JP2004221453A - Method of manufacturing dust core and dust core - Google Patents

Method of manufacturing dust core and dust core Download PDF

Info

Publication number
JP2004221453A
JP2004221453A JP2003009292A JP2003009292A JP2004221453A JP 2004221453 A JP2004221453 A JP 2004221453A JP 2003009292 A JP2003009292 A JP 2003009292A JP 2003009292 A JP2003009292 A JP 2003009292A JP 2004221453 A JP2004221453 A JP 2004221453A
Authority
JP
Japan
Prior art keywords
powder
dust core
magnetic
glass
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003009292A
Other languages
Japanese (ja)
Inventor
Kagehiro Kageyama
景弘 影山
Hirotaka Hamakake
裕貴 濱欠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003009292A priority Critical patent/JP2004221453A/en
Publication of JP2004221453A publication Critical patent/JP2004221453A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which a dust core having excellent magnetic characteristics can be manufactured by solving the problems with the heat-treating temperature and lead-free composite in manufacturing the dust core, and to provide a dust core. <P>SOLUTION: In this method of manufacturing the dust core, mixed powders are prepared by mixing magnetic powders having compositions that can reveal a nano-sized crystalline structure, glass powders containing Bi at a rate of ≥50 mass% and limited in Pb content to ≤0.1%, and a binder with each other. Then the dust core is manufactured by molding the mixed powders in a mold and heat-treating the molded body at a temperature of ≤600°C. In the dust core, in addition, the nano-sized crystalline magnetic powders are coupled with each other by the glass powders containing Bi at the rate of ≥50 mass% and limited in Pb content to ≤0.1%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器等に使用される圧粉磁心の製造方法および圧粉磁心に関するものである。
【0002】
【従来の技術】
電源装置用チョークコイル等として従来からフェライト磁心が使用されている。近年、小型化、高周波化等の問題により、フェライト磁心に代えて絶縁した電磁鋼板の積層箔が使用されているが、透磁率が高すぎるために切断して使用することが必要となり、その切断部分よりの漏洩磁界等による損失が問題となっている。そこで磁性粉末をバインダーにより接合した圧粉磁心が使用されてきている。圧粉磁心とは、磁性粉末とバインダーとを混合して混合粉末とした後、その混合粉末を、加圧、加熱等の方法により磁心形状に成形したものである。圧粉磁心に用いられる磁性粉末としては、低磁心損失である非晶質磁性粉末の検討が盛んに行われている。また、磁性粉末を接合するバインダーとしては、エポキシ樹脂、Si樹脂等の使用が検討されている。
【0003】
しかしながら、一般に圧粉磁心を作製する場合のバインダーとしてSi樹脂は磁性粉末との濡れ性が良好でないために、種々のバインダーを添加して濡れ性を向上させることが必要となる。一方、エポキシ樹脂は固化時の体積変化が大きいことから、磁性粉末の種類によってはエポキシ樹脂からの応力により磁気特性の劣化を生じる。このため、近年、上記の他にバインダーとしてガラス粉末の使用が検討されている。ガラス粉末は、固化時の体積変化が小さいので、固化後に磁性粉末に生じる応力低減でき、磁性粉末の優れた磁気特性の劣化を抑制できる。加えて、濡れ性が良いことでバインダーを介した磁性粉末同士の接合面積が広くなり、接合強度の向上と共に、磁性粉末間の絶縁性の向上が期待できるからである。
【0004】
具体的には、たとえば非晶質磁性粉末と軟化点が非晶質磁性粉末の結晶化温度より低いガラス粉末の混合粉末を成形した後に熱処理した非晶質磁性粉末の成形体の製造方法が提案されている(特許文献1参照。)。
【0005】
【特許文献1】
特開2001−73062号公報
【0006】
【発明が解決しようとする課題】
上述した非晶質磁性粉末を用いた圧粉磁心の製造方法は、非晶質磁性粉末の成形体を高密度にて作製するという点では有利である。しかしながら、結晶化を抑えて非晶質組織のまま絶縁、結着するために熱処理温度を低くせざるを得ない。熱処理温度が低いとガラス粉末の軟化が不十分となり易いが、軟化が不十分な場合には熱処理後に得られる圧粉磁心の強度が低いという問題を生じる。そこでこの問題を回避する為、非晶質磁性粉末を用いた圧粉磁心の作製では、ガラス粉末としてガラスの軟化点の降下に有効なPb酸化物を含有させた鉛含有ガラスが使用されている。これにより、結晶化を生じることなく圧粉磁心としての強度確保を達成している。
【0007】
一方、近年電子部品で用いられる鉛が、廃棄後に酸性雨にさらされ周辺環境に溶出した際の毒性が懸念されており、電子部品については、鉛を用いないこと、いわゆるPbフリー化が世界的に要求されている。
上述の圧粉磁心では、環境汚染防止の観点から昨今要求されているPbフリー化に対応できない問題を有している。
【0008】
本発明の目的は、圧粉磁心の製造における熱処理温度、及びPbフリー化の問題を解決した、磁気特性に優れた圧粉磁心の製造方法および圧粉磁心を提供することである。
【0009】
【課題を解決するための手段】
本発明者は、圧粉磁心の材料構成および製造方法について検討し、ナノ結晶組織を発現可能な組成の磁性粉末と、質量%でBiを50%以上、Pbを0〜0.1%含有しているガラス粉末を用いることで上記の課題を解消できることを見いだし本発明に到達した。
【0010】
すなわち本発明はナノ結晶組織を発現可能な組成の磁性粉末と、質量%でBiを50%以上含有し、Pbを0.1%以下に制限したガラス粉末と、バインダーを混合して混合粉末とし、該混合粉末を金型で成形し、600℃以下で熱処理する圧粉磁心の製造方法である。
本発明において、ガラス粉末は少なくともAl、Si、Zn、Bの1種以上を含むことが好ましい。より好ましくは、質量%でAl1〜4%、Si2〜7%、Zn9%以下、B0.5〜3%の少なくとも1種以上を含む。
また、本発明において混合粉末は、d50値が35μm以上の磁性粉末とd50値が15μm以下の磁性粉末とを混合することがこのましい。d50値とは積算粒度分布曲線の50%粒径、即ちメジアン粒径である。
【0011】
さらにもう一つの本発明は、ナノ結晶磁性粉末が、質量%でBiを50%以上含有し、Pbを0.1%以下に制限したガラスで結合された圧粉磁心である。
本発明の圧粉磁心においてガラスは少なくともAl、Si、Zn、Bの1種以上を含むことことが好ましく、より好ましくは質量%でAl1〜4%、Si2〜7%、B0.5〜3%、Zn9%以下の少なくとも1種以上を含む。
上記の本発明の圧粉磁心では、20kHzにおける透磁率が60以上、さらには20kHz、0.1Tにおける磁心の損失が50kW/m以下を達成することができる。
【0012】
【発明の実施の形態】
上述したように、本発明の圧粉磁心の製造方法における重要な特徴は、磁性粉末としてナノ結晶組織を発現可能な組成の磁性粉末、ガラス粉末として質量%でBiを50%以上含有し、Pbを0.1%以下に制限したガラス粉末を採用したことにある。
本発明においてナノ結晶組織とは、ナノ結晶を発現が可能な組成の非晶質合金を結晶化温度以上で結晶化熱処理して、組織の少なくとも50%以上を結晶粒径50nm以下のナノ結晶組織に調整した組織であり、またナノ結晶組織を発現可能な組成の磁性粉末とは、結晶化熱処理前のナノ結晶組織を発現可能な組成の非晶質磁性粉末、及び結晶化熱処理後のナノ結晶組織を有する磁性粉末、即ちナノ結晶磁性粉末の両方を指すものである。
【0013】
既述のように非晶質磁性粉末は磁心損失に優れるものの、絶縁、結着の為の熱処理を結晶化温度以下で行うことが必要である。これに対して、ナノ結晶組織を発現可能な組成の磁性粉末は、最終的に結晶化して用いられる非晶質組織の材料、または結晶化熱処理により既に結晶化して用いる材料であり、結晶粒が粗大化しない範囲であれば結晶化温度よりも高い温度での熱処理が可能である。また、ナノ結晶組織を発現可能な組成の磁性粉末は、ナノ結晶組織に調整した後は磁心損失などの磁気特性にも優れる。
熱処理温度について具体的に比較すると、例えばFe基非晶質合金やCo基非晶質合金の多くは結晶化温度が500℃前後であるため、熱処理はそれ以下の温度、一般的には結晶化温度−100℃程度で行わなければならない。これに対してナノ結晶組織を発現可能な組成の磁性粉末では、結晶化温度+100℃程度まで熱処理温度を上げることができる。この結果、従来用いられているガラス粉末と比べて、軟化点の高いガラス粉末を適用することが可能となる。
【0014】
本発明で用いるナノ結晶組織を発現可能な組成の磁性粉末として、より具体的には、一般式:(Fe1−a100−x−y−z−α―β−γCuSiM’αM’’βγ(但し、MはCo及び/又はNiであり、M’はNb、W、Ta、Zr、Hf、Ti及びMoからなる群から選ばれた少なくとも1種の元素、M’’はV、Cr、Mn、Al、白金属元素、Sc、Y、希土類元素、Au、Zn、Sn、Reからなる群から選ばれた少なくとも1種の元素、XはC、Ge、P、Sb、In、As、Beからなる群から選ばれた少なくとも1種の元素であり、a、x、y、z、α、β、γはそれぞれ0≦a≦0.5、0.1≦x≦3、0≦y≦30、0≦z≦25、0≦y+z≦35、0.1≦α≦30、0≦β≦10及び0≦γ≦10を満たす。)により表される組成の磁性粉末が挙げられる。なお、磁性粉末は、水アトマイズ法により直接、粉末として得ることが出来るほか、単ロール法により一旦薄帯に鋳造した後、機械的に破砕すること等で製造することができる。
【0015】
本発明では、非晶質磁性粉末と比べて高い温度での熱処理が可能な上述のナノ結晶磁性粉末と共に、質量%でBiを50%以上含有し、Pbを0.1%以下に制限したガラス粉末を用いることで、圧粉磁心のPbフリー化を達成する。なお、本発明においてPb含有量を0.1%以下とするのは、Pbフリー材料において、原料から不純物として不可避的に混入するPbの濃度や、環境汚染防止の観点から一般的に許容されているPb含有のレベルが、0.1%以下だからである。
【0016】
本発明において、ガラス粉末として質量%でBiを50%以上含有するガラスを用いる理由は、第一にBiはガラス中の含有量を増量することにより、ガラスの軟化点を降下することができるためである。Biの含有量が50%以上では、ガラスの軟化点は600℃未満となり、ナノ結晶組織の粗大化を生じない温度範囲での熱処理が可能である。ガラスの軟化点を降下させる観点からは、Biの含有量は70%以上とすることが好ましい。
【0017】
第二に、Bi系ガラス粉末は粉末の微細化に適するためである。圧粉磁心に使用されるガラス粉末は粉末寸法が微細であるほど、熱処理前の圧粉磁心において空隙を生じることなく、均一にガラス粉末を分散させることが出来、さらにガラス粉末の軟化時にはナノ結晶磁性粉末との濡れが均一となる。この結果、圧粉磁心の密度を高め、また磁性粉末同士の絶縁を確実に行うことができる。したがって微細化に適するBi系ガラス粉末は圧粉磁心の製造に好適である。
【0018】
Bi系ガラス粉末が微細化に適するのは、Bi系ガラス粉末の以下の特徴によるものである。多くの場合、ガラス粉末の製造は粉砕によって行われるが、微細化する場合、特にメジアン粒径d50が5μm以下まで微粒化にするには湿式による粉砕が適している。湿式による粉砕を行う場合には、ガラスは耐水性を具備することが必要となる。耐水性とはガラスを水につけたときの安定性を示す指標で一般にガラス中にアルカリ含有量が少ないほど安定性が良好となる。
一般にPb酸化物等を添加することでアルカリ溶出量を低減させて耐水性を向上させることができるが、Bi酸化物も同様に耐水性を向上させることができる。したがって、本発明で用いるBiを質量%で50%以上含有するBi系ガラス粉末は、高い耐水性を具備しており、微細化に適する。
【0019】
本発明では以上に述べたナノ結晶磁性粉末と質量%でBiを50%以上含有し、Pbを0.1%以下に制限したガラス粉末を、バインダーと共に混合して混合粉末とし、該混合粉末を金型で成形し、600℃以下で熱処理する。
本発明においてバインダーは、混合粉末を金型により成形する際に、形状を維持するために用いるものであるが、例えばPVA、PVB、水ガラス、エポキシ樹脂、Si樹脂およびポリイミド樹脂、フェノール樹脂等を用いることもできる。しかし、上述の様に熱硬化性樹脂およびSi樹脂は磁性粉末との濡れ性および圧粉磁心内の残留応力により好ましくなく、PVA、PVB、水ガラスの方が好ましい。これらを混合して得られる混合粉末は、乾燥、粒径調整を行った後、金型により成形することが好ましい。
なお、本発明ではナノ結晶組織を発現可能な組成の磁性粉末として、結晶化熱処理を行っていない非晶質組織の磁性粉末を結晶化させた後、バインダー、ガラス粉末等と混合、成形し、結着して圧粉磁心を製造することも可能であるが、工程簡略の観点からは、非晶質組織の磁性粉末を用いて成形し、結着の為の熱処理の際に、同時に磁性粉末をナノ結晶化させることが好ましい。
【0020】
本発明において、Bi系ガラス粉末はAl、Si、Zn、Bの少なくとも1種以上を含有することが好ましい。
上述のBi酸化物と同様に、Al酸化物、Si酸化物、Zn酸化物がガラス粉末の耐水性を向上する効果を有するからである。一方、Al酸化物、Si酸化物はガラス粉末の軟化点を上昇させる効果も有するので、Al、Siの含有量は質量%で各々10%以下とすることが好ましい。より好ましくはAl1〜4%、Si2〜7%である。またZn酸化物はガラス粉末とナノ結晶磁性粉末との濡れ性を低下させる効果も有するので、Znの含有量は10%以下とすることが好ましい。より好ましくは9%以下である。
【0021】
Bはガラス粉末の軟化点を低くする効果を有する。一方、含有量が多いとガラス粉末の化学的耐久性を低下するので、Bの含有量は質量%で10%以下とすることが好ましい。より好ましくは0.5〜3%である。
また、耐水性をさらに向上させるためにSnO、MgO、MgO、ZrO、TiOを若干量添加させても良好である。
【0022】
また、本発明ではナノ結晶組織を発現可能な組成の磁性粉末と、Bi系ガラス粉末と、バインダーを混合して混合粉末とする際、磁性粉末には粒径の分布において二つのピークを示す粉末を用いることが好ましい。粒径の分布において二つのピークを示す粉末を用いることにより、図1に示すように粒径の大きい磁性粉末1の間隙に粒径の小さい磁性粉末2が分散する形でBi系ガラス3により結着させることができる。一つのピークのみを示す粉末を用いる場合と比べて、圧粉磁心におけるナノ結晶磁性粉末の占める割合を向上することができ、その結果、圧粉磁心の透磁率向上、磁心損失の低減を達成することができる。
【0023】
具体的には、d50が35μm以上のナノ結晶組織を発現可能な組成の磁性粉末(第一粒子)とd50が15μm以下のナノ結晶組織を発現可能な組成の磁性粉末(第二粒子)を混合することが好ましい。d50値とは積算粒度分布曲線の50%粒径と定義されるメジアン粒径である。より好ましくは、粒子径の比率としては第一粒子のd50値と第二粒子のd50値の比が5倍以上である。また、第一粒子と第二粒子とを混合する際、その混合比は第二粒子の粉末量が質量%で40%以下であることが好ましい。
【0024】
以上に述べた本発明の製造方法では、従来、非晶質磁性粉末を用いた圧粉磁心の製造において問題であった、熱処理温度及びPbフリー化を解消し、ナノ結晶磁性粉末と、質量%でBiを50%以上含有し、Pbを0.1%以下に制限したガラスで結合された圧粉磁心を製造することが出来る。
ナノ結晶磁性粉末と、質量%でBiを50%以上含有し、Pbを0.1%以下に制限したガラスとで結合された圧粉磁心はPbフリーの問題を解消し、かつナノ結晶磁性粉末により優れた磁気特性を達成することができる。
具体的には、20kHzにおいて透磁率が60以上を達成することができる。さらに、20kHzにおいて磁界0.1T印加した時に圧粉磁心の損失が50kW/m以下を達成することができる。
【0025】
【実施例】
(実施例1)
水アトマイズ法により、組成が何れもFe−13.5Si−1Cu−3Nb−1Cr−11B(mol%)、メジアン粒径がd50:46.2μm、及びd50:5.8μmの二種のナノ結晶組織を発現可能な組成の磁性粉末を製造した。メジアン粒径がd50:46.2μm、及びd50:5.8μmの磁性粉末を7:3の割合で混合して粒径分布において2つのピークを有する混合磁性粉末とした。この混合磁性粉末と、質量%で81Bi−2.5Al−4.5Si−5Zn−1.3B―Oの組成を有し、Pb含有量が0.1%以下であるBi系ガラス粉末(d50:1.0μm、軟化点:約455℃)と、バインダーとを下記の配合比率にて、ヘンシェルミキサーにて混合し、その後、80℃の条件で混合しながら乾燥させた。なお、本実施例では可塑剤としてグリセリンも併せて混合した。
【0026】
−配合比率(質量比率)−
混合磁性粉末:100
Bi系ガラス粉末:1
ポリビニルアルコール粉末(バインダー):1
グリセリン10mass%溶液(可塑剤):10
【0027】
上記の混合粉末を60#ふるいにてふるった後に、潤滑剤としてステアリン酸を添加し、金型内に混合粉末を挿入して2.0GPaの条件で加圧し、外径14、内径8、厚さ5(mm)の形状に成形した。なおステアリン酸は質量比率で混合粉末112に対して1の割合で添加した。
上記の成形体を、Bi系ガラス粉末の軟化点である455℃と比べて十分に高い温度である580℃のN雰囲気中において2h熱処理し、Bi系ガラス粉末の軟化、及び磁性粉末のナノ結晶化を行い圧粉磁心とした。
【0028】
作製した圧粉磁心について、LCRメータにて20kHzでの透磁率を測定し、IWATSU8232にて20kHz、0.1Tでのコアロスを測定した。
その結果、Bi系ガラス粉末が十分に軟化を生じる高温にて熱処理を行ったにも関わらず、20kHzでの透磁率は72と高い透磁率を示し、20kHz、0.1Tでのコアロスは28kW/mとなり、低い損失を示した。また、本実施例の圧粉磁心はPbフリーを達成している。
【0029】
(実施例2)
Bi系ガラス粉末として、質量%で75Bi−2.5Al−3.5Si−1.2B―Oの組成を有し、Pb含有量が0.1%以下であるガラス粉末(d50:5.0μm、軟化点約455℃)を用い、Bi系ガラス粉末が異なる以外は実施例1と同様にして圧粉磁心を作成し、実施例1と同じ手法にて透磁率、磁心損失を測定した。
その結果、Bi系ガラス粉末が十分に軟化を生じる高温にて熱処理を行ったにも関わらず、20kHzでの透磁率は68と高い透磁率を示し、20kHz、0.1Tでのコアロスは26kW/mと低い損失を示した。また、本実施例の圧粉磁心はPbフリーを達成している。
【0030】
(実施例3)
Bi系ガラス粉末として質量%で70Bi−2B―Oの組成を有し、Pb含有量が0.1%以下であるガラス粉末(d50:1.0μm、軟化点約455℃)を用い、Bi系ガラス粉末が異なる以外は実施例1と同様にして圧粉磁心を作成し、実施例1と同じ手法にて透磁率、磁心損失を測定した。
その結果、Bi系ガラス粉末が十分に軟化を生じる高温にて熱処理を行ったにも関わらず、20kHzでの透磁率は67と高い透磁率を示し、20kHz、0.1Tでのコアロスは25kW/mと低い損失を示した。また、本実施例の圧粉磁心はPbフリーを達成している。
【0031】
【発明の効果】
本発明によれば、圧粉磁心の製造における熱処理温度、及びPbフリー化の問題を解決し、磁気特性に優れた圧粉磁心の製造方法を提供することができ、また透磁率の向上、磁心損失の低減および達成した圧粉磁心を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の圧粉磁心における磁性粉末の分布の一例を示す構成図である。
【符号の説明】
1.粒径の大きい磁性粉、2.粒径の小さい磁性粉末、3.Bi系ガラス
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a dust core used in electronic equipment and the like, and a dust core.
[0002]
[Prior art]
Conventionally, a ferrite core has been used as a choke coil or the like for a power supply device. In recent years, insulated laminated steel sheets of electromagnetic steel sheets have been used in place of ferrite cores due to problems such as miniaturization and higher frequency. However, since the magnetic permeability is too high, it is necessary to cut and use them. Loss due to leakage magnetic field from a portion is a problem. Therefore, a dust core in which magnetic powders are joined with a binder has been used. The dust core is obtained by mixing a magnetic powder and a binder to form a mixed powder, and then forming the mixed powder into a magnetic core shape by a method such as pressurization and heating. As the magnetic powder used for the dust core, studies on amorphous magnetic powder having low core loss have been actively conducted. Further, as a binder for joining the magnetic powder, use of an epoxy resin, a Si resin, or the like has been studied.
[0003]
However, in general, a Si resin as a binder for producing a dust core has poor wettability with a magnetic powder, and therefore it is necessary to add various binders to improve wettability. On the other hand, since the volume change of the epoxy resin during solidification is large, depending on the type of the magnetic powder, the magnetic properties are deteriorated due to the stress from the epoxy resin. For this reason, in recent years, the use of glass powder as a binder in addition to the above has been studied. Since the glass powder has a small volume change during solidification, the stress generated in the magnetic powder after solidification can be reduced, and the deterioration of the excellent magnetic properties of the magnetic powder can be suppressed. In addition, because the wettability is good, the bonding area between the magnetic powders via the binder is widened, so that the bonding strength can be improved and the insulation between the magnetic powders can be expected to be improved.
[0004]
Specifically, for example, a method for producing a molded body of an amorphous magnetic powder which is heat-treated after molding a mixed powder of an amorphous magnetic powder and a glass powder having a softening point lower than the crystallization temperature of the amorphous magnetic powder has been proposed. (See Patent Document 1).
[0005]
[Patent Document 1]
JP 2001-73062 A
[Problems to be solved by the invention]
The method for manufacturing a dust core using the above-described amorphous magnetic powder is advantageous in that a compact of the amorphous magnetic powder is manufactured at a high density. However, in order to suppress crystallization and to insulate and bind with an amorphous structure, the heat treatment temperature must be lowered. If the heat treatment temperature is low, the softening of the glass powder tends to be insufficient, but if the softening is insufficient, there is a problem that the strength of the dust core obtained after the heat treatment is low. In order to avoid this problem, lead-containing glass containing Pb oxide effective for lowering the softening point of glass is used as glass powder in the production of a dust core using amorphous magnetic powder. . Thereby, the strength as a dust core is secured without causing crystallization.
[0007]
On the other hand, there is a concern that lead used in electronic components in recent years may be exposed to acid rain after disposal and may be toxic when eluted into the surrounding environment. Is required.
The above-mentioned powder magnetic core has a problem that it cannot cope with Pb-free recently required from the viewpoint of environmental pollution prevention.
[0008]
An object of the present invention is to provide a method for manufacturing a dust core excellent in magnetic properties and a dust core, which solves the problems of heat treatment temperature and Pb-free in the production of a dust core.
[0009]
[Means for Solving the Problems]
The present inventor studied the material configuration and manufacturing method of the dust core, and contained a magnetic powder having a composition capable of expressing a nanocrystalline structure, 50% or more of Bi by mass%, and 0 to 0.1% of Pb. The present inventors have found that the above problem can be solved by using the glass powder, and have reached the present invention.
[0010]
That is, the present invention provides a mixed powder by mixing a magnetic powder having a composition capable of expressing a nanocrystalline structure, a glass powder containing 50% or more by mass of Bi and limiting Pb to 0.1% or less, and a binder. And a method of manufacturing a dust core in which the mixed powder is molded in a mold and heat-treated at 600 ° C. or lower.
In the present invention, the glass powder preferably contains at least one of Al, Si, Zn, and B. More preferably, it contains at least one of Al1 to 4%, Si2 to 7%, Zn9% or less and B0.5 to 3% by mass%.
In the present invention, the mixed powder is preferably a mixture of a magnetic powder having a d50 value of 35 μm or more and a magnetic powder having a d50 value of 15 μm or less. The d50 value is the 50% particle size of the integrated particle size distribution curve, that is, the median particle size.
[0011]
Still another aspect of the present invention is a dust core in which the nanocrystalline magnetic powder contains 50% by mass or more of Bi by mass% and is bound by glass in which Pb is limited to 0.1% or less.
In the dust core of the present invention, the glass preferably contains at least one or more of Al, Si, Zn, and B, and more preferably Al1 to 4%, Si2 to 7%, and B0.5 to 3% by mass%. , Zn 9% or less.
In the above-described powder magnetic core of the present invention, the magnetic permeability at 20 kHz can be 60 or more, and the loss of the magnetic core at 20 kHz and 0.1 T can be 50 kW / m 3 or less.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, an important feature of the method for manufacturing a dust core of the present invention is that a magnetic powder having a composition capable of expressing a nanocrystalline structure as a magnetic powder, a glass powder containing 50% by mass or more of Bi by mass%, Is limited to 0.1% or less.
In the present invention, the nanocrystalline structure is a nanocrystalline structure having a composition capable of expressing nanocrystals, which is subjected to crystallization heat treatment at a temperature higher than the crystallization temperature and at least 50% or more of the structure has a crystal grain size of 50 nm or less. A magnetic powder having a composition that can express a nanocrystalline structure is an amorphous magnetic powder having a composition capable of expressing a nanocrystalline structure before heat treatment for crystallization, and a nanocrystal after heat treatment for crystallization. It refers to both magnetic powders having a texture, that is, nanocrystalline magnetic powders.
[0013]
As described above, although amorphous magnetic powder has excellent core loss, it is necessary to perform heat treatment for insulation and binding at a crystallization temperature or lower. On the other hand, a magnetic powder having a composition capable of expressing a nanocrystalline structure is a material having an amorphous structure that is finally crystallized and used, or a material that is already crystallized and used by a crystallization heat treatment. Heat treatment at a temperature higher than the crystallization temperature is possible within a range not causing coarsening. In addition, the magnetic powder having a composition capable of expressing a nanocrystalline structure has excellent magnetic properties such as core loss after being adjusted to the nanocrystalline structure.
When the heat treatment temperature is specifically compared, for example, most of Fe-based amorphous alloys and Co-based amorphous alloys have a crystallization temperature of about 500 ° C. It must be performed at a temperature of about -100 ° C. On the other hand, in the case of a magnetic powder having a composition capable of expressing a nanocrystalline structure, the heat treatment temperature can be increased to about the crystallization temperature + 100 ° C. As a result, it becomes possible to apply glass powder having a higher softening point than conventionally used glass powder.
[0014]
More specifically, as a magnetic powder having a composition capable of expressing a nanocrystal structure used in the present invention, a general formula: (Fe 1-a M a ) 100-xyz-α-β-γ Cu x Si y B z M 'α M' 'β X γ ( where, M is Co and / or Ni, M' is at least 1 selected Nb, W, Ta, Zr, Hf, from the group consisting of Ti and Mo A seed element, M ″ is at least one element selected from the group consisting of V, Cr, Mn, Al, a white metal element, Sc, Y, a rare earth element, Au, Zn, Sn, and Re; , Ge, P, Sb, In, As, and Be, at least one element selected from the group consisting of: a, x, y, z, α, β, and γ are respectively 0 ≦ a ≦ 0.5; 0.1 ≦ x ≦ 3, 0 ≦ y ≦ 30, 0 ≦ z ≦ 25, 0 ≦ y + z ≦ 35, 0.1 ≦ α ≦ 30, 0 ≦ β ≦ 10 and 0 ≦ γ ≦ Satisfies 0.) The include magnetic powder composition expressed. The magnetic powder can be directly obtained as a powder by a water atomizing method, or can be manufactured by casting once into a ribbon by a single roll method and then mechanically crushing.
[0015]
In the present invention, a glass containing not less than 50% by mass of Bi and not more than 0.1% of Pb by mass together with the above-mentioned nanocrystalline magnetic powder which can be heat-treated at a higher temperature than an amorphous magnetic powder. The use of the powder achieves the Pb-free dust core. In the present invention, the Pb content of 0.1% or less is generally accepted in the Pb-free material from the viewpoint of the concentration of Pb unavoidably mixed as an impurity from the raw material and the prevention of environmental pollution. This is because the Pb content level is 0.1% or less.
[0016]
In the present invention, the reason why glass containing 50% by mass or more of Bi by mass% is used as the glass powder is that, first, by increasing the content of Bi in the glass, the softening point of the glass can be lowered. It is. When the content of Bi is 50% or more, the softening point of the glass is lower than 600 ° C., and the heat treatment can be performed in a temperature range in which the nanocrystalline structure is not coarsened. From the viewpoint of lowering the softening point of the glass, the Bi content is preferably 70% or more.
[0017]
Second, Bi-based glass powder is suitable for finer powder. The finer the powder size of the glass powder used in the dust core, the more uniformly the glass powder can be dispersed without generating voids in the dust core before heat treatment, and furthermore, nano-crystals are formed when the glass powder is softened. The wetting with the magnetic powder becomes uniform. As a result, the density of the dust core can be increased, and the insulation between the magnetic powders can be reliably performed. Therefore, Bi-based glass powder suitable for miniaturization is suitable for manufacturing a dust core.
[0018]
The Bi-based glass powder is suitable for miniaturization due to the following characteristics of the Bi-based glass powder. In many cases, the production of glass powder is performed by pulverization. However, in the case of fineness, wet pulverization is suitable particularly for reducing the median particle diameter d50 to 5 μm or less. In the case of performing wet grinding, the glass needs to have water resistance. Water resistance is an index indicating the stability of a glass when immersed in water. Generally, the lower the alkali content in the glass, the better the stability.
Generally, by adding a Pb oxide or the like, the alkali elution amount can be reduced to improve the water resistance, but the Bi oxide can also improve the water resistance. Therefore, the Bi-based glass powder containing 50% by mass or more of Bi used in the present invention has high water resistance and is suitable for miniaturization.
[0019]
In the present invention, the above-mentioned nanocrystalline magnetic powder and a glass powder containing 50% by mass or more of Bi and 0.1% or less of Pb by mass are mixed with a binder to form a mixed powder. It is molded in a mold and heat-treated at 600 ° C. or lower.
In the present invention, the binder is used to maintain the shape when the mixed powder is molded by a mold, for example, PVA, PVB, water glass, epoxy resin, Si resin and polyimide resin, phenol resin, and the like. It can also be used. However, as described above, thermosetting resin and Si resin are not preferable due to wettability with magnetic powder and residual stress in the dust core, and PVA, PVB, and water glass are more preferable. It is preferable that the mixed powder obtained by mixing these is dried and the particle size is adjusted, and then molded using a mold.
In the present invention, as a magnetic powder having a composition capable of expressing a nanocrystalline structure, after crystallizing a magnetic powder having an amorphous structure that has not been subjected to crystallization heat treatment, mixed with a binder, a glass powder, and molded, Although it is possible to produce a dust core by binding, from the viewpoint of simplification of the process, it is molded using magnetic powder having an amorphous structure, and at the time of heat treatment for binding, Is preferably nanocrystallized.
[0020]
In the present invention, the Bi-based glass powder preferably contains at least one of Al, Si, Zn, and B.
This is because Al oxide, Si oxide, and Zn oxide have an effect of improving the water resistance of the glass powder, similarly to the above-described Bi oxide. On the other hand, since Al oxide and Si oxide also have the effect of increasing the softening point of the glass powder, the content of Al and Si is preferably set to 10% or less by mass%. More preferably, Al is 1 to 4% and Si is 2 to 7%. Since Zn oxide also has the effect of reducing the wettability between the glass powder and the nanocrystalline magnetic powder, the content of Zn is preferably set to 10% or less. It is more preferably at most 9%.
[0021]
B has the effect of lowering the softening point of the glass powder. On the other hand, if the content is large, the chemical durability of the glass powder is reduced. Therefore, the content of B is preferably set to 10% by mass or less. More preferably, it is 0.5 to 3%.
It is also good to add a small amount of SnO, MgO, MgO 2 , ZrO 2 and TiO in order to further improve the water resistance.
[0022]
Further, in the present invention, when a magnetic powder having a composition capable of expressing a nanocrystalline structure, a Bi-based glass powder, and a binder are mixed to form a mixed powder, the magnetic powder exhibits two peaks in particle size distribution. It is preferable to use By using a powder exhibiting two peaks in the distribution of the particle size, as shown in FIG. 1, the Bi-based glass 3 forms the magnetic powder 2 having a small particle size in a gap between the magnetic powders 1 having a large particle size. Can be worn. Compared with the case of using a powder showing only one peak, the ratio of the nanocrystalline magnetic powder in the dust core can be improved, and as a result, the permeability of the dust core is improved, and the core loss is reduced. be able to.
[0023]
Specifically, a magnetic powder (first particle) having a composition capable of expressing a nanocrystalline structure having a d50 of 35 μm or more and a magnetic powder (second particle) having a composition capable of expressing a nanocrystalline structure having a d50 of 15 μm or less are mixed. Is preferred. The d50 value is a median particle size defined as a 50% particle size in an integrated particle size distribution curve. More preferably, the ratio of the d50 value of the first particles to the d50 value of the second particles is 5 times or more as the ratio of the particle diameters. Further, when the first particles and the second particles are mixed, the mixing ratio is preferably such that the powder amount of the second particles is 40% or less by mass%.
[0024]
The production method of the present invention described above eliminates the heat treatment temperature and the Pb-free state, which have conventionally been problems in the production of a dust core using an amorphous magnetic powder, and enables the nanocrystalline magnetic powder and the mass% Thus, a dust core bonded with glass containing 50% or more of Bi and 0.1% or less of Pb can be manufactured.
A dust core combined with a nanocrystalline magnetic powder and a glass containing 50% by mass or more of Bi and containing 0.1% or less of Pb by mass solves the Pb-free problem, Thereby, excellent magnetic properties can be achieved.
Specifically, a magnetic permeability of 60 or more can be achieved at 20 kHz. Further, when a magnetic field of 0.1 T is applied at 20 kHz, the loss of the dust core can be reduced to 50 kW / m 3 or less.
[0025]
【Example】
(Example 1)
By water atomization method, two kinds of nanocrystal structures each having a composition of Fe-13.5Si-1Cu-3Nb-1Cr-11B (mol%), a median particle diameter of d50: 46.2 μm, and a d50: 5.8 μm. A magnetic powder having a composition capable of expressing the above was produced. Magnetic powders having a median particle size of d50: 46.2 μm and d50: 5.8 μm were mixed at a ratio of 7: 3 to obtain a mixed magnetic powder having two peaks in the particle size distribution. This mixed magnetic powder and a Bi-based glass powder having a composition of 81 Bi-2.5Al-4.5Si-5Zn-1.3B-O by mass% and having a Pb content of 0.1% or less (d50: 1.0 μm, softening point: about 455 ° C.) and a binder were mixed at the following mixing ratio using a Henschel mixer, and then dried while being mixed at 80 ° C. In this example, glycerin was also mixed as a plasticizer.
[0026]
-Compounding ratio (mass ratio)-
Mixed magnetic powder: 100
Bi-based glass powder: 1
Polyvinyl alcohol powder (binder): 1
Glycerin 10 mass% solution (plasticizer): 10
[0027]
After the above mixed powder is sieved with a 60 # sieve, stearic acid is added as a lubricant, and the mixed powder is inserted into a mold and pressurized under a condition of 2.0 GPa to obtain an outer diameter of 14, an inner diameter of 8, and a thickness of 8. It was formed into a shape of 5 (mm). Note that stearic acid was added at a ratio of 1 to the mixed powder 112 in a mass ratio.
The above-mentioned molded body is heat-treated for 2 hours in an N 2 atmosphere at 580 ° C., which is sufficiently higher than 455 ° C., which is the softening point of the Bi-based glass powder, to soften the Bi-based glass powder and to prepare a nano-sized magnetic powder. Crystallization was performed to obtain a dust core.
[0028]
About the produced dust core, the magnetic permeability at 20 kHz was measured with an LCR meter, and the core loss at 20 kHz and 0.1 T was measured with IWATSU82332.
As a result, despite performing a heat treatment at a high temperature at which the Bi-based glass powder sufficiently softens, the magnetic permeability at 20 kHz is as high as 72, and the core loss at 20 kHz and 0.1 T is 28 kW /. m 3, and the exhibited low loss. Further, the powder magnetic core of this embodiment achieves Pb-free.
[0029]
(Example 2)
As a Bi-based glass powder, a glass powder having a composition of 75 Bi-2.5Al-3.5Si-1.2B-O in mass% and a Pb content of 0.1% or less (d50: 5.0 μm, Using a softening point of about 455 ° C.), a dust core was prepared in the same manner as in Example 1 except that the Bi-based glass powder was different, and the magnetic permeability and the core loss were measured in the same manner as in Example 1.
As a result, despite performing heat treatment at a high temperature at which the Bi-based glass powder sufficiently softens, the magnetic permeability at 20 kHz shows a high magnetic permeability of 68, and the core loss at 20 kHz and 0.1 T shows a core loss of 26 kW /. It showed low loss and m 3. Further, the powder magnetic core of this embodiment achieves Pb-free.
[0030]
(Example 3)
A glass powder (d50: 1.0 μm, softening point about 455 ° C.) having a composition of 70 Bi-2B—O in mass% and a Pb content of 0.1% or less as a Bi-based glass powder was used. A dust core was prepared in the same manner as in Example 1 except that the glass powder was different, and the magnetic permeability and the core loss were measured in the same manner as in Example 1.
As a result, despite performing heat treatment at a high temperature at which the Bi-based glass powder sufficiently softens, the magnetic permeability at 20 kHz is as high as 67, and the core loss at 20 kHz and 0.1 T is 25 kW /. It showed low loss and m 3. Further, the powder magnetic core of this embodiment achieves Pb-free.
[0031]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the heat treatment temperature in manufacture of a dust core, and the problem of Pb-free can be solved, and the manufacturing method of the dust core excellent in the magnetic property can be provided. It becomes possible to provide a dust core with reduced loss and achieved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an example of a distribution of magnetic powder in a dust core of the present invention.
[Explanation of symbols]
1. 1. magnetic powder having a large particle size; 2. magnetic powder having a small particle size; Bi-based glass

Claims (9)

ナノ結晶組織を発現可能な組成の磁性粉末と、質量%でBiを50%以上含有し、Pbを0.1%以下に制限したガラス粉末と、バインダーを混合して混合粉末とし、該混合粉末を金型で成形し、600℃以下で熱処理することを特徴とする圧粉磁心の製造方法。A magnetic powder having a composition capable of expressing a nanocrystal structure, a glass powder containing 50% or more by mass of Bi and containing Pb of 0.1% or less, and a binder are mixed to form a mixed powder. Is manufactured in a mold and heat-treated at 600 ° C. or lower. ガラス粉末は少なくともAl、Si、Zn、Bの1種以上を含むことを特徴とする請求項1に記載の圧粉磁心の製造方法。The method for manufacturing a dust core according to claim 1, wherein the glass powder contains at least one of Al, Si, Zn, and B. ガラス粉末は質量%でAl1〜4%、Si2〜7%、Zn9%以下、B0.5〜3%の少なくとも1種以上を含むことを特徴とする請求項2に記載の圧粉磁心の製造方法。The method for producing a dust core according to claim 2, wherein the glass powder contains at least one of Al1 to 4%, Si2 to 7%, Zn9% or less, and B0.5 to 3% by mass%. . d50値が35μm以上の磁性粉末と、d50値が15μm以下の磁性粉末とを混合して混合粉末とすることを特徴とする請求項1乃至3の何れかに記載の圧粉磁心の製造方法。The method according to any one of claims 1 to 3, wherein a magnetic powder having a d50 value of 35 µm or more and a magnetic powder having a d50 value of 15 µm or less are mixed to form a mixed powder. ナノ結晶磁性粉末が、質量%でBiを50%以上含有し、Pbを0.1%以下に制限したガラスで結合されたことを特徴とする圧粉磁心。A dust core, wherein the nanocrystalline magnetic powder contains 50% by mass or more of Bi by mass% and is bound by glass in which Pb is limited to 0.1% or less. ガラスは少なくともAl、Si、Zn、Bの1種以上を含むことを特徴とする請求項5に記載の圧粉磁心。The dust core according to claim 5, wherein the glass contains at least one of Al, Si, Zn, and B. ガラスは質量%でAl1〜4%、Si2〜7%、B0.5〜3%、Zn9%以下の少なくとも1種以上を含むことを特徴とする請求項6に記載の圧粉磁心。The dust core according to claim 6, wherein the glass contains at least one of Al1 to 4%, Si2 to 7%, B0.5 to 3%, and Zn9% or less by mass%. 20kHzにおける透磁率が60以上を示すことを特徴とする請求項5乃至7の何れかに記載の圧粉磁心。The dust core according to any one of claims 5 to 7, wherein the magnetic permeability at 20 kHz is 60 or more. 20kHz、0.1Tにおける磁心の損失が50kW/m以下であることを特徴とする請求項5乃至8の何れかに記載の圧粉磁心。20 kHz, the dust core according to any one of claims 5 to 8 loss of the magnetic core in a 0.1T is characterized in that it is 50 kW / m 3 or less.
JP2003009292A 2003-01-17 2003-01-17 Method of manufacturing dust core and dust core Pending JP2004221453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003009292A JP2004221453A (en) 2003-01-17 2003-01-17 Method of manufacturing dust core and dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003009292A JP2004221453A (en) 2003-01-17 2003-01-17 Method of manufacturing dust core and dust core

Publications (1)

Publication Number Publication Date
JP2004221453A true JP2004221453A (en) 2004-08-05

Family

ID=32898835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003009292A Pending JP2004221453A (en) 2003-01-17 2003-01-17 Method of manufacturing dust core and dust core

Country Status (1)

Country Link
JP (1) JP2004221453A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147959A (en) * 2004-11-22 2006-06-08 Daido Steel Co Ltd Dust core and its manufacturing method
JP2007013072A (en) * 2005-05-30 2007-01-18 Mitsubishi Materials Pmg Corp Dust core and method for manufacturing same, and reactor using same
JP2010114222A (en) * 2008-11-05 2010-05-20 Tamura Seisakusho Co Ltd Dust core and method of manufacturing the same
JP2010141183A (en) * 2008-12-12 2010-06-24 Tamura Seisakusho Co Ltd Dust core and method of producing the same
US7776507B2 (en) * 2004-07-22 2010-08-17 Toray Industries, Inc. Photosensitive paste and manufacturing method of member for display panel
JP2014192454A (en) * 2013-03-28 2014-10-06 Hitachi Metals Ltd Manufacturing method of composite coated soft magnetic metal powder, composite coated soft magnetic metal powder, and powder magnetic core using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776507B2 (en) * 2004-07-22 2010-08-17 Toray Industries, Inc. Photosensitive paste and manufacturing method of member for display panel
JP2006147959A (en) * 2004-11-22 2006-06-08 Daido Steel Co Ltd Dust core and its manufacturing method
JP2007013072A (en) * 2005-05-30 2007-01-18 Mitsubishi Materials Pmg Corp Dust core and method for manufacturing same, and reactor using same
JP2010114222A (en) * 2008-11-05 2010-05-20 Tamura Seisakusho Co Ltd Dust core and method of manufacturing the same
JP2010141183A (en) * 2008-12-12 2010-06-24 Tamura Seisakusho Co Ltd Dust core and method of producing the same
JP2014192454A (en) * 2013-03-28 2014-10-06 Hitachi Metals Ltd Manufacturing method of composite coated soft magnetic metal powder, composite coated soft magnetic metal powder, and powder magnetic core using the same

Similar Documents

Publication Publication Date Title
JP2004349585A (en) Method of manufacturing dust core and nanocrystalline magnetic powder
KR100307195B1 (en) Composite magnetic material and process for producing the same
KR101270565B1 (en) ALLOY COMPOSITION, NANOCRYSTALLINE Fe ALLOY, AND PREPARATION METHOD THEREFOR
KR101995154B1 (en) Soft magnetic alloy and magnetic device
KR101470513B1 (en) Soft Magnetic Cores Having Excellent DC Biased Characteristics in High Current and Core Loss Characteristics, and Manufacturing Methods thereof
JP5458452B2 (en) Fe-based amorphous alloy powder, powder core using the Fe-based amorphous alloy powder, and coil-enclosed powder core
EP2390377A1 (en) Iron-based soft magnetic alloy and dust core comprising the iron-based soft magnetic alloy
CN108376598B (en) Soft magnetic alloy and magnetic component
JPWO2009128425A1 (en) Composite magnetic material and method for producing the same
CN108461245B (en) Soft magnetic alloy and magnetic component
JP2009543370A (en) Method for manufacturing magnetic core, magnetic core and inductive member with magnetic core
WO2011148826A1 (en) Soft magnetic powder, powder granules, dust core, electromagnetic component, and method for producing dust core
JP2007019134A (en) Method of manufacturing composite magnetic material
WO2018179812A1 (en) Dust core
WO2020026949A1 (en) Soft magnetic powder, fe-based nano-crystal alloy powder, magnetic member, and dust core
JP2007134591A (en) Composite magnetic material, dust core using the same and magnetic element
JP6981200B2 (en) Soft magnetic alloys and magnetic parts
JP2003059710A (en) Dust core
EP3477664B1 (en) Soft magnetic alloy and magnetic device
JP6898057B2 (en) Powder magnetic core
JP6981199B2 (en) Soft magnetic alloys and magnetic parts
JP2004221453A (en) Method of manufacturing dust core and dust core
US20210062308A1 (en) Soft magnetic alloy and magnetic device
JPH0448005A (en) Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same
EP3441990B1 (en) Soft magnetic alloy and magnetic device