JP6088192B2 - Manufacturing method of dust core - Google Patents

Manufacturing method of dust core Download PDF

Info

Publication number
JP6088192B2
JP6088192B2 JP2012223227A JP2012223227A JP6088192B2 JP 6088192 B2 JP6088192 B2 JP 6088192B2 JP 2012223227 A JP2012223227 A JP 2012223227A JP 2012223227 A JP2012223227 A JP 2012223227A JP 6088192 B2 JP6088192 B2 JP 6088192B2
Authority
JP
Japan
Prior art keywords
soft magnetic
alloy powder
magnetic alloy
powder
dust core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012223227A
Other languages
Japanese (ja)
Other versions
JP2014075529A (en
Inventor
美帆 千葉
美帆 千葉
浦田 顕理
顕理 浦田
芳 佐竹
芳 佐竹
裕之 松元
裕之 松元
吉田 栄吉
栄吉 吉田
彰宏 牧野
彰宏 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tokin Corp
Original Assignee
Tohoku University NUC
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, NEC Tokin Corp filed Critical Tohoku University NUC
Priority to JP2012223227A priority Critical patent/JP6088192B2/en
Publication of JP2014075529A publication Critical patent/JP2014075529A/en
Application granted granted Critical
Publication of JP6088192B2 publication Critical patent/JP6088192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、軟磁性合金粉末並びにそれを用いた圧粉磁芯及びその製造方法に関する。   The present invention relates to a soft magnetic alloy powder, a dust core using the same, and a method for producing the same.

近年の電気機器や電子機器の小型、軽量、高速化への対応はめざましく、それに伴い電
気機器や電子機器に用いられる磁性材料には、より高い飽和磁束密度と、より高い透磁率
が求められている。そこで、高飽和磁束密度および高透磁率を有する軟磁性合金粉末や、
それを用いた圧粉磁心等を得るために、多様な技術が知られている。
In recent years, electrical devices and electronic devices have been dramatically reduced in size, weight, and speed. Accordingly, magnetic materials used in electrical devices and electronic devices are required to have higher saturation magnetic flux density and higher magnetic permeability. Yes. Therefore, soft magnetic alloy powder having high saturation magnetic flux density and high permeability,
Various techniques are known for obtaining a dust core using the same.

このような技術のうちのひとつとして、特許文献1には、軟磁性粉末に熱処理を施すことによって粉末の表面近傍に非晶質相からなる層を形成し、当該粉末をプレス形成することにより、圧粉磁芯を得る技術が開示されている。   As one of such techniques, Patent Document 1 discloses that a layer made of an amorphous phase is formed in the vicinity of the surface of the powder by heat-treating the soft magnetic powder, and the powder is press-formed, A technique for obtaining a dust core is disclosed.

特開2008−294411号公報JP 2008-294411 A

しかしながら、軟磁性粉末に対して熱処理を施す際には、相変態に伴うエネルギー放出(発熱)が急激に起こり、軟磁性合金粉末の温度が急上昇して結晶粒の粗大化や不純物の生成が引き起こされ、軟磁気特性が劣化することがあり、上記特許文献1に開示されている技術においてはかかる問題に対して何ら考慮がなされていない。また、熱処理に伴う結晶粒の粗大化や不純物の生成を抑制しながらも、十分なα−Feを析出させるためには複雑な熱処理パターンが必要となる。   However, when heat treatment is performed on the soft magnetic powder, energy release (heat generation) accompanying the phase transformation occurs rapidly, and the temperature of the soft magnetic alloy powder rises rapidly, causing coarsening of crystal grains and generation of impurities. As a result, the soft magnetic characteristics may be deteriorated, and the technique disclosed in Patent Document 1 does not take into consideration such a problem. In addition, a complicated heat treatment pattern is required to precipitate sufficient α-Fe while suppressing the coarsening of crystal grains and the generation of impurities due to the heat treatment.

本発明は、熱処理工程における試料温度の上昇を抑制し且つ複雑な熱処理パターンを行うことなく軟磁気特性を向上させた軟磁性合金粉末を提供し、併せて、当該軟磁性合金粉末を用いた圧粉磁芯及び当該圧粉磁芯の製造方法を提供することを目的とする。   The present invention provides a soft magnetic alloy powder that suppresses an increase in the sample temperature in the heat treatment step and has improved soft magnetic properties without performing a complicated heat treatment pattern. In addition, a pressure using the soft magnetic alloy powder is provided. It aims at providing the manufacturing method of a powder magnetic core and the said powder magnetic core.

本発明によれば、第1の軟磁性合金粉末として、組成式FeSiCuで表わされ、79≦a≦86at%、5≦b≦13at%、0≦c≦8at%、1≦x≦10at%、0≦y≦5at%、0.4≦z≦1.4at%、及び0.06≦z/x≦1.20を満たす軟磁性合金粉末であって、
当該軟磁性合金粉末は、結晶相を主相とする結晶相部及び非晶質相を主相とする非晶質相部とを有する軟磁性合金粉末粒を有しており、
当該軟磁性合金粉末粒における前記結晶相部の割合は、50重量%未満である、
軟磁性合金粉末が得られる。
According to the present invention, as the first soft magnetic alloy powder represented by a composition formula Fe a B b Si c P x C y Cu z, 79 ≦ a ≦ 86at%, 5 ≦ b ≦ 13at%, 0 ≦ Soft magnetic alloy powder satisfying c ≦ 8 at%, 1 ≦ x ≦ 10 at%, 0 ≦ y ≦ 5 at%, 0.4 ≦ z ≦ 1.4 at%, and 0.06 ≦ z / x ≦ 1.20. And
The soft magnetic alloy powder has soft magnetic alloy powder grains having a crystal phase portion having a crystal phase as a main phase and an amorphous phase portion having an amorphous phase as a main phase,
The proportion of the crystal phase part in the soft magnetic alloy powder grains is less than 50% by weight.
A soft magnetic alloy powder is obtained.

また、本発明によれば、第2の軟磁性合金粉末として、第1の軟磁性合金粉末であって、
前記Feの3at%以下を、Ti、V、Zr、Hf、Nb、Ta、Mo、W、Cr、Co、Ni、Al、Mn、Ag、Au、Zn、S、Ca、Sn、As、Sb、Bi、N、O、Mg、白金族元素、及び希土類元素のうち、1種類以上の元素で置換してなる、
軟磁性合金粉末が得られる。
According to the present invention, the second soft magnetic alloy powder is the first soft magnetic alloy powder,
Fe, 3 at% or less of Ti, V, Zr, Hf, Nb, Ta, Mo, W, Cr, Co, Ni, Al, Mn, Ag, Au, Zn, S, Ca, Sn, As, Sb, Of Bi, N, O, Mg, platinum group elements, and rare earth elements, substituted with one or more elements,
A soft magnetic alloy powder is obtained.

また、本発明によれば、第3の軟磁性合金粉末として、第1又は第2の軟磁性合金粉末であって、
前記軟磁性合金粉末粒の中心部には、前記結晶相部が位置しており、
前記軟磁性合金粉末粒の外周部には、前記非晶質相部が位置している、
軟磁性合金粉末が得られる。
According to the present invention, the third soft magnetic alloy powder is the first or second soft magnetic alloy powder,
In the central part of the soft magnetic alloy powder grains, the crystal phase part is located,
In the outer peripheral portion of the soft magnetic alloy powder particles, the amorphous phase portion is located,
A soft magnetic alloy powder is obtained.

また、本発明によれば、第4の軟磁性合金粉末として、第3の軟磁性合金粉末であって、
前記非晶質相部の前記軟磁性合金粉末粒における径方向の厚さは2μm以上である、
軟磁性合金粉末が得られる。
According to the present invention, the fourth soft magnetic alloy powder is a third soft magnetic alloy powder,
The thickness in the radial direction of the soft magnetic alloy powder grains of the amorphous phase part is 2 μm or more.
A soft magnetic alloy powder is obtained.

また、本発明によれば、第1の圧粉磁芯として、第1乃至第4のいずれかの軟磁性合金粉末と結合剤とを混合した後に加圧成型し、更に熱処理をしてなる圧粉磁芯であって、
当該圧粉磁芯において、前記軟磁性合金粉末粒の前記中心部には粒径60nm未満の結晶粒が分散しており、前記軟磁性合金粉末粒の前記外周部には粒径40nm未満の結晶粒が分散している、
圧粉磁芯が得られる。
Further, according to the present invention, as the first dust core, the first magnetic core powder is mixed with any one of the first to fourth soft magnetic alloy powders and the binder, and then pressure-molded and further subjected to heat treatment. A powder core,
In the dust core, crystal grains having a particle size of less than 60 nm are dispersed in the central portion of the soft magnetic alloy powder particles, and crystals having a particle size of less than 40 nm are dispersed in the outer peripheral portion of the soft magnetic alloy powder particles. The grains are dispersed,
A dust core is obtained.

また、本発明によれば、第2の圧粉磁芯として、第1の圧粉磁芯であって、
前記中心部における結晶粒の割合及び前記外周部における結晶粒の割合は、夫々35vol%以上である、
圧粉磁芯が得られる。
Further, according to the present invention, the second dust core is a first dust core,
The proportion of crystal grains in the central portion and the proportion of crystal grains in the outer peripheral portion are each 35 vol% or more.
A dust core is obtained.

また、本発明によれば、第1乃至第4のいずれかの軟磁性合金粉末と結合剤とを混合した後に加圧成型する工程と、成型された前記軟磁性合金粉末を熱処理する工程とを備える、
圧粉磁芯の製造方法が得られる。
Further, according to the present invention, the step of pressure molding after mixing any one of the first to fourth soft magnetic alloy powders and the binder, and the step of heat-treating the molded soft magnetic alloy powders. Prepare
A method for producing a dust core is obtained.

本発明によれば、熱処理前の軟磁性合金粉末において、中心部に結晶相を有し且つ外周部に非晶質層を有する軟磁性合金粉末を用いたことから、熱処理工程における発熱量を減少させることができる。詳しくは、中心部の結晶相の存在により熱容量に対する発熱量が減少し、熱処理時における試料温度の上昇を抑制することができる。これにより、結晶粒の粗大化や不純物の生成が起こらないことから、圧粉磁芯の磁気的特性を向上させることができる。   According to the present invention, since the soft magnetic alloy powder before the heat treatment uses the soft magnetic alloy powder having the crystal phase in the central portion and the amorphous layer in the outer peripheral portion, the calorific value in the heat treatment step is reduced. Can be made. Specifically, the amount of heat generated with respect to the heat capacity is reduced due to the presence of the crystal phase in the center, and the rise in the sample temperature during heat treatment can be suppressed. Thereby, since the coarsening of a crystal grain and the production | generation of an impurity do not occur, the magnetic characteristic of a dust core can be improved.

また、軟磁性合金粉末の最表面に非晶質相が存在していることにより、充填率を低減させることなく圧粉磁心を作製できる。更に、本発明によれば、複雑な熱処理パターンを施すことなく圧粉磁心を作製することができる。   In addition, since the amorphous phase is present on the outermost surface of the soft magnetic alloy powder, a dust core can be produced without reducing the filling rate. Furthermore, according to the present invention, a dust core can be produced without applying a complicated heat treatment pattern.

本発明の実施の形態による圧粉磁心の製造方法を模式的に示したフロー図である。It is the flowchart which showed typically the manufacturing method of the powder magnetic core by embodiment of this invention. 本発明の非晶質性合金粉末の組織の状態を示す模式図である。It is a schematic diagram which shows the state of the structure | tissue of the amorphous alloy powder of this invention. 非晶質性合金粉末の結晶相の割合確認および圧粉磁心の熱処理条件設定のために使用されるDSC曲線を示す図である。It is a figure which shows the DSC curve used for the confirmation of the ratio of the crystal phase of amorphous alloy powder, and the heat processing condition setting of a powder magnetic core.

本発明の実施の形態による圧粉磁心の製造方法は、図1に示されるように、概略、2つの工程:即ち、軟磁性合金粉末(詳しくは後述する)を作製する粉末作製工程と;当該軟磁性合金粉末を用いて圧粉磁心を作製する磁心作製工程とを備えている。磁心作製工程では、混合粉末にシリコーン系などの耐熱性が高く絶縁性が良好な結合材を混合することにより、造粒粉を得る。次いで、金型を用いて造粒粉を加圧成型して圧粉体を得る。その後、圧粉体を熱処理して、ナノ結晶化と結合材の硬化を同時に行い、圧粉磁心を作製する。   As shown in FIG. 1, the method for manufacturing a powder magnetic core according to an embodiment of the present invention is roughly divided into two steps: a powder production step for producing a soft magnetic alloy powder (described later in detail); And a magnetic core manufacturing step of manufacturing a powder magnetic core using soft magnetic alloy powder. In the magnetic core manufacturing process, a granulated powder is obtained by mixing the mixed powder with a binder such as a silicone-based resin having high heat resistance and good insulation. Next, the granulated powder is pressure-molded using a mold to obtain a green compact. Thereafter, the green compact is heat treated to simultaneously perform nanocrystallization and curing of the binder to produce a dust core.

ここで、粉末作製工程の説明の前に本実施の形態による軟磁性合金粉末の組成について説明する。本実施の形態による軟磁性合金粉末の組成式は、FeSiCuで表わされ、79≦a≦86at%、5≦b≦13at%、0≦c≦8at%、1≦x≦10at%、0≦y≦5at%、0.4≦z≦1.4at%、及び0.06≦z/x≦1.20を満たしている。 Here, the composition of the soft magnetic alloy powder according to the present embodiment will be described before the description of the powder production process. Composition formula of soft magnetic alloy powder according to the present embodiment is represented by Fe a B b Si c P x C y Cu z, 79 ≦ a ≦ 86at%, 5 ≦ b ≦ 13at%, 0 ≦ c ≦ 8at %, 1 ≦ x ≦ 10 at%, 0 ≦ y ≦ 5 at%, 0.4 ≦ z ≦ 1.4 at%, and 0.06 ≦ z / x ≦ 1.20.

上記軟磁性合金粉末において、Feは主元素であり、磁性を担う必須元素である。飽和磁束密度の向上及び原料価格の低減のため、Feの割合が多いことが基本的には好ましい。Feの割合が79at%より少ないと、望ましいBsが得られない。Feの割合が84at%より多いと、液体急冷条件下における非晶質相の形成が困難になる。なお、1.60T以上の飽和磁束密度を有する圧粉磁芯を得るためには、Feの割合は、80at%以上であることが望ましい。   In the soft magnetic alloy powder, Fe is a main element and an essential element that takes on magnetism. In order to improve the saturation magnetic flux density and reduce the raw material price, it is basically preferable that the ratio of Fe is large. When the proportion of Fe is less than 79 at%, desirable Bs cannot be obtained. When the proportion of Fe is more than 84 at%, it becomes difficult to form an amorphous phase under liquid quenching conditions. In order to obtain a dust core having a saturation magnetic flux density of 1.60 T or more, the ratio of Fe is desirably 80 at% or more.

また、上記軟磁性合金粉末において、Bは非晶質相形成を担う必須元素である。Bの割合が3at%より少ないと、液体急冷条件下における非晶質相の形成が困難になる。13at%より多いと、ΔTが減少し、均質なナノ結晶組織を得ることができない。特に、原料を溶湯とする際に融点を低くし量産化を容易にするためには、Bの割合は、10at%以下であることが望ましい。   In the soft magnetic alloy powder, B is an essential element responsible for forming an amorphous phase. When the proportion of B is less than 3 at%, it becomes difficult to form an amorphous phase under liquid quenching conditions. If it exceeds 13 at%, ΔT decreases and a homogeneous nanocrystalline structure cannot be obtained. In particular, the ratio of B is desirably 10 at% or less in order to lower the melting point and facilitate mass production when the raw material is used as a molten metal.

また、上記軟磁性合金粉末において、Siは非晶質相形成を担う元素であり、必ずしも含まれなくても良いが、微細結晶化にあたっては微細結晶の安定化に寄与する。Siの割合が8at%よりも多いと非晶質形成能が低下する。特に、合金溶湯を急冷する際に容易に非晶質の形成が行われることを考慮すると、Siの割合は、5at%以下であることが望ましい。   In the soft magnetic alloy powder, Si is an element responsible for forming an amorphous phase and may not necessarily be contained, but contributes to stabilization of the fine crystal in the fine crystallization. When the proportion of Si is more than 8 at%, the amorphous forming ability is lowered. In particular, it is desirable that the Si ratio be 5 at% or less, considering that the amorphous formation is easily performed when the molten alloy is rapidly cooled.

また、上記軟磁性合金粉末において、Pは非晶質相形成を担う必須元素である。Pの割合が1at%より少ないと、液体急冷条件下における非晶質相の形成が困難になる。Pの割合が10at%より多いと、Bsが低下する。特に、本実施の形態においては、B、Si及びPの組み合わせを用いることで、いずれか一つしか用いない場合と比較して、非晶質相形成能や微細結晶の安定性を高めることができる。   In the soft magnetic alloy powder, P is an essential element responsible for forming an amorphous phase. When the proportion of P is less than 1 at%, it becomes difficult to form an amorphous phase under liquid quenching conditions. When the proportion of P is more than 10 at%, Bs decreases. In particular, in this embodiment, by using a combination of B, Si, and P, it is possible to improve the amorphous phase forming ability and the stability of the fine crystal as compared with the case where only one of them is used. it can.

また、上記軟磁性合金粉末において、Cは非晶質形成を担う元素であり、必ずしも含まれなくても良い。Cは安価であるため、Cの添加により他の半金属量が低減され、総材料コストが低減される。ただし、Cの割合が5at%を超えると、合金組成物が脆化する。特に、原料の溶湯時におけるCの蒸発に起因した組成のばらつきを抑えるためには、Cの割合は3at%以下であることが望ましい。また、本実施の形態においては、B、Si、P、Cの組み合わせを用いることで、いずれか一つしか用いない場合と比較して、非晶質相形成能や微細結晶の安定性を高めることができる。   In the soft magnetic alloy powder, C is an element responsible for amorphous formation, and is not necessarily included. Since C is inexpensive, the addition of C reduces the amount of other metalloids and reduces the total material cost. However, when the proportion of C exceeds 5 at%, the alloy composition becomes brittle. In particular, in order to suppress variation in composition due to evaporation of C when the raw material melts, it is desirable that the C ratio be 3 at% or less. Further, in this embodiment, by using a combination of B, Si, P, and C, the amorphous phase forming ability and the stability of the fine crystal are improved as compared with the case where only one of them is used. be able to.

また、上記軟磁性合金粉末において、Cuは微細結晶化に寄与する必須元素である。Cuの割合が0.4at%より少ないと、ナノ結晶化が困難になる。Cuの割合が1.4at%より多いと、非晶質相が不均質になり、熱処理によって均質なナノ結晶組織が得られないことに加え、材料コストが嵩む。特に、軟磁性合金粉末の酸化及びナノ結晶への粒成長を考慮すると、Cuの割合は、0.5at%以上、1.3at%以下であることが好ましい。   In the soft magnetic alloy powder, Cu is an essential element contributing to fine crystallization. When the ratio of Cu is less than 0.4 at%, nanocrystallization becomes difficult. If the Cu content is higher than 1.4 at%, the amorphous phase becomes inhomogeneous, and a uniform nanocrystal structure cannot be obtained by heat treatment, and the material cost increases. In particular, considering the oxidation of the soft magnetic alloy powder and the grain growth into nanocrystals, the Cu ratio is preferably 0.5 at% or more and 1.3 at% or less.

なお、PとCuとの間には、強い原子間引力がある。従って、上記軟磁性合金粉末が特定の比率のPとCuとを含んでいると、10nm以下のサイズのクラスターが形成され、この微細なクラスターによって微細結晶の形成の際にbccFe結晶は微細構造を有するようになる。詳しくは、Pの割合(x)とCuの割合(z)との特定の比率(z/x)は0.08以上、1.2以下である。特に、軟磁性合金粉末の脆化及び酸化を考慮すると、特定の比率(z/x)は、0.08以上、0.8以下であることが望ましい。   There is a strong interatomic attractive force between P and Cu. Therefore, if the soft magnetic alloy powder contains a specific ratio of P and Cu, a cluster having a size of 10 nm or less is formed, and the bccFe crystal has a fine structure when the fine crystal is formed by the fine cluster. To have. Specifically, the specific ratio (z / x) of the ratio (x) of P and the ratio (z) of Cu is 0.08 or more and 1.2 or less. In particular, in consideration of embrittlement and oxidation of the soft magnetic alloy powder, the specific ratio (z / x) is preferably 0.08 or more and 0.8 or less.

また、上記軟磁性合金粉末において、Feの3at%以下をTi、Zr、Hf、Nb、Ta、Mo、W、Cr、Co、Ni、Al、Mn、Ag、Zn、S、Sn、As、Sb、Bi、Y、N、O、Mg、Ca、V及び希土類元素のうち1種類以上の元素で置換することにより、ことにより良好な磁気特性が得られる。これらの元素は、基本的に不純物元素であり、製造過程において軟磁性合金粉末に含有される可能性がある。不純物元素を多く含有した場合には、磁気特性が劣化すると考えられるが、Fe置換が3at%以下であれば、耐食性の改善や電気抵抗の調整などのため、飽和磁束密度の著しい低下が生じない範囲で置換可能で、良好な磁気特性を維持できる。 In the soft magnetic alloy powder, 3 at% or less of Fe is Ti, Zr, Hf, Nb, Ta, Mo, W, Cr, Co, Ni, Al, Mn, Ag, Zn, S, Sn, As, Sb. By substituting with one or more elements of Bi, Y, N, O, Mg, Ca, V and rare earth elements, good magnetic properties can be obtained. These elements are basically impurity elements and may be contained in the soft magnetic alloy powder in the manufacturing process. When many impurity elements are contained, it is considered that the magnetic characteristics are deteriorated. However, if the Fe substitution is 3 at% or less, the saturation magnetic flux density is not significantly reduced for improving the corrosion resistance and adjusting the electric resistance. It can be replaced within a range, and good magnetic properties can be maintained.

図1を再び参照すると、粉末作製工程においては、例えば、溶湯を細かく粉末化するアトマイズ法を用いて所望とする軟磁性合金粉末を得ることができる。詳しくは、Feや半金属元素等の原料を秤量した後、溶解して合金溶湯を生成する。この合金溶湯をノズルから排出して出来た合金溶湯の流れに冷却媒体を衝突させて、合金溶湯を微細化すると共に急冷し、軟磁性合金粉末を得る。ここで、冷却媒体についての限定は特にはない。従って、例えば、アルゴンなどの不活性ガスや窒素及び空気などの各種気体を用いるガスアトマイズ法や、高圧の水を用いる水アトマイズ法を採用することができる。加えて、微細化と急冷とに異なる媒体を用いて実施しても良い。   Referring to FIG. 1 again, in the powder preparation step, for example, a desired soft magnetic alloy powder can be obtained by using an atomizing method in which a molten metal is finely powdered. Specifically, after raw materials such as Fe and metalloid elements are weighed, they are melted to form a molten alloy. A cooling medium is made to collide with the flow of the molten alloy produced by discharging the molten alloy from the nozzle, and the molten alloy is refined and rapidly cooled to obtain a soft magnetic alloy powder. Here, there is no particular limitation on the cooling medium. Therefore, for example, a gas atomizing method using an inert gas such as argon or various gases such as nitrogen and air, or a water atomizing method using high-pressure water can be employed. In addition, different media may be used for miniaturization and rapid cooling.

冷却媒体は粉末(溶湯)の外周表面と接触するため、粉末においては粒子の表面近傍の方が中心部よりも急冷速度が速く、非晶質性が良好になる。従って、図2に示されるように、本実施の形態による軟磁性合金粉末においては、粒子の中心部に結晶相を主相とする結晶相部が生じ、粒子の外周部には非晶質相を主相とする非晶質相部が生じている粉末が作製される。なお、冷却媒体の種類や粉末粒径、合金溶湯の出湯温度を変更することで、得られる粉末における結晶相部の粒子全体に占める割合を制御することが可能である。   Since the cooling medium is in contact with the outer peripheral surface of the powder (molten metal), in the powder, the vicinity of the surface of the particles has a faster cooling rate than the central portion, and the amorphousness is improved. Therefore, as shown in FIG. 2, in the soft magnetic alloy powder according to the present embodiment, a crystal phase portion having a crystal phase as a main phase is generated at the center of the particle, and an amorphous phase is formed at the outer periphery of the particle. Thus, a powder in which an amorphous phase portion having a main phase is produced is produced. In addition, it is possible to control the ratio which occupies for the whole particle | grains of the crystal phase part in the obtained powder by changing the kind of cooling medium, a powder particle size, and the tapping temperature of a molten alloy.

図2に示されるように、磁心作製工程において使用される軟磁性合金粉末、即ち熱処理前の軟磁性合金粉末は、非晶質相部の厚みが粉末外表面より2μm以上あり、中心部にはbccFe(αFe,Fe−Si)から成る結晶相部を有している。なお、圧粉磁芯の充填率を維持する効果を十分に得るためには、非晶質相部の厚みが粉末外表面より5μm以上あることが望ましい。一方、結晶相部の割合は、粉末全体に対して50重量%未満である。結晶相部の割合が少ない場合には温度上昇抑制効果が小さくなり、多い場合には大きな結晶粒子の割合が多くなる。よって、後述する熱処理後における圧粉磁心の磁気特性の劣化を考慮すると、結晶相部の割合は、粒子全体に対して10重量%以上、30重量%未満であることが望ましい。   As shown in FIG. 2, the soft magnetic alloy powder used in the magnetic core preparation process, that is, the soft magnetic alloy powder before the heat treatment, has an amorphous phase portion thickness of 2 μm or more from the outer surface of the powder, It has a crystal phase portion made of bccFe (αFe, Fe—Si). In order to sufficiently obtain the effect of maintaining the filling rate of the dust core, it is desirable that the thickness of the amorphous phase part is 5 μm or more from the powder outer surface. On the other hand, the ratio of the crystal phase part is less than 50% by weight with respect to the whole powder. When the proportion of the crystal phase portion is small, the temperature rise suppressing effect is small, and when the proportion is large, the proportion of large crystal particles is large. Therefore, considering the deterioration of the magnetic properties of the dust core after heat treatment, which will be described later, the proportion of the crystal phase part is desirably 10% by weight or more and less than 30% by weight with respect to the entire particle.

本発明による軟磁性合金粉末は、図3に示されるように、所定の昇温速度となるように加熱し続けた場合に、発熱ピークを2つ以上有するようなDSC曲線を得られるようなものであり、結晶相部の割合の測定については、示差走査熱量分析計(DSC)によって行われる。詳しくは、結晶相部の割合は、非晶質であることが確認されている同じ合金組成の薄帯における発熱量を基準にして、bccFe(αFe,Fe−Si)の析出に伴う単位重量あたりの発熱量が減少した割合として求めることができる(減少分がアトマイズ時に結晶化した割合、すなわち結晶相部の割合を示す)。 As shown in FIG. 3, the soft magnetic alloy powder according to the present invention is such that a DSC curve having two or more exothermic peaks can be obtained when heating is continued at a predetermined rate of temperature increase. The ratio of the crystal phase part is measured by a differential scanning calorimeter (DSC) . Specifically, the ratio of the crystal phase part is based on the calorific value in the ribbon of the same alloy composition that has been confirmed to be amorphous, per unit weight accompanying the precipitation of bccFe (αFe, Fe-Si). The amount of heat generated can be calculated as the rate of reduction (the rate of decrease indicates the rate of crystallization during atomization, that is, the rate of the crystal phase portion).

また、非晶質相部の厚みについては、電子顕微鏡による軟磁性合金粉末断面の組織観察において求めることができる。軟磁性合金粉末断面は、軟磁性合金粉末を冷間樹脂中に埋め込み硬化し、研磨することで作製する。作製した軟磁性合金粉末断面のうち、大きなもの(埋め込んだ粉末のD90程度)を選択することで、粉末のほぼ中心を通る断面の観察が可能である。すなわち、分級等により、粒度分布を調整した軟磁性合金粉末を作製することで、所定の粒径の粉末を観察することができる。非晶質相部の厚みは、粉末作製工程により得られた軟磁性合金粉末における平均粒径D50程度の粉末を10個以上選択し、各粉末あたり3箇所を測定して算出した平均値である。 The thickness of the amorphous phase can be determined by observing the structure of the soft magnetic alloy powder cross section with an electron microscope. The cross section of the soft magnetic alloy powder is prepared by embedding and curing the soft magnetic alloy powder in a cold resin and polishing. By selecting a large one (about D 90 of the embedded powder) among the produced soft magnetic alloy powder cross sections, it is possible to observe a cross section passing through the approximate center of the powder. That is, a powder having a predetermined particle diameter can be observed by preparing a soft magnetic alloy powder having an adjusted particle size distribution by classification or the like. The thickness of the amorphous phase portion, a powder having an average particle size D 50 in the soft magnetic alloy powder obtained by powder manufacturing process selected 10 or more, the average value calculated by measuring the three per each powder is there.

磁心作製工程においては、本発明による軟磁性合金粉末をシリコーン系などの耐熱性が高く絶縁性が良好な結合材と混合・造粒して造粒粉を得る。次いで、金型を用いて造粒粉を加圧成型して圧粉体を得る。その後、圧粉体を熱処理して、ナノ結晶化と結合材の硬化を同時に行い、圧粉磁心を得る。   In the magnetic core preparation process, the soft magnetic alloy powder according to the present invention is mixed and granulated with a binder such as a silicone-based material having high heat resistance and good insulation to obtain granulated powder. Next, the granulated powder is pressure-molded using a mold to obtain a green compact. Thereafter, the green compact is heat treated to simultaneously perform nanocrystallization and curing of the binder to obtain a dust core.

ここで、本実施の形態による熱処理は、軟磁性合金粉末を毎分10℃以上の昇温速度で加熱し、ナノ結晶を析出させる。その熱量の状況は、DSC(Differential
ScanningCalorimetry:示差走査熱量測定、以下DSCと記す)で、測定することができる。DSCは、測定試料と基準物質との間の熱量の差を計測することで、縦軸に重量で規格化した熱流、横軸に温度や時間をとった曲線となる。DSCで測定されるDSC曲線について説明する。図3は、本発明の実施の形態に係るDSC曲線の説明図である。DSC曲線は、Pt製試料容器中に投入した試料をDSC装置内に設置し、不活性雰囲気中において昇温速度40℃/分で試料を目的の温度まで加熱することで得られる。ここで、熱処理は、図3に示すDSC曲線において、「第一結晶化開始温度Tx−50℃」以上、「第二結晶化開始温度Tx」未満で行われる。「第一結晶化開始温度Tx−50℃」以上、「第二結晶化開始温度Tx」未満の適切な温度範囲で熱処理が行われると、平均粒径5nm以上50nm以下のbccFeナノ結晶が析出し、軟磁気特性の向上が図れる。熱処理温度が「第二結晶化開始温度Tx」を超えてしまうと、Fe−BやFe−Pなどが析出し、軟磁気特性が劣化してしまう。また、図3に示すDSC曲線において、ベースラインに対する山のピークは発熱反応、谷のピークは吸熱反応として現れる。従って、熱処理工程においては第一結晶化のみを促進するように、熱処理することで、優れた磁気特性を有する圧粉磁心を製造することができる。
Here, in the heat treatment according to the present embodiment, the soft magnetic alloy powder is heated at a temperature rising rate of 10 ° C. or more per minute to precipitate nanocrystals. The amount of heat is determined by DSC (Differential.
Scanning Calorimetry: differential scanning calorimetry (hereinafter referred to as DSC)). DSC is a curve in which the vertical axis represents heat flow normalized by weight and the horizontal axis represents temperature and time by measuring the difference in the amount of heat between the measurement sample and the reference material. The DSC curve measured by DSC will be described. FIG. 3 is an explanatory diagram of a DSC curve according to the embodiment of the present invention. The DSC curve is obtained by placing a sample put in a Pt sample container in a DSC apparatus and heating the sample to a target temperature at a temperature rising rate of 40 ° C./min in an inert atmosphere. Here, the heat treatment is performed at a temperature not less than “first crystallization start temperature Tx 1 −50 ° C.” and less than “second crystallization start temperature Tx 2 ” in the DSC curve shown in FIG. When heat treatment is performed in an appropriate temperature range of “first crystallization start temperature Tx 1 −50 ° C.” or more and less than “second crystallization start temperature Tx 2 ”, bccFe nanocrystals having an average particle size of 5 nm or more and 50 nm or less are formed. Precipitates and can improve soft magnetic properties. If the heat treatment temperature exceeds the “second crystallization start temperature Tx 2 ”, Fe—B, Fe—P and the like are precipitated, and the soft magnetic characteristics are deteriorated. In the DSC curve shown in FIG. 3, the peak of the peak with respect to the baseline appears as an exothermic reaction, and the peak of the valley appears as an endothermic reaction. Therefore, in the heat treatment step, a dust core having excellent magnetic properties can be produced by heat treatment so as to promote only the first crystallization.

以上のようにして得られた圧粉磁心に含まれるFe基ナノ結晶合金粉末は、粉末(粒子)の中心部においては結晶粒径60nm以下の結晶粒が非晶質中に体積分率で35vol%以上分散し、粉末(粒子)の外周部においては結晶粒径40nm以下の結晶粒が非晶質中に体積分率35vol%以上分散した構造を有している。特に、低保磁力化及び良好な磁気特性を得るためには、粉末(粒子)の中心部における結晶粒径は35nm未満であることが望ましく、粉末(粒子)の外周部における結晶粒径は30nm未満であることが望ましい。また、より高い飽和磁束密度Bsを得るためには、中心部及び外周部の夫々の非晶質中に占める結晶粒の体積分率は、50vol%以上であることが望ましい。中心部及び外周部の夫々の非晶質中に占める結晶粒の割合(体積分率)が多いほど、高い飽和磁束密度Bsが得られることから、コア等の応用製品の小型化に対して有利となる。詳しくは、上記結晶粒の体積分率が35vol%以上である場合、1.60T以上の飽和磁束密度Bsが得られ、上記結晶粒の体積分率が50vol%以上である場合、1.73T以上の飽和磁束密度Bsが得られる。   The Fe-based nanocrystalline alloy powder contained in the dust core obtained as described above has a volume fraction of 35 vol. In the center of the powder (particles) in which crystal grains having a crystal grain size of 60 nm or less are amorphous. %, And the outer periphery of the powder (particles) has a structure in which crystal grains having a crystal grain size of 40 nm or less are dispersed in an amorphous material with a volume fraction of 35 vol% or more. In particular, in order to obtain a low coercive force and good magnetic properties, it is desirable that the crystal grain size at the center of the powder (particles) is less than 35 nm, and the crystal grain size at the outer periphery of the powder (particles) is 30 nm. It is desirable to be less than. In order to obtain a higher saturation magnetic flux density Bs, it is desirable that the volume fraction of crystal grains in each amorphous portion in the center portion and the outer peripheral portion is 50 vol% or more. A higher saturation magnetic flux density Bs can be obtained as the proportion of crystal grains (volume fraction) in the amorphous material in each of the central portion and the outer peripheral portion is increased, which is advantageous for downsizing of application products such as cores. It becomes. Specifically, when the volume fraction of the crystal grains is 35 vol% or more, a saturation magnetic flux density Bs of 1.60 T or more is obtained, and when the volume fraction of the crystal grains is 50 vol% or more, 1.73 T or more. The saturation magnetic flux density Bs is obtained.

結晶粒径、結晶相部の体積分率については、非晶質相の厚みと同様に、電子顕微鏡による軟磁性合金粉末断面の組織観察において求めることができる。結晶粒径は、軟磁性合金粉末断面の組織写真において、所定位置(外周部/中心部)における結晶粒を30個以上選択し、各粒子の長径と短径を測定して算出した平均値である。結晶相部の体積分率は、線分法により求めており、組織写真に任意に引いた直線において、その直線の長さのうち、結晶相部を通過している長さの総和が占める割合で表される。   Similar to the thickness of the amorphous phase, the crystal grain size and the volume fraction of the crystal phase part can be obtained by observing the structure of the soft magnetic alloy powder cross section with an electron microscope. The crystal grain size is an average value calculated by selecting 30 or more crystal grains at a predetermined position (outer periphery / center) in the structure photograph of the cross section of the soft magnetic alloy powder, and measuring the major axis and minor axis of each grain. is there. The volume fraction of the crystal phase part is obtained by the line segment method, and in the straight line arbitrarily drawn on the structure photograph, the ratio of the total length passing through the crystal phase part out of the length of the straight line It is represented by

以上より、本発明においては、非晶質性合金粉末が粉末全体に対して50重量%未満の割合で結晶相部を有し、熱処理工程において急激な発熱を抑制できることから、結晶の粗大化や不要な化合物の生成の抑制されたものであり、また、軟磁性合金粉末において、表面に2μm以上の非晶質相部を有することから、発熱を抑制しつつも充填率の低下を防ぐことが可能であり、従って、圧粉磁心も優れた軟磁気特性と高飽和磁束密度を有するものとなる。   As described above, in the present invention, the amorphous alloy powder has a crystal phase part in a proportion of less than 50% by weight with respect to the whole powder, and since rapid heat generation can be suppressed in the heat treatment step, The generation of unnecessary compounds is suppressed, and the soft magnetic alloy powder has an amorphous phase part of 2 μm or more on the surface, so that it is possible to prevent a decrease in filling rate while suppressing heat generation. Therefore, the dust core also has excellent soft magnetic properties and high saturation magnetic flux density.

なお、本実施の形態における軟磁性合金粉末は、粒子全体に非晶質相を有する粉末(即ち、中心部に結晶相を有していない粉末)が混在していても良い。また、上述した実施の形態では軟磁性合金粉末を用いた圧粉磁心について説明しているが、圧粉磁心以外の磁性部品への適用も同様に可能である。   Note that the soft magnetic alloy powder in the present embodiment may include a powder having an amorphous phase throughout the particle (that is, a powder having no crystal phase in the center). In the above-described embodiment, the dust core using the soft magnetic alloy powder has been described. However, application to magnetic parts other than the dust core is also possible.

以下、本発明について実施例および比較例を用いて説明する。   Hereinafter, the present invention will be described using examples and comparative examples.

(実施例1〜3、比較例1及び2)
Fe、Fe−Si、Fe−B、Fe−P、Cuからなる原料をFe81.4Si10Cu0.6の合金組成になるように秤量し、高周波溶解にて溶解した。溶解した合金溶湯を1300〜1550℃の範囲で保持した後、窒素雰囲気中において水アトマイズ法にて処理し、平均粒径45μm程度で、結晶相部の割合が異なる5種類の合金粉末を作製した。なお、鋳込み温度が高いほど、冷却すべき熱量が多くなり、急冷速度が低下するため、結晶の析出量が多くなる。結晶化に伴う発熱反応は示差走査型熱量分析計(DSC)を用いて、毎分40℃の昇温速度にて評価した。結晶相部の割合、非晶質相部の厚みについては、実施の形態において記述した方法にて求めている。
(Examples 1-3, Comparative Examples 1 and 2)
The raw material consisting of Fe, Fe-Si, Fe-B, Fe-P and Cu was weighed so as to have an alloy composition of Fe 81.4 Si 3 B 10 P 5 Cu 0.6 and dissolved by high-frequency dissolution. After the molten alloy melt was held in the range of 1300 to 1550 ° C., it was processed by a water atomization method in a nitrogen atmosphere, and five types of alloy powders having an average particle size of about 45 μm and different proportions of crystal phase portions were produced. . As the casting temperature is higher, the amount of heat to be cooled increases, and the rapid cooling rate decreases, so that the amount of precipitated crystals increases. The exothermic reaction accompanying crystallization was evaluated using a differential scanning calorimeter (DSC) at a heating rate of 40 ° C. per minute. The ratio of the crystal phase part and the thickness of the amorphous phase part are obtained by the method described in the embodiment.

圧粉磁心の作製については、軟磁性合金粉末と、当該軟磁性合金粉末に対して重量比で2.5%となる熱硬化性バインダを混合し、500μmのメッシュを通して造粒した。造粒粉4.5gを金型に入れ、油圧式自動プレス機により圧力980MPaにて成型し、外径20mm−内径13mmの円筒形状の圧粉体を作製した。赤外線加熱装置を用いて、450℃まで毎分40℃の昇温速度となるように圧粉体を加熱し、450℃にて10分間保持した後、空冷し、圧粉磁心を得た。電磁気特性については、B−Hアナライザを用いて、周波数20kHz−磁束密度100mTにおけるコアロスPcvを評価した。なお、熱処理後の粉末における結晶粒径および体積分率については、実施の形態において記述した方法にて測定している。表1に、アトマイズ後(熱処理前)の粉末特性および熱処理後の各種評価結果を示す。   For the production of the dust core, a soft magnetic alloy powder and a thermosetting binder having a weight ratio of 2.5% with respect to the soft magnetic alloy powder were mixed and granulated through a 500 μm mesh. 4.5 g of the granulated powder was put into a mold and molded at a pressure of 980 MPa by a hydraulic automatic press machine to produce a cylindrical green compact having an outer diameter of 20 mm and an inner diameter of 13 mm. Using an infrared heating device, the green compact was heated to 450 ° C. at a rate of 40 ° C. per minute, held at 450 ° C. for 10 minutes, and then air-cooled to obtain a dust core. For the electromagnetic characteristics, a core loss Pcv at a frequency of 20 kHz and a magnetic flux density of 100 mT was evaluated using a BH analyzer. Note that the crystal grain size and volume fraction of the heat-treated powder are measured by the method described in the embodiment. Table 1 shows the powder characteristics after atomization (before heat treatment) and various evaluation results after heat treatment.

Figure 0006088192
Figure 0006088192

表1より、実施例1〜3においては、アトマイズ後(熱処理前)の粉末が50重量%未満の結晶層(結晶相部)を有しており、粉末外表面より2μm以上の厚みにて非晶質層(非晶質相を主相とする非晶質相部)を有することから、熱処理における急激な発熱が抑制され、熱処理後には、粉末外周部では40nm以下、粉末中心部では60nm以下の微細な結晶が析出した組織となり、500kW/m以下の低コアロス特性を有する圧粉磁心を作製できていることがわかる。一方、アトマイズ後の粉末が50重量%以上の結晶相部を有する比較例1及び比較例2においては、粉末中心部にて結晶粒が粗大化しており、コアロス特性が劣化している。実施例1〜3と、比較例1及び2とを比較すると、アトマイズ後の結晶相(結晶相部)の割合が大きくなるほど、熱処理後における粉末中心部の結晶粒が大きくなっており、粉末外周部の結晶粒は小さくなっている。粉末中心部については、上述した理由により、アトマイズ後の結晶相部の割合が大きい粉末では、急冷速度が低下しているため、アトマイズ時に生成した結晶が粗大化することを反映している。粉末外周部付近の結晶粒は、熱処理工程によって析出したものであるから、アトマイズ後の結晶相部の割合が大きいほど、熱処理工程において急激な発熱反応が抑えられ、微細な組織が形成できることを表している。 From Table 1, in Examples 1 to 3, the powder after atomization (before heat treatment) has a crystal layer (crystal phase part) of less than 50% by weight, and the thickness is 2 μm or more from the outer surface of the powder. Since it has a crystalline layer (amorphous phase part having an amorphous phase as a main phase), rapid heat generation during heat treatment is suppressed, and after the heat treatment, 40 nm or less at the powder outer periphery and 60 nm or less at the powder center part. It can be seen that a dust core having a low core loss characteristic of 500 kW / m 3 or less can be produced. On the other hand, in Comparative Example 1 and Comparative Example 2 in which the powder after atomization has a crystal phase part of 50% by weight or more, the crystal grains are coarsened at the center part of the powder, and the core loss characteristics are deteriorated. Comparing Examples 1 to 3 with Comparative Examples 1 and 2, the larger the ratio of the crystal phase (crystal phase part) after atomization, the larger the crystal grains in the powder center part after heat treatment, The crystal grains in the part are small. For the powder center portion, for the reason described above, the powder having a large proportion of the crystal phase portion after atomization reflects the fact that the crystal generated during atomization becomes coarse because the rapid cooling rate is reduced. Since the crystal grains near the outer periphery of the powder are precipitated by the heat treatment step, the larger the proportion of the crystal phase portion after atomization, the more rapid the exothermic reaction is suppressed in the heat treatment step, and the more the fine structure can be formed. ing.

(実施例4〜6、比較例3〜5)
Fe、Fe−Si、Fe−B、Fe−P、Cuからなる原料をFe81.3SiCu0.7の合金組成になるように秤量し、高周波溶解にて溶解した。溶解した合金溶湯を1300〜1550℃の範囲で保持した後、窒素雰囲気中において水アトマイズ法にて処理し、平均粒径10μm程度で、結晶相部の割合が異なる6種類の軟磁性合金粉末を作製した。なお、鋳込み温度が高いほど、冷却すべき熱量が多くなり、急冷速度が低下するため、結晶の析出量が多くなる。結晶化に伴う発熱反応は示差走査型熱量分析計(DSC)を用いて、毎分40℃の昇温速度にて評価した。結晶相部部の割合、非晶質相部の厚みについては、実施の形態において記述した方法にて求めている。
(Examples 4-6, Comparative Examples 3-5)
The raw material consisting of Fe, Fe-Si, Fe-B, Fe-P and Cu was weighed so as to have an alloy composition of Fe 81.3 Si 5 B 9 P 4 Cu 0.7 and dissolved by high-frequency dissolution. After holding the molten alloy in a range of 1300 to 1550 ° C., it is treated by a water atomization method in a nitrogen atmosphere, and six types of soft magnetic alloy powders having an average particle size of about 10 μm and different proportions of crystal phase portions are obtained. Produced. As the casting temperature is higher, the amount of heat to be cooled increases, and the rapid cooling rate decreases, so that the amount of precipitated crystals increases. The exothermic reaction accompanying crystallization was evaluated using a differential scanning calorimeter (DSC) at a heating rate of 40 ° C. per minute. The ratio of the crystal phase portion and the thickness of the amorphous phase portion are obtained by the method described in the embodiment.

圧粉磁心の作製については、軟磁性合金粉末と、当該軟磁性合金粉末に対して重量比で4%となる熱硬化性バインダを混合し、500μmのメッシュを通して造粒した。造粒粉2.5gを金型に入れ、油圧式自動プレス機により圧力980MPaにて成型し、外径13mm−内径8mmの円筒形状の圧粉体を作製した。赤外線加熱装置を用いて、440℃まで毎分40℃の昇温速度となるように圧粉体を加熱し、440℃にて10分間保持した後、空冷し、圧粉磁心を得た。電磁気特性については、B−Hアナライザを用いて、周波数300kHz−磁束密度50mTにおけるコアロスPcvを測定し、評価した。また、振動試料型磁力計(VSM)を用いて1500kA/mの磁場にて測定した飽和磁化より、飽和磁束密度を算出した。なお、熱処理後の粉末における結晶粒径および体積分率については、実施の形態において記述した方法にて測定している。表2に、アトマイズ後(熱処理前)の粉末特性および熱処理後の各種評価結果を示す。   For the production of the dust core, a soft magnetic alloy powder and a thermosetting binder having a weight ratio of 4% with respect to the soft magnetic alloy powder were mixed and granulated through a 500 μm mesh. The granulated powder (2.5 g) was put in a mold and molded by a hydraulic automatic press at a pressure of 980 MPa to prepare a cylindrical green compact having an outer diameter of 13 mm and an inner diameter of 8 mm. Using an infrared heating device, the green compact was heated to 440 ° C. so as to have a temperature rising rate of 40 ° C. per minute, held at 440 ° C. for 10 minutes, and then air-cooled to obtain a dust core. The electromagnetic characteristics were evaluated by measuring the core loss Pcv at a frequency of 300 kHz and a magnetic flux density of 50 mT using a BH analyzer. Further, the saturation magnetic flux density was calculated from the saturation magnetization measured in a magnetic field of 1500 kA / m using a vibrating sample magnetometer (VSM). Note that the crystal grain size and volume fraction of the heat-treated powder are measured by the method described in the embodiment. Table 2 shows the powder characteristics after atomization (before heat treatment) and various evaluation results after heat treatment.

Figure 0006088192
Figure 0006088192

表2より、実施例4〜6及び比較例4、5のいずれにおいても、アトマイズ後(熱処理前)の粉末は50重量%未満の結晶相(結晶相部)を有しており、熱処理後については、粉末外周部では40nm以下、粉末中心部では60nm以下の微細な結晶が析出した組織となっている。一方、アトマイズ後の粉末が結晶相部を有していない(即ち、結晶相の割合が0質量%である)比較例3においては、熱処理後において、粉末の外周部及び中心部共に結晶粒径が40nm以上となっており、結晶の粗大化が生じている。アトマイズ後における非晶質層(非晶質相部)の厚みが2μm以上である実施例4〜6では、2μm未満の比較例4及び5に対して、充填率が低下することなく、1500kW/m以下の低コアロス特性を有する圧粉磁心を作製できていることがわかる。これは、軟磁性合金粉末の方がナノ結晶合金に比べてビッカース硬さが小さいために、加圧成形する際に変形しやすく、充填性が高まるためである。なお、前述の実施例1〜3及び比較例1、2と併せて比較すると、非晶質相部の厚みが増加するほど、充填率は高くなる傾向があるが、5μm以上の場合にはほぼ一定となることがわかる。 From Table 2, in any of Examples 4 to 6 and Comparative Examples 4 and 5, the powder after atomization (before heat treatment) has a crystal phase (crystal phase part) of less than 50% by weight. Has a structure in which fine crystals of 40 nm or less are precipitated at the outer periphery of the powder and 60 nm or less are precipitated at the center of the powder. On the other hand, in Comparative Example 3 in which the powder after atomization does not have a crystal phase portion (that is, the proportion of the crystal phase is 0% by mass), both the outer peripheral portion and the central portion of the powder after the heat treatment have a crystal grain size. Is 40 nm or more, and the crystal is coarsened. In Examples 4 to 6 in which the thickness of the amorphous layer (amorphous phase portion) after atomization is 2 μm or more, the filling rate does not decrease compared to Comparative Examples 4 and 5 of less than 2 μm, 1500 kW / It can be seen that a dust core having a low core loss characteristic of m 3 or less can be produced. This is because the soft magnetic alloy powder is smaller in Vickers hardness than the nanocrystalline alloy, so that it is easily deformed during pressure forming and the filling property is increased. In addition, when compared with Examples 1 to 3 and Comparative Examples 1 and 2 described above, the filling rate tends to increase as the thickness of the amorphous phase portion increases. It turns out that it becomes constant.

なお、アトマイズ後の結晶相部の割合がそれぞれ10重量%及び19重量%である実施例5及び実施例6においては、熱処理後に、粉末外周部付近では30nm未満、粉末中心部では35nm未満の結晶粒径を有する良好な微細構造が形成され、1200kW/m以下の非常にロスの低い圧粉磁心を作製することができており、アトマイズ時に大きな結晶が生成するのを回避しつつ、急激な発熱を抑制する効果が特に高いことがわかる。 In Examples 5 and 6 in which the proportions of the crystal phase part after atomization are 10% by weight and 19% by weight, respectively, after heat treatment, crystals of less than 30 nm in the vicinity of the powder outer periphery and less than 35 nm in the powder center part. A fine microstructure having a grain size is formed, and a powder core having a very low loss of 1200 kW / m 3 or less can be produced, while avoiding the formation of large crystals during atomization, It can be seen that the effect of suppressing heat generation is particularly high.

(実施例7〜10)
Fe、Fe−Si、Fe−B、Fe−P、Cuからなる原料をFe80.3Si10Cu0.7(実施例7)、Fe81.4SiCu0.6(実施例8)、Fe82.4Si11Cu0.6(実施例9)Fe83.3SiCu0.7(実施例10)の夫々の合金組成になるように秤量し、高周波溶解にて溶解した。溶解した合金溶湯を1300〜1400℃の範囲で保持した後、窒素雰囲気中において水アトマイズ法にて処理し、平均粒径45μm程度の合金粉末を作製した。結晶化に伴う発熱反応は示差走査型熱量分析計(DSC)を用いて、毎分40℃の昇温速度にて評価した。結晶相部の割合、非晶質相部の厚みについては、実施の形態において記述した方法にて求めている。
(Examples 7 to 10)
Fe 80.3 Si 5 B 10 P 4 Cu 0.7 (Example 7), Fe 81.4 Si 5 B 6 P 7 Cu are raw materials made of Fe, Fe—Si, Fe—B, Fe—P, and Cu. 0.6 (Example 8), Fe 82.4 Si 1 B 11 P 5 Cu 0.6 (Example 9) Fe 83.3 Si 4 B 8 P 4 Cu 0.7 (Example 10) They were weighed so as to have an alloy composition and dissolved by high frequency melting. After the molten alloy melt was held in the range of 1300 to 1400 ° C., it was processed by a water atomization method in a nitrogen atmosphere to produce an alloy powder having an average particle size of about 45 μm. The exothermic reaction accompanying crystallization was evaluated using a differential scanning calorimeter (DSC) at a heating rate of 40 ° C. per minute. The ratio of the crystal phase part and the thickness of the amorphous phase part are obtained by the method described in the embodiment.

圧粉磁心の作製については、軟磁性合金粉末と、軟磁性合金粉末に対して重量比で2.5%となる熱硬化性バインダを混合し、500μmのメッシュを通して造粒した。造粒粉4.5gを金型に入れ、油圧式自動プレス機により圧力980MPaにて成型し、外径20mm−内径13mmの円筒形状の圧粉体を作製した。赤外線加熱装置を用いて、450℃まで毎分40℃の昇温速度となるように圧粉体を加熱し、表3に示した熱処理条件にて熱処理を施した後に、空冷し、圧粉磁心を得た。電磁気特性については、B−Hアナライザを用いて、周波数20kHz−磁束密度100mTにおけるコアロスPcvを測定し、評価した。また、振動試料型磁力計(VSM)を用いて1500kA/mの磁場にて測定した飽和磁化より、飽和磁束密度を算出した。なお、熱処理後の粉末における結晶粒径および体積分率については、実施の形態において記述した方法にて測定している。表3に、アトマイズ後(熱処理前)の粉末特性および熱処理後の各種評価結果を示す。   For the production of the powder magnetic core, a soft magnetic alloy powder and a thermosetting binder having a weight ratio of 2.5% with respect to the soft magnetic alloy powder were mixed and granulated through a 500 μm mesh. 4.5 g of the granulated powder was put into a mold and molded at a pressure of 980 MPa by a hydraulic automatic press machine to produce a cylindrical green compact having an outer diameter of 20 mm and an inner diameter of 13 mm. Using an infrared heating device, the green compact was heated to 450 ° C. at a rate of 40 ° C. per minute, heat-treated under the heat treatment conditions shown in Table 3, then air-cooled, and the dust core Got. The electromagnetic characteristics were evaluated by measuring the core loss Pcv at a frequency of 20 kHz and a magnetic flux density of 100 mT using a BH analyzer. Further, the saturation magnetic flux density was calculated from the saturation magnetization measured in a magnetic field of 1500 kA / m using a vibrating sample magnetometer (VSM). Note that the crystal grain size and volume fraction of the heat-treated powder are measured by the method described in the embodiment. Table 3 shows the powder characteristics after atomization (before heat treatment) and various evaluation results after heat treatment.

Figure 0006088192
Figure 0006088192

表3より、実施例7〜10においては、アトマイズ後(熱処理前)の粉末が50重量%未満の結晶相(結晶相部)を有しており、粉末外表面より5μm以上の厚みにて非晶質層(非晶質相部)を有することから、熱処理工程における急激な発熱が抑制され、熱処理後には、粉末外周部では40nm以下、粉末中心部では60nm以下の微細な結晶が析出した組織となり、500kW/m以下の低コアロス特性を有する圧粉磁心を作製できていることがわかる。特に、アトマイズ後の結晶相部の割合が30重量%以下であり、結晶化後の粉末外周部の結晶粒径が30nm未満、粉末中心部の結晶粒径が35nm未満である実施例7〜9においては、250kW/m以下の非常にロスの低い圧粉磁心を作製することができている。 From Table 3, in Examples 7 to 10, the powder after atomization (before heat treatment) has a crystal phase (crystal phase part) of less than 50% by weight and has a thickness of 5 μm or more from the outer surface of the powder. Since it has a crystalline layer (amorphous phase part), rapid heat generation in the heat treatment process is suppressed, and after heat treatment, a structure in which fine crystals of 40 nm or less in the powder outer peripheral part and 60 nm or less in the powder central part are precipitated. Thus, it can be seen that a dust core having a low core loss characteristic of 500 kW / m 3 or less can be produced. In particular, Examples 7 to 9 in which the ratio of the crystal phase part after atomization is 30% by weight or less, the crystal grain size of the powder outer peripheral part after crystallization is less than 30 nm, and the crystal grain size of the powder center part is less than 35 nm. Can produce a dust core with a very low loss of 250 kW / m 3 or less.

(実施例11〜13)
Fe、Fe−Si、Fe−B、Fe−P、Cuからなる原料をFe83.410Cu0.6(実施例11)、Fe82.410Cu0.6(実施例12)、Fe82.310SiCu0.7(実施例13)の夫々の合金組成になるように秤量し、高周波溶解にて溶解した。溶解した合金溶湯を1300〜1400℃の範囲で保持した後、窒素雰囲気中において水アトマイズ法にて処理し、平均粒径45μm程度の合金粉末を作製した。結晶化に伴う発熱反応は示差走査型熱量分析計(DSC)を用いて、毎分40℃の昇温速度にて評価した。結晶相部の割合、非晶質相部の厚みについては、実施の形態において記述した方法にて求めている。
(Examples 11 to 13)
Fe 83.4 B 10 P 6 Cu 0.6 (Example 11), Fe 82.4 B 10 P 6 C 1 Cu 0. The raw material consisting of Fe, Fe-Si, Fe-B, Fe-P, Cu was used . 6 (Example 12) and Fe 82.3 B 10 Si 3 P 3 C 1 Cu 0.7 (Example 13) were weighed so as to have respective alloy compositions and dissolved by high-frequency dissolution. After the molten alloy melt was held in the range of 1300 to 1400 ° C., it was processed by a water atomization method in a nitrogen atmosphere to produce an alloy powder having an average particle size of about 45 μm. The exothermic reaction accompanying crystallization was evaluated using a differential scanning calorimeter (DSC) at a heating rate of 40 ° C. per minute. The ratio of the crystal phase part and the thickness of the amorphous phase part are obtained by the method described in the embodiment.

圧粉磁心の作製については、軟磁性合金粉末と、当該軟磁性合金粉末に対して重量比で2.5%となる熱硬化性バインダを混合し、500μmのメッシュを通して造粒した。造粒粉4.5gを金型に入れ、油圧式自動プレス機により圧力980MPaにて成型し、外径20mm−内径13mmの円筒形状の圧粉体を作製した。赤外線加熱装置を用いて、450℃まで毎分40℃の昇温速度となるように圧粉体を加熱し、表4に示した熱処理条件にてナノ結晶化熱処理を施した後に、空冷し、圧粉磁心を得た。電磁気特性については、B−Hアナライザを用いて、周波数20kHz−磁束密度100mTにおけるコアロスPcvを測定し、評価した。なお、熱処理後の粉末における結晶粒径および体積分率については、実施の形態において記述した方法にて測定している。また、振動試料型磁力計(VSM)を用いて1500kA/mの磁場にて測定した飽和磁化より、飽和磁束密度を算出した。表4に、アトマイズ後(熱処理前)の粉末特性および熱処理後の各種評価結果を示す。   For the production of the dust core, a soft magnetic alloy powder and a thermosetting binder having a weight ratio of 2.5% with respect to the soft magnetic alloy powder were mixed and granulated through a 500 μm mesh. 4.5 g of the granulated powder was put into a mold and molded at a pressure of 980 MPa by a hydraulic automatic press machine to produce a cylindrical green compact having an outer diameter of 20 mm and an inner diameter of 13 mm. Using an infrared heating device, the green compact was heated to 450 ° C. at a rate of 40 ° C. per minute, subjected to nanocrystallization heat treatment under the heat treatment conditions shown in Table 4, and then air-cooled. A dust core was obtained. The electromagnetic characteristics were evaluated by measuring the core loss Pcv at a frequency of 20 kHz and a magnetic flux density of 100 mT using a BH analyzer. Note that the crystal grain size and volume fraction of the heat-treated powder are measured by the method described in the embodiment. Further, the saturation magnetic flux density was calculated from the saturation magnetization measured in a magnetic field of 1500 kA / m using a vibrating sample magnetometer (VSM). Table 4 shows the powder characteristics after atomization (before heat treatment) and various evaluation results after heat treatment.

Figure 0006088192
Figure 0006088192

また、実施例11〜13に加えて、上述した実施例7〜10における熱処理後粉に占める結晶層の割合と飽和磁束密度との関係を表5に示す。   Further, in addition to Examples 11 to 13, Table 5 shows the relationship between the ratio of the crystal layer in the powder after heat treatment in Examples 7 to 10 and the saturation magnetic flux density.

Figure 0006088192
Figure 0006088192

表5より、中心部及び外周部の夫々の非晶質中に占める結晶粒の割合(体積分率)が多いほど、高い飽和磁束密度Bsが得られることがわかる。このような高い飽和磁束密度Bsを得ることとすれば、コア等の応用製品の小型化に対して有利となる。具体的には、実施例7〜実施例13のいずれにおいても、結晶粒の体積分率が35vol%以上であり、1.60T以上の飽和磁束密度Bsが得られている。このうち、中心部及び外周部の少なくともどちらかの結晶粒の体積分率が50vol%以上である実施例9〜実施例13においては、1.70T以上の飽和磁束密度Bsが得られている。特に、中心部及び外周部いずれの結晶粒の体積分率も50vol%以上である実施例10、実施例11及び実施例13においては、1.73T以上の高い飽和磁束密度Bsが得られている。   From Table 5, it can be seen that the higher the ratio (volume fraction) of the crystal grains in the amorphous material in the central part and the outer peripheral part, the higher the saturation magnetic flux density Bs can be obtained. Obtaining such a high saturation magnetic flux density Bs is advantageous for downsizing of applied products such as cores. Specifically, in any of Examples 7 to 13, the volume fraction of crystal grains is 35 vol% or more, and a saturation magnetic flux density Bs of 1.60 T or more is obtained. Among these, in Examples 9 to 13 in which the volume fraction of crystal grains in at least one of the central part and the outer peripheral part is 50 vol% or more, a saturation magnetic flux density Bs of 1.70 T or more is obtained. Particularly, in Example 10, Example 11 and Example 13 in which the volume fraction of crystal grains in both the central part and the outer peripheral part is 50 vol% or more, a high saturation magnetic flux density Bs of 1.73 T or more is obtained. .

上述した実施の形態では、圧粉磁心およびその作製方法に適用可能であるが、他の磁性部品(磁性シートなど)およびその作製方法に利用することもできる In the above-described embodiment, the present invention can be applied to a dust core and a manufacturing method thereof, but can also be used for other magnetic components (such as a magnetic sheet) and a manufacturing method thereof.

1 アトマイズ後粉末
2 アトマイズ後粉末の外周付近の拡大図
3 結晶粒(結晶相部)
4 非晶質相(非晶質相部)
10 DSC曲線
11 第1ピーク
12 第1立ち上がり部
15 第2ピーク
16 第2立ち上がり部
20、21 ベースライン
32 第1上昇接線
42 第2上昇接線
1 Powder after atomization 2 Enlarged view of the periphery of powder after atomization 3 Crystal grains (crystal phase part)
4 Amorphous phase (amorphous phase part)
10 DSC curve 11 1st peak 12 1st rising part 15 2nd peak 16 2nd rising part 20, 21 Base line 32 1st rising tangent 42 2nd rising tangent

Claims (4)

組成式FeSiCuで表わされ、79≦a≦86at%、5≦b≦13at%、0≦c≦8at%、1≦x≦10at%、0≦y≦5at%、0.4≦z≦1.4at%、及び0.06≦z/x≦1.20を満たす軟磁性合金粉末を、アトマイズ法を用いて生成する工程と、
前記軟磁性合金粉末と結合剤とを混合する工程と、
前記結合剤と混合された前記軟磁性合金粉末を加圧成型する工程と、
成型された前記軟磁性合金粉末を熱処理する工程と、を含み、
熱処理工程前の前記軟磁性合金粉末は、結晶相を主相とする結晶相部及び非晶質相を主相とする非晶質相部を有する軟磁性合金粉末粒を有しており、
当該軟磁性合金粉末粒における前記結晶相部の割合は、3重量%以上50重量%未満であり、
前記軟磁性合金粉末粒の中心部には、前記結晶相部が位置しており、
前記軟磁性合金粉末粒の外周部には、前記非晶質相部が位置しており、
熱処理された前記軟磁性合金粉末粒の前記中心部には粒径60nm未満の結晶粒が35vol%以上分散しており、
熱処理された前記軟磁性合金粉末粒の前記外周部には粒径40nm未満の結晶粒が35vol%以上分散している、
圧粉磁芯の製造方法。
Represented by a composition formula Fe a B b Si c P x C y Cu z, 79 ≦ a ≦ 86at%, 5 ≦ b ≦ 13at%, 0 ≦ c ≦ 8at%, 1 ≦ x ≦ 10at%, 0 ≦ y A step of generating a soft magnetic alloy powder satisfying ≦ 5 at%, 0.4 ≦ z ≦ 1.4 at%, and 0.06 ≦ z / x ≦ 1.20 using an atomizing method;
Mixing the soft magnetic alloy powder and a binder;
Pressure-molding the soft magnetic alloy powder mixed with the binder;
Heat-treating the molded soft magnetic alloy powder,
The soft magnetic alloy powder before the heat treatment step has soft magnetic alloy powder grains having a crystal phase portion having a crystal phase as a main phase and an amorphous phase portion having an amorphous phase as a main phase,
The proportion of the crystalline phase part in the soft magnetic alloy powder grains is 3% by weight or more and less than 50% by weight,
In the central part of the soft magnetic alloy powder grains, the crystal phase part is located,
In the outer peripheral portion of the soft magnetic alloy powder particles, the amorphous phase portion is located,
In the center part of the heat-treated soft magnetic alloy powder particles, crystal grains having a particle size of less than 60 nm are dispersed in an amount of 35 vol% or more,
In the outer peripheral portion of the heat-treated soft magnetic alloy powder particles, crystal grains having a particle size of less than 40 nm are dispersed in an amount of 35 vol% or more.
A method for producing a dust core.
請求項1に記載の圧粉磁芯の製造方法であって、It is a manufacturing method of the dust core according to claim 1,
前記軟磁性合金粉末粒における前記結晶相部の割合は、7重量%以上であるThe proportion of the crystal phase part in the soft magnetic alloy powder grains is 7% by weight or more.
圧粉磁芯の製造方法。A method for producing a dust core.
請求項1又は請求項2に記載の圧粉磁芯の製造方法であって、
前記Feの3at%以下を、Ti、V、Zr、Hf、Nb、Ta、Mo、W、Cr、Co、Ni、Al、Mn、Ag、Au、Zn、S、Ca、Sn、As、Sb、Bi、N、O、Mg、白金族元素、及び希土類元素のうち、1種類以上の元素で置換してなる、
圧粉磁芯の製造方法。
It is a manufacturing method of the dust core according to claim 1 or 2 ,
Fe, 3 at% or less of Ti, V, Zr, Hf, Nb, Ta, Mo, W, Cr, Co, Ni, Al, Mn, Ag, Au, Zn, S, Ca, Sn, As, Sb, Of Bi, N, O, Mg, platinum group elements, and rare earth elements, substituted with one or more elements,
A method for producing a dust core.
請求項1から請求項3までのいずれかに記載の圧粉磁芯の製造方法であって、
前記非晶質相部の前記軟磁性合金粉末粒における径方向の厚さは2μm以上である、
圧粉磁芯の製造方法。
It is a manufacturing method of the dust core according to any one of claims 1 to 3 ,
The thickness in the radial direction of the soft magnetic alloy powder grains of the amorphous phase part is 2 μm or more.
A method for producing a dust core.
JP2012223227A 2012-10-05 2012-10-05 Manufacturing method of dust core Active JP6088192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012223227A JP6088192B2 (en) 2012-10-05 2012-10-05 Manufacturing method of dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012223227A JP6088192B2 (en) 2012-10-05 2012-10-05 Manufacturing method of dust core

Publications (2)

Publication Number Publication Date
JP2014075529A JP2014075529A (en) 2014-04-24
JP6088192B2 true JP6088192B2 (en) 2017-03-01

Family

ID=50749469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012223227A Active JP6088192B2 (en) 2012-10-05 2012-10-05 Manufacturing method of dust core

Country Status (1)

Country Link
JP (1) JP6088192B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003366A (en) * 2014-06-17 2016-01-12 Necトーキン株式会社 Soft magnetic alloy powder, dust magnetic core using the powder and production method of the magnetic core
JP6842824B2 (en) * 2014-11-25 2021-03-17 株式会社トーキン Manufacturing method of metal soft magnetic alloy and magnetic core
WO2016121951A1 (en) * 2015-01-30 2016-08-04 株式会社村田製作所 Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor
DE112016003044T5 (en) 2015-07-31 2018-06-14 Murata Manufacturing Co., Ltd. SOFT MAGNETIC MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
JP6871922B2 (en) * 2017-01-27 2021-05-19 Jfeスチール株式会社 Manufacturing method of soft magnetic iron powder
US11814707B2 (en) 2017-01-27 2023-11-14 Tokin Corporation Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic component and dust core
JP6309149B1 (en) 2017-02-16 2018-04-11 株式会社トーキン Soft magnetic powder, dust core, magnetic component, and method for manufacturing dust core
JP6744238B2 (en) * 2017-02-21 2020-08-19 株式会社トーキン Soft magnetic powder, magnetic parts and dust core
JP6460276B1 (en) * 2017-08-07 2019-01-30 Tdk株式会社 Soft magnetic alloys and magnetic parts
KR102007898B1 (en) * 2017-12-26 2019-08-06 주식회사 포스코 Soft magnetic powders for inductor core and method for manufacturing of the same
US11484942B2 (en) * 2018-04-27 2022-11-01 Hitachi Metals, Ltd. Alloy powder, fe-based nanocrystalline alloy powder and magnetic core
WO2021200600A1 (en) * 2020-03-31 2021-10-07 株式会社村田製作所 Soft magnetic alloy powder, magnetic core, magnetism application component, and noise suppression sheet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476469A (en) * 1977-11-30 1979-06-19 Fukuda Metal Foil Powder Production of amorphous alloy powder
JP2713363B2 (en) * 1987-06-04 1998-02-16 日立金属 株式会社 Fe-based soft magnetic alloy compact and manufacturing method thereof
JPH051302A (en) * 1991-01-23 1993-01-08 Sumitomo Metal Ind Ltd Soft magnetic alloy powder
JP2004349585A (en) * 2003-05-23 2004-12-09 Hitachi Metals Ltd Method of manufacturing dust core and nanocrystalline magnetic powder
JP5305126B2 (en) * 2007-04-25 2013-10-02 日立金属株式会社 Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component
KR20110044832A (en) * 2008-08-22 2011-05-02 아키히로 마키노 Alloy composition, Fe-based nanocrystalline alloy and its manufacturing method, and magnetic parts
JP5537534B2 (en) * 2010-12-10 2014-07-02 Necトーキン株式会社 Fe-based nanocrystalline alloy powder and manufacturing method thereof, and dust core and manufacturing method thereof

Also Published As

Publication number Publication date
JP2014075529A (en) 2014-04-24

Similar Documents

Publication Publication Date Title
JP6088192B2 (en) Manufacturing method of dust core
JP5537534B2 (en) Fe-based nanocrystalline alloy powder and manufacturing method thereof, and dust core and manufacturing method thereof
JP6482718B1 (en) Soft magnetic material and manufacturing method thereof
CN110225801B (en) Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic component, and dust core
JP5632608B2 (en) Soft magnetic alloy, magnetic component using the same, and manufacturing method thereof
JP5912349B2 (en) Soft magnetic alloy powder, nanocrystalline soft magnetic alloy powder, manufacturing method thereof, and dust core
WO2017022227A1 (en) Method for producing soft magnetic dust core, and soft magnetic dust core
JP7132231B2 (en) Powder magnetic core manufacturing method, powder magnetic core and inductor
JP4591633B2 (en) Nanocomposite bulk magnet and method for producing the same
JP6101034B2 (en) Manufacturing method of dust core
JP5305126B2 (en) Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component
CN108376598B (en) Soft magnetic alloy and magnetic component
JP5697131B2 (en) Fe-based nanocrystalline alloy manufacturing method, Fe-based nanocrystalline alloy, magnetic component, Fe-based nanocrystalline alloy manufacturing apparatus
JP6558887B2 (en) Soft magnetic alloys and magnetic parts
JP5912239B2 (en) Fe-based alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP2016003366A (en) Soft magnetic alloy powder, dust magnetic core using the powder and production method of the magnetic core
JP6842824B2 (en) Manufacturing method of metal soft magnetic alloy and magnetic core
JP6554278B2 (en) Soft magnetic alloys and magnetic parts
JP5916983B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
TW202000945A (en) Soft magnetic alloy and magnetic device
JP6648856B2 (en) Fe-based alloy, crystalline Fe-based alloy atomized powder, and magnetic core
JP2019052356A (en) Soft magnetic alloy and magnetic member
KR20170082468A (en) Method for manufacturing Fe based soft magnetic alloy
JP2007092096A (en) Amorphous magnetic alloy
JPWO2019189614A1 (en) Iron-based soft magnetic powder and its manufacturing method, and articles containing iron-based soft magnetic alloy powder and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170203

R150 Certificate of patent or registration of utility model

Ref document number: 6088192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250