JP2021150555A - Powder magnetic core and method of manufacturing the same - Google Patents

Powder magnetic core and method of manufacturing the same Download PDF

Info

Publication number
JP2021150555A
JP2021150555A JP2020050596A JP2020050596A JP2021150555A JP 2021150555 A JP2021150555 A JP 2021150555A JP 2020050596 A JP2020050596 A JP 2020050596A JP 2020050596 A JP2020050596 A JP 2020050596A JP 2021150555 A JP2021150555 A JP 2021150555A
Authority
JP
Japan
Prior art keywords
powder
nanocrystal
ratio
dust core
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020050596A
Other languages
Japanese (ja)
Other versions
JP7419127B2 (en
Inventor
美帆 千葉
Miho Chiba
美帆 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2020050596A priority Critical patent/JP7419127B2/en
Publication of JP2021150555A publication Critical patent/JP2021150555A/en
Application granted granted Critical
Publication of JP7419127B2 publication Critical patent/JP7419127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide a powder magnetic core that has particularly high magnetic permeability and that can contribute to miniaturization of a magnetic component such as a reactor, and a method of manufacturing the same.MEANS FOR SOLVING THE PROBLEM: A powder magnetic core includes a pressurized powder body that is made from malleable powder and nanocrystal powder in which the ratio (L1/L2) between a major axis L1 and a minor axis L2 is in the range of 1.1-5.0. The ratio of powder, in which an orientation angle of the nanocrystal powder with respect to a direction perpendicular to a molding direction of the pressurized powder body is less than 45°, is in the range of 65-85%.SELECTED DRAWING: None

Description

本発明は、圧粉磁心及びその製造方法に関する。 The present invention relates to a dust core and a method for producing the same.

数kHzから数百kHzまでの領域に用いられるリアクトル用の磁心として圧粉磁心がある。圧粉磁心は、磁性粉末の表面を絶縁処理したのち加工成形したもので、絶縁処理により渦電流損失の発生が抑制されている。 There is a dust core as a magnetic core for a reactor used in the region from several kHz to several hundred kHz. The dust core is formed by insulating the surface of the magnetic powder and then processing and molding it. The insulation treatment suppresses the occurrence of eddy current loss.

特に、急速に普及しはじめたハイブリッド自動車では、大出力の電気モータを有しており、これを駆動する電源回路には高電圧大電流に耐えうるリアクトルが必要になる。このリアクトルには小型化、低騒音化、低損失化、耐久性の要求が強く、リアクトルに用いられる磁心材の特性としては、高い飽和磁束密度Bsに加えて高い透磁率μが要求される。 In particular, hybrid vehicles, which have begun to spread rapidly, have high-power electric motors, and the power supply circuit that drives them requires a reactor that can withstand high voltage and large current. This reactor is strongly required to be miniaturized, reduced in noise, reduced in loss, and durable, and the magnetic core material used in the reactor is required to have a high magnetic permeability μ in addition to a high saturation magnetic flux density Bs.

大電流用のリアクトル磁心として前述の圧粉磁心を用いたものがある。低損失が求められる圧粉磁心には、アモルファス混合粉末やナノ結晶混合粉末が用いられる(特許文献1参照)。しかしながら、アモルファス混合粉末等の初透磁率は、温度に対して負の係数を有するため、従来のリアクトルやモータコア等の磁性部品の導体に大電流を流した際にジュール熱が発生し、リアクトルの飽和磁束密度BsやインダクタンスLの磁気性能が悪化してしまう問題があった。 As a reactor magnetic core for a large current, there is one using the above-mentioned dust core. Amorphous mixed powder and nanocrystal mixed powder are used for the dust core, which is required to have low loss (see Patent Document 1). However, since the initial magnetic permeability of an amorphous mixed powder or the like has a negative coefficient with respect to temperature, Joule heat is generated when a large current is passed through a conductor of a conventional magnetic component such as a reactor or a motor core, and the reactor's initial magnetic permeability is increased. There is a problem that the magnetic performance of the saturation magnetic flux density Bs and the inductance L deteriorates.

また、アモルファス混合粉末等を用いたリアクトルにおいても、その組成に依存して透磁率が温度に対して負の係数を有する場合があり、同様にインダクタンスLが低下する問題があった。 Further, even in a reactor using an amorphous mixed powder or the like, the magnetic permeability may have a negative coefficient with respect to the temperature depending on the composition, and there is a problem that the inductance L also decreases.

さらには、上述したアモルファス混合粉末等では、絶対的な透磁率が不十分であり、インダクタLを大きくすることができず、コイルの巻き数増大に伴ってリアクトルは必然的に大型化してしまうという問題があった。 Furthermore, with the above-mentioned amorphous mixed powder and the like, the absolute magnetic permeability is insufficient, the inductor L cannot be increased, and the reactor inevitably increases in size as the number of coil turns increases. There was a problem.

特開2016−27656号Japanese Unexamined Patent Publication No. 2016-27656

本発明は、特に高透磁率であって、リアクトル等の磁性部品の小型化に寄与することができる圧粉磁心及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a dust core having a particularly high magnetic permeability and capable of contributing to miniaturization of magnetic parts such as a reactor, and a method for producing the same.

上記目的を達成すべく、本発明者らは鋭意検討を行った。その結果、長径L1と短径L2との比(L1/L2)が1.1〜5.0の範囲のナノ結晶粉末を準備し、このナノ結晶粉末に展性粉末を混合して混合粉末を得、その後、混合粉末を成型して圧粉体を形成し、当該圧粉体を含む圧粉磁心を製造することにより、この圧粉磁心(圧粉体)の成型方向と垂直な方向にナノ結晶粉末が配向、すなわち、ナノ結晶粉末の長軸が配向し、当該配向方向に高い透磁率を示すことを見出した。 In order to achieve the above object, the present inventors have conducted diligent studies. As a result, a nanocrystal powder having a ratio (L1 / L2) of the major axis L1 to the minor axis L2 in the range of 1.1 to 5.0 is prepared, and the expandable powder is mixed with the nanocrystal powder to prepare a mixed powder. After that, the mixed powder is molded to form a green compact, and a powder magnetic core containing the green compact is produced. It has been found that the crystal powder is oriented, that is, the major axis of the nanocrystal powder is oriented and exhibits high magnetic permeability in the orientation direction.

すなわち、本発明は、以下に示す通りである。
(1)長径L1と短径L2との比(L1/L2)が1.1〜5.0の範囲のナノ結晶粉末と、展性粉末とからなる圧粉体を含み、前記圧粉体の成型方向に垂直な方向に対する当該ナノ結晶粉末の配向角が45°未満である粉末の割合が65〜85%であることを特徴とする、圧粉磁心。
成型
(2)前記展性粉末のビッカース硬さHvが500以下であることを特徴とする、(1)に記載の圧粉磁心。
(3)前記圧粉体における前記展性粉末の割合が、10〜90%であることを特徴とする、(1)又は(2)に記載の圧粉磁心。
(4)前記圧粉体における前記展性粉末の前記ナノ結晶粉末に対する粒径比が1以下であることを特徴とする、(1)〜(3)のいずれか1つに記載の圧粉磁心。
(5)前記ナノ結晶粉末の結晶化度が25%以上であることを特徴とする、(1)〜(4)のいずれか1つに記載の圧粉磁心。
(6)前記ナノ結晶粉末の結晶粒径が45nm以下であることを特徴とする、(1)〜(5)のいずれか1つに記載の圧粉磁心。
(7)前記ナノ結晶粉末の組成が、原子%で、
Si:0〜17%、
B:2〜15%、
P:0〜15%、
Cr+Nb:0〜5%、
Cu:0.2〜2%、
残部:Fe+不可避不純物であることを特徴とする、(1)〜(6)のいずれか1つに記載の圧粉磁心。
(8)長径L1と短径L2との比(L1/L2)が1.1〜5.0の範囲のナノ結晶粉末を準備する工程と、前記ナノ結晶粉末と展性粉末とを混合して混合粉末を調整する工程と、前記混合粉末を成型して圧粉体を形成し、当該圧粉体を含む圧粉磁心を製造する工程と、を含むことを特徴とする、圧粉磁心の製造方法。
(9)前記展性粉末のビッカース硬さHvが500以下であることを特徴とする、(8)に記載の圧粉磁心の製造方法。
(10)前記圧粉体における前記展性粉末の割合が、10〜90%であることを特徴とする、(8)又は(9)に記載の圧粉磁心の製造方法。
(11)前記圧粉体における前記展性粉末の前記ナノ結晶粉末に対する粒径比が1以下であることを特徴とする、(8)〜(10)のいずれか1つに記載の圧粉磁心の製造方法。
(12)前記ナノ結晶粉末の結晶化度が25%以上であることを特徴とする、(8)〜(11)のいずれか1つに記載の圧粉磁心の製造方法。
(13)前記ナノ結晶粉末の結晶粒径が45nm以下であることを特徴とする、(8)〜(12)のいずれか1つに記載の圧粉磁心の製造方法。
(14)前記ナノ結晶粉末の組成が、原子%で、
Si:0〜17%、
B:2〜15%、
P:0〜15%、
Cr+Nb:0〜5%、
Cu:0.2〜2%、
残部:Fe+不可避不純物であることを特徴とする、(8)〜(13)のいずれか1つに記載の圧粉磁心の製造方法。
That is, the present invention is as shown below.
(1) A green compact having a ratio (L1 / L2) of a major axis L1 to a minor axis L2 (L1 / L2) in the range of 1.1 to 5.0 and a spread powder is contained in the green compact. A powder magnetic core, characterized in that the proportion of the powder having an orientation angle of the nanocrystal powder less than 45 ° with respect to a direction perpendicular to the molding direction is 65 to 85%.
Molding (2) The dust core according to (1), wherein the malleable powder has a Vickers hardness Hv of 500 or less.
(3) The dust core according to (1) or (2), wherein the ratio of the malleable powder in the powder is 10 to 90%.
(4) The dust core according to any one of (1) to (3), wherein the malleable powder has a particle size ratio of 1 or less to the nanocrystal powder. ..
(5) The dust core according to any one of (1) to (4), wherein the nanocrystal powder has a crystallinity of 25% or more.
(6) The dust core according to any one of (1) to (5), wherein the nanocrystal powder has a crystal grain size of 45 nm or less.
(7) The composition of the nanocrystal powder is atomic%.
Si: 0-17%,
B: 2 to 15%,
P: 0-15%,
Cr + Nb: 0-5%,
Cu: 0.2-2%,
The powder magnetic core according to any one of (1) to (6), wherein the balance is Fe + an unavoidable impurity.
(8) The step of preparing a nanocrystal powder in which the ratio (L1 / L2) of the major axis L1 to the minor axis L2 is in the range of 1.1 to 5.0, and the nanocrystal powder and the expandable powder are mixed. Manufacture of a powder magnetic core, which comprises a step of adjusting a mixed powder and a step of molding the mixed powder to form a green compact and producing a powder magnetic core containing the green powder. Method.
(9) The method for producing a dust core according to (8), wherein the malleable powder has a Vickers hardness Hv of 500 or less.
(10) The method for producing a powder magnetic core according to (8) or (9), wherein the ratio of the malleable powder in the powder is 10 to 90%.
(11) The dust core according to any one of (8) to (10), wherein the malleable powder has a particle size ratio of 1 or less to the nanocrystal powder. Manufacturing method.
(12) The method for producing a dust core according to any one of (8) to (11), wherein the nanocrystal powder has a crystallinity of 25% or more.
(13) The method for producing a dust core according to any one of (8) to (12), wherein the nanocrystal powder has a crystal grain size of 45 nm or less.
(14) The composition of the nanocrystal powder is atomic%.
Si: 0-17%,
B: 2 to 15%,
P: 0-15%,
Cr + Nb: 0-5%,
Cu: 0.2-2%,
The method for producing a dust core according to any one of (8) to (13), wherein the balance is Fe + an unavoidable impurity.

なお、一般的に圧粉体は複数の面を有する金型にナノ結晶粉末や展性粉末などの磁性粉と結合材を充填し、成型圧を加えて製造する。これらの面のうち、成型圧を加える面と、これに対向する金型の面を結ぶ方向に成型圧が加わる。言い換えると、これらの面に対応する圧粉体の外面のいずれかより圧粉体へ成型圧が加わっているので、一般にはその外面に垂直な方向が成型方向となる。おおむねナノ結晶粉末の長径が向いている方向に垂直な方向が成型方向となる。成型方向は磁路に垂直な方向とすることが一般的である。 Generally, a green compact is produced by filling a mold having a plurality of surfaces with a magnetic powder such as nanocrystal powder or malleable powder and a binder, and applying molding pressure. Of these surfaces, the molding pressure is applied in the direction connecting the surface to which the molding pressure is applied and the surface of the mold facing the surface. In other words, since the molding pressure is applied to the green compact from any of the outer surfaces of the green compact corresponding to these surfaces, the direction perpendicular to the outer surface is generally the molding direction. The molding direction is generally perpendicular to the direction in which the major axis of the nanocrystal powder is oriented. The molding direction is generally perpendicular to the magnetic path.

本発明によれば、特に高透磁率であって、リアクトル等の磁性部品の小型化に寄与することができる圧粉磁心及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a dust core and a method for producing the same, which have a particularly high magnetic permeability and can contribute to the miniaturization of magnetic parts such as reactors.

以下、本発明の詳細及びその他の特徴について、発明を実施するための形態に基づいて説明する。 Hereinafter, the details and other features of the present invention will be described based on the mode for carrying out the invention.

本発明で使用するナノ結晶粉末は、長径L1と短径L2との比(L1/L2)が1.1〜5.0の範囲であることが好ましく、1.2〜3.5の範囲であることが好ましい。ナノ結晶粉末の長径L1と短径L2との比(L1/L2)が上記範囲にあることで、圧粉磁心(圧粉体)の成型方向と垂直な方向にナノ結晶粉末が配向、すなわち、ナノ結晶粉末の長軸が配向し、当該配向方向に高い透磁率を示す。 The nanocrystal powder used in the present invention preferably has a ratio (L1 / L2) of a major axis L1 to a minor axis L2 in the range of 1.1 to 5.0, preferably in the range of 1.2 to 3.5. It is preferable to have. When the ratio (L1 / L2) of the major axis L1 and the minor axis L2 of the nanocrystal powder is within the above range, the nanocrystal powder is oriented in the direction perpendicular to the molding direction of the powder magnetic core (compact powder), that is, The long axis of the nanocrystal powder is oriented and exhibits high magnetic permeability in the orientation direction.

なお、上記比(L1/L2)が1.1未満であると、ナノ結晶粉末の配向性が劣化してしまい配向方向における透磁率が減少してしまう。また、上記比(L1/L2)が5.0を超えると、圧粉体中のナノ結晶粉末の充填性が減少し、圧粉体、すなわち圧粉磁心の密度が減少してしまうので、飽和磁束密度及び透磁率等の磁気特性が劣化してしまう。 If the ratio (L1 / L2) is less than 1.1, the orientation of the nanocrystal powder deteriorates and the magnetic permeability in the orientation direction decreases. Further, when the above ratio (L1 / L2) exceeds 5.0, the packing property of the nanocrystal powder in the green compact decreases, and the density of the green compact, that is, the powder magnetic core decreases, so that the powder is saturated. Magnetic characteristics such as magnetic flux density and magnetic permeability deteriorate.

また、本発明で使用する展性粉末は、上記ナノ結晶粉末よりも柔らかく、展性に優れていれば特に限定されないが、好ましくはビッカース硬さHvが500以下、より好ましくは450未満、さらに好ましくは250未満である。これによって、展性粉末が、ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向しやすくする助剤として機能するようになるので、当該ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向し、すなわち、ナノ結晶粉末の長軸が配向して、当該配向方向に高い透磁率を示す。 The malleable powder used in the present invention is not particularly limited as long as it is softer than the nanocrystal powder and has excellent malleability, but preferably has a Vickers hardness Hv of 500 or less, more preferably less than 450, and more preferably. Is less than 250. As a result, the expandable powder functions as an auxiliary agent that facilitates the orientation of the nanocrystal powder in the direction perpendicular to the molding direction of the dust core (compact), so that the nanocrystal powder is pressed. It is oriented in a direction perpendicular to the molding direction of the powder magnetic core (compact powder), that is, the major axis of the nanocrystal powder is oriented and exhibits high magnetic permeability in the orientation direction.

なお、ビッカース硬さHvの下限値は特に限定されないが、例えば50とすることができる。当該下限値より小さくても、最早ナノ結晶粉末の配向性に影響を与えず、透磁率の増大に寄与しない。 The lower limit of the Vickers hardness Hv is not particularly limited, but may be, for example, 50. Even if it is smaller than the lower limit, it no longer affects the orientation of the nanocrystal powder and does not contribute to the increase in magnetic permeability.

上述のような展性粉末としては、純鉄粉、カルボニル鉄粉、センダスト粉末、Fe−Ni粉末、Fe−Si−Cr粉末、Fe−Si粉末、Fe−Cr系軟磁性粉末等を用いることができる。 As the expandable powder as described above, pure iron powder, carbonyl iron powder, sentust powder, Fe-Ni powder, Fe-Si-Cr powder, Fe-Si powder, Fe-Cr-based soft magnetic powder and the like can be used. can.

圧粉体における展性粉末の割合は10〜90%であることが好ましく、30〜70%であることがより好ましい。展性粉末の割合が上記範囲であると、上述のように、展性粉末が、ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向しやすくする助剤として機能するようになるので、当該ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向し、すなわち、ナノ結晶粉末の長軸が配向して、当該配向方向に高い透磁率を示す。 The ratio of the malleable powder in the green compact is preferably 10 to 90%, more preferably 30 to 70%. When the ratio of the expandable powder is in the above range, as described above, the expandable powder serves as an auxiliary agent that facilitates the orientation of the nanocrystal powder in the direction perpendicular to the molding direction of the powder magnetic core (compact powder). Since it becomes functional, the nanocrystal powder is oriented in a direction perpendicular to the molding direction of the dust core (compact powder), that is, the long axis of the nanocrystal powder is oriented and is high in the orientation direction. Indicates magnetic permeability.

なお、展性粉末の割合が10%未満であると、上記作用効果が小さくなり、十分な透磁率を得ることができない場合があり、90%を超えると、配向により透磁率に寄与するナノ結晶粉末の割合が減少してしまい、同様に、十分な透磁率を得ることができない場合がある。 If the proportion of the malleable powder is less than 10%, the above-mentioned action effect becomes small and a sufficient magnetic permeability may not be obtained. If it exceeds 90%, nanocrystals that contribute to the magnetic permeability by orientation. Similarly, it may not be possible to obtain sufficient magnetic permeability because the proportion of powder is reduced.

上述した展性粉末の割合は、圧粉磁心の電子顕微鏡写真において500μm×500μmの領域を画定し、当該領域における展性粉末のナノ結晶粉末に対する面積比から求めたものである。 The ratio of the expandable powder described above is obtained by defining a region of 500 μm × 500 μm in the electron micrograph of the powder magnetic core and determining it from the area ratio of the expandable powder to the nanocrystal powder in the region.

また、展性粉末のナノ結晶粉末に対する粒径比(展性粉末の粒径/ナノ結晶粉末)は1以下であることが好ましく、さらには0.45未満であることが好ましい。この場合、ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向しやすくなるので、当該ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向し、すなわち、ナノ結晶粉末の長軸が配向して、当該配向方向に高い透磁率を示す。 The particle size ratio of the expandable powder to the nanocrystal powder (particle size of the expandable powder / nanocrystal powder) is preferably 1 or less, and more preferably less than 0.45. In this case, the nanocrystal powder tends to be oriented in the direction perpendicular to the molding direction of the dust core (compact powder), so that the nanocrystal powder is perpendicular to the molding direction of the dust core (compact powder). It is oriented in the direction, that is, the major axis of the nanocrystal powder is oriented, and exhibits high magnetic permeability in the orientation direction.

なお、上記粒径比の下限値は特に限定されないが、例えば0.02とすることができる。当該下限値より粒径比を小さくしても、最早配向性に影響を及ぼさず、透磁率に影響を与えない。 The lower limit of the particle size ratio is not particularly limited, but may be, for example, 0.02. Even if the particle size ratio is made smaller than the lower limit, the orientation is no longer affected and the magnetic permeability is not affected.

また、ナノ結晶粉末の結晶化度は25%以上であることが好ましく、さらには35%以上であることが好ましい。この場合、bcc−Fe(−Si)の結晶割合が増大するので、飽和磁束密度や透磁率などの磁気特性が良好となる。 The degree of crystallization of the nanocrystal powder is preferably 25% or more, and more preferably 35% or more. In this case, since the crystal ratio of bcc—Fe (−Si) increases, the magnetic characteristics such as the saturation magnetic flux density and the magnetic permeability become good.

なお、ナノ結晶粉末の結晶化度の上限は特に限定されないが、例えば70%である。当該上限値を超えて結晶化度が増大しても、最早磁気特性に影響を与えない。 The upper limit of the crystallinity of the nanocrystal powder is not particularly limited, but is, for example, 70%. Even if the crystallinity increases beyond the upper limit, it no longer affects the magnetic properties.

また、ナノ結晶粉末の結晶粒径は、45nm以下であることが好ましく、30nm以下であることがさらに好ましい。この場合、保磁力が小さくなるので、圧粉磁心としての磁気特性が良好となる。なお、10nm未満としても最早保磁力の減少には影響を与えないので、当該値が下限値となる。 The crystal grain size of the nanocrystal powder is preferably 45 nm or less, and more preferably 30 nm or less. In this case, since the coercive force becomes small, the magnetic characteristics as the dust core become good. Even if it is less than 10 nm, it no longer affects the decrease in coercive force, so that value is the lower limit.

次に、本発明のナノ結晶粉末の組成成分について説明する。なお、特に断らない限り、以下に示す%は原子%である。 Next, the compositional components of the nanocrystal powder of the present invention will be described. Unless otherwise specified,% shown below is atomic%.

Si:0〜17%
Siは、ΔT(化合物析出温度とbcc−Fe(−Si)析出温度の差)を拡大して安定的に熱処理を行うための元素である。Siが17%を超えるとアモルファス形成能が低下し、非晶質を主相とする粉末を得ることが困難となり、熱処理後の軟磁気特性が劣化する。
Si: 0-17%
Si is an element for stably performing heat treatment by expanding ΔT (difference between compound precipitation temperature and bcc-Fe (-Si) precipitation temperature). If Si exceeds 17%, the amorphous forming ability is lowered, it becomes difficult to obtain a powder containing amorphous as the main phase, and the soft magnetic properties after heat treatment are deteriorated.

B:2〜15%
Bが2%未満であると、急冷によるアモルファス相の形成が困難になり、熱処理後の軟磁気特性が低下する。Bが15%を超えると、融点が高くなり製造上好ましくなく、アモルファス形成能も低下して軟磁気特性が劣化するので好ましくない。
B: 2 to 15%
If B is less than 2%, it becomes difficult to form an amorphous phase by quenching, and the soft magnetic properties after heat treatment deteriorate. If B exceeds 15%, the melting point becomes high, which is not preferable in manufacturing, and the amorphous forming ability is also lowered, and the soft magnetic properties are deteriorated, which is not preferable.

P:0〜15%
Pは、微細で均一なナノ結晶粉末を形成しやすく、良好な磁気特性を得るための元素である。Pが15%を超えると、他のメタロイド元素とのバランスが悪くなり、アモルファス形成能が低下して、飽和磁束密度が低下する。
P: 0 to 15%
P is an element for easily forming fine and uniform nanocrystal powder and obtaining good magnetic properties. When P exceeds 15%, the balance with other metalloid elements is deteriorated, the amorphous forming ability is lowered, and the saturation magnetic flux density is lowered.

Cr+Nb:0〜5%
Crは粉末表面に酸化膜を形成し、耐食性を向上させる作用がある。また、Nbは、ナノ結晶化の際に、bcc結晶粒の成長を抑制し、微細なナノ結晶粉末を形成させる作用がある。しかしながら、Cr及びNbを添加することで相対的にFe量が減少し、飽和磁束密度が減少する。また、アモルファス形成能が低下してしまうため、5%以下であることが好ましい。
Cr + Nb: 0-5%
Cr forms an oxide film on the powder surface and has an action of improving corrosion resistance. Further, Nb has an action of suppressing the growth of bcc crystal grains and forming fine nanocrystal powder during nanocrystallization. However, by adding Cr and Nb, the amount of Fe is relatively reduced and the saturation magnetic flux density is reduced. Further, since the amorphous forming ability is lowered, it is preferably 5% or less.

Cu:0.2〜2%
Cuが0.2%未満ではナノ結晶化熱処理時のクラスター析出が少なく、均一なナノ結晶化が困難となる。一方、Cuが2%を超えると、Cu量が過多となるため、アモルファス形成能が低下し、軟磁気特性が低下してしまう。
Cu: 0.2-2%
If Cu is less than 0.2%, cluster precipitation during nanocrystallization heat treatment is small, and uniform nanocrystallization becomes difficult. On the other hand, if the amount of Cu exceeds 2%, the amount of Cu becomes excessive, so that the amorphous forming ability is lowered and the soft magnetic property is lowered.

不可避不純物
不可避不純物としては、Co,Ni,Zn,Zr,Hf,Mo,Ta,W,Ag,Au,Pd,K,Ca,Mg,Sn,Ti,V,Mn,Al,S,C,O,N,Bi,希土類元素から選ばれる少なくとも1種であることが好ましい。このような元素が含まれることにより、熱処理後において、均一なナノ結晶粉末を容易に得ることができる。
Inevitable Impurities Examples of unavoidable impurities include Co, Ni, Zn, Zr, Hf, Mo, Ta, W, Ag, Au, Pd, K, Ca, Mg, Sn, Ti, V, Mn, Al, S, C, O. , N, Bi, and at least one selected from rare earth elements. By including such an element, a uniform nanocrystal powder can be easily obtained after the heat treatment.

なお、ナノ結晶粉末は、原料となる純鉄、フェロシリコン、フェロリン、フェロボロン、フェロクロム及び電解銅などを1250〜1450℃の温度で溶解して粉末化して得ることができる。 The nanocrystal powder can be obtained by dissolving raw materials such as pure iron, ferrosilicon, ferroline, ferroboron, ferrochrome and electrolytic copper at a temperature of 1.25 to 1450 ° C. and pulverizing the powder.

また、粉末化は、例えば、水アトマイズ法、ガスアトマイズ法、回転水流アトマイズ法、スプレー法、キャビテーション法、スパークエロージョン法等の各種粉末化法により行うことができるが、水アトマイズ法、ガスアトマイズ法、回転水流アトマイズ法等のアトマイズ法が好ましい。アトマイズ法は、母合金を高周波誘導加熱装置で溶解し、母合金の溶湯をノズルから高速で噴射してできた合金溶湯の流れに冷却媒体(液体又は気体)を衝突させて、合金溶湯を微細化すると共に急冷し、ナノ結晶粉末を得る方法である。かかる方法によれば、極めて微小なナノ結晶粉末を効率よく製造することができる。 Further, pulverization can be performed by various pulverization methods such as water atomization method, gas atomization method, rotating water flow atomizing method, spray method, cavitation method, spark erosion method, etc., but water atomizing method, gas atomizing method, rotation An atomizing method such as a water flow atomizing method is preferable. In the atomizing method, the mother alloy is melted by a high-frequency induction heating device, and the molten alloy is injected at high speed from a nozzle, and the cooling medium (liquid or gas) is made to collide with the flow of the molten alloy to make the molten alloy fine. This is a method of obtaining nanocrystal powder by alloying and quenching. According to such a method, extremely fine nanocrystal powder can be efficiently produced.

なお、目的とするナノ結晶粉末を得るに際には、上述のように、例えばアトマイズ法で得た粉末を適宜、不活性雰囲気中で、所定の時間、例えば0〜180分間、所定の温度、例えば350〜600℃で熱処理してもよい。なお、熱処理温度が0分というのは、昇温中に反応が終了してしまう場合を意味するものである。熱処理雰囲気は、粉末の表面酸化を抑制するためには不活性雰囲気が望ましいが、特定の目的のために大気等の酸化雰囲気や水素等の還元雰囲気でも可能である。 In order to obtain the desired nanocrystal powder, as described above, for example, the powder obtained by the atomizing method is appropriately used in an inert atmosphere for a predetermined time, for example, 0 to 180 minutes at a predetermined temperature. For example, the heat treatment may be performed at 350 to 600 ° C. The heat treatment temperature of 0 minutes means that the reaction is completed during the temperature rise. The heat treatment atmosphere is preferably an inert atmosphere in order to suppress surface oxidation of the powder, but it can also be an oxidizing atmosphere such as air or a reducing atmosphere such as hydrogen for a specific purpose.

本発明の圧粉磁心を得るには、上述のようにして得たナノ結晶粉末と展性粉末とを混合して混合粉末を調整し、その後、当該混合粉末を例えば190〜2000MPaの成型圧力で成型して圧粉体を形成することによって、当該圧粉体から目的とする圧粉磁心を得ることができる。 In order to obtain the powder magnetic core of the present invention, the nanocrystalline powder obtained as described above and the expandable powder are mixed to prepare a mixed powder, and then the mixed powder is prepared at a molding pressure of, for example, 190 to 2000 MPa. By forming the green compact, the desired green compact can be obtained from the green compact.

このとき、圧粉体の成型方向に垂直な方向に対する当該ナノ結晶粉末の配向角が45°未満である粉末の割合が65〜85%、好ましくは70〜80%である。したがって、特に高透磁率であって、リアクトル等の磁性部品の小型化に寄与することができる圧粉磁心及びその製造方法を提供することができる。 At this time, the proportion of the powder in which the orientation angle of the nanocrystal powder is less than 45 ° with respect to the direction perpendicular to the molding direction of the green compact is 65 to 85%, preferably 70 to 80%. Therefore, it is possible to provide a dust core and a method for producing the same, which have a particularly high magnetic permeability and can contribute to the miniaturization of magnetic parts such as reactors.

なお、混合粉末を成型する際には、適宜、結合材を混合し、圧粉体を熱処理して当該結合材を硬化させ、当該結合材を介してナノ結晶粉末及び展性粉末を結合するようにすることもできる。 When molding the mixed powder, the binder is appropriately mixed, the green compact is heat-treated to cure the binder, and the nanocrystal powder and the malleable powder are bonded via the binder. It can also be.

結着材としては、例えば、シリコーン系樹脂、エポキシ系樹脂、フェノール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリフェニレンサルファイド系樹脂等の有機材料、リン酸マグネシウム、リン酸カルシウム、リン酸亜鉛、リン酸マンガン、リン酸カドミウムのようなリン酸塩、ケイ酸ナトリウムのようなケイ酸塩(水ガラス)等の熱硬化性無機材料等が挙げられる。 Examples of the binder include organic materials such as silicone resins, epoxy resins, phenol resins, polyamide resins, polyimide resins, polyphenylene sulfide resins, magnesium phosphate, calcium phosphate, zinc phosphate, and manganese phosphate. , Phosphates such as cadmium phosphate, thermosetting inorganic materials such as silicates (water glass) such as sodium silicate, and the like.

(実施例1〜5及び比較例1〜2)
工業純鉄、フェロシリコン、フェロリン、フェロボロン、及び電解銅からなる原料を所定の合金組成(Fe81.9Si6.5Cu0.6)になるように秤量し、不活性雰囲気中、高周波溶解を用いて1450℃にて溶解した。その後、溶解した合金溶湯を水アトマイズ法にて処理し、−63μm、±90μm、±150μm、±250μmで分級し、合金粉末を作製した。
(Examples 1 to 5 and Comparative Examples 1 to 2)
A raw material composed of industrial pure iron, ferrosilicon, ferroline, ferroboron, and electrolytic copper is weighed so as to have a predetermined alloy composition (Fe 81.9 Si 4 B 7 P 6.5 Cu 0.6 ), and an inert atmosphere is obtained. It was melted at 1450 ° C. using medium and high frequency melting. Then, the melted molten alloy was treated by a water atomizing method and classified into −63 μm, ± 90 μm, ± 150 μm, and ± 250 μm to prepare an alloy powder.

赤外線加熱装置を用いて、得られた合金粉末を不活性雰囲気中で加熱した。合金粉末を毎分30℃の昇温速度で440℃まで加熱して20分保持し、その後、空冷した。熱処理後の粉末(ナノ結晶粉末)をXRDにより解析したところ、いずれの粉末も結晶化度は45%、結晶粒径は35nmであった。 The obtained alloy powder was heated in an inert atmosphere using an infrared heating device. The alloy powder was heated to 440 ° C. at a heating rate of 30 ° C. per minute, held for 20 minutes, and then air-cooled. When the powder (nanocrystal powder) after the heat treatment was analyzed by XRD, the crystallinity of each powder was 45% and the crystal grain size was 35 nm.

次いで、ナノ結晶粉末にビッカース硬さHvが350のFe−Si−Cr粉末(展性粉末)を30質量%の割合で混合し、得られた混合粉末に対して質量比で3%となるように結合材を加え、攪拌混合した。ここでは、結合材として、シリコーン樹脂を使用した。 Next, Fe-Si-Cr powder (expandable powder) having a Vickers hardness Hv of 350 was mixed with the nanocrystal powder at a ratio of 30% by mass so that the mass ratio was 3% with respect to the obtained mixed powder. A binder was added to the mixture, and the mixture was stirred and mixed. Here, a silicone resin was used as the binder.

次いで、目開き500μmのメッシュを用いて、結合材を混合した混合粉末の粒度調整を行い、造粒粉末を得た。この造粒粉末の2.0gを秤量し、金型に入れ、油圧式自動プレス機により圧力294MPaにて成型し、外形13mm、内径8mmの円筒形状の圧粉体を製造した。 Next, the particle size of the mixed powder mixed with the binder was adjusted using a mesh having a mesh size of 500 μm to obtain a granulated powder. 2.0 g of this granulated powder was weighed, placed in a mold, and molded at a pressure of 294 MPa by a hydraulic automatic press to produce a cylindrical green compact having an outer diameter of 13 mm and an inner diameter of 8 mm.

次いで、圧粉体を恒温槽内に入れて、大気中150℃にて2時間保持し、結合材を硬化させた。 Next, the green compact was placed in a constant temperature bath and kept in the air at 150 ° C. for 2 hours to cure the binder.

作製した圧粉磁心の磁気特性評価として、インピーダンスアナライザを用いて、周波数1MHzにおける初透磁率μを測定した。また、電子顕微鏡を用いて圧粉磁心の断面観察を行い、ナノ結晶粉末の形状(長径L1と短径L2の比:L1/L2)における長径方向の、圧粉体の成型方向に垂直な方向に対してなす角度である配向角を測定した。具体的には、圧粉磁心を冷間樹脂中に埋め込み硬化し、圧粉磁心の磁路と垂直に研磨することで圧粉磁心の断面を作製した。EDX(Energy Dispersive X−ray spectropy:エネルギー分散型X線分析)による元素マッピングから、圧粉磁心断面におけるナノ結晶粉末を30個以上ランダムに選択し、各粉末の長径L1と短径L2を測定するとともに、配向角を調べた。長径L1は、各粉末の中で最も長い線分となるところ、短径L2は、長径に対して垂直な線分のうち、最も長いところとした。 As an evaluation of the magnetic characteristics of the prepared dust core, the initial magnetic permeability μ at a frequency of 1 MHz was measured using an impedance analyzer. In addition, the cross section of the dust core was observed using an electron microscope, and the direction perpendicular to the molding direction of the powder in the major axis direction in the shape of the nanocrystal powder (ratio of major axis L1 to minor axis L2: L1 / L2). The orientation angle, which is the angle formed with respect to the object, was measured. Specifically, the dust core was embedded in a cold resin, cured, and polished perpendicular to the magnetic path of the dust core to prepare a cross section of the dust core. From elemental mapping by EDX (Energy Dispersive X-ray spectrum), 30 or more nanocrystal powders in the powder magnetic core cross section are randomly selected, and the major axis L1 and minor axis L2 of each powder are measured. At the same time, the orientation angle was examined. The major axis L1 is the longest line segment in each powder, and the minor axis L2 is the longest line segment perpendicular to the major axis.

配向角は、L1/L2比が1.1以上となるナノ結晶粉末を対象に、成型方向に垂直な方向に対するL1の角度を約100個について計測し、45°未満となる粉末の割合を算出した。 For the orientation angle, for nanocrystal powder with an L1 / L2 ratio of 1.1 or more, measure the angle of L1 with respect to the direction perpendicular to the molding direction for about 100 pieces, and calculate the proportion of powder with an L1 / L2 ratio of less than 45 °. bottom.

表1に、ナノ結晶粉末として、−63μm、±90μm、±150μm、±250μmで分級した合金粉末を用いた場合の、圧粉磁心の磁気特性と粉末形状、配向角45度未満の割合を示す。 Table 1 shows the magnetic characteristics and powder shape of the dust core and the ratio of the orientation angle of less than 45 degrees when alloy powder classified by -63 μm, ± 90 μm, ± 150 μm, and ± 250 μm is used as the nanocrystal powder. ..

Figure 2021150555
Figure 2021150555

これより、目開きが大きい篩で分級した粉末の方が、初透磁率及びL1/L2比が高く配向角45度未満の割合が高いことが分かる。すなわち、異形状のナノ結晶粉末の長軸が、圧粉磁心の成型方向に垂直な方向に配向していることが分かる。また、L1/L2比が大きすぎる場合は、充填率が低下し、初透磁率が下がってしまった。 From this, it can be seen that the powder classified by a sieve having a large opening has a higher initial magnetic permeability and L1 / L2 ratio, and a higher proportion of orientation angles of less than 45 degrees. That is, it can be seen that the long axis of the irregularly shaped nanocrystal powder is oriented in the direction perpendicular to the molding direction of the dust core. Further, when the L1 / L2 ratio is too large, the filling rate is lowered and the initial magnetic permeability is lowered.

分級時の目開きが大きいほど異形状の粉末が多くなって、ナノ結晶粉末の長軸が、圧粉磁心の成型方向に垂直な方向に配向する理由は、アトマイズ時に、水で分断された合金溶湯が小さい場合には、表面張力で球状になりやすいが、大きい分断溶湯は球状化する前に凝固するためである。 The larger the opening during classification, the more irregularly shaped powder, and the reason why the long axis of the nanocrystal powder is oriented in the direction perpendicular to the molding direction of the dust core is that the alloy separated by water during atomization. This is because when the molten metal is small, it tends to become spherical due to surface tension, but the large split molten metal solidifies before it becomes spherical.

(実施例6〜8及び比較例3)
工業純鉄、フェロシリコン、フェロリン、フェロボロン、フェロクロム及び電解銅からなる原料を所定の合金組成(Fe81.4Si2.58.5Cr1.0Cu0.6)になるように秤量し、不活性雰囲気中、高周波溶解を用いて1250〜1550℃にて溶解した。その後、溶解した合金溶湯を水アトマイズ法にて処理し、−45μmで分級し、合金粉末を作製した。
(Examples 6 to 8 and Comparative Example 3)
A raw material composed of industrial pure iron, ferrosilicon, ferroline, ferroboron, ferrochrome and electrolytic copper is adjusted to have a predetermined alloy composition (Fe 81.4 Si 2.5 B 6 P 8.5 Cr 1.0 Cu 0.6 ). Weighed in, and dissolved in an inert atmosphere at 1.25 to 1550 ° C. using high frequency dissolution. Then, the melted molten alloy was treated by a water atomizing method and classified at −45 μm to prepare an alloy powder.

赤外線加熱装置を用いて、得られた合金粉末を不活性雰囲気中で加熱した。合金粉末を毎分30℃の昇温速度で430℃まで加熱して20分保持し、その後、空冷した。熱処理後の粉末(ナノ結晶粉末)をXRDにより解析したところ、いずれの粉末も結晶化度は40%、結晶粒径は24nmであった。 The obtained alloy powder was heated in an inert atmosphere using an infrared heating device. The alloy powder was heated to 430 ° C. at a heating rate of 30 ° C. per minute, held for 20 minutes, and then air-cooled. When the powder (nanocrystal powder) after the heat treatment was analyzed by XRD, the crystallinity of each powder was 40% and the crystal grain size was 24 nm.

次いで、ナノ結晶粉末にビッカース硬さHvが110のカルボニル鉄粉(展性粉末)を40質量%の割合で混合し、得られた混合粉末に対して質量比で2.5%となるように結合材を加え、攪拌混合した。ここでは、結合材として、フェノール樹脂を使用した。 Next, carbonyl iron powder (expandable powder) having a Vickers hardness Hv of 110 was mixed with the nanocrystal powder at a ratio of 40% by mass so that the mass ratio was 2.5% with respect to the obtained mixed powder. The binder was added, and the mixture was stirred and mixed. Here, a phenol resin was used as the binder.

次いで、目開き500μmのメッシュを用いて、結合材を混合した混合粉末の粒度調整を行い、造粒粉末を得た。この造粒粉末の2.5gを秤量し、金型に入れ、油圧式自動プレス機により圧力294MPaにて成型し、外形13mm、内径8mmの円筒形状の圧粉体を製造した。次いで、圧粉体を恒温槽内に入れて、大気中150℃にて2時間保持し、結合材を硬化させた。 Next, the particle size of the mixed powder mixed with the binder was adjusted using a mesh having a mesh size of 500 μm to obtain a granulated powder. 2.5 g of this granulated powder was weighed, placed in a mold, and molded at a pressure of 294 MPa by a hydraulic automatic press to produce a cylindrical green compact having an outer diameter of 13 mm and an inner diameter of 8 mm. Next, the green compact was placed in a constant temperature bath and kept in the air at 150 ° C. for 2 hours to cure the binder.

次いで、実施例1等と同様に、作製した圧粉磁心の磁気特性評価として、インピーダンスアナライザを用いて、周波数1MHzにおける初透磁率μを測定した。また、電子顕微鏡を用いて圧粉磁心の断面観察を行い、ナノ結晶粉末の形状(長径L1と短径L2の比:L1/L2)及び配向角を測定した。 Next, as in the case of Example 1 and the like, the initial magnetic permeability μ at a frequency of 1 MHz was measured using an impedance analyzer as an evaluation of the magnetic characteristics of the produced dust core. Further, the cross section of the dust core was observed using an electron microscope, and the shape (ratio of major axis L1 to minor axis L2: L1 / L2) and orientation angle of the nanocrystal powder were measured.

表2に、ナノ結晶粉末として、1250〜1550℃で溶解した合金粉末を用いた場合の、初透磁率、L1/L2比及び配向角45度未満の割合を示した。 Table 2 shows the initial magnetic permeability, the L1 / L2 ratio, and the ratio of the orientation angle of less than 45 degrees when the alloy powder melted at 1.25 to 1550 ° C. was used as the nanocrystal powder.

Figure 2021150555
Figure 2021150555

表2から、溶解温度の低い粉末の方が、L1/L2比が大きく及び配向角45度未満の割合が高く、初透磁率が高いことが分かる。これは溶解温度の低い方が合金溶湯が凝固するまでの時間が短くなり、表面張力によって球状化する前に凝固して異形状となり、ナノ結晶粉末の長軸が、圧粉磁心の成型方向に垂直な方向に配向するためである。 From Table 2, it can be seen that the powder having a lower melting temperature has a larger L1 / L2 ratio, a higher proportion of orientation angles of less than 45 degrees, and a higher initial magnetic permeability. The lower the melting temperature, the shorter the time it takes for the molten alloy to solidify, and the molten alloy solidifies before spheroidization due to surface tension and becomes deformed. This is because it is oriented in the vertical direction.

(実施例9〜15)
工業純鉄、フェロシリコン、フェロリン、フェロボロン、フェロニオブ、フェロクロム及び電解銅からなる原料を表3に示すような合金組成になるように秤量し、不活性雰囲気中、高周波溶解を用いて1450℃にて溶解した。その後、溶解した合金溶湯を水アトマイズ法にて処理し、−150μmで分級し、合金粉末を作製した。
(Examples 9 to 15)
Raw materials composed of industrial pure iron, ferrosilicon, ferroline, ferrobolon, ferroniobium, ferrochrome and electrolytic copper are weighed so as to have an alloy composition as shown in Table 3 and at 1450 ° C. in an inert atmosphere using high frequency dissolution. Dissolved. Then, the melted molten alloy was treated by a water atomizing method and classified at −150 μm to prepare an alloy powder.

赤外線加熱装置を用いて、得られた合金粉末を不活性雰囲気中で加熱した。合金粉末を毎分30℃の昇温速度で440℃まで加熱して20分保持し、その後、空冷した。次いで、ナノ結晶粉末に表3に示すようなビッカース硬さHvの粉末(展性粉末)を40質量%の割合で混合し、得られた混合粉末に対して質量比で3%となるように結合材を加え、攪拌混合した。ここでは、結合材として、フェノール樹脂を使用した。 The obtained alloy powder was heated in an inert atmosphere using an infrared heating device. The alloy powder was heated to 440 ° C. at a heating rate of 30 ° C. per minute, held for 20 minutes, and then air-cooled. Next, a powder having a Vickers hardness Hv (expandable powder) as shown in Table 3 was mixed with the nanocrystal powder at a ratio of 40% by mass so as to have a mass ratio of 3% with respect to the obtained mixed powder. The binder was added, and the mixture was stirred and mixed. Here, a phenol resin was used as the binder.

次いで、目開き500μmのメッシュを用いて、結合材を混合した混合粉末の粒度調整を行い、造粒粉末を得た。この造粒粉末の2.5gを秤量し、金型に入れ、油圧式自動プレス機により圧力780MPaにて成型し、外形13mm、内径8mmの円筒形状の圧粉体を製造した。次いで、圧粉体を恒温槽内に入れて、不活性雰囲気中160℃にて4時間保持し、結合材を硬化させた。 Next, the particle size of the mixed powder mixed with the binder was adjusted using a mesh having a mesh size of 500 μm to obtain a granulated powder. 2.5 g of this granulated powder was weighed, placed in a mold, and molded at a pressure of 780 MPa by a hydraulic automatic press to produce a cylindrical green compact having an outer diameter of 13 mm and an inner diameter of 8 mm. Next, the green compact was placed in a constant temperature bath and held at 160 ° C. for 4 hours in an inert atmosphere to cure the binder.

次いで、実施例1等と同様に、作製した圧粉磁心の磁気特性評価として、インピーダンスアナライザを用いて、周波数1MHzにおける初透磁率μを測定した。また、電子顕微鏡を用いて圧粉磁心の断面観察を行い、ナノ結晶粉末の形状(長径L1と短径L2の比:L1/L2)及び配向角を測定した。 Next, as in the case of Example 1 and the like, the initial magnetic permeability μ at a frequency of 1 MHz was measured using an impedance analyzer as an evaluation of the magnetic characteristics of the produced dust core. Further, the cross section of the dust core was observed using an electron microscope, and the shape (ratio of major axis L1 to minor axis L2: L1 / L2) and orientation angle of the nanocrystal powder were measured.

Figure 2021150555
Figure 2021150555

表3から、添加粉末が軟らかい方が、L1/L2比が大きく及び配向角45度未満の割合が高く、初透磁率が高いことが分かる。これは添加粉末が、ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向しやすくする助剤として機能するようになるので、当該ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向し、すなわち、ナノ結晶粉末の長軸が配向して、当該配向方向に高い透磁率を示すようになるためである。 From Table 3, it can be seen that the softer the added powder, the larger the L1 / L2 ratio, the higher the ratio of the orientation angle of less than 45 degrees, and the higher the initial magnetic permeability. This is because the added powder functions as an auxiliary agent for facilitating the nanocrystal powder to be oriented in the direction perpendicular to the molding direction of the dust core (compact), so that the nanocrystal powder is the dust core. This is because the powder is oriented in a direction perpendicular to the molding direction of the (compact powder), that is, the major axis of the nanocrystal powder is oriented so as to exhibit high magnetic permeability in the orientation direction.

(実施例16〜22)
工業純鉄、フェロシリコン、フェロリン、フェロボロン、フェロニオブ、フェロカーボン、フェロクロム及び電解銅からなる原料を表4に示すような合金組成になるように秤量し、不活性雰囲気中、高周波溶解を用いて1450℃にて溶解した。その後、溶解した合金溶湯を水アトマイズ法にて処理し、−150μmで分級し、合金粉末を作製した。
(Examples 16 to 22)
Raw materials consisting of industrial pure iron, ferrosilicon, ferroline, ferrobolon, ferroniobium, ferrocarbon, ferrochrome and electrolytic copper are weighed so as to have an alloy composition as shown in Table 4, and 1450 is used in an inert atmosphere using high frequency dissolution. Dissolved at ° C. Then, the melted molten alloy was treated by a water atomizing method and classified at −150 μm to prepare an alloy powder.

赤外線加熱装置を用いて、得られた合金粉末を不活性雰囲気中で加熱した。合金粉末を毎分30℃の昇温速度で440℃まで加熱して20分保持し、その後、空冷した。次いで、ナノ結晶粉末に表4に示すような粉末(展性粉末)を表4に示す割合で混合し、得られた混合粉末に対して質量比で1.5%となるように結合材を加え、攪拌混合した。ここでは、結合材として、フェノール樹脂を使用した。 The obtained alloy powder was heated in an inert atmosphere using an infrared heating device. The alloy powder was heated to 440 ° C. at a heating rate of 30 ° C. per minute, held for 20 minutes, and then air-cooled. Next, the powder (expandable powder) as shown in Table 4 was mixed with the nanocrystal powder at the ratio shown in Table 4, and the binder was added so as to have a mass ratio of 1.5% with respect to the obtained mixed powder. In addition, it was stirred and mixed. Here, a phenol resin was used as the binder.

次いで、目開き500μmのメッシュを用いて、結合材を混合した混合粉末の粒度調整を行い、造粒粉末を得た。この造粒粉末の4.5gを秤量し、金型に入れ、油圧式自動プレス機により圧力294MPaにて成型し、外形20mm、内径13mmの円筒形状の圧粉体を製造した。次いで、圧粉体を恒温槽内に入れて、不活性雰囲気中160℃にて4時間保持し、結合材を硬化させた。 Next, the particle size of the mixed powder mixed with the binder was adjusted using a mesh having a mesh size of 500 μm to obtain a granulated powder. 4.5 g of this granulated powder was weighed, placed in a mold, and molded at a pressure of 294 MPa by a hydraulic automatic press to produce a cylindrical green compact having an outer diameter of 20 mm and an inner diameter of 13 mm. Next, the green compact was placed in a constant temperature bath and held at 160 ° C. for 4 hours in an inert atmosphere to cure the binder.

次いで、実施例1等と同様に、作製した圧粉磁心の磁気特性評価として、インピーダンスアナライザを用いて、周波数1MHzにおける初透磁率μを測定した。また、電子顕微鏡を用いて圧粉磁心の断面観察を行い、ナノ結晶粉末の形状(長径L1と短径L2の比:L1/L2)及び配向角を測定した。さらには、展性粉末の添加割合を、圧粉磁心の電子顕微鏡写真において500μm×500μmの領域を画定し、当該領域における展性粉末のナノ結晶粉末に対する面積比から求めた。 Next, as in the case of Example 1 and the like, the initial magnetic permeability μ at a frequency of 1 MHz was measured using an impedance analyzer as an evaluation of the magnetic characteristics of the produced dust core. Further, the cross section of the dust core was observed using an electron microscope, and the shape (ratio of major axis L1 to minor axis L2: L1 / L2) and orientation angle of the nanocrystal powder were measured. Further, the addition ratio of the expandable powder was determined from the area ratio of the expandable powder to the nanocrystal powder in the region defined in the electron micrograph of the dust core in a region of 500 μm × 500 μm.

Figure 2021150555
Figure 2021150555

表4から、圧粉体における展性粉末の割合が10〜90%、特に30〜70%であると、展性粉末が、ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向しやすくする助剤として機能するようになるので、当該ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向し、すなわち、ナノ結晶粉末の長軸が配向して、当該配向方向に高い透磁率を示すことが分かる。 From Table 4, when the ratio of the expandable powder in the green compact is 10 to 90%, particularly 30 to 70%, the expandable powder, the nanocrystal powder, and the molding direction of the powder magnetic core (compact). Since it functions as an auxiliary agent that facilitates orientation in the vertical direction, the nanocrystal powder is oriented in a direction perpendicular to the molding direction of the dust core (compact powder), that is, the length of the nanocrystal powder. It can be seen that the axes are oriented and exhibit high magnetic permeability in the orientation direction.

(実施例23〜28)
工業純鉄、フェロシリコン、フェロリン、フェロボロン、フェロニオブ、フェロカーボン、フェロクロム及び電解銅からなる原料を表5に示すような合金組成になるように秤量し、不活性雰囲気中、高周波溶解を用いて1450℃にて溶解した。その後、溶解した合金溶湯を水アトマイズ法にて処理し、−150μmで分級し、合金粉末を作製した。
(Examples 23 to 28)
Raw materials consisting of industrial pure iron, ferrosilicon, ferroline, ferrobolon, ferroniobium, ferrocarbon, ferrochrome and electrolytic copper are weighed so as to have an alloy composition as shown in Table 5, and 1450 is used in an inert atmosphere using high frequency dissolution. Dissolved at ° C. Then, the melted molten alloy was treated by a water atomizing method and classified at −150 μm to prepare an alloy powder.

赤外線加熱装置を用いて、得られた合金粉末を不活性雰囲気中で加熱した。合金粉末を毎分30℃の昇温速度で440℃まで加熱して20分保持し、その後、空冷した。次いで、ナノ結晶粉末に粉末(展性粉末)を表5に示すような割合で混合し、得られた混合粉末に対して質量比で1.5%となるように結合材を加え、攪拌混合した。ここでは、結合材として、フェノール樹脂を使用した。 The obtained alloy powder was heated in an inert atmosphere using an infrared heating device. The alloy powder was heated to 440 ° C. at a heating rate of 30 ° C. per minute, held for 20 minutes, and then air-cooled. Next, the powder (expandable powder) is mixed with the nanocrystal powder at the ratio shown in Table 5, a binder is added so as to have a mass ratio of 1.5% with respect to the obtained mixed powder, and the mixture is stirred and mixed. bottom. Here, a phenol resin was used as the binder.

次いで、目開き500μmのメッシュを用いて、結合材を混合した混合粉末の粒度調整を行い、造粒粉末を得た。この造粒粉末の4.5gを秤量し、金型に入れ、油圧式自動プレス機により圧力294MPaにて成型し、外形20mm、内径13mmの円筒形状の圧粉体を製造した。次いで、圧粉体を恒温槽内に入れて、不活性雰囲気中160℃にて4時間保持し、結合材を硬化させた。 Next, the particle size of the mixed powder mixed with the binder was adjusted using a mesh having a mesh size of 500 μm to obtain a granulated powder. 4.5 g of this granulated powder was weighed, placed in a mold, and molded at a pressure of 294 MPa by a hydraulic automatic press to produce a cylindrical green compact having an outer diameter of 20 mm and an inner diameter of 13 mm. Next, the green compact was placed in a constant temperature bath and held at 160 ° C. for 4 hours in an inert atmosphere to cure the binder.

次いで、実施例1等と同様に、作製した圧粉磁心の磁気特性評価として、インピーダンスアナライザを用いて、周波数1MHzにおける初透磁率μを測定した。また、電子顕微鏡を用いて圧粉磁心の断面観察を行い、ナノ結晶粉末の形状(長径L1と短径L2の比:L1/L2)及び配向角を測定した。さらには、展性粉末の添加割合を、圧粉磁心の電子顕微鏡写真において500μm×500μmの領域を画定し、当該領域における展性粉末のナノ結晶粉末に対する面積比から求めた。 Next, as in the case of Example 1 and the like, the initial magnetic permeability μ at a frequency of 1 MHz was measured using an impedance analyzer as an evaluation of the magnetic characteristics of the produced dust core. In addition, the cross section of the dust core was observed using an electron microscope, and the shape (ratio of major axis L1 to minor axis L2: L1 / L2) and orientation angle of the nanocrystal powder were measured. Further, the addition ratio of the expandable powder was determined from the area ratio of the expandable powder to the nanocrystal powder in the region defined in the electron micrograph of the dust core in a region of 500 μm × 500 μm.

Figure 2021150555
Figure 2021150555

表5から、展性粉末のナノ結晶粉末に対する粒径比(展性粉末の粒径/ナノ結晶粉末)は1以下、特に0.45未満の場合、ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向しやすくなるので、当該ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向し、すなわち、ナノ結晶粉末の長軸が配向して、当該配向方向に高い透磁率を示すようになる。 From Table 5, when the particle size ratio of the expandable powder to the nanocrystal powder (particle size of the expandable powder / nanocrystal powder) is 1 or less, particularly less than 0.45, the nanocrystal powder is a dust core (compact powder). Since it is easy to orient in the direction perpendicular to the molding direction of the body), the nanocrystal powder is oriented in the direction perpendicular to the molding direction of the dust core (compact), that is, the major axis of the nanocrystal powder is It is oriented and exhibits high magnetic permeability in the orientation direction.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として掲示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are shown as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

Claims (14)

長径L1と短径L2との比(L1/L2)が1.1〜5.0の範囲のナノ結晶粉末と、展性粉末とからなる圧粉体を含み、
前記圧粉体の成型方向に垂直な方向に対する当該ナノ結晶粉末の配向角が45度未満である粉末の割合が65〜85%であることを特徴とする、圧粉磁心。
It contains a green compact having a ratio (L1 / L2) of a major axis L1 to a minor axis L2 (L1 / L2) in the range of 1.1 to 5.0 and a malleable powder.
A powder magnetic core, wherein the proportion of the powder having an orientation angle of the nanocrystal powder of less than 45 degrees with respect to a direction perpendicular to the molding direction of the powder is 65 to 85%.
前記展性粉末のビッカース硬さHvが500以下であることを特徴とする、請求項1に記載の圧粉磁心。 The dust core according to claim 1, wherein the malleable powder has a Vickers hardness Hv of 500 or less. 前記圧粉体における前記展性粉末の割合が、10〜90%であることを特徴とする、請求項1又は2に記載の圧粉磁心。 The powder magnetic core according to claim 1 or 2, wherein the ratio of the malleable powder to the powder is 10 to 90%. 前記圧粉体における前記展性粉末の前記ナノ結晶粉末に対する粒径比が1以下であることを特徴とする、請求項1〜3のいずれか1項に記載の圧粉磁心。 The dust core according to any one of claims 1 to 3, wherein the powder size ratio of the expandable powder to the nanocrystal powder in the green compact is 1 or less. 前記ナノ結晶粉末の結晶化度が25%以上であることを特徴とする、請求項1〜4のいずれか1項に記載の圧粉磁心。 The dust core according to any one of claims 1 to 4, wherein the nanocrystal powder has a crystallinity of 25% or more. 前記ナノ結晶粉末の結晶粒径が45nm以下であることを特徴とする、請求項1〜5のいずれか1項に記載の圧粉磁心。 The dust core according to any one of claims 1 to 5, wherein the nanocrystal powder has a crystal grain size of 45 nm or less. 前記ナノ結晶粉末の組成が、原子%で、
Si:0〜17%、
B:2〜15%、
P:0〜15%、
Cr+Nb:0〜5%、
Cu:0.2〜2%、
残部:Fe+不可避不純物であることを特徴とする、請求項1〜6のいずれか1項に記載の圧粉磁心。
The composition of the nanocrystal powder is atomic%.
Si: 0-17%,
B: 2 to 15%,
P: 0-15%,
Cr + Nb: 0-5%,
Cu: 0.2-2%,
The powder magnetic core according to any one of claims 1 to 6, wherein the balance is Fe + an unavoidable impurity.
長径L1と短径L2との比(L1/L2)が1.1〜5.0の範囲のナノ結晶粉末を準備する工程と、
前記ナノ結晶粉末と展性粉末とを混合して混合粉末を調整する工程と、
前記混合粉末を成型して圧粉体を形成し、当該圧粉体を含む圧粉磁心を製造する工程と、
を含むことを特徴とする、圧粉磁心の製造方法。
A step of preparing nanocrystal powder in which the ratio (L1 / L2) of the major axis L1 to the minor axis L2 is in the range of 1.1 to 5.0, and
The step of mixing the nanocrystal powder and the malleable powder to prepare a mixed powder, and
A process of molding the mixed powder to form a green compact and producing a green compact magnetic core containing the green compact.
A method for producing a dust core, which comprises.
前記展性粉末のビッカース硬さHvが500以下であることを特徴とする、請求項8に記載の圧粉磁心の製造方法。 The method for producing a dust core according to claim 8, wherein the malleable powder has a Vickers hardness Hv of 500 or less. 前記圧粉体における前記展性粉末の割合が、10〜90%であることを特徴とする、請求項8又は9に記載の圧粉磁心の製造方法。 The method for producing a powder magnetic core according to claim 8 or 9, wherein the ratio of the malleable powder to the powder is 10 to 90%. 前記圧粉体における前記展性粉末の前記ナノ結晶粉末に対する粒径比が1以下であることを特徴とする、請求項8〜10のいずれか1項に記載の圧粉磁心の製造方法。 The method for producing a powder magnetic core according to any one of claims 8 to 10, wherein the particle size ratio of the expandable powder to the nanocrystal powder in the powder is 1 or less. 前記ナノ結晶粉末の結晶化度が25%以上であることを特徴とする、請求項8〜11のいずれか1項に記載の圧粉磁心の製造方法。 The method for producing a dust core according to any one of claims 8 to 11, wherein the nanocrystal powder has a crystallinity of 25% or more. 前記ナノ結晶粉末の結晶粒径が45nm以下であることを特徴とする、請求項8〜12のいずれか1項に記載の圧粉磁心の製造方法。 The method for producing a dust core according to any one of claims 8 to 12, wherein the nanocrystal powder has a crystal grain size of 45 nm or less. 前記ナノ結晶粉末の組成が、原子%で、
Si:0〜17%、
B:2〜15%、
P:0〜15%、
Cr+Nb:0〜5%、
Cu:0.2〜2%、
残部:Fe+不可避不純物であることを特徴とする、請求項8〜13のいずれか1項に記載の圧粉磁心の製造方法。

The composition of the nanocrystal powder is atomic%.
Si: 0-17%,
B: 2 to 15%,
P: 0-15%,
Cr + Nb: 0-5%,
Cu: 0.2-2%,
The method for producing a dust core according to any one of claims 8 to 13, wherein the balance is Fe + an unavoidable impurity.

JP2020050596A 2020-03-23 2020-03-23 Powder magnetic core and its manufacturing method Active JP7419127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020050596A JP7419127B2 (en) 2020-03-23 2020-03-23 Powder magnetic core and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020050596A JP7419127B2 (en) 2020-03-23 2020-03-23 Powder magnetic core and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021150555A true JP2021150555A (en) 2021-09-27
JP7419127B2 JP7419127B2 (en) 2024-01-22

Family

ID=77849461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020050596A Active JP7419127B2 (en) 2020-03-23 2020-03-23 Powder magnetic core and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7419127B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281074A (en) 2006-04-04 2007-10-25 Hitachi Metals Ltd Noise suppression sheet
JP6530164B2 (en) 2014-03-04 2019-06-12 株式会社トーキン Nanocrystalline soft magnetic alloy powder and dust core using the same
JP6690620B2 (en) 2017-09-22 2020-04-28 株式会社村田製作所 Composite magnetic material and coil component using the same
WO2019065500A1 (en) 2017-09-29 2019-04-04 株式会社トーキン Method for manufacturing powder magnetic core, powder magnetic core, and inductor

Also Published As

Publication number Publication date
JP7419127B2 (en) 2024-01-22

Similar Documents

Publication Publication Date Title
JP6482718B1 (en) Soft magnetic material and manufacturing method thereof
JP6309149B1 (en) Soft magnetic powder, dust core, magnetic component, and method for manufacturing dust core
JP5912349B2 (en) Soft magnetic alloy powder, nanocrystalline soft magnetic alloy powder, manufacturing method thereof, and dust core
JP6472939B2 (en) Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic parts and dust core
KR101270565B1 (en) ALLOY COMPOSITION, NANOCRYSTALLINE Fe ALLOY, AND PREPARATION METHOD THEREFOR
JP5537534B2 (en) Fe-based nanocrystalline alloy powder and manufacturing method thereof, and dust core and manufacturing method thereof
JP7132231B2 (en) Powder magnetic core manufacturing method, powder magnetic core and inductor
JP6088192B2 (en) Manufacturing method of dust core
JP6669304B2 (en) Crystalline Fe-based alloy powder and method for producing the same
JP5305126B2 (en) Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component
JP2713363B2 (en) Fe-based soft magnetic alloy compact and manufacturing method thereof
JP2014075528A (en) Soft magnetic alloy powder, powder-compact magnetic core arranged by use thereof, and manufacturing method thereof
JP2016094651A (en) Soft magnetic alloy and magnetic part
JP6191855B2 (en) Soft magnetic metal powder and high frequency powder magnetic core
JP6648856B2 (en) Fe-based alloy, crystalline Fe-based alloy atomized powder, and magnetic core
WO2020196608A1 (en) Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
JPWO2019189614A1 (en) Iron-based soft magnetic powder and its manufacturing method, and articles containing iron-based soft magnetic alloy powder and its manufacturing method
JP7419127B2 (en) Powder magnetic core and its manufacturing method
JP4936593B2 (en) Method for producing magnet powder
JP2021158340A (en) Magnetic core, magnetic component, and electronic device
WO2023153366A1 (en) Soft magnetic powder
JP2021153175A (en) Magnetic core, magnetic component and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20230920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240110

R150 Certificate of patent or registration of utility model

Ref document number: 7419127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150