WO2020196608A1 - Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core - Google Patents

Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core Download PDF

Info

Publication number
WO2020196608A1
WO2020196608A1 PCT/JP2020/013292 JP2020013292W WO2020196608A1 WO 2020196608 A1 WO2020196608 A1 WO 2020196608A1 JP 2020013292 W JP2020013292 W JP 2020013292W WO 2020196608 A1 WO2020196608 A1 WO 2020196608A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous alloy
alloy
powder
amorphous
heat treatment
Prior art date
Application number
PCT/JP2020/013292
Other languages
French (fr)
Japanese (ja)
Inventor
元基 太田
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN202080012084.4A priority Critical patent/CN113365764B/en
Priority to JP2021509494A priority patent/JP7148876B2/en
Publication of WO2020196608A1 publication Critical patent/WO2020196608A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to, for example, a PFC circuit used in home appliances such as televisions and air conditioners, a nanocrystal alloy dust core used in a power supply circuit for solar power generation, hybrid vehicles, electric vehicles, etc., and the nanocrystals.
  • the present invention relates to a method for producing an alloy dust core, an amorphous alloy strip as a material for the nanocrystalline alloy dust core, and an amorphous alloy powder.
  • Fe-based nano as a soft magnetic material used for various transformers, motors, generators, reactors, choke coils, noise suppression parts, laser power supplies, pulse power magnetic parts for accelerators, various sensors, magnetic shields, yokes for magnetic circuits, etc.
  • Crystalline alloys are known. It is known that Fe-based nanocrystalline alloys have a small coercive force and magnetostriction comparable to Co-based amorphous alloys, and exhibit a high saturation magnetic flux density comparable to Fe-based amorphous alloys. This Fe-based nanocrystal alloy is usually produced by quenching from a liquid phase or a gas phase to form an amorphous alloy, which is then microcrystallized by heat treatment.
  • Known methods for quenching from the liquid phase include a single roll method, a twin roll method, a centrifugal quenching method, a spinning method in a rotating liquid, an atomizing method, and a cavitation method. Further, as a method of quenching from the gas phase, a sputtering method, a vapor deposition method, an ion plating method and the like are known.
  • Fe-based nanocrystalline alloys are microcrystallized amorphous alloys produced by these methods, and have almost no thermal instability as seen in amorphous alloys, and have a high saturation magnetostrictive density comparable to that of Fe-based amorphous alloys. It is known to have low magnetostriction and exhibit excellent soft magnetic properties. Further, it is known that nanocrystal alloys have a small change with time and are excellent in temperature characteristics.
  • the nanocrystal alloy can be obtained by heat-treating an amorphous alloy capable of nanocrystallization at a temperature equal to or higher than the nanocrystallization start temperature (hereinafter, also simply referred to as “nanocrystallization heat treatment”).
  • amorphous alloy capable of nanocrystallization before the nanocrystallization heat treatment
  • amorphous alloy an Fe-based nanocrystal alloy obtained by subjecting an amorphous alloy to a nanocrystallizing heat treatment
  • nanonocrystal alloy an Fe-based nanocrystal alloy obtained by subjecting an amorphous alloy to a nanocrystallizing heat treatment
  • Amorphous alloys are usually manufactured by continuously casting them into thin strips by rolling quenching, and are manufactured as long alloy strips. Therefore, as the magnetic core made of nanocrystalline alloy, one in which alloy strips are wound or laminated is generally used.
  • electromagnetic booster circuits such as reactors have been required to be used for high frequency applications of several tens to several hundreds of kHz due to needs such as miniaturization, and powdered magnetic materials are hardened as a suitable magnetic core.
  • the amount of dust cores that have been generated is increasing. The reasons why the dust core is used are as follows.
  • the magnetic core used in high-frequency electromagnetic circuits is used with a small magnetic permeability in order to prevent magnetic saturation due to fluctuations in current.
  • the slight gap between the powders plays a role of lowering the magnetic permeability, so that magnetic saturation is suppressed and the loss of the entire circuit can be reduced.
  • the amorphous alloy powder obtained by the atomization method has a spherical shape, but is an amorphous alloy obtained by crushing a thin band of an amorphous alloy (hereinafter, also simply referred to as "amorphous alloy thin band”) produced by roll quenching and capable of nano-crystallization. Since the powder (hereinafter, also simply referred to as “thin band crushed powder”) becomes flat, it is being considered to use this thin band crushed powder.
  • the amorphous alloy strip has the same hardness as the Fe-based amorphous alloy strip. Therefore, it has the disadvantage that it is difficult to pulverize and it is difficult to control the particle size after pulverization.
  • embrittlement heat treatment heat treatment for embrittlement of the alloy
  • embrittlement heat treatment heat treatment for embrittlement of the alloy
  • the toughness of the amorphous alloy strip is reduced by the embrittlement heat treatment, the amorphous alloy strip is crushed while being torn, so that stress tends to remain locally in the strip crushed powder, which is one of the causes of deterioration of magnetic properties. Become.
  • embrittlement heat treatment becomes a bottleneck in the manufacturing process.
  • the embrittlement heat-treated thin band crushed powder and the binder are compression-molded to form a powder magnetic core
  • the internal stress generated in the pressurizing process remains in the powder magnetic core, but the internal stress is relaxed thereafter.
  • strain removing heat treatment the heat treatment
  • the reason is that the improvement effect of the strain removing heat treatment of the amorphous alloy decreases when it is repeatedly performed. Therefore, if the embrittlement heat treatment is performed before pulverization, the stress relaxation by the heat treatment after compression molding is not sufficiently performed. .. Therefore, it is effective to develop an amorphous alloy strip having good pulverizability without embrittlement heat treatment.
  • Patent Document 1 has a problem of crushing an amorphous soft magnetic alloy containing Fe, B, P and Cu, which is difficult to crush, as it is without performing a brittle heat treatment, and as a means for solving the problem, a composition is used.
  • Patent Document 2 makes it difficult to obtain a Fe-based nanocrystal material containing Nb of several% or more, such as FeCuNbSiB-based or FeCuNbB-based, having a high saturation magnetic flux density of 1.7 T or more, and then manufactures powder.
  • a soft magnetic alloy that is easy to use a composition that does not contain Nb is proposed, and as an embodiment thereof, an alloy strip of Febal Cu 1.35 Si 14 B 3 Sn 0.5 (Table 3, Sample No. .19) is presented.
  • an object of the present invention is to provide an amorphous alloy strip having excellent grindability and to obtain excellent soft magnetic properties by subjecting it to nanocrystallizing heat treatment, and to provide an amorphous alloy obtained by grinding the amorphous alloy strip. It is an object of the present invention to provide an alloy powder, and to provide a nanocrystal alloy dust core produced by using the alloy powder, and a method for producing a nanocrystal alloy dust core.
  • Alloy composition Fe 100-ab-c-d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ⁇ a ⁇ 1.55 , 1 ⁇ b ⁇ 10, 11 ⁇ c ⁇ 17, 0.25 ⁇ d ⁇ 1.0, a + d ⁇ 1.80).
  • Amorphous alloy strip ⁇ 2> The amorphous alloy strip according to ⁇ 1>, which has a thickness of 15 ⁇ m or more and 50 ⁇ m or less.
  • Alloy composition Fe 100-abc-d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ⁇ a ⁇ 1.55 , 1 ⁇ b ⁇ 10, 11 ⁇ c ⁇ 17, 0.25 ⁇ d ⁇ 1.0, a + d ⁇ 1.80). It has an alloy strip surface and a fracture surface, Amorphous alloy powder.
  • Alloy composition Fe 100-a-bc-d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ⁇ a ⁇ 1.55 , 1 ⁇ b ⁇ 10, 11 ⁇ c ⁇ 17, 0.25 ⁇ d ⁇ 1.0, a + d ⁇ 1.80), and crushed an amorphous alloy strip that has not been heat-treated.
  • Amorphous alloy powder crushing process The compression molding step A in which the amorphous alloy powder and the binder are mixed and compression molded to obtain a green compact.
  • Amorphous alloy powder crushing process The crystallization heat treatment step B of subjecting the amorphous alloy powder to a heat treatment for nanocrystallization to obtain a nanocrystal alloy powder, The compression molding step B in which the nanocrystallized nanocrystal alloy powder and the binder are mixed and compression molded to obtain a green compact.
  • a method for producing a nanocrystal alloy dust core having.
  • Alloy composition Fe 100-a-bc-d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ⁇ a ⁇ 1.55 , 1 ⁇ b ⁇ 10, 11 ⁇ c ⁇ 17, 0.25 ⁇ d ⁇ 1.0, a + d ⁇ 1.80), and has a body-centered cubic structure having an average crystal grain size of 60 nm or less.
  • a nano-crystal alloy dust core containing an amorphous alloy powder having a structure in which crystal grains are dispersed in an amorphous matrix in a body integral ratio of 30% by volume or more, and having an alloy thin band surface and a fracture surface.
  • an amorphous alloy ribbon having excellent pulverizability and having excellent soft magnetic properties obtained by subjecting nanocrystallization heat treatment, an amorphous alloy powder obtained by crushing the amorphous alloy ribbon, and an amorphous alloy powder. It is possible to provide a nanocrystal alloy dust core produced by using these, and a method for producing a nanocrystal alloy dust core.
  • the numerical range represented by using "-" means the range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. ..
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • ⁇ Amorphous alloy strip> The amorphous alloy strip of the present embodiment satisfies the following alloy composition.
  • Alloy composition Fe 100-ab-c-d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ⁇ a ⁇ 1.55, 1 ⁇ b ⁇ 10, 11 ⁇ c ⁇ 17, 0.25 ⁇ d ⁇ 1.0, a + d ⁇ 1.80)
  • the amorphous alloy strip having the above alloy composition is a soft magnetic material that has excellent pulverizability and can obtain excellent soft magnetic properties (high saturation magnetic flux density) by subjecting it to nanocrystallization heat treatment.
  • the raw material weighed so as to have the above alloy composition is melted by means such as high-frequency induction melting, and then discharged to the surface of a cooling roll rotating at high speed via a nozzle. It can be manufactured by roll quenching such as single roll or twin roll which is rapidly cooled and solidified. From the viewpoint of facilitating continuous casting and improving the production efficiency of the amorphous alloy thin band, and by delaying the cooling rate of the molten metal to intentionally cause embrittlement to improve the pulverizability of the thin band crushed powder. From the viewpoint of improving the production efficiency, the thickness of the amorphous alloy strip is preferably 15 ⁇ m or more. Further, from the viewpoint of improving the pulverizability and improving the production efficiency of the thin band crushed powder, the thickness of the amorphous alloy thin band is preferably 50 ⁇ m or less.
  • the amorphous alloy strip of the present embodiment includes not only a perfect strip but also a strip obtained by quenching the roll.
  • the strip-shaped strip refers to a strip-shaped strip that is partially torn or broken and separated into a plurality of pieces.
  • a method of casting an alloy strip by rolling quenching such as a single roll or a double roll is hereinafter referred to as "roll casting".
  • the amorphous alloy powder of the present embodiment has an alloy composition: Fe 100-ab-c-d Cu a Si b B c Sn d (where a, b, c, d are 0 in atomic%. It has a composition represented by 3 ⁇ a ⁇ 1.55, 1 ⁇ b ⁇ 10, 11 ⁇ c ⁇ 17, 0.25 ⁇ d ⁇ 1.0, a + d ⁇ 1.80), and has an alloy thin band surface. And a fracture surface.
  • the alloy strip surface is a surface corresponding to both opposite planes of the amorphous alloy strip formed by roll casting.
  • This amorphous alloy powder becomes a nanocrystal alloy powder having a high saturation magnetic flux density by undergoing nanocrystallization heat treatment. Details will be described later.
  • the alloy composition of the amorphous alloy strip, the amorphous alloy powder, and the nanocrystal alloy dust core of the present embodiment will be described below.
  • the amorphous alloy strip, the amorphous alloy powder, and the nanocrystalline alloy dust core of the present embodiment have a composition without adding Nb or Mo and have a high saturation magnetic flux density.
  • the alloy composition of the amorphous alloy strip and the amorphous alloy powder of the present embodiment (hereinafter, the amorphous alloy strip and the amorphous alloy powder of the present embodiment may be simply referred to as "amorphous alloy strip and the like").
  • amorphous alloy strip and the like It is a composition capable of nano-crystallization.
  • crystal grains having an average particle size of 30 nm or less have an area in the amorphous matrix. It is preferable that the structure is dispersed in a fraction of more than 0% and less than 30%.
  • a nanocrystal alloy strip or nanocrystal alloy powder having a nanocrystal structure in which nanocrystals having an average crystal particle size of 60 nm or less are dispersed in an amorphous phase can be obtained.
  • the volume fraction of the nanocrystal phase of the obtained nanocrystal alloy strip or nanocrystal alloy powder can be set to 30% or more.
  • the nanocrystals are crystal grains having a body-centered cubic structure, and the average crystal grain size is preferably 10 to 50 nm.
  • Fe (iron) is an element that determines the saturation magnetic flux density Bs.
  • the atomic% of Fe in the alloy composition such as an amorphous alloy strip is preferably 77 atomic% or more, more preferably 79 atomic% or more.
  • Cu copper
  • Cu has the effect of embrittlement of the amorphous alloy strip and facilitating pulverization.
  • the heat of mixing Cu becomes positive with those elements, so in order to lower the potential energy, Cu atoms gather together during the cooling process during production to form a cluster. Since the Fe concentration increases around the cluster, a high-density region with a high Fe concentration is generated. It is speculated that this variation in density facilitates grinding. Further, since nanocrystals are uniformly generated in the alloy structure with Cu atoms as nuclei, the addition of Cu is indispensable.
  • the atomic% of Cu in the alloy composition of an amorphous alloy strip or the like is 0.3 atomic% or more, preferably 0.5 atomic% or more, more preferably 0.7 atomic% or more. 0.8 atomic% or more is more preferable.
  • Nanocrystal alloy dust powder with excellent soft magnetic properties by suppressing the formation of relatively large crystals that grow into coarse crystal grains by heat treatment after quench solidification (before nanocrystallization heat treatment) in amorphous alloy strips, etc.
  • the nanocrystal alloy dust core From the viewpoint of improving soft magnetic properties, the atomic% of Cu in the alloy composition of amorphous alloy strips and the like is less than 1.55 atomic%, preferably 1.4 atomic% or less, and more preferably 1.2 atomic% or less. It is preferable, and less than 1.0 atomic% is more preferable.
  • Si silicon is an element that forms an alloy with Fe as a nanocrystal phase by heat treatment to form a bcc phase ((Fe—Si) bcc phase). It is also an element that acts on the amorphous forming ability during quenching and solidification.
  • the atomic% of Si in the alloy composition of an amorphous alloy strip or the like is 1 atomic% or more, preferably 2 atomic% or more, more preferably 2.5 atomic% or more, in order to form an amorphous phase after quenching and solidification with good reproducibility. preferable.
  • it is 10 atomic% or less, preferably 8 atomic% or less, and more preferably 7 atomic% or less.
  • B boron
  • B is an element that acts on the amorphous forming ability during quenching and solidification. Further, B has an action of allowing Cu atoms, which are the cores of nanocrystals, to exist uniformly in the alloy structure (in the amorphous phase) without being unevenly distributed.
  • the atomic% of B in the alloy composition of an amorphous alloy strip or the like is 11 atomic% or more and 12 atoms in order to form an amorphous phase after quenching and solidifying with good reproducibility and uniformly present Cu atoms in the amorphous phase. % Or more is preferable. Further, although it is related to the total amount with the amount of Si described later, the atomic% of B in the alloy composition is 17 atomic% or less, and 15 from the viewpoint of obtaining a nanocrystalline alloy dust core having a high saturation magnetic flux density Bs. It is preferably 5.5 atomic% or less.
  • Fe is an element that determines the saturation magnetic flux density Bs. Therefore, when the amount of Fe in the amorphous alloy strip or the like decreases, the saturation magnetic flux density Bs tends to decrease. Further, with respect to the saturation magnetic flux density Bs, Si and B have a relatively large influence on Fe. Therefore, the total (b + c) of the atomic% of Si and the atomic% of B in the alloy composition of the amorphous alloy strip or the like is 20 atomic% or less (b + c) from the viewpoint of obtaining a nanocrystalline alloy dust core having a high saturation magnetic flux density Bs. That is, b + c ⁇ 20) is preferable, and 18 atomic% or less (b + c ⁇ 18) is more preferable.
  • Sn (tin) has the effect of embrittlement of amorphous alloy strips and the like. Further, by adding Sn in combination with Cu, the embrittlement of the amorphous alloy strip and the like becomes more remarkable. Sn having a low melting point can move within the amorphous alloy ribbon and the like even at a relatively low temperature, and can be evenly distributed over the entire amorphous alloy strip and the like. In relation to the formation of a compound by Sn and Cu, it is considered that Sn has an effect of widely dispersing Cu (Sn) clusters at a higher number density over the entire amorphous alloy strip and the like. In addition, Sn has an action effect of suppressing the formation of coarse crystal grains after heat treatment of an amorphous alloy strip or the like.
  • the atomic% of Sn in the alloy composition of an amorphous alloy strip or the like is more than 0.25 atomic%, preferably 0.26 atomic% or more, more preferably 0.27 atomic% or more. 0.28 atomic% or more is more preferable.
  • the atomic% of Sn in the alloy composition of an amorphous alloy strip or the like is 1.0 atomic% or less, preferably less than 0.50 atomic%. 0.48 atomic% or less is more preferable, and 0.45 atomic% or less is further preferable.
  • the total amount (a + d) of the amount of Cu and the amount of Sn in the alloy composition of an amorphous alloy strip or the like shall be 1.80 atomic% or less.
  • the total amount of Cu and Sn in the alloy composition of the amorphous alloy strip and the like is preferably 1.6 atomic% or less from the viewpoint of obtaining the nanocrystal alloy strip and the nanocrystal alloy powder having a large saturation magnetic flux density, preferably 1.5 Atomic% or less is more preferable, and 1.45 atomic% or less is further preferable.
  • the sum of the amount of Cu and the amount of Sn in the alloy composition of the amorphous alloy strip and the like is from the viewpoint of obtaining an amorphous alloy strip having excellent pulverizability and from the viewpoint of obtaining a nanocrystal alloy strip and a nanocrystal alloy powder having a large saturation magnetic flux density.
  • 0.8 atomic% or more is preferable, 1.0 atomic% or more is more preferable, 1.2 atomic% or more is further preferable, and 1.25 atomic% or more is further preferable.
  • the amorphous alloy strip or the like of the present embodiment preferably has fine crystal grains dispersed in the amorphous (matrix).
  • amorphous alloy strip or the like of the present embodiment preferably has fine crystal grains dispersed in the amorphous (matrix).
  • it is better not to produce a completely amorphous alloy, but rather to produce an amorphous alloy in which fine crystal grains are dispersed in an amorphous (matrix) and then perform heat treatment to proceed with crystallization. It has a fine crystal grain structure and can realize excellent soft magnetic properties.
  • the alloy composition specified in this embodiment it is easy to obtain an amorphous alloy strip or the like in which fine crystal grains are dispersed in an amorphous (matrix) by roll casting.
  • the state in which fine crystal grains are dispersed is a state in which crystal grains having an average particle size of 30 nm or less are dispersed in an amorphous matrix with a volume fraction of more than 0% and less than 30%.
  • Fe-B-based and Fe-B-Si-based alloy compositions tend to form an amorphous phase, but by adding an appropriate amount of Cu or Sn, which is insoluble in Fe, to Fe immediately after casting by the ultra-quenching method.
  • Fine crystal grain nuclei can be appropriately formed in the base alloy (intermediate alloy).
  • the amorphous alloy having this structure fine crystal grains are formed at the stage before the nanocrystallization heat treatment, and the crystal grains are not coarsened by appropriate heat treatment, a nanocrystal alloy can be obtained, and good soft magnetism is obtained. The characteristics are obtained. Further, since the fine crystal grains are randomly dispersed, the brittleness can be made high enough to cause breakage by bending at 180 °. Therefore, pulverization is possible without using a powerful pulverizing means such as a milling device, and the obtained amorphous alloy powder has a small residual stress.
  • the above alloy composition may contain impurities in addition to the listed elements.
  • impurities include P (phosphorus), S (sulfur), N (nitrogen), C (carbon) and the like. This impurity can be replaced with Fe in the range of less than 1.0 atomic% in the atomic% of the above composition formula as 100 atomic%.
  • the upper limit of the atomic% of P in the alloy composition such as the amorphous alloy strip is preferably less than 1.0 atomic%, more preferably 0.5 atomic% or less, with the atomic% of the above alloy composition being 100 atomic%. 0.3 atomic% or less is further preferable, 0.2 atomic% or less is further preferable, and 0.1 atomic% or less is even more preferable.
  • the atomic% of C in the alloy composition of an amorphous alloy strip or the like is preferably 0.37 atomic% or less, more preferably 0.35 atomic% or less. Further, the atomic% of C in the alloy composition of the amorphous alloy strip or the like is preferably 0.10 atomic% or more, more preferably 0.20 atomic% or more, from the viewpoint of obtaining stabilization of the viscosity of the molten alloy during casting. , 0.22 atomic% or more is more preferable.
  • pulverization of the amorphous alloy strip having the above alloy composition a known means such as an atomizer, a ball mill, a jet mill, and a stamp mill can be adopted.
  • the obtained pulverized powder of the amorphous alloy strip has an alloy strip surface formed by roll casting and a fracture surface.
  • the amorphous alloy powder having a desired average particle size can be obtained by classifying after pulverization.
  • the classified amorphous alloy powder can have a median diameter D50 (particle diameter corresponding to a cumulative 50% by volume) of 20 ⁇ m or more and 40 ⁇ m or less.
  • the amorphous alloy powder is classified by sieving, and the powder having a particle size of more than 40 ⁇ m is 10% by mass or less of the whole powder, and the powder having a particle size of more than 20 ⁇ m and 40 ⁇ m or less is 30% by mass or more of the whole powder.
  • the powder having a particle size of 90% by mass or less and 20 ⁇ m or less can be 5% by mass or more and 60% by mass or less of the whole powder.
  • the amorphous alloy powder having a particle size of more than 40 ⁇ m is 10% by mass or less of the total amorphous alloy powder. It is not easy to stably obtain an amorphous phase or a mixed phase of an amorphous phase and a fine crystal phase in this amorphous alloy powder having a particle size of more than 40 ⁇ m. Therefore, the amorphous alloy powder having a particle size of more than 40 ⁇ m is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 0% by mass.
  • the amount of amorphous alloy powder having a particle size of more than 40 ⁇ m is small. Then, among the many remaining amorphous alloy powders, the ratio of the amorphous alloy powder having a particle size of 20 ⁇ m or less and the amorphous alloy powder having a particle size of more than 20 ⁇ m and 40 ⁇ m or less can be specified.
  • the amorphous alloy powder having a particle size of 20 ⁇ m or less can obtain an Fe-based nanocrystal alloy powder having a high saturation magnetic flux density Bs capable of suppressing magnetic saturation even in high-frequency applications, and is more than 20 ⁇ m and 40 ⁇ m or less.
  • Amorphous alloy powder having a particle size of is suitable for a magnetic core having a high initial magnetic permeability ⁇ i and excellent DC superimposition characteristics. Therefore, these amounts can be set so that the desired magnetic properties can be obtained.
  • the amorphous alloy powder having a particle size of more than 20 ⁇ m and 40 ⁇ m or less is defined as 30% by mass or more and 90% by mass or less of the total amorphous alloy powder, and the amorphous alloy powder having a particle size of 20 ⁇ m or less is 5% by mass or more and 60% by mass or more of the entire amorphous alloy powder. It is set to mass% or less. As described above, the amount can be changed according to the required magnetic characteristics.
  • the amorphous alloy powder having a particle size of 20 ⁇ m or less is preferably 10% by mass or more, more preferably 20% by mass or more, preferably 50% by mass or less, and more preferably 40% by mass or less in the entire amorphous alloy powder.
  • the amorphous alloy powder having a particle size of more than 20 ⁇ m and 40 ⁇ m or less is preferably 35% by mass or more, more preferably 40% by mass or more, preferably 85% by mass or less, and more preferably 80% by mass or less in the whole amorphous alloy powder.
  • ⁇ Nanocrystalline alloy dust core The method for producing a nanocrystal alloy dust core according to the first embodiment using the above amorphous alloy powder is as follows. Alloy composition: Fe 100-a- bc -d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ⁇ a ⁇ 1.55, 1 ⁇ Amorphous alloy having a composition represented by b ⁇ 10, 11 ⁇ c ⁇ 17, 0.25 ⁇ d ⁇ 1.0, a + d ⁇ 1.80) and not subjected to heat treatment.
  • the crushing process to make powder and The compression molding step A in which the amorphous alloy powder and the binder are mixed and compression molded to obtain a green compact.
  • a crystallization heat treatment step A in which the green compact is subjected to a heat treatment for nanocrystallizing the amorphous alloy powder contained in the green compact. It has.
  • Alloy composition Fe 100-a- bc -d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ⁇ a ⁇ 1.55, 1 ⁇ Amorphous alloy having a composition represented by b ⁇ 10, 11 ⁇ c ⁇ 17, 0.25 ⁇ d ⁇ 1.0, a + d ⁇ 1.80) and not subjected to heat treatment.
  • the heat treatment in the crushing step of the method for producing the nanocrystal alloy dust core of the first and second embodiments described above is an embrittlement heat treatment or a nanocrystallization heat treatment, for example, at 200 ° C. or higher. Temperature heat treatment corresponds.
  • the embrittlement heat treatment is preferably performed at 250 ° C. or higher.
  • the amorphous alloy strip before pulverization is not subjected to brittle heat treatment or nanocrystallization heat treatment, so that the crystallization heat treatment step is performed.
  • nanocrystallizing heat treatment is applied to an amorphous alloy powder or green compact in A or the crystallization heat treatment step B, sufficient stress relaxation is performed, and a dust core having excellent soft magnetic properties such as saturation magnetic flux density can be obtained. ..
  • the nanocrystallization heat treatment is performed together with the nanocrystallization of the amorphous alloy powder.
  • the integration by curing the binder and the stress relaxation of the compressive strain applied to the amorphous alloy powder can be performed at the same time.
  • the nanocrystallization heat treatment is performed together with the nanocrystallization of the amorphous alloy powder.
  • the stress relaxation of the compressive strain applied to the amorphous alloy powder can be performed at the same time.
  • the method for producing the nano-crystal alloy dust core of the first embodiment and the method for producing the nano-crystal alloy dust core of the second embodiment are used to obtain the green compact and then to prepare the green compact. It may have a heat treatment step for curing the contained binder and a heat treatment step for performing strain removing heat treatment of the green compact.
  • the amorphous alloy strip can be crushed to obtain an amorphous alloy powder, and if necessary, a classified amorphous alloy powder can be obtained.
  • a nanocrystalline alloy dust core can be produced by the following production method.
  • Amorphous alloy powder, binder such as silicone resin, and organic solvent if necessary are added and kneaded.
  • the organic solvent is then evaporated. It can also be granulated after kneading.
  • a green compact can be obtained by putting this kneaded material in a press die and compression molding it into a desired magnetic core shape such as a toroidal shape. At this time, the nanocrystallization heat treatment is applied to the amorphous alloy powder or the green compact.
  • the green compact can also be heat-treated to cure the binder.
  • the heat treatment for curing the binder can also be performed at the same time.
  • the nanocrystallization heat treatment is performed up to a temperature of -30 ° C or higher at which an exothermic peak due to nanocrystal precipitation (first exothermic peak) appears and below a temperature at which an exothermic peak (second exothermic peak) due to coarse crystal precipitation appears.
  • the temperature rises.
  • the first exothermic peak and the second exothermic peak can be grasped by measuring the alloy with a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the alloy is measured by a differential scanning calorimeter (DSC) (heating rate 20 ° C./min), and the first (low temperature side) exothermic peak is set as the exothermic peak due to nanocrystal precipitation (first exothermic peak).
  • the exothermic peak on the (high temperature side) can be set as the exothermic peak (second exothermic peak) due to coarse crystal precipitation.
  • the lower limit of the temperature was set to -30 ° C, the temperature at which the first exothermic peak appears, when the powder magnetic core is heat-treated or when a large amount of amorphous alloy powder is heat-treated in one batch. Since the heat treatment can be performed at a temperature of about ⁇ 30 ° C. of the first heat generation peak (for example, 400 to 460 ° C.) in consideration of speed and heat generation, the lower limit is the temperature of ⁇ 30 ° C. at which the first heat generation peak appears. Is.
  • the nanocrystallization heat treatment is preferably performed in a non-oxidizing atmosphere such as nitrogen gas.
  • the heating rate, the holding time at the maximum temperature, and the temperature decreasing rate in the nanocrystallization heat treatment can be appropriately set depending on the alloy component.
  • the heating rate is preferably 0.001 ° C./sec to 1000 ° C./sec.
  • the temperature rise rate is high (for example, 10 ° C./sec or more)
  • the maximum temperature may reach the second exothermic peak or higher due to self-heating associated with the crystallization of the amorphous alloy powder. Therefore, the amorphous alloy powder to be processed at the same time. It is necessary to pay attention to the amount of.
  • the maximum temperature reached needs to be lower than the second exothermic peak, and is preferably lower than the second exothermic peak ⁇ 30 ° C.
  • the amorphous alloy powder is placed at the maximum temperature for 1 second or longer.
  • the retention time should be determined in consideration of efficiency and nanocrystallization.
  • the temperature is generally cooled by air or gas, and there are no particular restrictions on the cooling rate.
  • the maximum temperature is close to the second exothermic peak, special attention is required, and the temperature immediately below the first exothermic peak is required. It is desirable to be cooled to the region.
  • the temperature is preferably 400 ° C. or lower within 300 seconds, and more preferably 300 ° C. or lower within 600 seconds.
  • the nano-crystal alloy dust core obtained by the present embodiment has the above-mentioned alloy composition, and crystal grains having a body-centered cubic structure having an average crystal grain size of 60 nm or less have a body integration rate in the amorphous matrix. It is composed of an alloy powder having a structure dispersed in an amount of 30% by volume or more, an alloy thin band surface formed by roll casting, and a fracture surface.
  • the amorphous alloy strip and the amorphous alloy powder of the present embodiment are subjected to nanocrystallizing heat treatment, the same structure can be obtained.
  • Amorphous alloy strips and amorphous alloy powders that have undergone nanocrystallization heat treatment and nanocrystal alloy dust cores have a nanocrystal structure, so the effect of random magnetic anisotropy appears, and the soft magnetism is as good as the amorphous phase. The characteristics are maintained. Further, since the volume fraction of the crystal phase whose magnetization is higher than that of the amorphous phase increases with crystallization, the total magnetization increases by about 5 to 15%.
  • the nanocrystalline alloy dust core of the present embodiment can have a saturation magnetic flux density of 1.65 T or more.
  • the half width (radian angle) of the (Fe—Si) bcc peak was obtained from the X-ray diffraction (XRD) pattern of the alloy powder after heat treatment, and the following formula was used by Scherrer. Can be sought.
  • the volume fraction of the nanocrystal phase is calculated by observing the inside of the powder with a transmission electron microscope (TEM), totaling the areas of substantially circular crystals, and calculating the ratio with respect to the area of the observation field of view.
  • TEM transmission electron microscope
  • Amorphous alloy strips according to Samples 1 to 7 represented by 00, 1.40) were produced.
  • the amorphous alloy strip had a thickness of 25 ⁇ m.
  • the thickness of the thin band was calculated from the density, weight and dimensions (length x width).
  • the alloy strip was subjected to nanocrystallizing heat treatment (410 ° C.), and the saturation magnetic flux density Bs and the coercive force Hc were obtained from the DC BH curve of the applied magnetic field of 8000 A / m.
  • the values are shown in Table 1.
  • Samples 1, 2 and 7 are comparative examples, and samples 3 to 6 are examples.
  • the crushing was performed by the following procedure. First, the amorphous alloy strip was cut to obtain a test piece of about 0.3 g, and after measuring the weight w1 of the test piece, it was placed in a metal mortar and the pot was moved for 1 minute to pulverize it. Then, it was placed in a sieve having a mesh size of 106 ⁇ m, and the sieve was vibrated for 1 minute with a vibrator to obtain a powder having a mesh size of 106 ⁇ m or less that passed through the sieve. The weight w2 of this powder was measured. Then, w2 / w1 (%) was used as the recovery rate of the powder of 106 ⁇ m or less.
  • the powder After crushing in the same manner, the powder is placed in a sieve having an opening of 63 ⁇ m and vibrated with a vibrator for 1 minute to obtain a powder of 63 ⁇ m or less, the weight w3 is measured, and w3 / w1 (%) is 63 ⁇ m or less.
  • the recovery rate of the powder of.
  • FIG. 3 is an external photograph of the thin band crushed powder of the present embodiment.
  • an alloy strip surface formed by flat roll casting and a fracture surface can be observed.
  • FIG. 4 is a cross-sectional TEM photograph of the powder obtained by subjecting the thin band crushed powder of the present embodiment to nanocrystallizing heat treatment (hereinafter referred to as the implemented nanocrystallized powder).
  • FIG. 5 is a cross-sectional TEM photograph of a powder (hereinafter referred to as comparative nanocrystallized powder) obtained by subjecting a thin-band pulverized powder of a comparative form of an amorphous alloy strip to which Sn is not added to a nanocrystallization heat treatment. Both show the vicinity of the fracture surface.
  • FIG. 1 is a diagram showing the relationship between the Sn substitution amount x and the recovery rate of powder of 106 ⁇ m or less.
  • FIG. 2 is a diagram showing the relationship between the Sn substitution amount x and the recovery rate of powder of 63 ⁇ m or less.
  • Table 1 shows the amount of Cu added x, the amount of Sn added y, the total amount of Cu and Sn added, the recovery rate of powders of 106 ⁇ m or less and 63 ⁇ m or less, and the saturation magnetic flux density Bs of the amorphous alloy strip.
  • the coercive force is described.
  • the amorphous alloy strip was subjected to nanocrystallization heat treatment, and the saturation magnetic flux density Bs and the coercive force were measured.
  • the amorphous alloy strip of the example is an amorphous alloy strip that can obtain excellent soft magnetic properties (high saturation magnetic flux density) by subjecting it to nanocrystallization heat treatment. That is, even in the thin band pulverized powder, excellent soft magnetic characteristics (high saturation magnetic flux density) can be obtained by performing the nanocrystallization heat treatment.
  • the recovery rate of the powder of 106 ⁇ m or less was 54% or less, and the recovery rate of the powder of 63 ⁇ m or less was 20% or less.
  • the recovery rate of the powder of 106 ⁇ m or less exceeds 54%, and the recovery rate of the powder of 63 ⁇ m or less exceeds 20%.
  • the amorphous alloy strip of the present embodiment had a saturation magnetic flux density Bs of 1.70 T or more and a coercive force Hc of 12.0 A / m or less by subjecting the nanocrystallizing heat treatment.
  • the amorphous alloy strip of the present embodiment has excellent pulverizability and excellent soft magnetic properties by subjecting the nanocrystal heat treatment.
  • Example 2 The roll casting, the alloy composition is Fe bal Cu x Si 4 B 14 Sn y in atomic%, x shown in Table 2, one of y, to produce an amorphous alloy ribbon according to the sample 8-12.
  • the amorphous alloy strip had a thickness of 25 ⁇ m.
  • the thickness of the thin band was calculated from the density, weight and dimensions (length x width).
  • Table 2 shows the results of measuring the saturation magnetic flux density Bs and the coercive force Hc (measured in the same manner as in Example 1) by subjecting the amorphous alloy strip to nanocrystallizing heat treatment (410 ° C.).
  • Samples 8, 9 and 12 are comparative examples, and samples 10 and 11 are examples.
  • the amorphous alloy strip of the present embodiment had a saturation magnetic flux density Bs of 1.70 T or more and a coercive force Hc of 10 A / m or less by subjecting the nanocrystallizing heat treatment.
  • the amorphous alloy strip of the present embodiment has excellent pulverizability and excellent magnetic properties by subjecting the nanocrystal heat treatment.

Abstract

An amorphous alloy thin strip according to the present invention has an alloy composition represented by the formula: Fe100-a-b-c-dCuaSibBcSnd (wherein a, b, c and d represent values of at.% which satisfy the requirements represented by the formulae: 0.3 ≦ a < 1.55, 1 ≦ b ≦ 10, 11 ≦ c ≦ 17, 0.25 < d ≦ 1.0, and a+d ≦ 1.80). According to the amorphous alloy thin strip of the present invention, it is possible to provide: an amorphous alloy thin strip and an amorphous alloy powder each having excellent crushability and soft magnetic properties; and a method for producing a nanocrystalline alloy dust core using either one of the amorphous alloy thin strip or the amorphous alloy powder.

Description

アモルファス合金薄帯、アモルファス合金粉末、及びナノ結晶合金圧粉磁心、並びにナノ結晶合金圧粉磁心の製造方法Amorphous alloy strip, amorphous alloy powder, nanocrystalline alloy dust core, and nanocrystal alloy dust core manufacturing method
 本発明は、例えば、テレビやエアコンなど家電機器で採用されているPFC回路や、太陽光発電やハイブリッド車・電気自動車などの電源回路等に使用されるナノ結晶合金圧粉磁心、及び当該ナノ結晶合金圧粉磁心の製造方法、並びに当該ナノ結晶合金圧粉磁心の材料となるアモルファス合金薄帯、及びアモルファス合金粉末に関するものである。 The present invention relates to, for example, a PFC circuit used in home appliances such as televisions and air conditioners, a nanocrystal alloy dust core used in a power supply circuit for solar power generation, hybrid vehicles, electric vehicles, etc., and the nanocrystals. The present invention relates to a method for producing an alloy dust core, an amorphous alloy strip as a material for the nanocrystalline alloy dust core, and an amorphous alloy powder.
 各種トランス、モータ、発電機、リアクトル、チョ-クコイル、ノイズ対策部品、レーザ電源、加速器用パルスパワー磁性部品、各種センサ、磁気シールドや磁気回路用ヨーク等に用いられる軟磁性材料として、Fe基ナノ結晶合金が知られている。Fe基ナノ結晶合金は、Co基アモルファス合金に匹敵する、小さい保磁力や磁歪を有し、かつ、Fe基アモルファス合金に匹敵する高い飽和磁束密度を示すことが知られている。このFe基ナノ結晶合金は、通常液相や気相から急冷しアモルファス合金とした後、これを熱処理により微結晶化することにより作製されている。液相から急冷する方法としては単ロ-ル法、双ロ-ル法、遠心急冷法、回転液中紡糸法、アトマイズ法やキャビテーション法等が知られている。また、気相から急冷する方法としては、スパッタ法、蒸着法、イオンプレ-ティング法等が知られている。 Fe-based nano as a soft magnetic material used for various transformers, motors, generators, reactors, choke coils, noise suppression parts, laser power supplies, pulse power magnetic parts for accelerators, various sensors, magnetic shields, yokes for magnetic circuits, etc. Crystalline alloys are known. It is known that Fe-based nanocrystalline alloys have a small coercive force and magnetostriction comparable to Co-based amorphous alloys, and exhibit a high saturation magnetic flux density comparable to Fe-based amorphous alloys. This Fe-based nanocrystal alloy is usually produced by quenching from a liquid phase or a gas phase to form an amorphous alloy, which is then microcrystallized by heat treatment. Known methods for quenching from the liquid phase include a single roll method, a twin roll method, a centrifugal quenching method, a spinning method in a rotating liquid, an atomizing method, and a cavitation method. Further, as a method of quenching from the gas phase, a sputtering method, a vapor deposition method, an ion plating method and the like are known.
 Fe基ナノ結晶合金はこれらの方法により作製したアモルファス合金を微結晶化したもので、アモルファス合金にみられるような熱的不安定性がほとんどなく、Fe基アモルファス合金と同程度の高い飽和磁束密度と低磁歪とを備え、優れた軟磁気特性を示すことが知られている。更にナノ結晶合金は経時変化が小さく、温度特性にも優れていることが知られている。なお、ナノ結晶合金は、ナノ結晶化が可能なアモルファス合金を、ナノ結晶化開始温度以上の温度で熱処理(以下、単に「ナノ結晶化熱処理」ともいう)することで得られる。以下、ナノ結晶化熱処理前の、ナノ結晶化が可能なアモルファス合金を単に「アモルファス合金」ともいう。また、アモルファス合金にナノ結晶化熱処理を施すことにより得られるFe基ナノ結晶合金を単に「ナノ結晶合金」ともいう。 Fe-based nanocrystalline alloys are microcrystallized amorphous alloys produced by these methods, and have almost no thermal instability as seen in amorphous alloys, and have a high saturation magnetostrictive density comparable to that of Fe-based amorphous alloys. It is known to have low magnetostriction and exhibit excellent soft magnetic properties. Further, it is known that nanocrystal alloys have a small change with time and are excellent in temperature characteristics. The nanocrystal alloy can be obtained by heat-treating an amorphous alloy capable of nanocrystallization at a temperature equal to or higher than the nanocrystallization start temperature (hereinafter, also simply referred to as “nanocrystallization heat treatment”). Hereinafter, the amorphous alloy capable of nanocrystallization before the nanocrystallization heat treatment is also simply referred to as "amorphous alloy". Further, an Fe-based nanocrystal alloy obtained by subjecting an amorphous alloy to a nanocrystallizing heat treatment is also simply referred to as a "nanocrystal alloy".
 アモルファス合金は、通常ロール急冷により薄帯状に連続的に鋳造して製造され、長尺の合金薄帯として製造される。そのため、ナノ結晶合金からなる磁心は、合金薄帯を巻き回したり積層されたりしたものが、一般的に使用される。しかし、近年、リアクトル等の電磁昇圧回路において、小型化等のニーズから数十~数百kHz程度の高周波用途への対応が求められており、それに適した磁心として、粉末状の磁性材が固められた圧粉磁心が増えている。圧粉磁心が用いられる理由は次のものである。 Amorphous alloys are usually manufactured by continuously casting them into thin strips by rolling quenching, and are manufactured as long alloy strips. Therefore, as the magnetic core made of nanocrystalline alloy, one in which alloy strips are wound or laminated is generally used. However, in recent years, electromagnetic booster circuits such as reactors have been required to be used for high frequency applications of several tens to several hundreds of kHz due to needs such as miniaturization, and powdered magnetic materials are hardened as a suitable magnetic core. The amount of dust cores that have been generated is increasing. The reasons why the dust core is used are as follows.
 高周波の電磁回路に用いられる磁心は、電流の揺らぎ等による磁気飽和を防ぐために、透磁率を小さくして使われる。粉末状の磁性材が固められた圧粉磁心は、粉同士の間の僅かな隙間が透磁率を下げる役割を果たすので、磁気飽和が抑制され、回路全体のロスを低下させることができる。 The magnetic core used in high-frequency electromagnetic circuits is used with a small magnetic permeability in order to prevent magnetic saturation due to fluctuations in current. In the powder magnetic core in which the powdery magnetic material is hardened, the slight gap between the powders plays a role of lowering the magnetic permeability, so that magnetic saturation is suppressed and the loss of the entire circuit can be reduced.
 数十~数百kHzの高周波数領域では、数十~数百の透磁率が要望されるため、球形状の粉末よりも、扁平状の粉末の方が使いやすい形態となる。その理由は、扁平状の粉末の面内方向が磁路に対して平行になると、相対的に磁路方向の反磁場係数が低くなり磁路方向に形状磁気異方性が働くため、透磁率を上げやすいためである。アトマイズ法で得られるアモルファス合金の粉末は球形状に近いが、ロール急冷により製造したナノ結晶化が可能なアモルファス合金の薄帯(以下、単に「アモルファス合金薄帯」ともいう)を粉砕したアモルファス合金粉末(以下、単に「薄帯粉砕粉」ともいう)は扁平状となるため、この薄帯粉砕粉を用いることが検討されている。 In the high frequency region of several tens to several hundreds of kHz, a magnetic permeability of several tens to several hundreds is required, so that the flat powder is easier to use than the spherical powder. The reason is that when the in-plane direction of the flat powder becomes parallel to the magnetic path, the demagnetizing field coefficient in the magnetic path direction becomes relatively low and the shape magnetic anisotropy works in the magnetic path direction. This is because it is easy to raise. The amorphous alloy powder obtained by the atomization method has a spherical shape, but is an amorphous alloy obtained by crushing a thin band of an amorphous alloy (hereinafter, also simply referred to as "amorphous alloy thin band") produced by roll quenching and capable of nano-crystallization. Since the powder (hereinafter, also simply referred to as "thin band crushed powder") becomes flat, it is being considered to use this thin band crushed powder.
 アモルファス合金薄帯は、Fe基アモルファス合金薄帯と同程度の硬度を有する。そのため、粉砕が難しく、粉砕後の粒径のコントロールも難しいという、ディメリットを持っている。 The amorphous alloy strip has the same hardness as the Fe-based amorphous alloy strip. Therefore, it has the disadvantage that it is difficult to pulverize and it is difficult to control the particle size after pulverization.
 アモルファス合金薄帯は、熱処理前は靭性に優れていることから、粉砕して薄帯粉砕粉を製造するために、合金を脆化させるための熱処理(以下、脆化熱処理という)が行われる。当該脆化熱処理によってアモルファス合金薄帯の靭性は低下するものの、アモルファス合金薄帯は引き裂かれながら粉砕されるため、薄帯粉砕粉の局所に応力が残留しやすく、磁気特性が劣化する一因となる。また、脆化熱処理が製造工程のボトルネックになってしまう。また、脆化熱処理を行った薄帯粉砕粉とバインダーとを圧縮成型して圧粉磁心とする場合、圧粉磁心には加圧工程で生ずる内部応力が残留するが、その後に内部応力を緩和する熱処理(以下、歪取り熱処理という)を行っても、十分に応力を緩和させることが困難であり、十分な軟磁気特性が得られない。その理由は、アモルファス合金の歪取り熱処理は、繰り返し行われるとその改善効果が低下するので、粉砕前に脆化熱処理を行うと、圧縮成型した後の熱処理による応力緩和が十分にされないためである。そのため、脆化熱処理を行わずとも粉砕性が良いアモルファス合金薄帯の開発が有効となる。 Since the amorphous alloy thin band has excellent toughness before heat treatment, heat treatment for embrittlement of the alloy (hereinafter referred to as embrittlement heat treatment) is performed in order to produce thin band crushed powder by crushing. Although the toughness of the amorphous alloy strip is reduced by the embrittlement heat treatment, the amorphous alloy strip is crushed while being torn, so that stress tends to remain locally in the strip crushed powder, which is one of the causes of deterioration of magnetic properties. Become. In addition, the embrittlement heat treatment becomes a bottleneck in the manufacturing process. Further, when the embrittlement heat-treated thin band crushed powder and the binder are compression-molded to form a powder magnetic core, the internal stress generated in the pressurizing process remains in the powder magnetic core, but the internal stress is relaxed thereafter. Even if the heat treatment (hereinafter referred to as strain removing heat treatment) is performed, it is difficult to sufficiently relax the stress, and sufficient soft magnetic properties cannot be obtained. The reason is that the improvement effect of the strain removing heat treatment of the amorphous alloy decreases when it is repeatedly performed. Therefore, if the embrittlement heat treatment is performed before pulverization, the stress relaxation by the heat treatment after compression molding is not sufficiently performed. .. Therefore, it is effective to develop an amorphous alloy strip having good pulverizability without embrittlement heat treatment.
 例えば、特許文献1は、粉砕が困難であるFe、B、P及びCuを含むアモルファス軟磁性合金を、脆化熱処理をせずそのまま粉砕することを課題とし、また、その解決する手段として、組成式FeSiCuSnで表わされ、79≦a≦86at%、0≦b≦10at%、1≦c≦14at%、1≦x≦15at%、0.4≦y≦2at%、0.5≦z≦6at%及び0.04≦y/x≦1.20を満たす軟磁性合金粉末であって、当該軟磁性合金粉末は、アモルファス単相である、軟磁性合金粉末、を提案している。 For example, Patent Document 1 has a problem of crushing an amorphous soft magnetic alloy containing Fe, B, P and Cu, which is difficult to crush, as it is without performing a brittle heat treatment, and as a means for solving the problem, a composition is used. It is represented by the formula Fe a Si b B c P x Cu y Sn z , 79 ≦ a ≦ 86 at%, 0 ≦ b ≦ 10 at%, 1 ≦ c ≦ 14 at%, 1 ≦ x ≦ 15 at%, 0.4 ≦ A soft magnetic alloy powder satisfying y ≦ 2 at%, 0.5 ≦ z ≦ 6 at% and 0.04 ≦ y / x ≦ 1.20, wherein the soft magnetic alloy powder is an amorphous single phase, soft magnetic. We are proposing alloy powder.
 また、前記特許文献1段落0022には、粉砕性の改善に関して「上記の軟磁性合金粉末において、Snはアモルファス相の形成を担う元素であり、またこのSnの含有により、溶解した合金を急冷して生成したアモルファス合金薄帯・薄片について熱処理することなく、そのまま粉砕することができるため、必須元素である。」と、記載されている。 Further, in paragraph 0022 of Patent Document 1, regarding the improvement of pulverizability, "In the above-mentioned soft magnetic alloy powder, Sn is an element responsible for forming an amorphous phase, and by containing this Sn, the melted alloy is rapidly cooled. It is an essential element because the amorphous alloy strips and flakes produced in the above process can be crushed as they are without heat treatment. "
 また、特許文献2は、Nbを数%以上含む、FeCuNbSiB系やFeCuNbB系などのFe基ナノ結晶材料で1.7T以上の高飽和磁束密度のものを得ることは困難とした上で、粉末製造が容易である軟磁性合金として、Nb含有のない組成を提案し、かつ、その一実施形態として、FebalCu1.35Si14Sn0.5の合金薄帯(表3、試料No.19)を提示している。 Further, Patent Document 2 makes it difficult to obtain a Fe-based nanocrystal material containing Nb of several% or more, such as FeCuNbSiB-based or FeCuNbB-based, having a high saturation magnetic flux density of 1.7 T or more, and then manufactures powder. As a soft magnetic alloy that is easy to use, a composition that does not contain Nb is proposed, and as an embodiment thereof, an alloy strip of Febal Cu 1.35 Si 14 B 3 Sn 0.5 (Table 3, Sample No. .19) is presented.
特開2016-3366号公報Japanese Unexamined Patent Publication No. 2016-3366 特許第5445888号公報Japanese Patent No. 5445888
 しかしながら、優れた粉砕性と軟磁気特性を両立させることが可能なアモルファス合金薄帯を得るには、さらなる検討が必要である。 However, further studies are required to obtain an amorphous alloy strip capable of achieving both excellent pulverizability and soft magnetic properties.
 したがって本発明の課題は、優れた粉砕性を備え、ナノ結晶化熱処理を施して優れた軟磁気特性が得られるアモルファス合金薄帯を提供すること、そのアモルファス合金薄帯を粉砕して得られるアモルファス合金粉末を提供すること、及び、これらを用いて製造されるナノ結晶合金圧粉磁心、並びにナノ結晶合金圧粉磁心の製造方法を提供することにある。 Therefore, an object of the present invention is to provide an amorphous alloy strip having excellent grindability and to obtain excellent soft magnetic properties by subjecting it to nanocrystallizing heat treatment, and to provide an amorphous alloy obtained by grinding the amorphous alloy strip. It is an object of the present invention to provide an alloy powder, and to provide a nanocrystal alloy dust core produced by using the alloy powder, and a method for producing a nanocrystal alloy dust core.
 上記課題を解決するための具体的手段には、以下の態様が含まれる。
<1> 合金組成:Fe100-a-b-c-dCuSiSn(ここで、a、b、c、dは、原子%で、0.3≦a<1.55、1≦b≦10、11≦c≦17、0.25<d≦1.0、a+d≦1.80)で表される組成を有する、
 アモルファス合金薄帯。
<2> 厚さが15μm以上50μm以下である、<1>に記載のアモルファス合金薄帯。
<3> 合金組成:Fe100-a-b-c-dCuSiSn(ここで、a、b、c、dは、原子%で、0.3≦a<1.55、1≦b≦10、11≦c≦17、0.25<d≦1.0、a+d≦1.80)で表される組成を有し、
 合金薄帯面と、破断面とを有する、
 アモルファス合金粉末。
<4> 合金組成:Fe100-a-b-c-dCuSiSn(ここで、a、b、c、dは、原子%で、0.3≦a<1.55、1≦b≦10、11≦c≦17、0.25<d≦1.0、a+d≦1.80)で表される組成を有し、熱処理を行っていないアモルファス合金薄帯を粉砕してアモルファス合金粉末とする粉砕工程と、
 前記アモルファス合金粉末と、バインダーとを混合し、圧縮成型することで圧粉体とする圧縮成型工程Aと、
 前記圧粉体に、当該圧粉体に含まれる前記アモルファス合金粉末をナノ結晶化するための熱処理を施す結晶化熱処理工程Aと、
 を有するナノ結晶合金圧粉磁心の製造方法。
<5> 合金組成:Fe100-a-b-c-dCuSiSn(ここで、a、b、c、dは、原子%で、0.3≦a<1.55、1≦b≦10、11≦c≦17、0.25<d≦1.0、a+d≦1.80)で表される組成を有し、熱処理を行っていないアモルファス合金薄帯を粉砕してアモルファス合金粉末とする粉砕工程と、
 前記アモルファス合金粉末にナノ結晶化のための熱処理を施し、ナノ結晶合金粉末を得る結晶化熱処理工程Bと、
 前記ナノ結晶化されたナノ結晶合金粉末と、バインダーとを混合し、圧縮成型することで圧粉体とする圧縮成型工程Bと、
 を有するナノ結晶合金圧粉磁心の製造方法。
<6> 合金組成:Fe100-a-b-c-dCuSiSn(ここで、a、b、c、dは、原子%で、0.3≦a<1.55、1≦b≦10、11≦c≦17、0.25<d≦1.0、a+d≦1.80)で表される組成を有し、平均結晶粒径60nm以下の体心立方構造の結晶粒がアモルファス母相中に体積分率で30体積%以上分散した組織を有し、合金薄帯面と、破断面とを有するアモルファス合金粉末を含有するナノ結晶合金圧粉磁心。
Specific means for solving the above problems include the following aspects.
<1> Alloy composition: Fe 100-ab-c-d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ≦ a <1.55 , 1 ≦ b ≦ 10, 11 ≦ c ≦ 17, 0.25 <d ≦ 1.0, a + d ≦ 1.80).
Amorphous alloy strip.
<2> The amorphous alloy strip according to <1>, which has a thickness of 15 μm or more and 50 μm or less.
<3> Alloy composition: Fe 100-abc-d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ≦ a <1.55 , 1 ≦ b ≦ 10, 11 ≦ c ≦ 17, 0.25 <d ≦ 1.0, a + d ≦ 1.80).
It has an alloy strip surface and a fracture surface,
Amorphous alloy powder.
<4> Alloy composition: Fe 100-a-bc-d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ≦ a <1.55 , 1 ≦ b ≦ 10, 11 ≦ c ≦ 17, 0.25 <d ≦ 1.0, a + d ≦ 1.80), and crushed an amorphous alloy strip that has not been heat-treated. Amorphous alloy powder crushing process
The compression molding step A in which the amorphous alloy powder and the binder are mixed and compression molded to obtain a green compact.
A crystallization heat treatment step A in which the green compact is subjected to a heat treatment for nanocrystallizing the amorphous alloy powder contained in the green compact.
A method for producing a nanocrystal alloy dust core having.
<5> Alloy composition: Fe 100-a-bc-d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ≦ a <1.55 , 1 ≦ b ≦ 10, 11 ≦ c ≦ 17, 0.25 <d ≦ 1.0, a + d ≦ 1.80), and crushed an amorphous alloy strip that has not been heat-treated. Amorphous alloy powder crushing process
The crystallization heat treatment step B of subjecting the amorphous alloy powder to a heat treatment for nanocrystallization to obtain a nanocrystal alloy powder,
The compression molding step B in which the nanocrystallized nanocrystal alloy powder and the binder are mixed and compression molded to obtain a green compact.
A method for producing a nanocrystal alloy dust core having.
<6> Alloy composition: Fe 100-a-bc-d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ≦ a <1.55 , 1 ≦ b ≦ 10, 11 ≦ c ≦ 17, 0.25 <d ≦ 1.0, a + d ≦ 1.80), and has a body-centered cubic structure having an average crystal grain size of 60 nm or less. A nano-crystal alloy dust core containing an amorphous alloy powder having a structure in which crystal grains are dispersed in an amorphous matrix in a body integral ratio of 30% by volume or more, and having an alloy thin band surface and a fracture surface.
 本発明によれば、優れた粉砕性を備え、ナノ結晶化熱処理を施して優れた軟磁気特性が得られるアモルファス合金薄帯、当該アモルファス合金薄帯を粉砕して得られるアモルファス合金粉末、及び、これらを用いて製造されるナノ結晶合金圧粉磁心、並びにナノ結晶合金圧粉磁心の製造方法を提供することができる。 According to the present invention, an amorphous alloy ribbon having excellent pulverizability and having excellent soft magnetic properties obtained by subjecting nanocrystallization heat treatment, an amorphous alloy powder obtained by crushing the amorphous alloy ribbon, and an amorphous alloy powder. It is possible to provide a nanocrystal alloy dust core produced by using these, and a method for producing a nanocrystal alloy dust core.
Sn置換量xと106μm以下の粉末の回収率との関係を示す図である。It is a figure which shows the relationship between the Sn substitution amount x and the recovery rate of the powder of 106 μm or less. Sn置換量xと63μm以下の粉末の回収率との関係を示す図である。It is a figure which shows the relationship between the Sn substitution amount x, and the recovery rate of the powder of 63 μm or less. 本実施形態の薄帯粉砕粉の外観写真である。It is an appearance photograph of the thin band crushed powder of this embodiment. ナノ結晶化のための熱処理を施した本実施形態の薄帯粉砕粉のTEM写真である。It is a TEM photograph of the thin band pulverized powder of this embodiment which has been heat-treated for nanocrystallization. ナノ結晶化のための熱処理を施した比較形態の薄帯粉砕粉のTEM写真である。It is a TEM photograph of the thin band pulverized powder of the comparative form which performed the heat treatment for nanocrystallization.
 次に本発明を実施形態によって具体的に説明するが、これら実施形態により本発明が限定されるものではない。なお、本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本明細書において段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 Next, the present invention will be specifically described with reference to embodiments, but the present invention is not limited to these embodiments. In addition, in this specification, the numerical range represented by using "-" means the range including the numerical values before and after "-" as the lower limit value and the upper limit value. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. .. Further, in the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
<アモルファス合金薄帯>
 本実施形態のアモルファス合金薄帯は、以下の合金組成を満足する。
 合金組成:Fe100-a-b-c-dCuSiSn(ここで、a、b、c、dは、原子%で、0.3≦a<1.55、1≦b≦10、11≦c≦17、0.25<d≦1.0、a+d≦1.80)
<Amorphous alloy strip>
The amorphous alloy strip of the present embodiment satisfies the following alloy composition.
Alloy composition: Fe 100-ab-c-d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ≦ a <1.55, 1 ≦ b ≦ 10, 11 ≦ c ≦ 17, 0.25 <d ≦ 1.0, a + d ≦ 1.80)
 上記合金組成のアモルファス合金薄帯は、粉砕性に優れると供に、ナノ結晶化熱処理を施すことで優れた軟磁気特性(高い飽和磁束密度)が得られる軟磁性材料となる。 The amorphous alloy strip having the above alloy composition is a soft magnetic material that has excellent pulverizability and can obtain excellent soft magnetic properties (high saturation magnetic flux density) by subjecting it to nanocrystallization heat treatment.
 本実施形態におけるアモルファス合金薄帯は、上記の合金組成になるように秤量した素原料を、高周波誘導溶解等の手段で溶解した後、ノズルを介して高速で回転する冷却ロールの表面に吐出して急冷凝固させる単ロール、あるいは双ロールといったロール急冷により、製造することができる。なお、連続鋳造を行いやすくしてアモルファス合金薄帯の製造効率を向上させる観点、及び、溶湯の冷却速度を遅らせて意図的に脆化を生じさせて粉砕性を向上させ、薄帯粉砕粉の製造効率を向上させる観点から、アモルファス合金薄帯の厚さは15μm以上が好ましい。また、粉砕性を向上させて薄帯粉砕粉の製造効率を向上させる観点から、アモルファス合金薄帯の厚さは50μm以下が好ましい。 In the amorphous alloy strip of the present embodiment, the raw material weighed so as to have the above alloy composition is melted by means such as high-frequency induction melting, and then discharged to the surface of a cooling roll rotating at high speed via a nozzle. It can be manufactured by roll quenching such as single roll or twin roll which is rapidly cooled and solidified. From the viewpoint of facilitating continuous casting and improving the production efficiency of the amorphous alloy thin band, and by delaying the cooling rate of the molten metal to intentionally cause embrittlement to improve the pulverizability of the thin band crushed powder. From the viewpoint of improving the production efficiency, the thickness of the amorphous alloy strip is preferably 15 μm or more. Further, from the viewpoint of improving the pulverizability and improving the production efficiency of the thin band crushed powder, the thickness of the amorphous alloy thin band is preferably 50 μm or less.
 なお、本実施形態のアモルファス合金薄帯は、完全な帯状だけでなく、ロール急冷により得られた薄帯片状のものも含まれる。なお、薄帯片状とは、帯状の薄帯が部分的に破れたり、破断したりして複数に分離したものを指す。また、単ロール、あるいは双ロールといったロール急冷により合金薄帯を鋳造する方法を、以下「ロール鋳造」と言う。 The amorphous alloy strip of the present embodiment includes not only a perfect strip but also a strip obtained by quenching the roll. In addition, the strip-shaped strip refers to a strip-shaped strip that is partially torn or broken and separated into a plurality of pieces. Further, a method of casting an alloy strip by rolling quenching such as a single roll or a double roll is hereinafter referred to as "roll casting".
<アモルファス合金粉末>
 また、本実施形態のアモルファス合金粉末は、合金組成:Fe100-a-b-c-dCuSiSn(ここで、a、b、c、dは、原子%で、0.3≦a<1.55、1≦b≦10、11≦c≦17、0.25<d≦1.0、a+d≦1.80)で表される組成を有し、合金薄帯面と、破断面とを有する。なお、合金薄帯面とは、ロール鋳造により形成されたアモルファス合金薄帯の対向する両平面に相当する面のことである。
<Amorphous alloy powder>
Further, the amorphous alloy powder of the present embodiment has an alloy composition: Fe 100-ab-c-d Cu a Si b B c Sn d (where a, b, c, d are 0 in atomic%. It has a composition represented by 3 ≦ a <1.55, 1 ≦ b ≦ 10, 11 ≦ c ≦ 17, 0.25 <d ≦ 1.0, a + d ≦ 1.80), and has an alloy thin band surface. And a fracture surface. The alloy strip surface is a surface corresponding to both opposite planes of the amorphous alloy strip formed by roll casting.
 このアモルファス合金粉末は、ナノ結晶化熱処理を施すことで高い飽和磁束密度を有するナノ結晶合金粉末となる。詳細は後述する。 This amorphous alloy powder becomes a nanocrystal alloy powder having a high saturation magnetic flux density by undergoing nanocrystallization heat treatment. Details will be described later.
 本実施形態のアモルファス合金薄帯、アモルファス合金粉末、ナノ結晶合金圧粉磁心の合金組成について、以下に説明する。 The alloy composition of the amorphous alloy strip, the amorphous alloy powder, and the nanocrystal alloy dust core of the present embodiment will be described below.
 本実施形態のアモルファス合金薄帯、アモルファス合金粉末、ナノ結晶合金圧粉磁心は、NbやMoを添加しない組成であり高い飽和磁束密度を有する。 The amorphous alloy strip, the amorphous alloy powder, and the nanocrystalline alloy dust core of the present embodiment have a composition without adding Nb or Mo and have a high saturation magnetic flux density.
 本実施形態のアモルファス合金薄帯、及び、アモルファス合金粉末(以下、本実施形態のアモルファス合金薄帯、及びアモルファス合金粉末を単に「アモルファス合金薄帯等」ともいうことがある。)の合金組成は、ナノ結晶化が可能な組成である。また、本実施形態のアモルファス合金薄帯等にナノ結晶化熱処理を施して得られるナノ結晶合金薄帯やナノ結晶合金粉末の組織は、平均粒径30nm以下の結晶粒がアモルファス母相中に面積分率で0%超30%未満分散した組織であることが好ましい。 The alloy composition of the amorphous alloy strip and the amorphous alloy powder of the present embodiment (hereinafter, the amorphous alloy strip and the amorphous alloy powder of the present embodiment may be simply referred to as "amorphous alloy strip and the like"). , It is a composition capable of nano-crystallization. Further, in the structure of the nanocrystal alloy strip and the nanocrystal alloy powder obtained by subjecting the amorphous alloy strip of the present embodiment to the nanocrystallization heat treatment, crystal grains having an average particle size of 30 nm or less have an area in the amorphous matrix. It is preferable that the structure is dispersed in a fraction of more than 0% and less than 30%.
 このアモルファス合金薄帯等にナノ結晶化熱処理を施すことで、アモルファス相中に平均結晶粒径が60nm以下のナノ結晶が分散したナノ結晶組織を有する、ナノ結晶合金薄帯やナノ結晶合金粉末を得ることができる。本実施形態のアモルファス合金薄帯等にナノ結晶化熱処理を施すことによって、得られるナノ結晶合金薄帯やナノ結晶合金粉末のナノ結晶相の体積分率を、30%以上とすることができる。このナノ結晶は、体心立方構造の結晶粒であり、平均結晶粒径が10~50nmであることが好ましい。 By subjecting this amorphous alloy strip or the like to nanocrystallizing heat treatment, a nanocrystal alloy strip or nanocrystal alloy powder having a nanocrystal structure in which nanocrystals having an average crystal particle size of 60 nm or less are dispersed in an amorphous phase can be obtained. Obtainable. By subjecting the amorphous alloy strip of the present embodiment to the nanocrystallization heat treatment, the volume fraction of the nanocrystal phase of the obtained nanocrystal alloy strip or nanocrystal alloy powder can be set to 30% or more. The nanocrystals are crystal grains having a body-centered cubic structure, and the average crystal grain size is preferably 10 to 50 nm.
 以下、アモルファス合金薄帯等の合金組成について説明する。 The alloy composition of amorphous alloy strips and the like will be described below.
 Fe(鉄)は、飽和磁束密度Bsを決定する元素である。高い飽和磁束密度Bsを得るためには、アモルファス合金薄帯等の合金組成におけるFeの原子%は、77原子%以上が好ましく、79原子%以上がより好ましい。 Fe (iron) is an element that determines the saturation magnetic flux density Bs. In order to obtain a high saturation magnetic flux density Bs, the atomic% of Fe in the alloy composition such as an amorphous alloy strip is preferably 77 atomic% or more, more preferably 79 atomic% or more.
 Cu(銅)は、アモルファス合金薄帯を脆化させ、粉砕を容易にさせる効果を有する。CuはFe-Bアモルファスマトリクス中では、それらの元素と混合熱が正になるため、ポテンシャルエネルギーを下げるために、製造時の冷却過程でCu原子同士が集まりクラスターを形成する。クラスター周辺では、Fe濃度が上がるため、高Fe濃度の高密度領域が発生する。この密度の変異が粉砕を容易にさせる、と推測される。また、ナノ結晶はCu原子を核として合金組織内に均一に生成されるため、Cuの添加は必須である。 Cu (copper) has the effect of embrittlement of the amorphous alloy strip and facilitating pulverization. In the Fe-B amorphous matrix, the heat of mixing Cu becomes positive with those elements, so in order to lower the potential energy, Cu atoms gather together during the cooling process during production to form a cluster. Since the Fe concentration increases around the cluster, a high-density region with a high Fe concentration is generated. It is speculated that this variation in density facilitates grinding. Further, since nanocrystals are uniformly generated in the alloy structure with Cu atoms as nuclei, the addition of Cu is indispensable.
 上記の効果を得るため、アモルファス合金薄帯等の合金組成におけるCuの原子%は、0.3原子%以上であり、0.5原子%以上が好ましく、0.7原子%以上がより好ましく、0.8原子%以上が更に好ましい。 In order to obtain the above effects, the atomic% of Cu in the alloy composition of an amorphous alloy strip or the like is 0.3 atomic% or more, preferably 0.5 atomic% or more, more preferably 0.7 atomic% or more. 0.8 atomic% or more is more preferable.
 急冷凝固後(ナノ結晶化熱処理前)の熱処理によって粗大結晶粒に成長する、比較的大きな結晶がアモルファス合金薄帯等中に生成するのを抑制することによって軟磁気特性に優れるナノ結晶合金圧粉磁心を得る観点、及び、アモルファス合金薄帯等を熱処理することによって得られるナノ結晶合金薄帯やナノ結晶合金粉末中に、残留応力を緩和するアモルファス相を増やすことによってナノ結晶合金圧粉磁心の軟磁気特性を向上させる観点から、アモルファス合金薄帯等の合金組成におけるCuの原子%は、1.55原子%未満であり、1.4原子%以下が好ましく、1.2原子%以下がより好ましく、1.0原子%未満が更に好ましい。 Nanocrystal alloy dust powder with excellent soft magnetic properties by suppressing the formation of relatively large crystals that grow into coarse crystal grains by heat treatment after quench solidification (before nanocrystallization heat treatment) in amorphous alloy strips, etc. From the viewpoint of obtaining a magnetic core, and by increasing the amorphous phase that relieves residual stress in the nanocrystal alloy strip and nanocrystal alloy powder obtained by heat-treating the amorphous alloy strip, etc., the nanocrystal alloy dust core From the viewpoint of improving soft magnetic properties, the atomic% of Cu in the alloy composition of amorphous alloy strips and the like is less than 1.55 atomic%, preferably 1.4 atomic% or less, and more preferably 1.2 atomic% or less. It is preferable, and less than 1.0 atomic% is more preferable.
 Si(ケイ素)は、熱処理によりナノ結晶相としてFeと合金を生成し、bcc相((Fe-Si)bcc相)を形成する元素である。また、急冷凝固時にアモルファス形成能に作用する元素である。アモルファス合金薄帯等の合金組成におけるSiの原子%は、再現性良く急冷凝固後にアモルファス相を形成させるため、1原子%以上であり、2原子%以上が好ましく、2.5原子%以上がより好ましい。他方、合金溶湯の粘度の再現性確保のためには、10原子%以下であり、8原子%以下が好ましく、7原子%以下より好ましい。 Si (silicon) is an element that forms an alloy with Fe as a nanocrystal phase by heat treatment to form a bcc phase ((Fe—Si) bcc phase). It is also an element that acts on the amorphous forming ability during quenching and solidification. The atomic% of Si in the alloy composition of an amorphous alloy strip or the like is 1 atomic% or more, preferably 2 atomic% or more, more preferably 2.5 atomic% or more, in order to form an amorphous phase after quenching and solidification with good reproducibility. preferable. On the other hand, in order to ensure the reproducibility of the viscosity of the molten alloy, it is 10 atomic% or less, preferably 8 atomic% or less, and more preferably 7 atomic% or less.
 B(ホウ素)は、Siと同様に、急冷凝固時にアモルファス形成能に作用する元素である。また、Bは、ナノ結晶の核となるCu原子を、合金組織内(アモルファス相中)に偏在化せず、均一に存在させる作用がある。 B (boron), like Si, is an element that acts on the amorphous forming ability during quenching and solidification. Further, B has an action of allowing Cu atoms, which are the cores of nanocrystals, to exist uniformly in the alloy structure (in the amorphous phase) without being unevenly distributed.
 アモルファス合金薄帯等の合金組成におけるBの原子%は、再現性良く急冷凝固後にアモルファス相を形成させ、前記アモルファス相中にCu原子を均一に存在させるため、11原子%以上であり、12原子%以上が好ましい。また、後述するSi量との合計量とも関係するが、高い飽和磁束密度Bsを有するナノ結晶合金圧粉磁心を得る観点から、合金組成におけるBの原子%は、17原子%以下であり、15.5原子%以下が好ましい。 The atomic% of B in the alloy composition of an amorphous alloy strip or the like is 11 atomic% or more and 12 atoms in order to form an amorphous phase after quenching and solidifying with good reproducibility and uniformly present Cu atoms in the amorphous phase. % Or more is preferable. Further, although it is related to the total amount with the amount of Si described later, the atomic% of B in the alloy composition is 17 atomic% or less, and 15 from the viewpoint of obtaining a nanocrystalline alloy dust core having a high saturation magnetic flux density Bs. It is preferably 5.5 atomic% or less.
 また、上述のように、Feは、飽和磁束密度Bsを決定する元素である。そのため、アモルファス合金薄帯等中のFe量が減少すると飽和磁束密度Bsの低下傾向が大きくなる。更に、飽和磁束密度Bsに関して、SiとBは相対的にFeへの影響が大きい。従って、アモルファス合金薄帯等の合金組成におけるSiの原子%とBの原子%の合計(b+c)は、高い飽和磁束密度Bsを有するナノ結晶合金圧粉磁心を得る観点から、20原子%以下(つまり、b+c≦20)が好ましく、18原子%以下(b+c≦18)がより好ましい。 Further, as described above, Fe is an element that determines the saturation magnetic flux density Bs. Therefore, when the amount of Fe in the amorphous alloy strip or the like decreases, the saturation magnetic flux density Bs tends to decrease. Further, with respect to the saturation magnetic flux density Bs, Si and B have a relatively large influence on Fe. Therefore, the total (b + c) of the atomic% of Si and the atomic% of B in the alloy composition of the amorphous alloy strip or the like is 20 atomic% or less (b + c) from the viewpoint of obtaining a nanocrystalline alloy dust core having a high saturation magnetic flux density Bs. That is, b + c ≦ 20) is preferable, and 18 atomic% or less (b + c ≦ 18) is more preferable.
 Sn(スズ)は、アモルファス合金薄帯等を脆化させる効果がある。また、SnはCuと複合添加することで、アモルファス合金薄帯等の脆化はさらに顕著になる。低融点のSnは比較的低温でも、アモルファス合金薄帯等内を移動でき、アモルファス合金薄帯等全体に満遍なく分布させることが可能である。SnとCuが化合物を形成することに関連して、Cu(Sn)クラスターがより高い数密度でアモルファス合金薄帯等全般に広く分散させる効果がSnにはあると考えられる。また、Snは、アモルファス合金薄帯等の熱処理後の粗大結晶粒の生成を抑制する作用効果がある。 Sn (tin) has the effect of embrittlement of amorphous alloy strips and the like. Further, by adding Sn in combination with Cu, the embrittlement of the amorphous alloy strip and the like becomes more remarkable. Sn having a low melting point can move within the amorphous alloy ribbon and the like even at a relatively low temperature, and can be evenly distributed over the entire amorphous alloy strip and the like. In relation to the formation of a compound by Sn and Cu, it is considered that Sn has an effect of widely dispersing Cu (Sn) clusters at a higher number density over the entire amorphous alloy strip and the like. In addition, Sn has an action effect of suppressing the formation of coarse crystal grains after heat treatment of an amorphous alloy strip or the like.
 これらの効果を得るため、アモルファス合金薄帯等の合金組成におけるSnの原子%は、0.25原子%超であり、0.26原子%以上が好ましく、0.27原子%以上がより好ましく、0.28原子%以上が更に好ましい。一方、軟磁気特性を低下させる化合物の析出を抑制する観点から、アモルファス合金薄帯等の合金組成におけるSnの原子%は、1.0原子%以下であり、0.50原子%未満が好ましく、0.48原子%以下がより好ましく、0.45原子%以下が更に好ましい。 In order to obtain these effects, the atomic% of Sn in the alloy composition of an amorphous alloy strip or the like is more than 0.25 atomic%, preferably 0.26 atomic% or more, more preferably 0.27 atomic% or more. 0.28 atomic% or more is more preferable. On the other hand, from the viewpoint of suppressing the precipitation of compounds that lower the soft magnetic properties, the atomic% of Sn in the alloy composition of an amorphous alloy strip or the like is 1.0 atomic% or less, preferably less than 0.50 atomic%. 0.48 atomic% or less is more preferable, and 0.45 atomic% or less is further preferable.
 アモルファス合金薄帯等の合金組成におけるCu量とSn量の合計(a+d)は1.80原子%以下とする。合金組成におけるCu量とSn量の合計が1.80原子%以下であれば、飽和磁束密度が大きいナノ結晶合金薄帯やナノ結晶合金粉末を得やすい。アモルファス合金薄帯等の合金組成におけるCu量とSn量の合計は、飽和磁束密度が大きいナノ結晶合金薄帯やナノ結晶合金粉末を得る観点から、1.6原子%以下が好ましく、1.5原子%以下がより好ましく、1.45原子%以下が更に好ましい。アモルファス合金薄帯等の合金組成におけるCu量とSn量の合計は、粉砕性に優れるアモルファス合金薄帯を得る観点、及び飽和磁束密度が大きいナノ結晶合金薄帯やナノ結晶合金粉末を得る観点から、0.8原子%以上が好ましく、1.0原子%以上がより好ましく、1.2原子%以上が更に好ましく、1.25原子%以上がより更に好ましい。 The total amount (a + d) of the amount of Cu and the amount of Sn in the alloy composition of an amorphous alloy strip or the like shall be 1.80 atomic% or less. When the total amount of Cu and Sn in the alloy composition is 1.80 atomic% or less, it is easy to obtain a nanocrystal alloy strip or a nanocrystal alloy powder having a large saturation magnetic flux density. The total amount of Cu and Sn in the alloy composition of the amorphous alloy strip and the like is preferably 1.6 atomic% or less from the viewpoint of obtaining the nanocrystal alloy strip and the nanocrystal alloy powder having a large saturation magnetic flux density, preferably 1.5 Atomic% or less is more preferable, and 1.45 atomic% or less is further preferable. The sum of the amount of Cu and the amount of Sn in the alloy composition of the amorphous alloy strip and the like is from the viewpoint of obtaining an amorphous alloy strip having excellent pulverizability and from the viewpoint of obtaining a nanocrystal alloy strip and a nanocrystal alloy powder having a large saturation magnetic flux density. , 0.8 atomic% or more is preferable, 1.0 atomic% or more is more preferable, 1.2 atomic% or more is further preferable, and 1.25 atomic% or more is further preferable.
 本実施形態のアモルファス合金薄帯等は、アモルファス(マトリックス)中に微細な結晶粒が分散するものが好ましい。Fe量が多い合金においては、完全なアモルファス合金を作製するのではなく、むしろアモルファス(マトリックス)中に微細な結晶粒が分散したアモルファス合金を作製した後に熱処理を行い、結晶化を進めた方が微細な結晶粒組織となり優れた軟磁気特性が実現できる。 The amorphous alloy strip or the like of the present embodiment preferably has fine crystal grains dispersed in the amorphous (matrix). For alloys with a large amount of Fe, it is better not to produce a completely amorphous alloy, but rather to produce an amorphous alloy in which fine crystal grains are dispersed in an amorphous (matrix) and then perform heat treatment to proceed with crystallization. It has a fine crystal grain structure and can realize excellent soft magnetic properties.
 本実施形態で規定する合金組成であれば、ロール鋳造によって、アモルファス(マトリックス)中に微細な結晶粒が分散するアモルファス合金薄帯等を得やすい。なお、微細な結晶粒が分散した状態とは、平均粒径30nm以下の結晶粒がアモルファス母相中に体積分率で0%超30%未満で分散した組織となっている状態である。 With the alloy composition specified in this embodiment, it is easy to obtain an amorphous alloy strip or the like in which fine crystal grains are dispersed in an amorphous (matrix) by roll casting. The state in which fine crystal grains are dispersed is a state in which crystal grains having an average particle size of 30 nm or less are dispersed in an amorphous matrix with a volume fraction of more than 0% and less than 30%.
 Fe-B系やFe-B-Si系の合金組成はアモルファス相を形成し易いが、これにFeと非固溶であるCuやSnを適量添加することにより、超急冷法による鋳造直後のFe基合金(中間合金)に微細な結晶粒の核を適度に形成することができる。この組織からなるアモルファス合金は、ナノ結晶化熱処理前の段階で微細結晶粒が形成されており、適切な熱処理により結晶粒が粗大化することがなく、ナノ結晶合金が得られ、良好な軟磁気特性が得られる。また、微細結晶粒がランダムに分散しているため、180°折曲げにより破断を起こす程度に脆性が高いものとすることができる。そのため、ミリング装置などの強力な粉砕手段を用いなくても粉砕が可能であり、得られるアモルファス合金粉末は残留応力が小さいものとなる。 Fe-B-based and Fe-B-Si-based alloy compositions tend to form an amorphous phase, but by adding an appropriate amount of Cu or Sn, which is insoluble in Fe, to Fe immediately after casting by the ultra-quenching method. Fine crystal grain nuclei can be appropriately formed in the base alloy (intermediate alloy). In the amorphous alloy having this structure, fine crystal grains are formed at the stage before the nanocrystallization heat treatment, and the crystal grains are not coarsened by appropriate heat treatment, a nanocrystal alloy can be obtained, and good soft magnetism is obtained. The characteristics are obtained. Further, since the fine crystal grains are randomly dispersed, the brittleness can be made high enough to cause breakage by bending at 180 °. Therefore, pulverization is possible without using a powerful pulverizing means such as a milling device, and the obtained amorphous alloy powder has a small residual stress.
 尚、上記合金組成は、表記される元素の他に不純物を含みえる。不純物としては、例えば、P(リン)、S(硫黄)、N(窒素)、C(炭素)等である。この不純物は、上記組成式の原子%を100原子%として、その中の1.0原子%未満の範囲でFeと置換しうる。 The above alloy composition may contain impurities in addition to the listed elements. Examples of impurities include P (phosphorus), S (sulfur), N (nitrogen), C (carbon) and the like. This impurity can be replaced with Fe in the range of less than 1.0 atomic% in the atomic% of the above composition formula as 100 atomic%.
 特にPは、急冷凝固時にアモルファス形成能に作用する元素であるが、粉砕性を悪化させる要因にもなりえる。粉砕性を確保するためには、脆化の効果を持つSnをさらに添加する必要があるが、本来Snは軟磁気特性を低下させる元素であるため、Snの多量添加は好ましくない。そのため、アモルファス合金薄帯等の合金組成におけるPの原子%の上限は、上記合金組成の原子%を100原子%として、1.0原子%未満が好ましく、0.5原子%以下がより好ましく、0.3原子%以下が更に好ましく、0.2原子%以下がより更に好ましく、0.1原子%以下がより更に好ましい。 In particular, P is an element that acts on the amorphous forming ability during quenching and solidification, but it can also be a factor that deteriorates pulverizability. In order to ensure the pulverizability, it is necessary to further add Sn having an embrittlement effect, but since Sn is originally an element that lowers soft magnetic properties, it is not preferable to add a large amount of Sn. Therefore, the upper limit of the atomic% of P in the alloy composition such as the amorphous alloy strip is preferably less than 1.0 atomic%, more preferably 0.5 atomic% or less, with the atomic% of the above alloy composition being 100 atomic%. 0.3 atomic% or less is further preferable, 0.2 atomic% or less is further preferable, and 0.1 atomic% or less is even more preferable.
 Cは鋳造時の合金溶湯の粘度の安定化に効果があるため、Pを上記の範囲とした上で、アモルファス合金薄帯等は、Cを0.40原子%以下の範囲で含有してもよい。アモルファス合金薄帯等の合金組成におけるCの原子%は、0.37原子%以下が好ましく、0.35原子%以下がより好ましい。また、アモルファス合金薄帯等の合金組成におけるCの原子%は、鋳造時の合金溶湯の粘度の安定化を得る観点から、0.10原子%以上が好ましく、0.20原子%以上がより好ましく、0.22原子%以上が更に好ましい。 Since C is effective in stabilizing the viscosity of the molten alloy during casting, even if P is set in the above range and C is contained in the range of 0.40 atomic% or less in the amorphous alloy strip or the like. Good. The atomic% of C in the alloy composition of an amorphous alloy strip or the like is preferably 0.37 atomic% or less, more preferably 0.35 atomic% or less. Further, the atomic% of C in the alloy composition of the amorphous alloy strip or the like is preferably 0.10 atomic% or more, more preferably 0.20 atomic% or more, from the viewpoint of obtaining stabilization of the viscosity of the molten alloy during casting. , 0.22 atomic% or more is more preferable.
(粉砕と分級)
 上記合金組成のアモルファス合金薄帯の粉砕は、アトマイザーや、ボールミルやジェットミル、スタンプミル等の既知の手段を採用することができる。得られるアモルファス合金薄帯の粉砕粉は、ロール鋳造により形成された合金薄帯面と、破断面とを有する。
(Crushing and rating)
For pulverization of the amorphous alloy strip having the above alloy composition, a known means such as an atomizer, a ball mill, a jet mill, and a stamp mill can be adopted. The obtained pulverized powder of the amorphous alloy strip has an alloy strip surface formed by roll casting and a fracture surface.
 なお、本実施形態において、粉砕後の分級を行うことで、所望の平均粒径を有するアモルファス合金粉末とすることができる。 In the present embodiment, the amorphous alloy powder having a desired average particle size can be obtained by classifying after pulverization.
 例えば、分級後のアモルファス合金粉末は、メジアン径D50(累積50体積%に相当する粒子径)が20μm以上40μm以下のものとすることができる。具体的には、アモルファス合金粉末を篩いで分級して、40μm超の粒径の粉末が粉末全体の10質量%以下であり、20μm超40μm以下の粒径の粉末が粉末全体の30質量%以上90質量%以下であり、20μm以下の粒径の粉末が粉末全体の5質量%以上60質量%以下とすることもできる。 For example, the classified amorphous alloy powder can have a median diameter D50 (particle diameter corresponding to a cumulative 50% by volume) of 20 μm or more and 40 μm or less. Specifically, the amorphous alloy powder is classified by sieving, and the powder having a particle size of more than 40 μm is 10% by mass or less of the whole powder, and the powder having a particle size of more than 20 μm and 40 μm or less is 30% by mass or more of the whole powder. The powder having a particle size of 90% by mass or less and 20 μm or less can be 5% by mass or more and 60% by mass or less of the whole powder.
 この分級によれば、40μm超の粒径のアモルファス合金粉末がアモルファス合金粉末全体の10質量%以下とすることが好ましい。この40μm超の粒径のアモルファス合金粉末は、安定して、アモルファス相、または、アモルファス相と微細結晶相の混合相を得ることが容易でない。そのため、40μm超の粒径のアモルファス合金粉末は10質量%以下とすることが好ましく、5質量%以下であることがより好ましく、0質量%であることが更に好ましい。 According to this classification, it is preferable that the amorphous alloy powder having a particle size of more than 40 μm is 10% by mass or less of the total amorphous alloy powder. It is not easy to stably obtain an amorphous phase or a mixed phase of an amorphous phase and a fine crystal phase in this amorphous alloy powder having a particle size of more than 40 μm. Therefore, the amorphous alloy powder having a particle size of more than 40 μm is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 0% by mass.
 上記のように、40μm超の粒径のアモルファス合金粉末は少ない方が好ましい。そして、残りの多くのアモルファス合金粉末のうち、20μm以下の粒径のアモルファス合金粉末と20μm超40μm以下の粒径のアモルファス合金粉末との比率を特定することができる。 As described above, it is preferable that the amount of amorphous alloy powder having a particle size of more than 40 μm is small. Then, among the many remaining amorphous alloy powders, the ratio of the amorphous alloy powder having a particle size of 20 μm or less and the amorphous alloy powder having a particle size of more than 20 μm and 40 μm or less can be specified.
 このとき、20μm以下の粒径のアモルファス合金粉末は、高周波用途であっても、磁気飽和を抑制できる高い飽和磁束密度Bsを有するFe基ナノ結晶合金粉末を得られるものであり、20μm超40μm以下の粒径のアモルファス合金粉末は、高い初透磁率μi及び優れた直流重畳特性を有する磁心に好適である。そのため、所望の磁気特性を得られるように、これらの量を設定することができる。 At this time, the amorphous alloy powder having a particle size of 20 μm or less can obtain an Fe-based nanocrystal alloy powder having a high saturation magnetic flux density Bs capable of suppressing magnetic saturation even in high-frequency applications, and is more than 20 μm and 40 μm or less. Amorphous alloy powder having a particle size of is suitable for a magnetic core having a high initial magnetic permeability μi and excellent DC superimposition characteristics. Therefore, these amounts can be set so that the desired magnetic properties can be obtained.
 上記では、20μm超40μm以下の粒径のアモルファス合金粉末をアモルファス合金粉末全体の30質量%以上90質量%以下とし、20μm以下の粒径のアモルファス合金粉末をアモルファス合金粉末全体の5質量%以上60質量%以下としている。上記したように、求められる磁気特性によって分量は変更することが可能である。 In the above, the amorphous alloy powder having a particle size of more than 20 μm and 40 μm or less is defined as 30% by mass or more and 90% by mass or less of the total amorphous alloy powder, and the amorphous alloy powder having a particle size of 20 μm or less is 5% by mass or more and 60% by mass or more of the entire amorphous alloy powder. It is set to mass% or less. As described above, the amount can be changed according to the required magnetic characteristics.
 20μm以下の粒径のアモルファス合金粉末はアモルファス合金粉末全体中の10質量%以上が好ましく、20質量%以上がより好ましく、50質量%以下が好ましく、40質量%以下がより好ましい。また、20μm超40μm以下の粒径のアモルファス合金粉末はアモルファス合金粉末全体中の35質量%以上が好ましく、40質量%以上がより好ましく、85質量%以下が好ましく、80質量%以下がより好ましい。 The amorphous alloy powder having a particle size of 20 μm or less is preferably 10% by mass or more, more preferably 20% by mass or more, preferably 50% by mass or less, and more preferably 40% by mass or less in the entire amorphous alloy powder. The amorphous alloy powder having a particle size of more than 20 μm and 40 μm or less is preferably 35% by mass or more, more preferably 40% by mass or more, preferably 85% by mass or less, and more preferably 80% by mass or less in the whole amorphous alloy powder.
<ナノ結晶合金圧粉磁心>
 上記のアモルファス合金粉末を用いた第1の本実施形態のナノ結晶合金圧粉磁心の製造方法は、
 合金組成:Fe100-a-b-c-dCuSiSn(ここで、a、b、c、dは、原子%で、0.3≦a<1.55、1≦b≦10、11≦c≦17、0.25<d≦1.0、a+d≦1.80)で表される組成を有し、熱処理を行っていないアモルファス合金薄帯を粉砕してアモルファス合金粉末とする粉砕工程と、
 前記アモルファス合金粉末と、バインダーとを混合し、圧縮成型することで圧粉体とする圧縮成型工程Aと、
 前記圧粉体に、当該圧粉体に含まれる前記アモルファス合金粉末をナノ結晶化するための熱処理を施す結晶化熱処理工程Aと、
 を有するものである。
<Nanocrystalline alloy dust core>
The method for producing a nanocrystal alloy dust core according to the first embodiment using the above amorphous alloy powder is as follows.
Alloy composition: Fe 100-a- bc -d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ≦ a <1.55, 1 ≦ Amorphous alloy having a composition represented by b ≦ 10, 11 ≦ c ≦ 17, 0.25 <d ≦ 1.0, a + d ≦ 1.80) and not subjected to heat treatment. The crushing process to make powder and
The compression molding step A in which the amorphous alloy powder and the binder are mixed and compression molded to obtain a green compact.
A crystallization heat treatment step A in which the green compact is subjected to a heat treatment for nanocrystallizing the amorphous alloy powder contained in the green compact.
It has.
 また、上記のアモルファス合金粉末を用いた第2の本実施形態のナノ結晶合金圧粉磁心の製造方法は、
 合金組成:Fe100-a-b-c-dCuSiSn(ここで、a、b、c、dは、原子%で、0.3≦a<1.55、1≦b≦10、11≦c≦17、0.25<d≦1.0、a+d≦1.80)で表される組成を有し、熱処理を行っていないアモルファス合金薄帯を粉砕してアモルファス合金粉末とする粉砕工程と、
 前記アモルファス合金粉末にナノ結晶化熱処理を施し、ナノ結晶合金粉末を得る結晶化熱処理工程Bと、
 前記ナノ結晶化されたナノ結晶合金粉末と、バインダーとを混合し、圧縮成型することで圧粉体とする圧縮成型工程Bと、
 を有するものである。
Further, the method for producing the nanocrystal alloy dust core of the second embodiment using the above-mentioned amorphous alloy powder is described.
Alloy composition: Fe 100-a- bc -d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ≦ a <1.55, 1 ≦ Amorphous alloy having a composition represented by b ≦ 10, 11 ≦ c ≦ 17, 0.25 <d ≦ 1.0, a + d ≦ 1.80) and not subjected to heat treatment. The crushing process to make powder and
The crystallization heat treatment step B in which the amorphous alloy powder is subjected to nanocrystallization heat treatment to obtain nanocrystal alloy powder,
The compression molding step B in which the nanocrystallized nanocrystal alloy powder and the binder are mixed and compression molded to obtain a green compact.
It has.
 なお、上記した第1及び第2の本実施形態のナノ結晶合金圧粉磁心の製造方法の粉砕工程における熱処理とは、脆化熱処理やナノ結晶化熱処理のことであり、例えば、200℃以上の温度の熱処理が相当する。脆化熱処理は、好ましくは250℃以上で行われる。 The heat treatment in the crushing step of the method for producing the nanocrystal alloy dust core of the first and second embodiments described above is an embrittlement heat treatment or a nanocrystallization heat treatment, for example, at 200 ° C. or higher. Temperature heat treatment corresponds. The embrittlement heat treatment is preferably performed at 250 ° C. or higher.
 この第1及び第2の本実施形態のナノ結晶合金圧粉磁心の製造方法によれば、粉砕前のアモルファス合金薄帯に、脆化熱処理やナノ結晶化熱処理を施さないので、結晶化熱処理工程Aや結晶化熱処理工程Bでアモルファス合金粉末や圧粉体にナノ結晶化熱処理を施す際、十分な応力緩和がなされ、飽和磁束密度等の軟磁気特性に優れた圧粉磁心を得ることができる。 According to the methods for producing nanocrystal alloy dust cores of the first and second embodiments, the amorphous alloy strip before pulverization is not subjected to brittle heat treatment or nanocrystallization heat treatment, so that the crystallization heat treatment step is performed. When nanocrystallizing heat treatment is applied to an amorphous alloy powder or green compact in A or the crystallization heat treatment step B, sufficient stress relaxation is performed, and a dust core having excellent soft magnetic properties such as saturation magnetic flux density can be obtained. ..
 上記した第1の本実施形態のナノ結晶合金圧粉磁心の製造方法(圧粉体にナノ結晶化熱処理を施す実施形態)によれば、ナノ結晶化熱処理によって、アモルファス合金粉末のナノ結晶化とともに、バインダーの硬化による一体化と、アモルファス合金粉末に付与された圧縮歪の応力緩和を同時に行うことができる。 According to the method for producing a nanocrystal alloy powder magnetic core of the first embodiment described above (the embodiment in which the powder is subjected to the nanocrystallization heat treatment), the nanocrystallization heat treatment is performed together with the nanocrystallization of the amorphous alloy powder. , The integration by curing the binder and the stress relaxation of the compressive strain applied to the amorphous alloy powder can be performed at the same time.
 上記した第2の本実施形態のナノ結晶合金圧粉磁心の製造方法(アモルファス合金粉末にナノ結晶化熱処理を施す実施形態)によれば、ナノ結晶化熱処理によって、アモルファス合金粉末のナノ結晶化とともに、アモルファス合金粉末に付与された圧縮歪の応力緩和を同時に行うことができる。 According to the method for producing a nanocrystal alloy dust core of the second embodiment described above (the embodiment in which the amorphous alloy powder is subjected to the nanocrystallization heat treatment), the nanocrystallization heat treatment is performed together with the nanocrystallization of the amorphous alloy powder. , The stress relaxation of the compressive strain applied to the amorphous alloy powder can be performed at the same time.
 なお、第1の本実施形態のナノ結晶合金圧粉磁心の製造方法及び第2の本実施形態のナノ結晶合金圧粉磁心の製造方法は、圧粉体を得た後、当該圧粉体に含まれるバインダーを硬化させるための熱処理工程や圧粉体の歪取り熱処理を行う熱処理工程を有していてもよい。 The method for producing the nano-crystal alloy dust core of the first embodiment and the method for producing the nano-crystal alloy dust core of the second embodiment are used to obtain the green compact and then to prepare the green compact. It may have a heat treatment step for curing the contained binder and a heat treatment step for performing strain removing heat treatment of the green compact.
 上記方法により、アモルファス合金薄帯を粉砕してアモルファス合金粉末を得ることができ、必要により分級されたアモルファス合金粉末を得ることができる。このアモルファス合金粉末を用いて、下記製造方法により、ナノ結晶合金圧粉磁心を製造することができる。 By the above method, the amorphous alloy strip can be crushed to obtain an amorphous alloy powder, and if necessary, a classified amorphous alloy powder can be obtained. Using this amorphous alloy powder, a nanocrystalline alloy dust core can be produced by the following production method.
 アモルファス合金粉末と、シリコーン樹脂等のバインダーと、必要により有機溶剤とを加えて、混錬する。圧縮成型の際には、有機溶剤を用いた場合は、その後に有機溶剤を蒸発させる。また、混錬後に造粒することもできる。この混錬物をプレス金型に入れ、トロイダル形状等の、所望とする磁心形状に圧縮成型することで、圧粉体が得られる。このとき、ナノ結晶化熱処理は、アモルファス合金粉末に対して施されるか、圧粉体に施される。 Amorphous alloy powder, binder such as silicone resin, and organic solvent if necessary are added and kneaded. In the case of compression molding, when an organic solvent is used, the organic solvent is then evaporated. It can also be granulated after kneading. A green compact can be obtained by putting this kneaded material in a press die and compression molding it into a desired magnetic core shape such as a toroidal shape. At this time, the nanocrystallization heat treatment is applied to the amorphous alloy powder or the green compact.
 ナノ結晶化熱処理がアモルファス合金粉末に対して施される場合は、圧粉体にバインダーを硬化させるための熱処理を施すこともできる。 When the nanocrystallizing heat treatment is applied to the amorphous alloy powder, the green compact can also be heat-treated to cure the binder.
 また、ナノ結晶化熱処理が圧粉体に対して施される場合は、バインダーを硬化させる熱処理も同時に行うことができる。 Further, when the nanocrystallization heat treatment is applied to the green compact, the heat treatment for curing the binder can also be performed at the same time.
<ナノ結晶化熱処理>
 以下、ナノ結晶化熱処理について説明する。
 ナノ結晶化熱処理は、ナノ結晶析出による発熱ピーク(第1の発熱ピーク)が現れる温度-30℃以上で、かつ粗大結晶析出による発熱ピーク(第2の発熱ピーク)が現れる温度未満までの温度まで昇温する。ここで、第1の発熱ピークと第2の発熱ピークは、合金を示差走査熱量計(DSC)によって測定し、把握することができる。例えば、合金を示差走査熱量計(DSC)によって測定(昇温速度20℃/分)し、最初(低温側)の発熱ピークをナノ結晶析出による発熱ピーク(第1の発熱ピーク)とし、第2(高温側)の発熱ピークを粗大結晶析出による発熱ピーク(第2の発熱ピーク)とすることができる。なお、温度の下限を、第1の発熱ピークが現れる温度-30℃としたのは、圧粉磁心を熱処理する場合や、大量のアモルファス合金粉末を一つのバッチで熱処理する場合には、昇温速度及び発熱を考慮して第1の発熱ピークの±30℃程度の温度(例えば、400~460℃)で行うことができるため、第1の発熱ピークが現れる温度-30℃を下限とするものである。
<Nanocrystal heat treatment>
Hereinafter, the nanocrystallization heat treatment will be described.
The nanocrystallization heat treatment is performed up to a temperature of -30 ° C or higher at which an exothermic peak due to nanocrystal precipitation (first exothermic peak) appears and below a temperature at which an exothermic peak (second exothermic peak) due to coarse crystal precipitation appears. The temperature rises. Here, the first exothermic peak and the second exothermic peak can be grasped by measuring the alloy with a differential scanning calorimeter (DSC). For example, the alloy is measured by a differential scanning calorimeter (DSC) (heating rate 20 ° C./min), and the first (low temperature side) exothermic peak is set as the exothermic peak due to nanocrystal precipitation (first exothermic peak). The exothermic peak on the (high temperature side) can be set as the exothermic peak (second exothermic peak) due to coarse crystal precipitation. The lower limit of the temperature was set to -30 ° C, the temperature at which the first exothermic peak appears, when the powder magnetic core is heat-treated or when a large amount of amorphous alloy powder is heat-treated in one batch. Since the heat treatment can be performed at a temperature of about ± 30 ° C. of the first heat generation peak (for example, 400 to 460 ° C.) in consideration of speed and heat generation, the lower limit is the temperature of −30 ° C. at which the first heat generation peak appears. Is.
 他方、アモルファス合金粉末を熱処理する場合は、ナノ結晶化による発熱による温度上昇の考慮が不要となり、第1発熱ピークと第2発熱ピークの間の温度で熱処理することが有効である。 On the other hand, when heat-treating the amorphous alloy powder, it is not necessary to consider the temperature rise due to heat generation due to nanocrystallization, and it is effective to heat-treat at a temperature between the first heat generation peak and the second heat generation peak.
 なお、ナノ結晶化熱処理は、窒素ガス等、非酸化性雰囲気で行われることが好ましい。 The nanocrystallization heat treatment is preferably performed in a non-oxidizing atmosphere such as nitrogen gas.
 また、ナノ結晶化熱処理における昇温速度、最高温度での保持時間、降温速度は合金成分によって、適宜設定することができる。昇温速度は0.001℃/秒~1000℃/秒が好ましい。ただし、高い昇温速度(例えば10℃/秒以上)だと、アモルファス合金粉末の結晶化に伴う自己発熱により、最高温度が第2発熱ピーク以上になることがあるので、同時に処理するアモルファス合金粉末の量に留意する必要がある。最高到達温度は、第2発熱ピークよりも低い温度である必要があり、第2発熱ピーク-30℃よりも低い温度が良い。1秒以上最高温度下にアモルファス合金粉末が置かれればナノ結晶化は完了すると考えらえる。ただし、コアの形態などをとる場合、熱伝導をよくする必要があり、確実に熱処理を行う観点から、60秒以上の保持が良く、大きな形状の場合600秒、1800秒の保持時間が好ましい。保持時間は、効率とナノ結晶化を考慮して決める必要がある。降温は空気やガスによる冷却が一般的であり、冷却速度の制約は特にないが、最高温度が第2発熱ピークに近い場合は、特に注意が必要であり、速やかに第1発熱ピーク以下の温度域に冷却されることが望ましい。具体的には、300秒以内に400℃以下になっていることが好ましく、600秒以内に300℃以下になっていることがより好ましい。 Further, the heating rate, the holding time at the maximum temperature, and the temperature decreasing rate in the nanocrystallization heat treatment can be appropriately set depending on the alloy component. The heating rate is preferably 0.001 ° C./sec to 1000 ° C./sec. However, if the temperature rise rate is high (for example, 10 ° C./sec or more), the maximum temperature may reach the second exothermic peak or higher due to self-heating associated with the crystallization of the amorphous alloy powder. Therefore, the amorphous alloy powder to be processed at the same time. It is necessary to pay attention to the amount of. The maximum temperature reached needs to be lower than the second exothermic peak, and is preferably lower than the second exothermic peak −30 ° C. It is considered that nanocrystallization is completed if the amorphous alloy powder is placed at the maximum temperature for 1 second or longer. However, when taking the form of a core or the like, it is necessary to improve heat conduction, and from the viewpoint of surely performing heat treatment, holding time of 60 seconds or more is good, and holding time of 600 seconds or 1800 seconds is preferable for a large shape. The retention time should be determined in consideration of efficiency and nanocrystallization. The temperature is generally cooled by air or gas, and there are no particular restrictions on the cooling rate. However, if the maximum temperature is close to the second exothermic peak, special attention is required, and the temperature immediately below the first exothermic peak is required. It is desirable to be cooled to the region. Specifically, the temperature is preferably 400 ° C. or lower within 300 seconds, and more preferably 300 ° C. or lower within 600 seconds.
 本実施形態により得られるナノ結晶合金圧粉磁心は、上記したとおり、上記した合金組成を有し、平均結晶粒径60nm以下の体心立方構造の結晶粒がアモルファス母相中に体積分率で30体積%以上分散した組織を有し、ロール鋳造により形成された合金薄帯面と、破断面とを有する合金粉末を用いて構成される。 As described above, the nano-crystal alloy dust core obtained by the present embodiment has the above-mentioned alloy composition, and crystal grains having a body-centered cubic structure having an average crystal grain size of 60 nm or less have a body integration rate in the amorphous matrix. It is composed of an alloy powder having a structure dispersed in an amount of 30% by volume or more, an alloy thin band surface formed by roll casting, and a fracture surface.
 また、本実施形態のアモルファス合金薄帯、アモルファス合金粉末にナノ結晶化熱処理を施せば、同様の組織を有するものとすることができる。ナノ結晶化熱処理を施したアモルファス合金薄帯、アモルファス合金粉末や、ナノ結晶合金圧粉磁心は、ナノ結晶構造を有するので、ランダム磁気異方性の効果が現れ、アモルファス相並みの良好な軟磁気特性が維持される。さらに、結晶化に伴い磁化がアモルファス相よりも高い結晶相の体積分率が増えるため、全体の磁化が5~15%程度増加する。 Further, if the amorphous alloy strip and the amorphous alloy powder of the present embodiment are subjected to nanocrystallizing heat treatment, the same structure can be obtained. Amorphous alloy strips and amorphous alloy powders that have undergone nanocrystallization heat treatment and nanocrystal alloy dust cores have a nanocrystal structure, so the effect of random magnetic anisotropy appears, and the soft magnetism is as good as the amorphous phase. The characteristics are maintained. Further, since the volume fraction of the crystal phase whose magnetization is higher than that of the amorphous phase increases with crystallization, the total magnetization increases by about 5 to 15%.
 本実施形態のナノ結晶合金圧粉磁心は、飽和磁束密度が1.65T以上のものとすることができる。 The nanocrystalline alloy dust core of the present embodiment can have a saturation magnetic flux density of 1.65 T or more.
 ナノ結晶の平均結晶粒径(D)は、熱処理後の合金粉末のX線回折(XRD)パターンから、(Fe-Si)bccピークの半値幅(ラジアン角度)を求め、以下Scherrerの式により、求めることができる。
D=0.9×λ/((半値幅)×cosθ)
(λ:X線源のX線波長)(例えば、X線源CoKαではλ=0.1789nm)
 また、ナノ結晶相の体積分率は、粉末の内部を透過型電子顕微鏡(TEM)で観察し、略円状の結晶の面積を合計し、観察視野の面積に対する比率から算出される。
For the average crystal grain size (D) of nanocrystals, the half width (radian angle) of the (Fe—Si) bcc peak was obtained from the X-ray diffraction (XRD) pattern of the alloy powder after heat treatment, and the following formula was used by Scherrer. Can be sought.
D = 0.9 × λ / ((half width) × cosθ)
(Λ: X-ray wavelength of X-ray source) (For example, λ = 0.1789 nm in X-ray source CoKα)
The volume fraction of the nanocrystal phase is calculated by observing the inside of the powder with a transmission electron microscope (TEM), totaling the areas of substantially circular crystals, and calculating the ratio with respect to the area of the observation field of view.
(実施例1)
 ロール鋳造により、合金組成が、原子%でFebalCuSi14Sn(x+y=1.40、y=0、0.25、0.40、0.50、0.70、1.00、1.40)で表される、試料1~7に係るアモルファス合金薄帯を製造した。アモルファス合金薄帯は、厚みが25μmのものとした。なお、薄帯の厚さは、密度と重量および寸法(長さ×幅)より算出した。また、この合金薄帯にナノ結晶化熱処理(410℃)を施して、飽和磁束密度Bsと保磁力Hcを、印加磁場8000A/mの直流B-H曲線から求めた。表1にその値を示す。なお、試料1、2、7は比較例、試料3~6は実施例である。
(Example 1)
The roll casting, the alloy composition, Fe bal Cu x Si 4 B 14 Sn y (x + y = 1.40 in atomic%, y = 0,0.25,0.40,0.50,0.70,1. Amorphous alloy strips according to Samples 1 to 7 represented by 00, 1.40) were produced. The amorphous alloy strip had a thickness of 25 μm. The thickness of the thin band was calculated from the density, weight and dimensions (length x width). Further, the alloy strip was subjected to nanocrystallizing heat treatment (410 ° C.), and the saturation magnetic flux density Bs and the coercive force Hc were obtained from the DC BH curve of the applied magnetic field of 8000 A / m. The values are shown in Table 1. Samples 1, 2 and 7 are comparative examples, and samples 3 to 6 are examples.
 このアモルファス合金薄帯の粉砕性を検証するため、それぞれ次の手順で粉砕し、106μm以下の粒度のものと、63μm以下の粒度のものを回収し、回収率を求めた。回収率が高いものほど、細かい粉砕粉が多く得られているため、粉砕性が良好であると判断した。 In order to verify the pulverizability of this amorphous alloy strip, each of them was pulverized by the following procedure, and those having a particle size of 106 μm or less and those having a particle size of 63 μm or less were recovered, and the recovery rate was determined. It was judged that the higher the recovery rate, the better the pulverizability because more fine pulverized powder was obtained.
 粉砕は、具体的には、次の手順で行った。先ず、アモルファス合金薄帯を切断して約0.3gの試験片とし、試験片の重量w1を測定後、金属製の乳鉢に入れ、鉢を1分間動かして粉砕した。その後、目開き106μmの篩に入れ、振動器により1分間、篩を振動させることで、篩を通過する106μm以下の粉末を得た。この粉末の重量w2を測定した。そして、w2/w1(%)を106μm以下の粉末の回収率とした。同様に粉砕した後、目開き63μmの篩に入れ、振動器により1分間、篩を振動させることで、63μm以下の粉末を得て、重量w3を測定し、w3/w1(%)を63μm以下の粉末の回収率とした。 Specifically, the crushing was performed by the following procedure. First, the amorphous alloy strip was cut to obtain a test piece of about 0.3 g, and after measuring the weight w1 of the test piece, it was placed in a metal mortar and the pot was moved for 1 minute to pulverize it. Then, it was placed in a sieve having a mesh size of 106 μm, and the sieve was vibrated for 1 minute with a vibrator to obtain a powder having a mesh size of 106 μm or less that passed through the sieve. The weight w2 of this powder was measured. Then, w2 / w1 (%) was used as the recovery rate of the powder of 106 μm or less. After crushing in the same manner, the powder is placed in a sieve having an opening of 63 μm and vibrated with a vibrator for 1 minute to obtain a powder of 63 μm or less, the weight w3 is measured, and w3 / w1 (%) is 63 μm or less. The recovery rate of the powder of.
 図3は、本実施形態の薄帯粉砕粉の外観写真である。薄帯粉砕粉は、平坦なロール鋳造により形成された合金薄帯面と、破断面と、が観察できる。 FIG. 3 is an external photograph of the thin band crushed powder of the present embodiment. In the pulverized strip powder, an alloy strip surface formed by flat roll casting and a fracture surface can be observed.
 図4は、本実施形態の薄帯粉砕粉にナノ結晶化熱処理を施した粉末(以下、実施ナノ結晶化粉末)の断面TEM写真である。図5は、Snを添加しなかった比較形態のアモルファス合金薄帯の薄帯粉砕粉にナノ結晶化熱処理を施した粉末(以下、比較ナノ結晶化粉末)の断面TEM写真である。どちらも破断面の近傍を写している。図4の実施ナノ結晶化粉末は、破断面近傍(破断面から1μmまでの範囲)も、内部(破断面から1μm超の粉末内部)も、実質的に同じ結晶構造が観察できる。対して、図5の比較ナノ結晶化粉末は、内部よりも破断面近傍の方が、結晶の輪郭がぼやけている。つまり、比較ナノ結晶化粉末は、破断面近傍ではナノ結晶合金として求められる結晶構造にならず、また、この比較ナノ結晶化粉末を用いた圧粉磁心は磁気特性が低下しやすいことが、推察される。 FIG. 4 is a cross-sectional TEM photograph of the powder obtained by subjecting the thin band crushed powder of the present embodiment to nanocrystallizing heat treatment (hereinafter referred to as the implemented nanocrystallized powder). FIG. 5 is a cross-sectional TEM photograph of a powder (hereinafter referred to as comparative nanocrystallized powder) obtained by subjecting a thin-band pulverized powder of a comparative form of an amorphous alloy strip to which Sn is not added to a nanocrystallization heat treatment. Both show the vicinity of the fracture surface. In the nanocrystallized powder carried out in FIG. 4, substantially the same crystal structure can be observed both in the vicinity of the fracture surface (range from the fracture surface to 1 μm) and inside (inside the powder exceeding 1 μm from the fracture surface). On the other hand, in the comparative nanocrystallized powder of FIG. 5, the crystal outline is blurred near the fracture surface rather than inside. That is, it is inferred that the comparative nanocrystallized powder does not have the crystal structure required as a nanocrystal alloy in the vicinity of the fracture surface, and the powder magnetic core using this comparative nanocrystallized powder tends to deteriorate in magnetic properties. Will be done.
 図1は、Sn置換量xと106μm以下の粉末の回収率との関係を示す図である。図2は、Sn置換量xと63μm以下の粉末の回収率との関係を示す図である。また、表1は、プロットした試料のCu添加量x、Sn添加量y、CuとSnの総和の添加量、106μm以下と63μm以下の粉末の回収率、アモルファス合金薄帯の飽和磁束密度Bsと保磁力が記載される。なお、ここでは、アモルファス合金薄帯にナノ結晶化熱処理を施して、飽和磁束密度Bsと保磁力を測定した。これにより、実施例のアモルファス合金薄帯は、ナノ結晶化熱処理を施すことにより、優れた軟磁気特性(高い飽和磁束密度)を得られるアモルファス合金薄帯であることがわかる。つまり、薄帯粉砕粉においても、ナノ結晶化熱処理を施すことにより、優れた軟磁気特性(高い飽和磁束密度)を得ることができる。 FIG. 1 is a diagram showing the relationship between the Sn substitution amount x and the recovery rate of powder of 106 μm or less. FIG. 2 is a diagram showing the relationship between the Sn substitution amount x and the recovery rate of powder of 63 μm or less. Table 1 shows the amount of Cu added x, the amount of Sn added y, the total amount of Cu and Sn added, the recovery rate of powders of 106 μm or less and 63 μm or less, and the saturation magnetic flux density Bs of the amorphous alloy strip. The coercive force is described. Here, the amorphous alloy strip was subjected to nanocrystallization heat treatment, and the saturation magnetic flux density Bs and the coercive force were measured. From this, it can be seen that the amorphous alloy strip of the example is an amorphous alloy strip that can obtain excellent soft magnetic properties (high saturation magnetic flux density) by subjecting it to nanocrystallization heat treatment. That is, even in the thin band pulverized powder, excellent soft magnetic characteristics (high saturation magnetic flux density) can be obtained by performing the nanocrystallization heat treatment.
 y=0.25と1.40のアモルファス合金薄帯は、106μm以下の粉末の回収率が54%以下、63μm以下の粉末の回収率は20%以下となった。しかしy=0.40、0.50、0.70、1.00のアモルファス合金薄帯は、106μm以下の粉末の回収率が54%を越え、63μm以下の粉末の回収率は20%を超えた。また、本実施形態のアモルファス合金薄帯は、ナノ結晶化熱処理を施すことにより飽和磁束密度Bsが1.70T以上であり、保磁力Hcは12.0A/m以下であった。このように、本実施形態のアモルファス合金薄帯は優れた粉砕性と、ナノ結晶化熱処理を施すことにより優れた軟磁気特性とを有する。 For the amorphous alloy strips with y = 0.25 and 1.40, the recovery rate of the powder of 106 μm or less was 54% or less, and the recovery rate of the powder of 63 μm or less was 20% or less. However, for the amorphous alloy strips with y = 0.40, 0.50, 0.70, 1.00, the recovery rate of the powder of 106 μm or less exceeds 54%, and the recovery rate of the powder of 63 μm or less exceeds 20%. It was. Further, the amorphous alloy strip of the present embodiment had a saturation magnetic flux density Bs of 1.70 T or more and a coercive force Hc of 12.0 A / m or less by subjecting the nanocrystallizing heat treatment. As described above, the amorphous alloy strip of the present embodiment has excellent pulverizability and excellent soft magnetic properties by subjecting the nanocrystal heat treatment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 ロール鋳造により、合金組成が、原子%でFebalCuSi14Snであり、表2で示されるx、yのものの、試料8~12に係るアモルファス合金薄帯を製造した。アモルファス合金薄帯は、厚みが25μmのものとした。なお、薄帯の厚さは、密度と重量および寸法(長さ×幅)より算出した。このアモルファス合金薄帯にナノ結晶化熱処理(410℃)を施して、飽和磁束密度Bsと保磁力Hc(実施例1と同様に測定)を測定した結果を表2に示す。なお、試料8、9、12は比較例、試料10、11は実施例である。
(Example 2)
The roll casting, the alloy composition is Fe bal Cu x Si 4 B 14 Sn y in atomic%, x shown in Table 2, one of y, to produce an amorphous alloy ribbon according to the sample 8-12. The amorphous alloy strip had a thickness of 25 μm. The thickness of the thin band was calculated from the density, weight and dimensions (length x width). Table 2 shows the results of measuring the saturation magnetic flux density Bs and the coercive force Hc (measured in the same manner as in Example 1) by subjecting the amorphous alloy strip to nanocrystallizing heat treatment (410 ° C.). Samples 8, 9 and 12 are comparative examples, and samples 10 and 11 are examples.
 実施例1と同様に、106μm以下の粒度の粉末と、63μm以下の粒度の粉末の回収率を求めた。 Similar to Example 1, the recovery rate of the powder having a particle size of 106 μm or less and the powder having a particle size of 63 μm or less was determined.
 No.10の試料(x=0.90、y=0.40)と、No.11の試料(x=0.80、y=0.50)は、106μm以下の粉末の回収率が60%以上、63μm以下の粉末の回収率は20%以上を超えた。また、本実施形態のアモルファス合金薄帯は、ナノ結晶化熱処理を施すことにより飽和磁束密度Bsが1.70T以上であり、保磁力Hcは10A/m以下であった。このように、本実施形態のアモルファス合金薄帯は優れた粉砕性と、ナノ結晶化熱処理を施すことにより優れた磁気特性とを有する。 No. 10 samples (x = 0.90, y = 0.40) and No. In the 11 samples (x = 0.80, y = 0.50), the recovery rate of the powder of 106 μm or less exceeded 60%, and the recovery rate of the powder of 63 μm or less exceeded 20% or more. Further, the amorphous alloy strip of the present embodiment had a saturation magnetic flux density Bs of 1.70 T or more and a coercive force Hc of 10 A / m or less by subjecting the nanocrystallizing heat treatment. As described above, the amorphous alloy strip of the present embodiment has excellent pulverizability and excellent magnetic properties by subjecting the nanocrystal heat treatment.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、CuとSnの添加量が、総和で1.80原子%を超える合金薄帯では、飽和磁束密度Bsが低下して実用に供すことができないものであった。
 
In the alloy thin band in which the total amount of Cu and Sn added exceeds 1.80 atomic%, the saturation magnetic flux density Bs is lowered and it cannot be put into practical use.

Claims (6)

  1.  合金組成:Fe100-a-b-c-dCuSiSn(ここで、a、b、c、dは、原子%で、0.3≦a<1.55、1≦b≦10、11≦c≦17、0.25<d≦1.0、a+d≦1.80)で表される組成を有する、
     アモルファス合金薄帯。
    Alloy composition: Fe 100-ab-c-d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ≦ a <1.55, 1 ≦ It has a composition represented by b ≦ 10, 11 ≦ c ≦ 17, 0.25 <d ≦ 1.0, a + d ≦ 1.80).
    Amorphous alloy strip.
  2.  厚さが15μm以上50μm以下である、請求項1に記載のアモルファス合金薄帯。 The amorphous alloy strip according to claim 1, wherein the thickness is 15 μm or more and 50 μm or less.
  3.  合金組成:Fe100-a-b-c-dCuSiSn(ここで、a、b、c、dは、原子%で、0.3≦a<1.55、1≦b≦10、11≦c≦17、0.25<d≦1.0、a+d≦1.80)で表される組成を有し、
     合金薄帯面と、破断面とを有する、
     アモルファス合金粉末。
    Alloy composition: Fe 100-ab-c-d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ≦ a <1.55, 1 ≦ It has a composition represented by b ≦ 10, 11 ≦ c ≦ 17, 0.25 <d ≦ 1.0, a + d ≦ 1.80).
    It has an alloy strip surface and a fracture surface,
    Amorphous alloy powder.
  4.  合金組成:Fe100-a-b-c-dCuSiSn(ここで、a、b、c、dは、原子%で、0.3≦a<1.55、1≦b≦10、11≦c≦17、0.25<d≦1.0、a+d≦1.80)で表される組成を有し、熱処理を行っていないロール鋳造により形成されたアモルファス合金薄帯を粉砕してアモルファス合金粉末とする粉砕工程と、
     前記アモルファス合金粉末と、バインダーとを混合し、圧縮成型することで圧粉体とする圧縮成型工程Aと、
     前記圧粉体に、当該圧粉体に含まれる前記アモルファス合金粉末をナノ結晶化するための熱処理を施す結晶化熱処理工程Aと、
     を有するナノ結晶合金圧粉磁心の製造方法。
    Alloy composition: Fe 100-a- bc -d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ≦ a <1.55, 1 ≦ Amorphous alloy ribbon having a composition represented by b ≦ 10, 11 ≦ c ≦ 17, 0.25 <d ≦ 1.0, a + d ≦ 1.80) and formed by roll casting without heat treatment. And the crushing process to make an amorphous alloy powder
    The compression molding step A in which the amorphous alloy powder and the binder are mixed and compression molded to obtain a green compact.
    A crystallization heat treatment step A in which the green compact is subjected to a heat treatment for nanocrystallizing the amorphous alloy powder contained in the green compact.
    A method for producing a nanocrystal alloy dust core having.
  5.  合金組成:Fe100-a-b-c-dCuSiSn(ここで、a、b、c、dは、原子%で、0.3≦a<1.55、1≦b≦10、11≦c≦17、0.25<d≦1.0、a+d≦1.80)で表される組成を有し、熱処理を行っていないロール鋳造により形成されたアモルファス合金薄帯を粉砕してアモルファス合金粉末とする粉砕工程と、
     前記アモルファス合金粉末にナノ結晶化のための熱処理を施し、ナノ結晶合金粉末を得る結晶化熱処理工程Bと、
     前記ナノ結晶化されたナノ結晶合金粉末と、バインダーとを混合し、圧縮成型することで圧粉体とする圧縮成型工程Bと、
     を有するナノ結晶合金圧粉磁心の製造方法。
    Alloy composition: Fe 100-a- bc -d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ≦ a <1.55, 1 ≦ Amorphous alloy ribbon having a composition represented by b ≦ 10, 11 ≦ c ≦ 17, 0.25 <d ≦ 1.0, a + d ≦ 1.80) and formed by roll casting without heat treatment. And the crushing process to make an amorphous alloy powder
    The crystallization heat treatment step B of subjecting the amorphous alloy powder to a heat treatment for nanocrystallization to obtain a nanocrystal alloy powder,
    The compression molding step B in which the nanocrystallized nanocrystal alloy powder and the binder are mixed and compression molded to obtain a green compact.
    A method for producing a nanocrystal alloy dust core having.
  6.  合金組成:Fe100-a-b-c-dCuSiSn(ここで、a、b、c、dは、原子%で、0.3≦a<1.55、1≦b≦10、11≦c≦17、0.25<d≦1.0、a+d≦1.80)で表される組成を有し、平均結晶粒径60nm以下の体心立方構造の結晶粒がアモルファス母相中に体積分率で30体積%以上分散した組織を有し、合金薄帯面と、破断面とを有するアモルファス合金粉末を含有するナノ結晶合金圧粉磁心。
     
    Alloy composition: Fe 100-a- bc -d Cu a Si b B c Sn d (where a, b, c, d are atomic%, 0.3 ≦ a <1.55, 1 ≦ Crystal grains having a composition represented by b ≦ 10, 11 ≦ c ≦ 17, 0.25 <d ≦ 1.0, a + d ≦ 1.80) and having a body-centered cubic structure having an average crystal grain size of 60 nm or less. A nanocrystalline alloy dust core containing an amorphous alloy powder having a structure dispersed in an amorphous matrix with a body integral ratio of 30% by volume or more, and having an alloy thin band surface and a fracture surface.
PCT/JP2020/013292 2019-03-26 2020-03-25 Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core WO2020196608A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080012084.4A CN113365764B (en) 2019-03-26 2020-03-25 Amorphous alloy ribbon, amorphous alloy powder, nanocrystalline alloy powder magnetic core, and method for producing nanocrystalline alloy powder magnetic core
JP2021509494A JP7148876B2 (en) 2019-03-26 2020-03-25 Amorphous alloy ribbon, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019059118 2019-03-26
JP2019-059118 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020196608A1 true WO2020196608A1 (en) 2020-10-01

Family

ID=72609890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013292 WO2020196608A1 (en) 2019-03-26 2020-03-25 Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core

Country Status (4)

Country Link
JP (1) JP7148876B2 (en)
CN (1) CN113365764B (en)
TW (1) TWI820323B (en)
WO (1) WO2020196608A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151774A (en) * 2021-03-10 2021-07-23 南京理工大学 Bamboo joint type nano-structure metal material with double gradients and preparation method thereof
CN115142006A (en) * 2021-09-08 2022-10-04 武汉苏泊尔炊具有限公司 Processing method of pot and pot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578796A (en) * 1991-09-26 1993-03-30 Nippon Steel Corp Amorphous alloy foil improved in crystallization resistance in surface layer and its production
JP2007107094A (en) * 2005-09-16 2007-04-26 Hitachi Metals Ltd Soft magnetic alloy, method for producing the same and magnetic component
JP2008231463A (en) * 2007-03-16 2008-10-02 Hitachi Metals Ltd Fe-BASED SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY STRIP, AND MAGNETIC COMPONENT
JP2014240516A (en) * 2013-06-12 2014-12-25 日立金属株式会社 Nanocrystal soft magnetic alloy and magnetic component using the same
JP2016003366A (en) * 2014-06-17 2016-01-12 Necトーキン株式会社 Soft magnetic alloy powder, dust magnetic core using the powder and production method of the magnetic core

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108735A1 (en) * 2012-01-18 2013-07-25 日立金属株式会社 Dust core, coil component, and method for producing dust core
JP5953618B2 (en) * 2014-04-18 2016-07-20 Saco合同会社 Cooling roll, amorphous alloy foil strip manufacturing apparatus, and amorphous alloy foil strip manufacturing method
US11264156B2 (en) * 2015-01-07 2022-03-01 Metglas, Inc. Magnetic core based on a nanocrystalline magnetic alloy
JP6338004B1 (en) * 2017-10-06 2018-06-06 Tdk株式会社 Soft magnetic alloys and magnetic parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578796A (en) * 1991-09-26 1993-03-30 Nippon Steel Corp Amorphous alloy foil improved in crystallization resistance in surface layer and its production
JP2007107094A (en) * 2005-09-16 2007-04-26 Hitachi Metals Ltd Soft magnetic alloy, method for producing the same and magnetic component
JP2008231463A (en) * 2007-03-16 2008-10-02 Hitachi Metals Ltd Fe-BASED SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY STRIP, AND MAGNETIC COMPONENT
JP2014240516A (en) * 2013-06-12 2014-12-25 日立金属株式会社 Nanocrystal soft magnetic alloy and magnetic component using the same
JP2016003366A (en) * 2014-06-17 2016-01-12 Necトーキン株式会社 Soft magnetic alloy powder, dust magnetic core using the powder and production method of the magnetic core

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151774A (en) * 2021-03-10 2021-07-23 南京理工大学 Bamboo joint type nano-structure metal material with double gradients and preparation method thereof
CN113151774B (en) * 2021-03-10 2022-05-24 南京理工大学 Bamboo joint type nano-structure metal material with double gradients and preparation method thereof
CN115142006A (en) * 2021-09-08 2022-10-04 武汉苏泊尔炊具有限公司 Processing method of pot and pot
CN115142006B (en) * 2021-09-08 2023-10-03 武汉苏泊尔炊具有限公司 Pot treatment method and pot

Also Published As

Publication number Publication date
CN113365764A (en) 2021-09-07
JPWO2020196608A1 (en) 2021-11-25
TW202100771A (en) 2021-01-01
TWI820323B (en) 2023-11-01
JP7148876B2 (en) 2022-10-06
CN113365764B (en) 2023-06-16

Similar Documents

Publication Publication Date Title
CN111446057B (en) Soft magnetic material and method for producing same
JP6669304B2 (en) Crystalline Fe-based alloy powder and method for producing the same
JP2713363B2 (en) Fe-based soft magnetic alloy compact and manufacturing method thereof
JP6530164B2 (en) Nanocrystalline soft magnetic alloy powder and dust core using the same
JP2009541986A (en) Magnet core and manufacturing method thereof
JP2016003366A (en) Soft magnetic alloy powder, dust magnetic core using the powder and production method of the magnetic core
WO2019208768A1 (en) Powder for magnetic cores, magnetic core using same, and coil component
WO2020196608A1 (en) Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
JP2016104900A (en) Metallic soft magnetic alloy, magnetic core, and production method of the same
US11276516B2 (en) Magnetic powder for high-frequency applications and magnetic resin composition containing same
CN108431277B (en) Iron-based soft magnetic alloy, method for producing same, and magnetic component using same
JP6648856B2 (en) Fe-based alloy, crystalline Fe-based alloy atomized powder, and magnetic core
CN111655891B (en) Permanent magnet
JPH0448005A (en) Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same
JP2002294413A (en) Magnet material and manufacturing method therefor
JP4936593B2 (en) Method for producing magnet powder
KR101387961B1 (en) Iron based nanocrystalline soft magnetic alloy powder cores and preparation thereof
JPH0768604B2 (en) Fe-based magnetic alloy
CN114144851A (en) Iron-based soft magnetic alloy, method for producing same, and magnetic component comprising same
JPH0448004A (en) Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same
KR101883053B1 (en) Amorphous/nanocrystalline hybrid soft magnetic powder and method for fabricating the same
JP2006237368A (en) Powder magnetic core and its manufacturing method
JP2021150555A (en) Powder magnetic core and method of manufacturing the same
JP2004218042A (en) Method for producing rare earth magnet powder excellent in magnetic anisotropy and heat stability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509494

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778084

Country of ref document: EP

Kind code of ref document: A1