and transmission electron microscope (TEM), it was confirmed that the structure was a structure in which fine crystals were dispersed in an amorphous phase by less than 30% by volume fraction.
The prepared powder was subjected to TEOS treatment to uniformly form a SiO2 film having a thickness of 0.1 to 0.2 [mu] m on the powder surface to obtain an insulating coated soft magnetic flat powder. Furthermore, Zn-St powder as a lubricant was mixed, filled in a mold, and press-molded at a pressure of 10 to 20 ton / cm2.
The obtained molded body was heat-treated under the condition that the average temperature rising rate of 300 ° C. or higher was 100 ° C./min or higher to obtain a dust core. Table 1 shows the core loss Pcm at 0.1 T and 10 kHz, the saturation magnetic flux density Bs of the powder, and the space factor of the dust core.

(実施例3)
単ロール法において、1360℃に加熱した合金溶湯を、周速30m/sで回転する水冷されたCuロールに噴射し、厚さ19〜21μmのFebalCu1.5Si5B13合金薄帯を作製した。合金薄帯を所定の温度にて脆化処理した後に粉砕し、厚さ18〜20μm、粒径300μm以下の扁平粉末を作製した。この合金粉末に熱処理を施した。熱処理のパターンは、300℃以上の平均昇温速度が100℃/min以上とした。熱処理の保持温度は450℃で10分間とし、その後、急冷して本発明の軟磁性粉末を得た。
Example 3
In the single roll method, molten alloy heated to 1360 ° C is sprayed onto a water-cooled Cu roll rotating at a peripheral speed of 30 m / s to produce a 19 to 21 µm thick Fe bal Cu 1.5 Si 5 B 13 alloy ribbon did. The alloy ribbon was embrittled at a predetermined temperature and then pulverized to produce a flat powder having a thickness of 18 to 20 μm and a particle size of 300 μm or less. This alloy powder was heat-treated. The heat treatment pattern was such that the average heating rate of 300 ° C. or higher was 100 ° C./min or higher. The holding temperature for the heat treatment was 450 ° C. for 10 minutes, and then rapidly cooled to obtain the soft magnetic powder of the present invention.

(実施例4)
実施例1で製造した本発明の軟磁性粉末に、TEOS処理を施すことによってSiO2の被膜を粉末表面に形成させ、絶縁被覆軟磁性扁平粉末を得た。この粉末に潤滑剤であるZn-St粉末を混合し、金型に充填して、20ton/cm2の圧力でプレス成形を行った。その後、400℃で2時間の歪み焼鈍熱処理を施し、圧粉磁心を得た。表1に0.1T、10kHzにおける磁心損失Pcm、粉末の飽和磁束密度Bs、圧粉磁心の占積率を示す。
Example 4
The soft magnetic powder of the present invention produced in Example 1 was subjected to TEOS treatment to form a SiO 2 coating on the surface of the powder to obtain an insulating coated soft magnetic flat powder. This powder was mixed with Zn-St powder as a lubricant, filled in a mold, and press-molded at a pressure of 20 ton / cm 2 . Thereafter, strain annealing heat treatment was performed at 400 ° C. for 2 hours to obtain a dust core. Table 1 shows the core loss Pcm at 0.1 T and 10 kHz, the saturation magnetic flux density Bs of the powder, and the space factor of the dust core.

(実施例5)
二段階急冷製法において、1400℃に加熱した合金溶湯を6.0MPaの窒素ガスにて噴霧し、その直後に周速10m/sで回転する外径380mm、回転軸と45°の傾斜面をもつ円錐形のCu-Cr合金水冷円錐ロータに溶湯を吹き付け、厚さ1〜5μmのFebalCu1.5Si4B14合金扁平粉末を作製した。扁平粉末はアスペクト比が30以上を有し、形状は楕円形である。楕円形状の長径は500μm以上のものも得られるが、成形性を考慮して、長径が300μm以下の粉末のみを採用した。X線回折および透過電子顕微鏡(TEM)により断面観察の結果、非晶質相中に微細結晶が体積分率で30%未満分散した組織であることが確認された。
この合金粉末に熱処理を施した。熱処理のパターンは、300℃以上の平均昇温速度が100℃/min以上とした。熱処理の保持温度は450℃で10分間とし、その後、急冷して本発明の軟磁性粉末を得た。
図1は、本発明の軟磁性粉末の透過型電子顕微鏡による粉末表面近傍の組織写真である。最表面から順に、ナノ結晶粒の表面層A、アモルファス層B、母相Dの構造から成る。母相は平均粒径が約25nmの微細結晶粒が80%以上で存在していた。
この軟磁性粉末に、TEOS処理を施すことによってSiO2の被膜を粉末表面に形成させ、絶縁被覆軟磁性扁平粉末を得た。この粉末に潤滑剤であるZn-St粉末を混合し、金型に充填して、10〜20ton/cm2の圧力でプレス成形を行った。その後、400℃で2時間の歪み焼鈍熱処理を施し、圧粉磁心を得た。表1に0.1T、10kHzにおける磁心損失Pcm、粉末の飽和磁束密度Bs、圧粉磁心の占積率を示す。表1中の実施例1−3と比較すると磁心損失が若干高い。これは粉末の時点でナノ結晶化の熱処理を行っているため、圧粉後の焼鈍熱処理でナノ結晶が粗大化したためと思われる。
(Example 5)
In a two-stage quenching method, molten alloy heated to 1400 ° C is sprayed with 6.0 MPa of nitrogen gas, and immediately after that, a cone with an outer diameter of 380 mm rotating at a peripheral speed of 10 m / s, a rotating shaft and a 45 ° inclined surface Molten metal was sprayed onto a Cu-Cr alloy water-cooled conical rotor of a shape to produce a flat powder of Fe bal Cu 1.5 Si 4 B 14 alloy having a thickness of 1 to 5 μm. The flat powder has an aspect ratio of 30 or more and has an elliptical shape. Although an ellipse with a major axis of 500 μm or more can be obtained, only powder having a major axis of 300 μm or less was adopted in consideration of moldability. As a result of cross-sectional observation by X-ray diffraction and transmission electron microscope (TEM), it was confirmed that the structure was a structure in which fine crystals were dispersed in an amorphous phase in a volume fraction of less than 30%.
This alloy powder was heat-treated. The heat treatment pattern was such that the average heating rate of 300 ° C. or higher was 100 ° C./min or higher. The holding temperature for the heat treatment was 450 ° C. for 10 minutes, and then rapidly cooled to obtain the soft magnetic powder of the present invention.
FIG. 1 is a photograph of the structure of the soft magnetic powder of the present invention in the vicinity of the powder surface by a transmission electron microscope. It consists of the structure of the surface layer A of nanocrystal grains, the amorphous layer B, and the parent phase D in order from the outermost surface. In the mother phase, fine crystal grains having an average grain size of about 25 nm were present at 80% or more.
The soft magnetic powder was subjected to TEOS treatment to form a SiO2 coating on the surface of the powder to obtain an insulating coated soft magnetic flat powder. This powder was mixed with Zn-St powder as a lubricant, filled in a mold, and press-molded at a pressure of 10 to 20 ton / cm2. Thereafter, strain annealing heat treatment was performed at 400 ° C. for 2 hours to obtain a dust core. Table 1 shows the core loss Pcm at 0.1 T and 10 kHz, the saturation magnetic flux density Bs of the powder, and the space factor of the dust core. Compared with Example 1-3 in Table 1, the magnetic core loss is slightly higher. This is presumably because the nanocrystals were coarsened by the annealing heat treatment after compaction because the nanocrystallization heat treatment was performed at the time of the powder.

(実施例6)
表2に示す合金組成の原料を用いた以外は実施例1と同様にして圧粉磁心を製造した。表2に0.1T、10kHzにおける磁心損失Pcm、粉末の飽和磁束密度Bs、圧粉磁心の占積率を示す。
(Example 6)
A dust core was produced in the same manner as in Example 1 except that the raw materials having the alloy compositions shown in Table 2 were used. Table 2 shows the magnetic core loss Pcm, the powder saturation magnetic flux density Bs, and the space factor of the dust core at 0.1 T and 10 kHz.

(実施例7)
単ロール法において、1360℃に加熱した合金溶湯を、周速30m/sで回転する水冷されたCuロールに噴射し、厚さ18〜20μmのFebalCu1.5Si5B13合金薄帯を作製した。合金薄帯を所定の温度にて脆化処理した後に粉砕し、厚さ18〜20μm、粒径300μm以下の扁平粉末を作製した。
作製した粉末にTEOS処理を施すことによって厚さ0.1〜0.2μmのSiO2被膜を粉末表面に均一に形成させ、絶縁被覆軟磁性扁平粉末を得た。さらに潤滑剤であるZn-St粉末を混合し、金型に充填して、10〜20ton/cm2の圧力でプレス成形を行った。
得られた成形体に対して、300℃以上の平均昇温速度を300℃/minで昇温し、430℃まで加熱した後、ただちに300℃以下まで急冷する熱処理を1〜4回繰り返して行った。図4に示すように熱処理を繰り返すことによって、磁心損失が低減した。
(Example 7)
In the single roll method, molten alloy heated to 1360 ° C is sprayed onto a water-cooled Cu roll rotating at a peripheral speed of 30 m / s to produce a 18 to 20 μm thick Fe bal Cu 1.5 Si 5 B 13 alloy ribbon. did. The alloy ribbon was embrittled at a predetermined temperature and then pulverized to produce a flat powder having a thickness of 18 to 20 μm and a particle size of 300 μm or less.
The prepared powder was subjected to TEOS treatment to uniformly form a SiO2 film having a thickness of 0.1 to 0.2 [mu] m on the powder surface to obtain an insulating coated soft magnetic flat powder. Furthermore, Zn-St powder as a lubricant was mixed, filled in a mold, and press-molded at a pressure of 10 to 20 ton / cm2.
The obtained molded body was heated at an average temperature increase rate of 300 ° C. or higher at 300 ° C./min, heated to 430 ° C., and then immediately cooled to 300 ° C. or lower repeatedly 1 to 4 times. It was. As shown in FIG. 4, the core loss was reduced by repeating the heat treatment.

(実施例8)
実施例7と同様に作製した成形体に対して、300℃以上の平均昇温速度を300℃/minで昇温、最高到達温度400〜583℃に達した後、ただちに300℃以下まで急冷する熱処理行った。図3に最高到達温度によって磁心損失が変化するが、430〜510℃で磁心損失が低減した。
(Example 8)
The molded body produced in the same manner as in Example 7 was heated at an average temperature rising rate of 300 ° C. or higher at 300 ° C./min, and after reaching the maximum temperature of 400 to 583 ° C., immediately cooled rapidly to 300 ° C. or lower. A heat treatment was performed. In FIG. 3, the core loss varies depending on the maximum temperature reached, but the core loss decreased at 430 to 510 ° C.

この高飽和磁束密度低損失の軟磁性粉末から圧粉磁性部品を構成することにより、アノードリアクトルなどの大電流用の各種リアクトル、アクティブフィルタ用チョ−クコイル、平滑チョークコイル、磁気シールド、電磁シールド材料などのノイズ対策部品、モータ、発電機等に好適な高性能あるいは小型の磁性部品を実現することができる。   By composing compact magnetic parts from this high saturation magnetic flux density and low loss soft magnetic powder, various reactors for large currents such as anode reactors, choke coils for active filters, smooth choke coils, magnetic shields, electromagnetic shield materials High performance or small magnetic parts suitable for noise countermeasure parts such as motors, generators and the like can be realized.

軟磁性粉末の表面近傍に見られる層状構造を示す組織写真。The structure photograph which shows the layered structure seen near the surface of soft-magnetic powder. 本発明の軟磁性薄帯の組織の状態を示す模式図。The schematic diagram which shows the state of the structure | tissue of the soft-magnetic ribbon of this invention. 熱処理の保持温度と磁心損失との関係を示す図。The figure which shows the relationship between the holding temperature of heat processing, and a magnetic core loss. 熱処理のサイクル数と磁心損失との関係を示す図。The figure which shows the relationship between the cycle number of heat processing, and a magnetic core loss. 組織写真Organization picture

符号の説明Explanation of symbols

1:軟磁性粉末、2:粉末の表面   1: soft magnetic powder, 2: powder surface

Claims (5)

平均粒径が300μm以下で、組成式:Fe100-x-yAX(但し、AはCu,Auから選ばれた少なくとも一種以上の元素、XはB,Si,S,C,P,Al,Ge,Ga,Beから選ばれた少なくとも一種以上の元素)で表され、原子%で、0<x≦5、10≦y≦24により表される軟磁性粉末を用いた圧粉磁心であって、
前記軟磁性粉末が、結晶粒径が2nm以上60nm以下の結晶粒が非晶質中に体積分率で30%以上分散した母相組織を有し、最表面に結晶組織から成る結晶層が形成され、かつ前記結晶層と前記母相組織の間にアモルファス層を有し、
前記軟磁性粉末の占積率が70.0%以上であることを特徴とする圧粉磁心。
The average particle size is 300 μm or less, and the composition formula is Fe 100-xy A x X y (where A is at least one element selected from Cu and Au, X is B, Si, S, C, P) , Al, Ge, Ga, and Be), and a powder magnetic core using soft magnetic powder represented by 0 <x ≦ 5 and 10 ≦ y ≦ 24 in atomic% Because
The soft magnetic powder has a matrix structure in which crystal grains having a crystal grain size of 2 nm or more and 60 nm or less are dispersed in an amorphous material at a volume fraction of 30% or more, and a crystal layer composed of the crystal structure is formed on the outermost surface. And having an amorphous layer between the crystal layer and the matrix structure,
A dust core, wherein the soft magnetic powder has a space factor of 70.0% or more.
0.1T、10kHzにおける磁心損失が5.0W/kg以下であることを特徴とする請求項1に記載の圧粉磁心。   2. The dust core according to claim 1, wherein the core loss at 0.1 T and 10 kHz is 5.0 W / kg or less. 前記軟磁性粉末は、前記アモルファス層と母相組織の間に、前記母相組織の平均粒径よりも粒径が大きい結晶から成る粗大結晶粒層を有することを特徴とする請求項1又は請求項2に記載の圧粉磁心。   The said soft magnetic powder has a coarse crystal grain layer which consists of a crystal | crystallization with a larger particle size than the average particle diameter of the said mother phase structure | tissue between the said amorphous layer and a mother phase structure | tissue. Item 3. The dust core according to Item 2. 前記軟磁性粉末は、金属溶湯を噴霧し、その後直ちに冷却媒体に接触させて急冷する二段階急冷製法を用いて製造されることを特徴とする請求項1から請求項3のいずれかに記載の圧粉磁心。  4. The soft magnetic powder according to claim 1, wherein the soft magnetic powder is manufactured using a two-stage quenching method in which a molten metal is sprayed and then immediately brought into contact with a cooling medium and rapidly cooled. Powder magnetic core. 請求項1から請求項4のいずれかに記載の圧粉磁心を用いたことを特徴とする磁性部品。  A magnetic component using the dust core according to any one of claims 1 to 4.
JP2008082670A 2007-04-25 2008-03-27 Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component Active JP5305126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008082670A JP5305126B2 (en) 2007-04-25 2008-03-27 Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007115560 2007-04-25
JP2007115560 2007-04-25
JP2008082670A JP5305126B2 (en) 2007-04-25 2008-03-27 Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component

Publications (2)

Publication Number Publication Date
JP2008294411A JP2008294411A (en) 2008-12-04
JP5305126B2 true JP5305126B2 (en) 2013-10-02

Family

ID=40168779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008082670A Active JP5305126B2 (en) 2007-04-25 2008-03-27 Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component

Country Status (1)

Country Link
JP (1) JP5305126B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5232708B2 (en) * 2009-04-14 2013-07-10 株式会社タムラ製作所 Powder magnetic core and manufacturing method thereof
JP5232717B2 (en) * 2009-04-27 2013-07-10 株式会社タムラ製作所 Powder magnetic core and manufacturing method thereof
CA2769121C (en) 2009-08-03 2016-07-26 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Highly efficient cmos technology compatible silicon photoelectric multiplier
JP5370688B2 (en) 2010-03-18 2013-12-18 Tdk株式会社 Powder magnetic core and manufacturing method thereof
EP2806433B1 (en) * 2012-01-18 2018-01-31 Hitachi Metals, Ltd. Metal powder core, coil component, and fabrication method for metal powder core
JP6088192B2 (en) * 2012-10-05 2017-03-01 Necトーキン株式会社 Manufacturing method of dust core
JP6530164B2 (en) * 2014-03-04 2019-06-12 株式会社トーキン Nanocrystalline soft magnetic alloy powder and dust core using the same
JP2016163008A (en) * 2015-03-05 2016-09-05 Necトーキン株式会社 Powder magnetic core, method of manufacturing powder magnetic core, and heat generation suppression method
CN107949889B (en) 2015-07-31 2020-04-24 株式会社村田制作所 Soft magnetic material and method for producing same
JP2020015936A (en) * 2018-07-24 2020-01-30 山陽特殊製鋼株式会社 Powder for magnetic member
JP7309641B2 (en) * 2020-03-18 2023-07-18 株式会社東芝 Powder material and rotary electric machine
CN116904831B (en) * 2023-09-12 2023-12-19 北京科技大学 Preparation method and material of Fe-Si-B based bulk amorphous alloy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2713363B2 (en) * 1987-06-04 1998-02-16 日立金属 株式会社 Fe-based soft magnetic alloy compact and manufacturing method thereof
JPH082485B2 (en) * 1988-03-14 1996-01-17 健 増本 Method for producing alloy using supercooled liquid
JPH03268306A (en) * 1990-03-16 1991-11-29 Sumitomo Metal Ind Ltd Soft magnetic alloy powder
JPH06107978A (en) * 1992-09-30 1994-04-19 Teikoku Piston Ring Co Ltd Pigment for decorative paint and decorative paint composition
JP4257629B2 (en) * 2000-04-14 2009-04-22 日立金属株式会社 Fe-based amorphous alloy ribbon and magnetic component for nanocrystalline soft magnetic alloy
JP4342956B2 (en) * 2004-01-06 2009-10-14 アルプス電気株式会社 Method for producing soft magnetic alloy powder, soft magnetic alloy powder, soft magnetic alloy powder compact and radio wave absorber
JP5288226B2 (en) * 2005-09-16 2013-09-11 日立金属株式会社 Magnetic alloys, amorphous alloy ribbons, and magnetic parts

Also Published As

Publication number Publication date
JP2008294411A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP5305126B2 (en) Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP6160760B1 (en) Soft magnetic alloys and magnetic parts
JP5455040B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP6460276B1 (en) Soft magnetic alloys and magnetic parts
JP6088192B2 (en) Manufacturing method of dust core
JP6226093B1 (en) Soft magnetic alloys and magnetic parts
JP2713363B2 (en) Fe-based soft magnetic alloy compact and manufacturing method thereof
JP6669304B2 (en) Crystalline Fe-based alloy powder and method for producing the same
JP6245391B1 (en) Soft magnetic alloys and magnetic parts
JP6865860B2 (en) Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic parts, and powder core
JPH03219009A (en) Production of fe-base soft-magnetic alloy
JP6256647B1 (en) Soft magnetic alloys and magnetic parts
JP2009174034A (en) Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same
TW201817896A (en) Soft magnetic alloy and magnetic device
JP6451878B1 (en) Soft magnetic alloys and magnetic parts
JP6554278B2 (en) Soft magnetic alloys and magnetic parts
JP6245390B1 (en) Soft magnetic alloys and magnetic parts
JP2014075528A (en) Soft magnetic alloy powder, powder-compact magnetic core arranged by use thereof, and manufacturing method thereof
JP2008231534A (en) Soft magnetic thin band, magnetic core, and magnetic component
JPH0851010A (en) Green compact of soft magnetic alloy, production method thereof and coating powder therefor
JP6338001B1 (en) Soft magnetic alloys and magnetic parts
JP6436206B1 (en) Soft magnetic alloys and magnetic parts
JP2019094552A (en) Manufacturing method of soft magnetic powder magnetic core, and soft magnetic powder magnetic core
JP6337994B1 (en) Soft magnetic alloys and magnetic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350