JP2004349585A - Method of manufacturing dust core and nanocrystalline magnetic powder - Google Patents

Method of manufacturing dust core and nanocrystalline magnetic powder Download PDF

Info

Publication number
JP2004349585A
JP2004349585A JP2003146927A JP2003146927A JP2004349585A JP 2004349585 A JP2004349585 A JP 2004349585A JP 2003146927 A JP2003146927 A JP 2003146927A JP 2003146927 A JP2003146927 A JP 2003146927A JP 2004349585 A JP2004349585 A JP 2004349585A
Authority
JP
Japan
Prior art keywords
powder
magnetic powder
magnetic
dust core
nanocrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003146927A
Other languages
Japanese (ja)
Inventor
Hirotaka Hamakake
裕貴 濱欠
Kagehiro Kageyama
景弘 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003146927A priority Critical patent/JP2004349585A/en
Publication of JP2004349585A publication Critical patent/JP2004349585A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a dust core having excellent magnetic characteristics and a method of manufacturing a nanocrystalline magnetic power. <P>SOLUTION: In the method of manufacturing a dust core by molding and fixing magnetic powder such as nanocrystalline magnetic powder of a nanocrystalline system at least 50% of which has crystal particle diameters of 100 nm or less; the magnetic powder is manufactured by a water atomizing method and expressed by the formula: Fe<SB>(100-X-Y-Z-α-β)</SB>B<SB>X</SB>Si<SB>Y</SB>Cu<SB>Z</SB>M<SB>α</SB>M'<SB>β</SB>(at%) (wherein M is at least one selected from the group consisting of elements Nb, W, Ta, Zr, Hf, Ti and Mo; M' is at least one selected from the group consisting of elements V, Cr, Mn, Al, platinum group elements, Sc, Y, Au, Zn, Sn, Re and Ag; X, Y, Z, α and β satisfy 12≤X≤15, 0<Y≤15, 0.1≤Z≤3, 0.1≤α≤30 and 0≤β≤10 respectively). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器等に使用される圧粉磁心の製造方法及びナノ結晶磁性粉末の製造方法に関するものである。
【0002】
【従来の技術】
電源装置用チョークコイル等として従来からフェライト磁心が使用されている。近年、電源装置等の小型化、高周波化等の問題により、フェライトに代えて絶縁した電磁鋼板の積層箔を用いた磁心が使用されているが、透磁率が高すぎるために切断して使用することが必要となり、その切断部分からの漏洩磁界等による損失が問題となっている。そこで粉末状の磁性材料である磁性粉末をバインダーにより接合した圧粉磁心が使用されてきている。圧粉磁心とは、磁性粉末と結着性樹脂等のバインダーとを混合して混合粉末とした後、その混合粉末を磁心形状に成形したものである。圧粉磁心に用いられる磁性粉末には溶融状態の金属を急冷して得られる非晶質磁性材料が広く適用されている。
【0003】
さらに透磁率等の磁気特性に優れることから、近年、ナノ結晶磁性材料を適用した圧粉磁心の実用化が積極的に検討されている。ナノ結晶磁性材料とは組織の少なくとも50%以上が結晶粒径100nm以下のナノ結晶組織からなる軟磁性材料であり、ナノ結晶組織を発現可能な組成の非晶質磁性材料を、結晶化温度以上で熱処理することにより製造される。
従来からナノ結晶磁性材料の中でもFe73.5Si13.5NdCu(原子%)の組成を有する材料は、高透磁率でかつ低磁歪という優れた特性を示すことから、特に注目されている(例えば、非特許文献1参照)。
【0004】
ところで、上記の非晶質磁性材料やナノ結晶磁性材料が早くから広く実用化されている用途は、材料を粉末状ではなく帯状で用いる巻磁心や、磁気シールド材等である。そしてこれら帯状の非晶質磁性材料やナノ結晶磁性材料は、一般に、単ロール法により製造されている。これに対して圧粉磁心に用いる非晶質磁性粉末やナノ結晶磁性粉末は、水アトマイズ法により製造されることが多い。非晶質磁性粉末やナノ結晶磁性粉末は単ロール法により、一旦、帯状に鋳造した非晶質磁性材料やナノ結晶磁性材料を機械的に粉砕する方法による製造も可能ではあるが、水アトマイズ法であれば、直接、粉末状に鋳造でき、効率的だからである。
【0005】
【非特許文献1】
山内清隆、吉沢克仁:日本応用磁気学会誌、vol.14、
pp.684−688 (1990)
【0006】
【発明が解決しようとする課題】
上述のようにナノ結晶磁性材料は透磁率等の磁気特性に優れることが知られている。ところが、本発明者が水アトマイズ法により作製されたナノ結晶磁性粉末の圧粉磁心への適用を詳細に検討した結果、本来期待される磁気特性が得られていないことが判明した。即ち、水アトマイズ法により作製した非晶質磁性粉末を用いたナノ結晶磁性粉末からなる圧粉磁心では、単ロール法により、一旦、帯状に鋳造した非晶質磁性材料を機械的に粉砕して作製する非晶質磁性粉末を用いたものと比べて、磁気特性が低いことが判明した。
【0007】
本発明の目的は、ナノ結晶磁性材料が本来具備する優れた磁気特性を圧粉磁心においても引き出すことが出来る、磁気特性に優れる圧粉磁心の製造方法及びナノ結晶磁性粉末の製造方法を提供することである。
【0008】
【課題を解決するための手段】
本発明者は、圧粉磁心における磁気特性の低下は、非晶質磁性粉末の製造方法の相違に起因しており、製造方法に適した合金組成に調整することで、より磁気特性に優れた圧粉磁心となることを見出し本発明に想到した。
【0009】
即ち本発明は、組織の少なくとも50%以上が結晶粒径100nm以下のナノ結晶組織を有するナノ結晶磁性粉末、または熱処理により前記ナノ結晶組織を発現可能な組成の非晶質磁性粉末の何れかである磁性粉末を成形、固着する圧粉磁心の製造方法であって、前記磁性粉末は、水アトマイズ法により製造されてなり、
一般式:
Fe(100−X−Y−Z−α−β)SiCuαM’β (原子%)(但し、MはNb、W、Ta、Zr、Hf、Ti、Moからなる群から選ばれた少なくとも1種の元素、M’はV、Cr、Mn、Al、白金属元素、Sc、Y、Au、Zn、Sn、Re及びAgからなる群から選ばれた少なくとも1種の元素であり、X、Y、Z、α、β、はそれぞれ12≦X≦15、0<Y≦15、0.1≦Z≦3、0.1≦α≦30、0≦β≦10を満たす。)により表される組成である圧粉磁心の製造方法である。
【0010】
本発明においては、前記磁性粉末と結着性樹脂とガラス粉末を混合して混合粉末とし、該混合粉末を圧縮成形して成形体とし、該成形体を前記ガラス粉末の軟化点以上、600℃以下で熱処理して軟化したガラス粉末により固着することが好ましい。
この際、前記磁性粉末は非晶質磁性粉末であり軟化点以上、600℃以下での熱処理時に、非晶質磁性粉末をナノ結晶組織とすることが好ましい。
さらに本発明においては、d50値が35μm以上の前記磁性粉末と、d50値が15μm以下の前記磁性粉末とを混合して混合粉末とすることが好ましい。加えて本発明においては、前記ガラス粉末のd50値は10μm以下であることが好ましい。
【0011】
さらにもう一つの本発明は、組成が一般式:
Fe(100−X−Y−Z−α−β)SiCuαM’β (原子%)(但し、MはNb、W、Ta、Zr、Hf、Ti、Moからなる群から選ばれた少なくとも1種の元素、M’はV、Cr、Mn、Al、白金属元素、Sc、Y、Au、Zn、Sn、Re及びAgからなる群から選ばれた少なくとも1種の元素であり、X、Y、Z、α、β、はそれぞれ12≦X≦15、0<Y≦15、0.1≦Z≦3、0.1≦α≦30、0≦β≦10を満たす。)により表される合金溶湯を、水アトマイズ法により急冷凝固して非晶質磁性粉末とし、該非晶質磁性粉末を結晶化温度以上で熱処理して組織の少なくとも50%以上が結晶粒径100nm以下のナノ結晶組織とするナノ結晶磁性粉末の製造方法である。
【0012】
【発明の実施の形態】
上述したように、本発明の圧粉磁心の製造方法における重要な特徴は、水アトマイズ法により製造する磁性粉末として、一般式
Fe(100−X−Y−Z−α−β)SiCuαM’β (原子%)(但し、MはNb、W、Ta、Zr、Hf、Ti、Moからなる群から選ばれた少なくとも1種の元素、M’はV、Cr、Mn、Al、白金属元素、Sc、Y、Au、Zn、Sn、Re及びAgからなる群から選ばれた少なくとも1種の元素であり、X、Y、Z、α、β、はそれぞれ12≦X≦15、0<Y≦15、0.1≦Z≦3、0.1≦α≦30、0≦β≦10を満たす。)により表されるナノ結晶組織を発現可能な組成を適用することである。
【0013】
本発明者は従来の最も代表的なナノ結晶組織を発現可能な組成である、Fe73.5Si13.5NdCu(原子%)の組成を有する水アトマイズ法によるナノ結晶磁性粉末の圧粉磁心において、本来具備する磁気特性が得難い原因の検討を行った。その結果、水アトマイズ法により作製された非晶質磁性粉末では、熱処理前においてすでに部分的に結晶化しており、結晶粒径がすでに100nm以上に成長している結晶粒が存在することが判明した。そして、この非晶質磁性粉末に結晶化を目的とした熱処理を行った場合には、この結晶粒はさらに数百nmオーダーの粒径にまで成長するため、磁気特性が劣化していることが判明した。
【0014】
本発明は、これらの知見に基づき、水アトマイズ法に適する非晶質磁性粉末の組成の検討を行い、水アトマイズ法により非晶質磁性材料を製造する場合には、単ロール法場合と比べてB含有量の高い合金組成を適用することで優れた磁気特性を達成できることを見出したものである。
【0015】
具体的には、本発明ではBの含有量X(原子%)が12≦X≦15と極めて高い割合で含有させることで優れた磁気特性を達成することが出来る。
Bは急冷、凝固時における合金の非晶質化を促進する効果を有するものの、非磁性元素であり、磁性材料においてこれら非磁性元素の割合を高くすることは材料の磁気特性を低下させることにつながることが知られている。そのため非晶質磁性材料では、急冷、凝固時の非晶質化を達成できる範囲で、Bを低減した組成が検討されている。これに対して本発明は、非晶質磁性粉末の製造に水アトマイズ法を適用する場合には、B含有量を合計で12〜15%以上と従来検討されてきた含有量よりも高くする。
【0016】
Siも非晶質化を促進する効果を有するが、本発明において特にBに着目してその含有量の割合を従来と比べて増加させるのは、SiとBとを比較すると、BはFeとの原子半径の差がSiより大きく、Feの間に入り込んだ際に非晶質状態を安定にしやすいと考えられるからである。即ち本発明で取り扱うFe系の非晶質磁性粉末では、非晶質化に対する効果が顕著なBであれば、非磁性元素の割合を増加することによる弊害を顕在化することなく非晶質化を達成することができるのである。
【0017】
Cuは結晶化後の組織を微細化しbccFe相を形成しやすくする効果を有するので0.1%以上含有する。しかしながら含有量が3%を越えると脆化し実用的でなくなるので、その上限は3%以下とする。
【0018】
本発明において、MはNb、W、Ta、Zr、Hf、Ti、Moからなる群から選ばれた少なくとも1種の元素であり、熱処理時にCuと共に結晶粒成長を抑え組織を微細化する効果を有するので、0.1%以上含有する。一方、30%を越えると粉末が脆化しやすくなり磁心作製が困難となるためMの含有量は30%以下とする。上述の元素のうち、特にNbは微細化する効果が高く好ましい。
【0019】
M’はV、Cr、Mn、Al、白金属元素、Sc、Y、Au、Zn、Sn、Re及びAgからなる群から選ばれた少なくとも1種の元素であり磁気特性を改善したり耐蝕性を改善する効果を有する。一方、含有量が10%を越えると粉末が脆化しやすくなり磁心作製が困難となるためM’の含有量は10%以下とする。特に、水アトマイズ法により非晶質磁性粉末を製造する場合には、製造時に粉末表面において酸化を生じやすいので、酸化による磁気特性の劣化を抑制するにはβは0.5%以上とすることが好ましい。上述の元素のうち、Crは特に酸化の低減に有効であり好ましい。
【0020】
本発明では上述の組成を有するナノ結晶磁性粉末、または熱処理により前記ナノ結晶組織を発現可能な組成の非晶質磁性粉末を成形、固着して圧粉磁心とするが、これら工程は、ナノ結晶磁性粉末または非晶質磁性粉末と結着性樹脂とガラス粉末を混合して混合粉末とし、該混合粉末を圧縮成形して成形体とし、該成形体を前記ガラス粉末の軟化点以上、600℃以下で熱処理して軟化したガラス粉末により固着することで行うことが好ましい。
【0021】
金型等を用いて圧縮成形することで、磁性粉末を効率的に成形することができるが、この際、磁性粉末のみでは圧縮成形した後の成形体は外力により容易に破壊される。これに対して、結着性樹脂を磁性粉末と混合して用いることで成形体の結合強度を高め、取り扱いを容易にすることが出来るのである。この結着性樹脂は、その混合量を増やすことで結合強度は増加するが、混合した分だけ成形体中における磁性合金の量が少なくなり、圧粉磁心とした際の磁気特性が低下する場合があるので、結着性樹脂は磁性粉末に対して5重量%以下の割合で混合することが好ましい。圧粉磁心の成形に適用できる結着性樹脂として、PVA(ポリビニルアルコール)やエポキシ樹脂、或いは軟質のフェノール樹脂、アクリル樹脂などの有機物バインダーを挙げることができる。
【0022】
また、結着性樹脂と併せてガラス粉末を磁性粉末と共に混合して用いることが好ましいが、これは以下の理由からである。
圧粉磁心を電気部品として用いた際の渦電流損失を抑制するには、磁性粉末間に絶縁層を設けることが有効であるが、ガラス粉末を磁性粉末等と混合し、成形後にガラス粉末の軟化点以上、600℃以下で熱処理して軟化したガラス粉末により固着することで、固着と同時に絶縁層を形成することが出来る。これは、ガラス粉末が軟化すると磁性粉末間に広く濡れ広がるためである。また、ガラス粉末は、エポキシ樹脂等と比べて固化時の体積変化が小さいので、固化後に磁性粉末に生じる応力低減でき、磁性粉末の優れた磁気特性の劣化を抑制できるのである。
【0023】
なお、本発明において熱処理温度を600℃以下と規定するのは、熱処理後において組織の少なくとも50%以上が結晶粒径100nm以下を達成するためである。
この際、ガラス粉末の軟化点以上、600℃以下での熱処理時に、磁性粉末の固着と同時に非晶質組織をナノ結晶化することが生産効率を向上するために好ましい。
【0024】
本発明で用いる軟化点が600℃以下のガラス粉末としては、ガラス粉末として組成中に50質量%以上のBiを含有するBi系ガラス粉末を挙げることができる。Bi系ガラス粉末は軟化点の降下を目的として組成中にPbを含有させることなく上述の軟化点を達成することが可能であり、圧粉磁心が廃棄された際のPbによる環境汚染を低減することができる。
【0025】
また以上に述べた本発明において、磁性粉末には粒径の分布において二つのピークを示す粉末を用いることが好ましい。粒径の分布において二つのピークを示す粉末を用いることにより、図1に示すように粒径の大きい磁性粉末1の間隙に粒径の小さい磁性粉末2が分散する形でガラス粉末3により結着させることができる。これにより一つのピークのみを示す粉末を用いる場合と比べて、圧粉磁心における磁性粉末の占める割合を向上することができ、その結果、圧粉磁心の透磁率向上、磁心損失の低減を達成することができる。
【0026】
具体的には、d50が35μm以上の磁性粉末(第一粒子)とd50が15μm以下の磁性粉末(第二粒子)を混合することが好ましい。d50値とは積算粒度分布曲線の50%粒径と定義されるメジアン粒径である。より好ましくは、粒子径の比率としては第一粒子のd50値と第二粒子のd50値の比が5倍以上である。また、第一粒子と第二粒子とを混合する際、その混合比は第二粒子の粉末量が質量%で40%以下であることが好ましい。
【0027】
また、ガラス粉末についても、図1に示すように粒径の大きい磁性粉末1の間隙に粒径の小さい磁性粉末2が分散する形でガラス粉末3により結着させることができるように、メジアン粒径が10μm以下であることが好ましい。
【0028】
また、もう一つの本発明である、組成が一般式:
Fe(100−X−Y−Z−α−β)SiCuαM’β (原子%)(但し、MはNb、W、Ta、Zr、Hf、Ti、Moからなる群から選ばれた少なくとも1種の元素、M’はV、Cr、Mn、Al、白金属元素、Sc、Y、Au、Zn、Sn、Re及びAgからなる群から選ばれた少なくとも1種の元素であり、X、Y、Z、α、β、はそれぞれ12≦X≦15、0<Y≦15、0.1≦Z≦3、0.1≦α≦30、0≦β≦10を満たす。)により表される合金溶湯を、水アトマイズ法により急冷凝固して非晶質磁性粉末とし、該非晶質磁性粉末を結晶化温度以上で熱処理して組織の少なくとも50%以上が結晶粒径100nm以下のナノ結晶組織とするナノ結晶磁性粉末の製造方法により製造されたナノ結晶磁性粉末は、既に述べたのと同様の理由から、優れた磁気特性を達成することができる。本発明の製造方法で得られるナノ結晶磁性粉末は、圧粉磁心のほか、磁気シールド材等に好適に用いることができる。
【0029】
【実施例】
表1に示す合金組成の磁性粉末を水アトマイズ法により作製し、X線回折解析により磁性粉末における結晶組織の有無を確認した。その際のX線チャートを図2、図3に示す。Bの含有量が12〜15原子%である本発明例1〜4では図2に一例を示すように、明確なピークは見られず、非晶質組織であることが確認できた。これに対して、Bの含有量が12原子%より低い比較例では、図3に示すように明かなピークが現れており、組織が部分的に結晶化していることが確認できた。
【0030】
【表1】

Figure 2004349585
【0031】
次に本発明例1〜4及び比較例の合金組成の磁性粉末を用いて、下記の方法により圧粉磁心を作製し、磁気特性の比較を行った。
【0032】
各合金組成の粉末について、表2に示す粒径の異なる2種の粉末を準備し、それぞれメジアン粒径d50大、及びメジアン粒径d50小の粉末を7:3の割合で混合して粒径分布において2つのピークを有する混合磁性粉末とした。この混合磁性粉末と、Bi系ガラス粉末[組成:81Bi−2.5Al−4.5Si−5Zn−1.3B―O(質量%)、d50:1.0μm、軟化点:約455℃]と、結着性樹脂[ポリビニルアルコール粉末]とを下記の配合比率にて、ヘンシェルミキサーを用いて混合し、その後、80℃の条件で混合しながら乾燥させた。なお、本実施例では可塑剤[グリセリン10質量%溶液]も併せて混合した。
【0033】
【表2】
Figure 2004349585
【0034】
−配合比率(質量比率)−
混合磁性粉末:100
Bi系ガラス粉末:1
結着性樹脂:1
可塑剤:10
【0035】
上記の混合粉末を#250篩にてふるった後に、潤滑剤としてステアリン酸を添加し、金型内に混合粉末を挿入して2.0GPaの条件で加圧し、外径14、内径8、厚さ5(mm)の形状に成形した。なおステアリン酸は質量比率で混合粉末112に対して1の割合で添加した。
上記の成形体を、Bi系ガラス粉末の軟化点である455℃と比べて十分に高い温度である580℃のN雰囲気中において2h熱処理し、Bi系ガラス粉末の軟化、及び磁性粉末のナノ結晶化を行い圧粉磁心とした。
【0036】
得られた圧粉磁心についてバイアス磁界Hが0(A/m)のときの増分比透磁率μrH=0及び保磁力Hの比較を行った。増分比透磁率μrH=0はLCRメータにより、また保磁力は直流B−Hトレーサーにより測定した。結果を表3に示す。本発明例1〜4の圧粉磁心では何れも増分比透磁率μrH=0については55.8〜68.9の値、保磁力Hについては12〜19の値となり、優れた軟磁気特性を示した。一方、比較例では何れの本発明例と比較しても、増分比透磁率μrH=0は低い値を示し、保磁力Hはかなり高い値を示した。
【0037】
さらに、圧粉磁心に対してバイアス磁界Hを0〜13000(A/m)で変化させて付与しながら、各バイアス磁界での増分比透磁率を測定することにより、圧粉磁心の直流重畳特性の評価を行った。本発明例1の圧粉磁心及び比較例の圧粉磁心における測定結果を図4に示す。
図4から明らかなように、本発明例1ではバイアス磁界が0〜13000(A/m)の範囲で比較例と比べて増分比透磁率は高く、優れた直流重畳特性を示す。本発明例1以外の本発明例2〜4においても、本発明例1と同様に比較例と比べて優れた直流重畳特性を示した。
【0038】
【表3】
Figure 2004349585
【0039】
【発明の効果】
本発明によれば、ナノ結晶磁性材料が本来具備する優れた磁気特性を圧粉磁心においても引き出すことが出来る、磁気特性に優れる圧粉磁心の製造方法及びナノ結晶磁性粉末の製造が可能となり、ナノ結晶磁性材料の工業的利用において重要な技術である。
【図面の簡単な説明】
【図1】本発明の製造方法による圧粉磁心における磁性粉末等の分布形態の一例を示す模式図である。
【図2】本発明例の磁性粉末における熱処理前のX線回折チャートを示す図である。
【図3】比較例の磁性粉末における熱処理前のX線回折チャートを示す図である。
【図4】本発明例及び比較例の圧粉磁心における直流重畳特性を示す図である。
【符号の説明】
1.粒径の大きい磁性粉、2.粒径の小さい磁性粉末、3.Bi系ガラス[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a dust core used for electronic equipment and the like and a method for producing a nanocrystalline magnetic powder.
[0002]
[Prior art]
Conventionally, a ferrite core has been used as a choke coil or the like for a power supply device. In recent years, a magnetic core using a laminated foil of insulated magnetic steel sheets has been used in place of ferrite due to problems such as miniaturization and high frequency of power supply devices and the like, but cut and used because the magnetic permeability is too high. And a loss due to a leakage magnetic field from the cut portion becomes a problem. Therefore, a dust core in which magnetic powder, which is a powdery magnetic material, is joined with a binder has been used. The dust core is obtained by mixing a magnetic powder and a binder such as a binder resin into a mixed powder, and then molding the mixed powder into a magnetic core shape. Amorphous magnetic materials obtained by quenching molten metal are widely used as magnetic powders used for dust cores.
[0003]
Furthermore, practical use of a dust core using a nanocrystalline magnetic material has been actively studied in recent years because of its excellent magnetic properties such as magnetic permeability. A nanocrystalline magnetic material is a soft magnetic material in which at least 50% or more of the structure is a nanocrystalline structure having a crystal grain size of 100 nm or less. It is manufactured by heat treatment at
Conventionally, among the nanocrystalline magnetic materials, a material having a composition of Fe 73.5 Si 13.5 B 9 Nd 3 Cu 1 (atomic%) exhibits excellent characteristics of high magnetic permeability and low magnetostriction, and thus is particularly preferable. It is receiving attention (for example, see Non-Patent Document 1).
[0004]
By the way, the applications in which the above-mentioned amorphous magnetic material and nanocrystalline magnetic material have been widely put into practical use from an early stage are, for example, a wound core in which the material is not in the form of a powder but in the form of a band, a magnetic shield material, and the like. These band-shaped amorphous magnetic materials and nanocrystalline magnetic materials are generally manufactured by a single roll method. In contrast, amorphous magnetic powders and nanocrystalline magnetic powders used for dust cores are often produced by a water atomizing method. Amorphous magnetic powders and nanocrystalline magnetic powders can be produced by a single-roll method by mechanically pulverizing an amorphous magnetic material or nanocrystalline magnetic material that has been cast into a belt once, but a water atomizing method is also possible. If so, it can be cast directly into a powder and is efficient.
[0005]
[Non-patent document 1]
Kiyotaka Yamauchi, Katsuhito Yoshizawa: Journal of the Japan Society of Applied Magnetics, vol. 14,
pp. 684-688 (1990)
[0006]
[Problems to be solved by the invention]
As described above, nanocrystalline magnetic materials are known to have excellent magnetic properties such as magnetic permeability. However, as a result of a detailed study of the application of the nanocrystalline magnetic powder produced by the water atomizing method to a dust core, it was found that the magnetic properties originally expected were not obtained. That is, in a dust core made of a nanocrystalline magnetic powder using an amorphous magnetic powder produced by a water atomizing method, an amorphous magnetic material once cast into a belt shape is mechanically pulverized by a single roll method. The magnetic properties were found to be lower than those using the amorphous magnetic powder to be produced.
[0007]
An object of the present invention is to provide a method for producing a dust core having excellent magnetic properties and a method for producing a nanocrystalline magnetic powder, wherein the excellent magnetic properties inherent to the nanocrystalline magnetic material can be brought out even in the dust core. That is.
[0008]
[Means for Solving the Problems]
The inventor of the present invention has found that the decrease in the magnetic properties of the dust core is caused by a difference in the production method of the amorphous magnetic powder, and by adjusting to an alloy composition suitable for the production method, the magnetic properties are more excellent. The present invention was found to be a dust core, and the present invention was conceived.
[0009]
That is, the present invention provides either a nanocrystalline magnetic powder having a nanocrystalline structure in which at least 50% or more of the structure has a crystal grain size of 100 nm or less, or an amorphous magnetic powder having a composition capable of expressing the nanocrystalline structure by heat treatment. A method of manufacturing a dust core for molding and fixing a certain magnetic powder, wherein the magnetic powder is manufactured by a water atomizing method,
General formula:
Fe (100-X-Y- Z-α-β) B X Si Y Cu Z M α M 'β ( atomic%) (where, M is Nb, W, Ta, Zr, Hf, Ti, the group consisting of Mo M ′ is at least one element selected from the group consisting of V, Cr, Mn, Al, a white metal element, Sc, Y, Au, Zn, Sn, Re, and Ag. Where X, Y, Z, α, and β satisfy 12 ≦ X ≦ 15, 0 <Y ≦ 15, 0.1 ≦ Z ≦ 3, 0.1 ≦ α ≦ 30, and 0 ≦ β ≦ 10, respectively. ) Is a method for producing a dust core having a composition represented by:
[0010]
In the present invention, the magnetic powder, the binder resin, and the glass powder are mixed to form a mixed powder, and the mixed powder is compression-molded to obtain a molded product. It is preferable to fix with glass powder softened by heat treatment below.
At this time, the magnetic powder is an amorphous magnetic powder, and it is preferable that the amorphous magnetic powder has a nanocrystalline structure during a heat treatment at a softening point or higher and 600 ° C. or lower.
Further, in the present invention, it is preferable that the magnetic powder having a d50 value of 35 μm or more and the magnetic powder having a d50 value of 15 μm or less be mixed to form a mixed powder. In addition, in the present invention, the glass powder preferably has a d50 value of 10 μm or less.
[0011]
Still another invention relates to a composition of the general formula:
Fe (100-X-Y- Z-α-β) B X Si Y Cu Z M α M 'β ( atomic%) (where, M is Nb, W, Ta, Zr, Hf, Ti, the group consisting of Mo M ′ is at least one element selected from the group consisting of V, Cr, Mn, Al, a white metal element, Sc, Y, Au, Zn, Sn, Re, and Ag. Where X, Y, Z, α, and β satisfy 12 ≦ X ≦ 15, 0 <Y ≦ 15, 0.1 ≦ Z ≦ 3, 0.1 ≦ α ≦ 30, and 0 ≦ β ≦ 10, respectively. ) Is rapidly solidified by a water atomizing method to obtain an amorphous magnetic powder, and the amorphous magnetic powder is heat-treated at a crystallization temperature or higher so that at least 50% of the structure has a crystal grain size of 100 nm. This is a method for producing a nanocrystalline magnetic powder having the following nanocrystalline structure.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, an important feature of the method for producing a dust core of the present invention is that a magnetic powder produced by a water atomizing method has a general formula of Fe (100-XY-Z-α-β) B X Si Y Cu Z M α M 'β (atomic%) (where, M is Nb, W, Ta, Zr, Hf, Ti, at least one element selected from the group consisting of Mo, M' is V, Cr, Mn , Al, a white metal element, Sc, Y, Au, Zn, Sn, Re, and Ag, and at least one element selected from the group consisting of X, Y, Z, α, and β each satisfying 12 ≦ X ≤ 15, 0 <Y ≤ 15, 0.1 ≤ Z ≤ 3, 0.1 ≤ α ≤ 30, and 0 ≤ β ≤ 10.) It is.
[0013]
The present inventor has developed a nanocrystalline magnetic material having a composition of Fe 73.5 Si 13.5 B 9 Nd 3 Cu 1 (atomic%), which is a composition capable of expressing the most typical conventional nanocrystalline structure, by a water atomizing method. The cause of the difficulty in obtaining the inherent magnetic properties of the powder dust core was examined. As a result, it was found that in the amorphous magnetic powder produced by the water atomizing method, some crystal grains had already partially crystallized before the heat treatment and the crystal grain size had already grown to 100 nm or more. . When the amorphous magnetic powder is subjected to a heat treatment for crystallization, the crystal grains further grow to a grain size on the order of several hundred nm, so that the magnetic properties may be deteriorated. found.
[0014]
Based on these findings, the present invention examines the composition of an amorphous magnetic powder suitable for a water atomization method, and when producing an amorphous magnetic material by a water atomization method, compared with a single roll method. It has been found that excellent magnetic properties can be achieved by applying an alloy composition having a high B content.
[0015]
Specifically, in the present invention, an excellent magnetic property can be achieved by making the content X (atomic%) of B extremely high as 12 ≦ X ≦ 15.
B has the effect of promoting the amorphousization of the alloy during quenching and solidification, but is a non-magnetic element. Increasing the proportion of these non-magnetic elements in a magnetic material decreases the magnetic properties of the material. It is known to be connected. Therefore, in the amorphous magnetic material, a composition in which B is reduced has been studied as long as the amorphous magnetic material can be made amorphous during quenching and solidification. On the other hand, in the present invention, when the water atomization method is applied to the production of the amorphous magnetic powder, the B content is set to 12 to 15% or more in total, which is higher than the content which has been conventionally studied.
[0016]
Although Si also has an effect of promoting the amorphization, the reason why the present invention focuses on B in particular and increases the content ratio as compared with the conventional one is that when B is compared with Si, B becomes Fe and Is larger than that of Si, and it is considered that the amorphous state is easily stabilized when entering between Fe. That is, in the case of Fe-based amorphous magnetic powder handled in the present invention, if B has a remarkable effect on amorphization, the Fe-based amorphous magnetic powder can be amorphized without increasing the adverse effect of increasing the proportion of nonmagnetic elements. Can be achieved.
[0017]
Cu has an effect of refining the structure after crystallization and facilitating the formation of a bccFe phase. However, if the content exceeds 3%, it becomes brittle and impractical, so the upper limit is 3% or less.
[0018]
In the present invention, M is at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, and Mo, and has an effect of suppressing crystal grain growth together with Cu during heat treatment to refine the structure. 0.1% or more. On the other hand, if it exceeds 30%, the powder is apt to be embrittled and it becomes difficult to produce a magnetic core, so the content of M is set to 30% or less. Of the above-mentioned elements, Nb is particularly preferred because of its high effect of miniaturization.
[0019]
M ′ is at least one element selected from the group consisting of V, Cr, Mn, Al, a white metal element, Sc, Y, Au, Zn, Sn, Re and Ag, and improves magnetic properties and corrosion resistance Has the effect of improving On the other hand, if the content exceeds 10%, the powder is easily embrittled and it becomes difficult to produce a magnetic core. Therefore, the content of M ′ is set to 10% or less. In particular, when an amorphous magnetic powder is produced by the water atomizing method, oxidation is likely to occur on the powder surface during the production. Therefore, β should be 0.5% or more to suppress the deterioration of the magnetic properties due to oxidation. Is preferred. Of the above-mentioned elements, Cr is particularly effective and effective in reducing oxidation.
[0020]
In the present invention, a nanocrystalline magnetic powder having the above-described composition, or an amorphous magnetic powder having a composition capable of expressing the nanocrystalline structure by heat treatment is formed and fixed into a dust core. A magnetic powder or an amorphous magnetic powder, a binder resin, and a glass powder are mixed to form a mixed powder, and the mixed powder is compression-molded to form a molded body. It is preferable that the heat treatment is performed by fixing with a glass powder softened by heat treatment.
[0021]
The magnetic powder can be efficiently molded by compression molding using a mold or the like, but at this time, the molded body after compression molding is easily broken by an external force using only the magnetic powder. On the other hand, by using the binder resin mixed with the magnetic powder, the bonding strength of the molded body can be increased and the handling can be facilitated. The binding strength of the binder resin is increased by increasing the amount of the binder resin, but the amount of the magnetic alloy in the molded body is reduced by the amount of the mixture, and the magnetic properties of the dust core are reduced. Therefore, the binder resin is preferably mixed at a ratio of 5% by weight or less based on the magnetic powder. Examples of the binding resin applicable to the molding of the dust core include an organic binder such as PVA (polyvinyl alcohol) or an epoxy resin, or a soft phenol resin or an acrylic resin.
[0022]
Further, it is preferable to use a glass powder mixed with a magnetic resin together with a binder resin, for the following reasons.
In order to suppress the eddy current loss when the dust core is used as an electric component, it is effective to provide an insulating layer between the magnetic powders. By fixing with a glass powder softened by heat treatment at a softening point or higher and 600 ° C. or lower, an insulating layer can be formed simultaneously with the fixing. This is because when the glass powder softens, it spreads widely between the magnetic powders. Further, since the volume change of the glass powder during the solidification is smaller than that of the epoxy resin or the like, the stress generated in the magnetic powder after the solidification can be reduced, and the deterioration of the excellent magnetic properties of the magnetic powder can be suppressed.
[0023]
In the present invention, the heat treatment temperature is specified to be 600 ° C. or less so that at least 50% or more of the structure attains a crystal grain size of 100 nm or less after the heat treatment.
At this time, it is preferable to nanocrystallize the amorphous structure simultaneously with the fixation of the magnetic powder during the heat treatment at a temperature not lower than the softening point of the glass powder and not higher than 600 ° C. in order to improve production efficiency.
[0024]
Examples of the glass powder having a softening point of 600 ° C. or lower used in the present invention include a Bi-based glass powder containing 50% by mass or more of Bi in the composition as the glass powder. The Bi-based glass powder can achieve the above softening point without containing Pb in the composition for the purpose of lowering the softening point, and reduces environmental pollution due to Pb when the dust core is discarded. be able to.
[0025]
In the present invention described above, it is preferable to use a powder that shows two peaks in the particle size distribution as the magnetic powder. By using a powder that shows two peaks in the distribution of the particle size, as shown in FIG. 1, the magnetic powder 2 having a small particle size is dispersed in the gaps between the magnetic powders 1 having a large particle size and bound by the glass powder 3. Can be done. As a result, the ratio of the magnetic powder occupied in the dust core can be improved as compared with the case of using a powder showing only one peak, and as a result, the permeability of the dust core is improved, and the core loss is reduced. be able to.
[0026]
Specifically, it is preferable to mix a magnetic powder (first particles) having a d50 of 35 μm or more and a magnetic powder (second particles) having a d50 of 15 μm or less. The d50 value is a median particle size defined as a 50% particle size in an integrated particle size distribution curve. More preferably, the ratio of the d50 value of the first particles to the d50 value of the second particles is 5 times or more as the ratio of the particle diameters. Further, when the first particles and the second particles are mixed, the mixing ratio is preferably such that the powder amount of the second particles is 40% or less by mass%.
[0027]
Also, as shown in FIG. 1, the median particle size of the glass powder is set so that the magnetic powder 2 having a small particle size is dispersed in the gap between the magnetic powders 1 having a large particle size. The diameter is preferably 10 μm or less.
[0028]
In another embodiment of the present invention, the composition has a general formula:
Fe (100-X-Y- Z-α-β) B X Si Y Cu Z M α M 'β ( atomic%) (where, M is Nb, W, Ta, Zr, Hf, Ti, the group consisting of Mo M ′ is at least one element selected from the group consisting of V, Cr, Mn, Al, a white metal element, Sc, Y, Au, Zn, Sn, Re, and Ag. Where X, Y, Z, α, and β satisfy 12 ≦ X ≦ 15, 0 <Y ≦ 15, 0.1 ≦ Z ≦ 3, 0.1 ≦ α ≦ 30, and 0 ≦ β ≦ 10, respectively. ) Is rapidly solidified by a water atomizing method to obtain an amorphous magnetic powder, and the amorphous magnetic powder is heat-treated at a crystallization temperature or higher so that at least 50% of the structure has a crystal grain size of 100 nm. Nanocrystalline magnetic powder produced by the method for producing a nanocrystalline magnetic powder having the following nanocrystalline structure, For the same reasons as stated, it is possible to achieve excellent magnetic properties. The nanocrystalline magnetic powder obtained by the production method of the present invention can be suitably used as a magnetic shield material in addition to a dust core.
[0029]
【Example】
Magnetic powders having the alloy compositions shown in Table 1 were produced by a water atomizing method, and the presence or absence of a crystal structure in the magnetic powders was confirmed by X-ray diffraction analysis. X-ray charts at that time are shown in FIGS. In Examples 1 to 4 of the present invention in which the content of B is 12 to 15 atomic%, as shown in FIG. 2, no clear peak was observed, and it was confirmed that the sample had an amorphous structure. On the other hand, in the comparative example in which the B content was lower than 12 atomic%, a clear peak appeared as shown in FIG. 3, and it was confirmed that the structure was partially crystallized.
[0030]
[Table 1]
Figure 2004349585
[0031]
Next, using the magnetic powders of the alloy compositions of Examples 1 to 4 of the present invention and Comparative Example, dust cores were produced by the following method, and the magnetic properties were compared.
[0032]
For the powders of each alloy composition, two kinds of powders having different particle diameters shown in Table 2 are prepared, and powders each having a large median particle diameter d50 and a small median particle diameter d50 are mixed at a ratio of 7: 3 to obtain a particle diameter. A mixed magnetic powder having two peaks in the distribution was obtained. This mixed magnetic powder and Bi-based glass powder [composition: 81 Bi-2.5Al-4.5Si-5Zn-1.3BO (mass%), d50: 1.0 μm, softening point: about 455 ° C.] The binder resin [polyvinyl alcohol powder] was mixed at the following mixing ratio using a Henschel mixer, and then dried while mixing at 80 ° C. In this example, a plasticizer [10% by mass of glycerin solution] was also mixed.
[0033]
[Table 2]
Figure 2004349585
[0034]
-Compounding ratio (mass ratio)-
Mixed magnetic powder: 100
Bi-based glass powder: 1
Binder resin: 1
Plasticizer: 10
[0035]
After the above mixed powder is sieved with a # 250 sieve, stearic acid is added as a lubricant, and the mixed powder is inserted into a mold and pressurized under the condition of 2.0 GPa. It was formed into a shape of 5 (mm). Note that stearic acid was added at a ratio of 1 to the mixed powder 112 in a mass ratio.
The above-mentioned molded body is heat-treated for 2 hours in an N 2 atmosphere at 580 ° C., which is sufficiently higher than 455 ° C., which is the softening point of the Bi-based glass powder, to soften the Bi-based glass powder and to prepare a nano-sized magnetic powder. Crystallization was performed to obtain a dust core.
[0036]
The resulting dust core for the bias magnetic field H is performed increment ratio comparison of permeability .mu.r H = 0 and the coercive force H C when the 0 (A / m). The incremental relative magnetic permeability μr H = 0 was measured by an LCR meter, and the coercive force was measured by a DC BH tracer. Table 3 shows the results. The powder magnetic cores of Examples 1 to 4 of the present invention each had an incremental relative permeability μr H = 0 of 55.8 to 68.9, and a coercive force H C of 12 to 19, showing excellent soft magnetic properties. The characteristics were shown. On the other hand, in the comparative example as compared to any of the inventive examples, the incremental relative permeability .mu.r H = 0 indicates a low value, the coercivity H C showed a significantly higher value.
[0037]
Further, while applying a bias magnetic field H at 0 to 13000 (A / m) while applying a bias magnetic field H to the dust core, the DC superposition characteristics of the dust core are measured by measuring the incremental relative permeability at each bias magnetic field. Was evaluated. FIG. 4 shows the measurement results of the dust core of Example 1 of the present invention and the dust core of Comparative Example.
As is clear from FIG. 4, in Example 1 of the present invention, when the bias magnetic field was in the range of 0 to 13000 (A / m), the incremental ratio magnetic permeability was higher than that of the comparative example, and excellent DC bias characteristics were exhibited. Inventive Examples 2 to 4 other than Inventive Example 1 also exhibited excellent DC superposition characteristics as compared with Comparative Example, similarly to Inventive Example 1.
[0038]
[Table 3]
Figure 2004349585
[0039]
【The invention's effect】
According to the present invention, the excellent magnetic properties inherent in the nanocrystalline magnetic material can be extracted even in the dust core, and a method of manufacturing a dust core having excellent magnetic properties and the production of the nanocrystalline magnetic powder can be achieved. This is an important technology in industrial use of nanocrystalline magnetic materials.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a distribution form of magnetic powder and the like in a dust core according to a production method of the present invention.
FIG. 2 is a view showing an X-ray diffraction chart of a magnetic powder of an example of the present invention before heat treatment.
FIG. 3 is a diagram showing an X-ray diffraction chart of a magnetic powder of a comparative example before heat treatment.
FIG. 4 is a diagram showing DC superimposition characteristics in the dust cores of the present invention example and the comparative example.
[Explanation of symbols]
1. 1. magnetic powder having a large particle size; 2. magnetic powder having a small particle size; Bi-based glass

Claims (6)

組織の少なくとも50%以上が結晶粒径100nm以下のナノ結晶組織を有するナノ結晶磁性粉末、または熱処理により前記ナノ結晶組織を発現可能な組成の非晶質磁性粉末の何れかである磁性粉末を成形、固着する圧粉磁心の製造方法であって、前記磁性粉末は、水アトマイズ法により製造されてなり、
一般式:
Fe(100−X−Y−Z−α−β)SiCuαM’β (原子%)(但し、MはNb、W、Ta、Zr、Hf、Ti、Moからなる群から選ばれた少なくとも1種の元素、M’はV、Cr、Mn、Al、白金属元素、Sc、Y、Au、Zn、Sn、Re及びAgからなる群から選ばれた少なくとも1種の元素であり、X、Y、Z、α、β、はそれぞれ12≦X≦15、0<Y≦15、0.1≦Z≦3、0.1≦α≦30、0≦β≦10を満たす。)により表される組成であることを特徴とする圧粉磁心の製造方法。
Forming a magnetic powder that is either a nanocrystalline magnetic powder having a nanocrystalline structure in which at least 50% or more of the structure has a crystal grain size of 100 nm or less, or an amorphous magnetic powder having a composition capable of expressing the nanocrystalline structure by heat treatment A method for producing a dust core to be fixed, wherein the magnetic powder is produced by a water atomizing method,
General formula:
Fe (100-X-Y- Z-α-β) B X Si Y Cu Z M α M 'β ( atomic%) (where, M is Nb, W, Ta, Zr, Hf, Ti, the group consisting of Mo M ′ is at least one element selected from the group consisting of V, Cr, Mn, Al, a white metal element, Sc, Y, Au, Zn, Sn, Re, and Ag. Where X, Y, Z, α, and β satisfy 12 ≦ X ≦ 15, 0 <Y ≦ 15, 0.1 ≦ Z ≦ 3, 0.1 ≦ α ≦ 30, and 0 ≦ β ≦ 10, respectively. )), A method for producing a dust core.
前記磁性粉末と結着性樹脂とガラス粉末を混合して混合粉末とし、該混合粉末を圧縮成形して成形体とし、該成形体を前記ガラス粉末の軟化点以上、600℃以下で熱処理して軟化したガラス粉末により固着することを特徴とする請求項1に記載の圧粉磁心の製造方法。The magnetic powder, the binder resin, and the glass powder are mixed to form a mixed powder, and the mixed powder is compression-molded to form a molded body. The method for producing a dust core according to claim 1, wherein the dust core is fixed by softened glass powder. 前記磁性粉末は非晶質磁性粉末であり軟化点以上、600℃以下での熱処理時に、非晶質磁性粉末をナノ結晶組織とすることを特徴とする請求項2に記載の圧粉磁心の製造方法。3. The powder magnetic core according to claim 2, wherein the magnetic powder is an amorphous magnetic powder, and has a nanocrystalline structure when subjected to a heat treatment at a softening point or higher and 600 ° C. or lower. Method. d50値が35μm以上の磁性粉末と、d50値が15μm以下の磁性粉末とを混合して混合粉末とすることを特徴とする請求項1乃至3の何れかに記載の圧粉磁心の製造方法。The method according to any one of claims 1 to 3, wherein a magnetic powder having a d50 value of 35 µm or more and a magnetic powder having a d50 value of 15 µm or less are mixed to form a mixed powder. 前記ガラス粉末はd50値が10μm以下であることを特徴とする請求項2乃至4の何れかに記載の圧粉磁心の製造方法。The method for producing a dust core according to any one of claims 2 to 4, wherein the glass powder has a d50 value of 10 µm or less. 組成が一般式:
Fe(100−X−Y−Z−α−β)SiCuαM’β (原子%)(但し、MはNb、W、Ta、Zr、Hf、Ti、Moからなる群から選ばれた少なくとも1種の元素、M’はV、Cr、Mn、Al、白金属元素、Sc、Y、Au、Zn、Sn、Re及びAgからなる群から選ばれた少なくとも1種の元素であり、X、Y、Z、α、β、はそれぞれ12≦X≦15、0<Y≦15、0.1≦Z≦3、0.1≦α≦30、0≦β≦10を満たす。)により表される合金溶湯を、水アトマイズ法により急冷凝固して非晶質磁性粉末とし、該非晶質磁性粉末を結晶化温度以上で熱処理して組織の少なくとも50%以上が結晶粒径100nm以下のナノ結晶組織とすることを特徴とするナノ結晶磁性粉末の製造方法。
The composition has the general formula:
Fe (100-X-Y- Z-α-β) B X Si Y Cu Z M α M 'β ( atomic%) (where, M is Nb, W, Ta, Zr, Hf, Ti, the group consisting of Mo M ′ is at least one element selected from the group consisting of V, Cr, Mn, Al, a white metal element, Sc, Y, Au, Zn, Sn, Re, and Ag. Where X, Y, Z, α, and β satisfy 12 ≦ X ≦ 15, 0 <Y ≦ 15, 0.1 ≦ Z ≦ 3, 0.1 ≦ α ≦ 30, and 0 ≦ β ≦ 10, respectively. ) Is rapidly solidified by a water atomizing method to obtain an amorphous magnetic powder, and the amorphous magnetic powder is heat-treated at a crystallization temperature or higher so that at least 50% of the structure has a crystal grain size of 100 nm. A method for producing a nanocrystalline magnetic powder having the following nanocrystalline structure.
JP2003146927A 2003-05-23 2003-05-23 Method of manufacturing dust core and nanocrystalline magnetic powder Pending JP2004349585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003146927A JP2004349585A (en) 2003-05-23 2003-05-23 Method of manufacturing dust core and nanocrystalline magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003146927A JP2004349585A (en) 2003-05-23 2003-05-23 Method of manufacturing dust core and nanocrystalline magnetic powder

Publications (1)

Publication Number Publication Date
JP2004349585A true JP2004349585A (en) 2004-12-09

Family

ID=33533642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003146927A Pending JP2004349585A (en) 2003-05-23 2003-05-23 Method of manufacturing dust core and nanocrystalline magnetic powder

Country Status (1)

Country Link
JP (1) JP2004349585A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179621A (en) * 2004-12-21 2006-07-06 Seiko Epson Corp Molding body and manufacturing method thereof
JP2007112901A (en) * 2005-10-20 2007-05-10 Nitto Denko Corp Adhesive type optical film and its production method
WO2008007345A2 (en) * 2006-07-12 2008-01-17 Vacuumschmelze Gmbh & Co. Kg Method for the production of magnet cores; magnet core and inductive component with a magnet core
DE112008000720T5 (en) 2007-03-20 2010-04-29 Nec Tokin Corp., Sendai Soft magnetic alloy, the magnetic part using soft magnetic alloy and method of making the same
JP2010114222A (en) * 2008-11-05 2010-05-20 Tamura Seisakusho Co Ltd Dust core and method of manufacturing the same
JP2010141183A (en) * 2008-12-12 2010-06-24 Tamura Seisakusho Co Ltd Dust core and method of producing the same
JP2011040473A (en) * 2009-08-07 2011-02-24 Tamura Seisakusho Co Ltd Powder magnetic core and method of manufacturing the same
JP2011038133A (en) * 2009-08-07 2011-02-24 Tamura Seisakusho Co Ltd Powder magnetic core and method for producing the same
US7938915B2 (en) 2005-08-08 2011-05-10 Hitachi Metals, Ltd. Rare earth alloy binderless magnet and method for manufacture thereof
US8012270B2 (en) 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
US8277579B2 (en) 2006-12-04 2012-10-02 Tohoku Techno Arch Co., Ltd. Amorphous alloy composition
US8327524B2 (en) 2000-05-19 2012-12-11 Vacuumscmelze Gmbh & Co. Kg Inductive component and method for the production thereof
US8372218B2 (en) 2006-06-19 2013-02-12 Vacuumschmelze Gmbh & Co. Kg Magnet core and method for its production
US8491731B2 (en) 2008-08-22 2013-07-23 Akihiro Makino Alloy composition, Fe-based nano-crystalline alloy and forming method of the same and magnetic component
JP2014075529A (en) * 2012-10-05 2014-04-24 Nec Tokin Corp Soft magnetic alloy powder, powder-compact magnetic core arranged by use thereof, and manufacturing method thereof
JP2014075528A (en) * 2012-10-05 2014-04-24 Nec Tokin Corp Soft magnetic alloy powder, powder-compact magnetic core arranged by use thereof, and manufacturing method thereof
CN104233121A (en) * 2014-09-26 2014-12-24 华南理工大学 Fe-based amorphous nanocrystalline soft magnetic material and preparing method thereof
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
KR101541581B1 (en) * 2012-06-28 2015-08-03 삼성전기주식회사 Inductor and manufacturing method of the inductor
CN104919546A (en) * 2012-11-14 2015-09-16 大众汽车有限公司 Method for producing a permanent magnet and permanent magnet
KR20160018614A (en) * 2013-07-29 2016-02-17 삼성전기주식회사 Inductor and manufacturing method thereof
EP3175940A1 (en) 2015-11-25 2017-06-07 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
EP3181270A1 (en) 2015-12-16 2017-06-21 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
CN107393671A (en) * 2017-06-22 2017-11-24 东莞市大忠电子有限公司 A kind of iron based nanocrystalline magnet core and preparation method thereof
EP3301689A1 (en) 2016-09-29 2018-04-04 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
KR20180034532A (en) 2015-07-31 2018-04-04 제이에프이 스틸 가부시키가이샤 Method for producing soft magnetic dust core, and soft magnetic dust core
EP3301690A1 (en) 2016-09-29 2018-04-04 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
CN109112434A (en) * 2018-11-14 2019-01-01 广东工业大学 A kind of new iron-based amorphous and nanocrystalline soft magnetic alloy and preparation method thereof
WO2019031464A1 (en) 2017-08-07 2019-02-14 日立金属株式会社 CRYSTALLINE Fe-BASED ALLOY POWDER AND METHOD FOR PRODUCING SAME
CN110828093A (en) * 2019-11-25 2020-02-21 佛山市中研非晶科技股份有限公司 Amorphous magnetic core and preparation method thereof
CN111128505A (en) * 2018-10-31 2020-05-08 Tdk株式会社 Magnetic core and coil component
JP2020136647A (en) * 2019-02-26 2020-08-31 Tdk株式会社 Magnetic core and magnetic component
US11017925B2 (en) 2017-04-17 2021-05-25 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
JP2021082664A (en) * 2019-11-15 2021-05-27 昭和電工マテリアルズ株式会社 Composition for electromagnetic wave shield, sheet for electromagnetic wave shield, electromagnetic wave shield film, and electronic component device
CN114045435A (en) * 2021-11-11 2022-02-15 泉州天智合金材料科技有限公司 Iron-based amorphous nanocrystalline wave-absorbing material and preparation method thereof
CN114147220A (en) * 2020-11-30 2022-03-08 佛山市中研非晶科技股份有限公司 Preparation method of amorphous nanocrystalline insulating finished product powder subjected to pre-annealing treatment
WO2022095702A1 (en) * 2020-11-09 2022-05-12 横店集团东磁股份有限公司 Iron-based amorphous alloy powder, preparation method therefor and application thereof
US11482356B2 (en) * 2017-01-31 2022-10-25 Alps Alpine Co., Ltd. Powder core, electric or electronic component including the powder core and electric or electronic device having the electric or electronic component mounted therein
US12030122B2 (en) 2015-07-31 2024-07-09 Jfe Steel Corporation Method of manufacturing soft magnetic dust core

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8327524B2 (en) 2000-05-19 2012-12-11 Vacuumscmelze Gmbh & Co. Kg Inductive component and method for the production thereof
JP2006179621A (en) * 2004-12-21 2006-07-06 Seiko Epson Corp Molding body and manufacturing method thereof
US7938915B2 (en) 2005-08-08 2011-05-10 Hitachi Metals, Ltd. Rare earth alloy binderless magnet and method for manufacture thereof
JP2007112901A (en) * 2005-10-20 2007-05-10 Nitto Denko Corp Adhesive type optical film and its production method
US8372218B2 (en) 2006-06-19 2013-02-12 Vacuumschmelze Gmbh & Co. Kg Magnet core and method for its production
GB2454822A (en) * 2006-07-12 2009-05-20 Vacuumschmelze Gmbh & Co Kg Method for the production of magnet cores; magnet cores and inductive component with a magnet core
JP2009543370A (en) * 2006-07-12 2009-12-03 ファキュウムシュメルゼ ゲーエムベーハー ウント コンパニー カーゲー Method for manufacturing magnetic core, magnetic core and inductive member with magnetic core
GB2454822B (en) * 2006-07-12 2010-12-29 Vacuumschmelze Gmbh & Co Kg Method for the production of magnet cores, magnet core and inductive component with a magnet core
WO2008007345A3 (en) * 2006-07-12 2008-03-13 Vacuumschmelze Gmbh & Co Kg Method for the production of magnet cores; magnet core and inductive component with a magnet core
WO2008007345A2 (en) * 2006-07-12 2008-01-17 Vacuumschmelze Gmbh & Co. Kg Method for the production of magnet cores; magnet core and inductive component with a magnet core
US8287664B2 (en) 2006-07-12 2012-10-16 Vacuumschmelze Gmbh & Co. Kg Method for the production of magnet cores, magnet core and inductive component with a magnet core
US8277579B2 (en) 2006-12-04 2012-10-02 Tohoku Techno Arch Co., Ltd. Amorphous alloy composition
DE112008000720T5 (en) 2007-03-20 2010-04-29 Nec Tokin Corp., Sendai Soft magnetic alloy, the magnetic part using soft magnetic alloy and method of making the same
US8287665B2 (en) 2007-03-20 2012-10-16 Nec Tokin Corporation Soft magnetic alloy, magnetic part using soft magnetic alloy, and method of manufacturing same
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
US8012270B2 (en) 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
US8491731B2 (en) 2008-08-22 2013-07-23 Akihiro Makino Alloy composition, Fe-based nano-crystalline alloy and forming method of the same and magnetic component
JP2010114222A (en) * 2008-11-05 2010-05-20 Tamura Seisakusho Co Ltd Dust core and method of manufacturing the same
JP2010141183A (en) * 2008-12-12 2010-06-24 Tamura Seisakusho Co Ltd Dust core and method of producing the same
JP2011038133A (en) * 2009-08-07 2011-02-24 Tamura Seisakusho Co Ltd Powder magnetic core and method for producing the same
JP2011040473A (en) * 2009-08-07 2011-02-24 Tamura Seisakusho Co Ltd Powder magnetic core and method of manufacturing the same
KR101541581B1 (en) * 2012-06-28 2015-08-03 삼성전기주식회사 Inductor and manufacturing method of the inductor
JP2014075529A (en) * 2012-10-05 2014-04-24 Nec Tokin Corp Soft magnetic alloy powder, powder-compact magnetic core arranged by use thereof, and manufacturing method thereof
JP2014075528A (en) * 2012-10-05 2014-04-24 Nec Tokin Corp Soft magnetic alloy powder, powder-compact magnetic core arranged by use thereof, and manufacturing method thereof
US10312019B2 (en) 2012-11-14 2019-06-04 Volkswagen Aktiengesellschaft Method for producing a permanent magnet and permanent magnet
CN104919546A (en) * 2012-11-14 2015-09-16 大众汽车有限公司 Method for producing a permanent magnet and permanent magnet
KR20160018614A (en) * 2013-07-29 2016-02-17 삼성전기주식회사 Inductor and manufacturing method thereof
KR101659248B1 (en) 2013-07-29 2016-09-30 삼성전기주식회사 Inductor and manufacturing method thereof
CN104233121B (en) * 2014-09-26 2016-06-29 华南理工大学 A kind of Fe based amorphous nano soft magnetic materials and preparation method thereof
CN104233121A (en) * 2014-09-26 2014-12-24 华南理工大学 Fe-based amorphous nanocrystalline soft magnetic material and preparing method thereof
KR20180034532A (en) 2015-07-31 2018-04-04 제이에프이 스틸 가부시키가이샤 Method for producing soft magnetic dust core, and soft magnetic dust core
US12030122B2 (en) 2015-07-31 2024-07-09 Jfe Steel Corporation Method of manufacturing soft magnetic dust core
EP3175940A1 (en) 2015-11-25 2017-06-07 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
US9991036B2 (en) 2015-11-25 2018-06-05 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
EP3181270A1 (en) 2015-12-16 2017-06-21 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
US11545285B2 (en) 2015-12-16 2023-01-03 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
US10672547B2 (en) 2015-12-16 2020-06-02 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
EP3301690A1 (en) 2016-09-29 2018-04-04 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
CN107887097A (en) * 2016-09-29 2018-04-06 精工爱普生株式会社 Soft magnetic powder, compressed-core, magnetic element and electronic equipment
EP3301689A1 (en) 2016-09-29 2018-04-04 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
US11894168B2 (en) 2016-09-29 2024-02-06 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
US11482356B2 (en) * 2017-01-31 2022-10-25 Alps Alpine Co., Ltd. Powder core, electric or electronic component including the powder core and electric or electronic device having the electric or electronic component mounted therein
US11017925B2 (en) 2017-04-17 2021-05-25 Seiko Epson Corporation Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
CN107393671A (en) * 2017-06-22 2017-11-24 东莞市大忠电子有限公司 A kind of iron based nanocrystalline magnet core and preparation method thereof
US11545286B2 (en) 2017-08-07 2023-01-03 Hitachi Metals, Ltd. Crystalline Fe-based alloy powder and method for producing same
WO2019031464A1 (en) 2017-08-07 2019-02-14 日立金属株式会社 CRYSTALLINE Fe-BASED ALLOY POWDER AND METHOD FOR PRODUCING SAME
CN111128505A (en) * 2018-10-31 2020-05-08 Tdk株式会社 Magnetic core and coil component
US11183320B2 (en) * 2018-10-31 2021-11-23 Tdk Corporation Magnetic core and coil component
US20220037068A1 (en) * 2018-10-31 2022-02-03 Tdk Corporation Magnetic core and coil component
US11680307B2 (en) * 2018-10-31 2023-06-20 Tdk Corporation Magnetic core and coil component
CN111128505B (en) * 2018-10-31 2021-09-07 Tdk株式会社 Magnetic core and coil component
CN109112434A (en) * 2018-11-14 2019-01-01 广东工业大学 A kind of new iron-based amorphous and nanocrystalline soft magnetic alloy and preparation method thereof
JP2020136647A (en) * 2019-02-26 2020-08-31 Tdk株式会社 Magnetic core and magnetic component
JP2021082664A (en) * 2019-11-15 2021-05-27 昭和電工マテリアルズ株式会社 Composition for electromagnetic wave shield, sheet for electromagnetic wave shield, electromagnetic wave shield film, and electronic component device
CN110828093A (en) * 2019-11-25 2020-02-21 佛山市中研非晶科技股份有限公司 Amorphous magnetic core and preparation method thereof
WO2022095702A1 (en) * 2020-11-09 2022-05-12 横店集团东磁股份有限公司 Iron-based amorphous alloy powder, preparation method therefor and application thereof
CN114147220A (en) * 2020-11-30 2022-03-08 佛山市中研非晶科技股份有限公司 Preparation method of amorphous nanocrystalline insulating finished product powder subjected to pre-annealing treatment
CN114045435A (en) * 2021-11-11 2022-02-15 泉州天智合金材料科技有限公司 Iron-based amorphous nanocrystalline wave-absorbing material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2004349585A (en) Method of manufacturing dust core and nanocrystalline magnetic powder
JP5501970B2 (en) Powder magnetic core and manufacturing method thereof
JP6472939B2 (en) Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic parts and dust core
KR100241796B1 (en) Fe-ni based soft magnetic alloys having nanocrystalline structure and manufacturing method of magnetic alloys
EP3549696A1 (en) Soft magnetic powder, dust magnetic core, magnetic part, and method for producing dust magnetic core
JP4584350B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
US9443652B2 (en) Soft magnetic core having excellent high-current DC bias characteristics and core loss characteristics and method of manufacturing same
EP2482291B1 (en) Magnetic powder material and low-loss composite magnetic material containing same
WO2011024580A1 (en) ALLOY COMPOSITION, NANOCRYSTALLINE Fe ALLOY, AND PREPARATION METHOD THEREFOR
CN108376598B (en) Soft magnetic alloy and magnetic component
WO2011016275A1 (en) Fe-based amorphous alloy, dust core formed using the fe-based amorphous alloy, and dust core with embedded coil
JP2001011563A (en) Manufacture of composite magnetic material
JP2007134591A (en) Composite magnetic material, dust core using the same and magnetic element
JP2003059710A (en) Dust core
JP6314020B2 (en) Powder magnetic core using nanocrystalline soft magnetic alloy powder and manufacturing method thereof
JP3059187B2 (en) Soft magnetic alloy, manufacturing method thereof and magnetic core
CN109628845B (en) Soft magnetic alloy and magnetic component
WO2020196608A1 (en) Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
JP2005347641A (en) Dust core, its manufacturing method, and winding component
JP2010238930A (en) Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component
JP4257846B2 (en) Method for producing soft magnetic compact
JP2004221453A (en) Method of manufacturing dust core and dust core
KR101387961B1 (en) Iron based nanocrystalline soft magnetic alloy powder cores and preparation thereof
WO2022201964A1 (en) Soft magnetic powder, dust core containing same, and method for producing soft magnetic powder
JP2006237368A (en) Powder magnetic core and its manufacturing method