JP7419127B2 - Powder magnetic core and its manufacturing method - Google Patents

Powder magnetic core and its manufacturing method Download PDF

Info

Publication number
JP7419127B2
JP7419127B2 JP2020050596A JP2020050596A JP7419127B2 JP 7419127 B2 JP7419127 B2 JP 7419127B2 JP 2020050596 A JP2020050596 A JP 2020050596A JP 2020050596 A JP2020050596 A JP 2020050596A JP 7419127 B2 JP7419127 B2 JP 7419127B2
Authority
JP
Japan
Prior art keywords
powder
nanocrystalline
magnetic core
malleable
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020050596A
Other languages
Japanese (ja)
Other versions
JP2021150555A (en
Inventor
美帆 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2020050596A priority Critical patent/JP7419127B2/en
Publication of JP2021150555A publication Critical patent/JP2021150555A/en
Application granted granted Critical
Publication of JP7419127B2 publication Critical patent/JP7419127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、圧粉磁心及びその製造方法に関する。 The present invention relates to a powder magnetic core and a method for manufacturing the same.

数kHzから数百kHzまでの領域に用いられるリアクトル用の磁心として圧粉磁心がある。圧粉磁心は、磁性粉末の表面を絶縁処理したのち加工成形したもので、絶縁処理により渦電流損失の発生が抑制されている。 There is a powder magnetic core as a magnetic core for a reactor used in the range from several kHz to several hundred kHz. A powder magnetic core is formed by processing and molding the surface of magnetic powder after insulating it, and the insulation treatment suppresses the occurrence of eddy current loss.

特に、急速に普及しはじめたハイブリッド自動車では、大出力の電気モータを有しており、これを駆動する電源回路には高電圧大電流に耐えうるリアクトルが必要になる。このリアクトルには小型化、低騒音化、低損失化、耐久性の要求が強く、リアクトルに用いられる磁心材の特性としては、高い飽和磁束密度Bsに加えて高い透磁率μが要求される。 In particular, hybrid vehicles, which are rapidly becoming popular, have high-output electric motors, and the power supply circuit that drives them requires a reactor that can withstand high voltage and large current. There are strong requirements for this reactor to be compact, low noise, low loss, and durable, and the magnetic core material used in the reactor is required to have a high magnetic permeability μ in addition to a high saturation magnetic flux density Bs.

大電流用のリアクトル磁心として前述の圧粉磁心を用いたものがある。低損失が求められる圧粉磁心には、アモルファス混合粉末やナノ結晶混合粉末が用いられる(特許文献1参照)。しかしながら、アモルファス混合粉末等の初透磁率は、温度に対して負の係数を有するため、従来のリアクトルやモータコア等の磁性部品の導体に大電流を流した際にジュール熱が発生し、リアクトルの飽和磁束密度BsやインダクタンスLの磁気性能が悪化してしまう問題があった。 There are reactor cores for large currents that use the powder core described above. Amorphous mixed powder and nanocrystalline mixed powder are used for powder magnetic cores that require low loss (see Patent Document 1). However, since the initial magnetic permeability of amorphous mixed powder has a negative coefficient with respect to temperature, Joule heat is generated when a large current is passed through the conductor of magnetic parts such as conventional reactors and motor cores, which causes There was a problem that the magnetic performance of the saturation magnetic flux density Bs and the inductance L deteriorated.

また、アモルファス混合粉末等を用いたリアクトルにおいても、その組成に依存して透磁率が温度に対して負の係数を有する場合があり、同様にインダクタンスLが低下する問題があった。 Further, even in a reactor using an amorphous mixed powder or the like, the magnetic permeability may have a negative coefficient with respect to temperature depending on the composition, and there is a problem that the inductance L similarly decreases.

さらには、上述したアモルファス混合粉末等では、絶対的な透磁率が不十分であり、インダクタLを大きくすることができず、コイルの巻き数増大に伴ってリアクトルは必然的に大型化してしまうという問題があった。 Furthermore, the above-mentioned amorphous powder mixture has insufficient absolute magnetic permeability, making it impossible to increase the inductor L, and as the number of coil turns increases, the reactor inevitably becomes larger. There was a problem.

特開2016-27656号JP2016-27656

本発明は、特に高透磁率であって、リアクトル等の磁性部品の小型化に寄与することができる圧粉磁心及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a powder magnetic core that has particularly high magnetic permeability and can contribute to downsizing of magnetic components such as reactors, and a method for manufacturing the same.

上記目的を達成すべく、本発明者らは鋭意検討を行った。その結果、長径L1と短径L2との比(L1/L2)が1.1~5.0の範囲のナノ結晶粉末を準備し、このナノ結晶粉末に展性粉末を混合して混合粉末を得、その後、混合粉末を成型して圧粉体を形成し、当該圧粉体を含む圧粉磁心を製造することにより、この圧粉磁心(圧粉体)の成型方向と垂直な方向にナノ結晶粉末が配向、すなわち、ナノ結晶粉末の長軸が配向し、当該配向方向に高い透磁率を示すことを見出した。 In order to achieve the above object, the present inventors conducted extensive studies. As a result, nanocrystalline powder having a ratio of the major axis L1 to the minor axis L2 (L1/L2) in the range of 1.1 to 5.0 was prepared, and a malleable powder was mixed with this nanocrystalline powder to form a mixed powder. After that, by molding the mixed powder to form a green compact and manufacturing a powder magnetic core containing the green compact, nano-sized particles are formed in a direction perpendicular to the molding direction of this powder magnetic core (green compact). It has been found that the crystal powder is oriented, that is, the long axis of the nanocrystal powder is oriented, and exhibits high magnetic permeability in the oriented direction.

すなわち、本発明は、以下に示す通りである。
(1)長径L1と短径L2との比(L1/L2)が1.1~5.0の範囲のナノ結晶粉末と、展性粉末とからなる圧粉体を含み、前記圧粉体の成型方向に垂直な方向に対する当該ナノ結晶粉末の配向角が45°未満である粉末の割合が65~85%であることを特徴とする、圧粉磁心。
成型
(2)前記展性粉末のビッカース硬さHvが500以下であることを特徴とする、(1)に記載の圧粉磁心。
(3)前記圧粉体における前記展性粉末の割合が、10~90%であることを特徴とする、(1)又は(2)に記載の圧粉磁心。
(4)前記圧粉体における前記展性粉末の前記ナノ結晶粉末に対する粒径比が1以下であることを特徴とする、(1)~(3)のいずれか1つに記載の圧粉磁心。
(5)前記ナノ結晶粉末の結晶化度が25%以上であることを特徴とする、(1)~(4)のいずれか1つに記載の圧粉磁心。
(6)前記ナノ結晶粉末の結晶粒径が45nm以下であることを特徴とする、(1)~(5)のいずれか1つに記載の圧粉磁心。
(7)前記ナノ結晶粉末の組成が、原子%で、
Si:0~17%、
B:2~15%、
P:0~15%、
Cr+Nb:0~5%、
Cu:0.2~2%、
残部:Fe+不可避不純物であることを特徴とする、(1)~(6)のいずれか1つに記載の圧粉磁心。
(8)長径L1と短径L2との比(L1/L2)が1.1~5.0の範囲のナノ結晶粉末を準備する工程と、前記ナノ結晶粉末と展性粉末とを混合して混合粉末を調整する工程と、前記混合粉末を成型して圧粉体を形成し、当該圧粉体を含む圧粉磁心を製造する工程と、を含むことを特徴とする、圧粉磁心の製造方法。
(9)前記展性粉末のビッカース硬さHvが500以下であることを特徴とする、(8)に記載の圧粉磁心の製造方法。
(10)前記圧粉体における前記展性粉末の割合が、10~90%であることを特徴とする、(8)又は(9)に記載の圧粉磁心の製造方法。
(11)前記圧粉体における前記展性粉末の前記ナノ結晶粉末に対する粒径比が1以下であることを特徴とする、(8)~(10)のいずれか1つに記載の圧粉磁心の製造方法。
(12)前記ナノ結晶粉末の結晶化度が25%以上であることを特徴とする、(8)~(11)のいずれか1つに記載の圧粉磁心の製造方法。
(13)前記ナノ結晶粉末の結晶粒径が45nm以下であることを特徴とする、(8)~(12)のいずれか1つに記載の圧粉磁心の製造方法。
(14)前記ナノ結晶粉末の組成が、原子%で、
Si:0~17%、
B:2~15%、
P:0~15%、
Cr+Nb:0~5%、
Cu:0.2~2%、
残部:Fe+不可避不純物であることを特徴とする、(8)~(13)のいずれか1つに記載の圧粉磁心の製造方法。
That is, the present invention is as shown below.
(1) A compact comprising a nanocrystalline powder having a ratio of the major axis L1 to the minor axis L2 (L1/L2) in the range of 1.1 to 5.0 and malleable powder; A powder magnetic core, characterized in that the ratio of the powder in which the orientation angle of the nanocrystal powder with respect to the direction perpendicular to the molding direction is less than 45° is 65 to 85%.
Molding (2) The powder magnetic core according to (1), wherein the malleable powder has a Vickers hardness Hv of 500 or less.
(3) The powder magnetic core according to (1) or (2), wherein the proportion of the malleable powder in the powder compact is 10 to 90%.
(4) The powder magnetic core according to any one of (1) to (3), characterized in that the particle size ratio of the malleable powder to the nanocrystalline powder in the powder compact is 1 or less. .
(5) The dust core according to any one of (1) to (4), wherein the nanocrystalline powder has a crystallinity of 25% or more.
(6) The powder magnetic core according to any one of (1) to (5), wherein the nanocrystalline powder has a crystal grain size of 45 nm or less.
(7) The composition of the nanocrystal powder is in atomic %,
Si: 0-17%,
B: 2-15%,
P: 0-15%,
Cr+Nb: 0-5%,
Cu: 0.2-2%,
The powder magnetic core according to any one of (1) to (6), characterized in that the remainder: Fe + inevitable impurities.
(8) a step of preparing nanocrystalline powder having a ratio of major axis L1 to minor axis L2 (L1/L2) in a range of 1.1 to 5.0; and mixing the nanocrystalline powder and malleable powder. Manufacturing a powder magnetic core, comprising the steps of: adjusting a mixed powder; molding the mixed powder to form a green compact; and manufacturing a powder magnetic core containing the green compact. Method.
(9) The method for producing a powder magnetic core according to (8), wherein the malleable powder has a Vickers hardness Hv of 500 or less.
(10) The method for producing a powder magnetic core according to (8) or (9), wherein the proportion of the malleable powder in the powder compact is 10 to 90%.
(11) The powder magnetic core according to any one of (8) to (10), wherein a particle size ratio of the malleable powder to the nanocrystalline powder in the powder compact is 1 or less. manufacturing method.
(12) The method for producing a powder magnetic core according to any one of (8) to (11), wherein the nanocrystalline powder has a crystallinity of 25% or more.
(13) The method for producing a powder magnetic core according to any one of (8) to (12), wherein the nanocrystalline powder has a crystal grain size of 45 nm or less.
(14) The composition of the nanocrystal powder is in atomic %,
Si: 0-17%,
B: 2-15%,
P: 0-15%,
Cr+Nb: 0-5%,
Cu: 0.2-2%,
The method for producing a powder magnetic core according to any one of (8) to (13), wherein the remainder is Fe + inevitable impurities.

なお、一般的に圧粉体は複数の面を有する金型にナノ結晶粉末や展性粉末などの磁性粉と結合材を充填し、成型圧を加えて製造する。これらの面のうち、成型圧を加える面と、これに対向する金型の面を結ぶ方向に成型圧が加わる。言い換えると、これらの面に対応する圧粉体の外面のいずれかより圧粉体へ成型圧が加わっているので、一般にはその外面に垂直な方向が成型方向となる。おおむねナノ結晶粉末の長径が向いている方向に垂直な方向が成型方向となる。成型方向は磁路に垂直な方向とすることが一般的である。 Note that powder compacts are generally manufactured by filling a multi-sided mold with magnetic powder such as nanocrystalline powder or malleable powder and a binder, and applying molding pressure. Among these surfaces, molding pressure is applied in a direction connecting the surface to which molding pressure is applied and the opposing surface of the mold. In other words, since molding pressure is applied to the powder compact from any of the outer surfaces of the powder compact corresponding to these surfaces, generally the direction perpendicular to the outer surface is the direction of molding. The molding direction is approximately perpendicular to the direction in which the long axis of the nanocrystalline powder is facing. The molding direction is generally perpendicular to the magnetic path.

本発明によれば、特に高透磁率であって、リアクトル等の磁性部品の小型化に寄与することができる圧粉磁心及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a powder magnetic core that has particularly high magnetic permeability and can contribute to downsizing of magnetic components such as reactors, and a method for manufacturing the same.

以下、本発明の詳細及びその他の特徴について、発明を実施するための形態に基づいて説明する。 Hereinafter, details and other features of the present invention will be explained based on the detailed description.

本発明で使用するナノ結晶粉末は、長径L1と短径L2との比(L1/L2)が1.1~5.0の範囲であることが好ましく、1.2~3.5の範囲であることが好ましい。ナノ結晶粉末の長径L1と短径L2との比(L1/L2)が上記範囲にあることで、圧粉磁心(圧粉体)の成型方向と垂直な方向にナノ結晶粉末が配向、すなわち、ナノ結晶粉末の長軸が配向し、当該配向方向に高い透磁率を示す。 The nanocrystalline powder used in the present invention preferably has a ratio of major axis L1 to minor axis L2 (L1/L2) in the range of 1.1 to 5.0, and preferably in the range of 1.2 to 3.5. It is preferable that there be. When the ratio (L1/L2) of the long axis L1 to the short axis L2 of the nanocrystal powder is within the above range, the nanocrystal powder is oriented in a direction perpendicular to the molding direction of the powder magnetic core (powder compact), that is, The long axis of the nanocrystalline powder is oriented and exhibits high magnetic permeability in the direction of orientation.

なお、上記比(L1/L2)が1.1未満であると、ナノ結晶粉末の配向性が劣化してしまい配向方向における透磁率が減少してしまう。また、上記比(L1/L2)が5.0を超えると、圧粉体中のナノ結晶粉末の充填性が減少し、圧粉体、すなわち圧粉磁心の密度が減少してしまうので、飽和磁束密度及び透磁率等の磁気特性が劣化してしまう。 Note that if the above ratio (L1/L2) is less than 1.1, the orientation of the nanocrystal powder will deteriorate and the magnetic permeability in the orientation direction will decrease. Furthermore, if the above ratio (L1/L2) exceeds 5.0, the filling properties of the nanocrystalline powder in the green compact decrease, and the density of the green compact, that is, the powder magnetic core, decreases, resulting in saturation. Magnetic properties such as magnetic flux density and magnetic permeability deteriorate.

また、本発明で使用する展性粉末は、上記ナノ結晶粉末よりも柔らかく、展性に優れていれば特に限定されないが、好ましくはビッカース硬さHvが500以下、より好ましくは450未満、さらに好ましくは250未満である。これによって、展性粉末が、ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向しやすくする助剤として機能するようになるので、当該ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向し、すなわち、ナノ結晶粉末の長軸が配向して、当該配向方向に高い透磁率を示す。 Further, the malleable powder used in the present invention is not particularly limited as long as it is softer than the nanocrystalline powder and has excellent malleability, but preferably has a Vickers hardness Hv of 500 or less, more preferably less than 450, and even more preferably is less than 250. As a result, the malleable powder functions as an auxiliary agent that facilitates the orientation of the nanocrystalline powder in the direction perpendicular to the molding direction of the powder magnetic core (powder compact), so that the nanocrystalline powder is The nanocrystalline powder is oriented in a direction perpendicular to the molding direction of the powder magnetic core (powder compact), that is, the long axis of the nanocrystalline powder is oriented, and exhibits high magnetic permeability in the orientation direction.

なお、ビッカース硬さHvの下限値は特に限定されないが、例えば50とすることができる。当該下限値より小さくても、最早ナノ結晶粉末の配向性に影響を与えず、透磁率の増大に寄与しない。 Note that the lower limit value of the Vickers hardness Hv is not particularly limited, but may be set to 50, for example. Even if it is smaller than the lower limit, it no longer affects the orientation of the nanocrystalline powder and does not contribute to an increase in magnetic permeability.

上述のような展性粉末としては、純鉄粉、カルボニル鉄粉、センダスト粉末、Fe-Ni粉末、Fe-Si-Cr粉末、Fe-Si粉末、Fe-Cr系軟磁性粉末等を用いることができる。 As the above-mentioned malleable powder, pure iron powder, carbonyl iron powder, sendust powder, Fe-Ni powder, Fe-Si-Cr powder, Fe-Si powder, Fe-Cr-based soft magnetic powder, etc. can be used. can.

圧粉体における展性粉末の割合は10~90%であることが好ましく、30~70%であることがより好ましい。展性粉末の割合が上記範囲であると、上述のように、展性粉末が、ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向しやすくする助剤として機能するようになるので、当該ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向し、すなわち、ナノ結晶粉末の長軸が配向して、当該配向方向に高い透磁率を示す。 The proportion of malleable powder in the compact is preferably 10 to 90%, more preferably 30 to 70%. When the proportion of the malleable powder is within the above range, the malleable powder acts as an auxiliary agent that makes it easier for the nanocrystalline powder to orient in the direction perpendicular to the molding direction of the powder magnetic core (powder compact), as described above. To function, the nanocrystalline powder is oriented in a direction perpendicular to the molding direction of the powder magnetic core (powder compact), that is, the long axis of the nanocrystalline powder is oriented, and the nanocrystalline powder is oriented in the direction of the orientation. Indicates magnetic permeability.

なお、展性粉末の割合が10%未満であると、上記作用効果が小さくなり、十分な透磁率を得ることができない場合があり、90%を超えると、配向により透磁率に寄与するナノ結晶粉末の割合が減少してしまい、同様に、十分な透磁率を得ることができない場合がある。 Note that if the proportion of malleable powder is less than 10%, the above-mentioned effects will be reduced and sufficient magnetic permeability may not be obtained. If it exceeds 90%, nanocrystals that contribute to magnetic permeability due to orientation The proportion of powder decreases, and it may also be impossible to obtain sufficient magnetic permeability.

上述した展性粉末の割合は、圧粉磁心の電子顕微鏡写真において500μm×500μmの領域を画定し、当該領域における展性粉末のナノ結晶粉末に対する面積比から求めたものである。 The proportion of the malleable powder described above was determined by defining a region of 500 μm×500 μm in an electron micrograph of the powder magnetic core and determining the area ratio of the malleable powder to the nanocrystalline powder in the region.

また、展性粉末のナノ結晶粉末に対する粒径比(展性粉末の粒径/ナノ結晶粉末)は1以下であることが好ましく、さらには0.45未満であることが好ましい。この場合、ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向しやすくなるので、当該ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向し、すなわち、ナノ結晶粉末の長軸が配向して、当該配向方向に高い透磁率を示す。 Further, the particle size ratio of the malleable powder to the nanocrystalline powder (particle size of the malleable powder/nanocrystalline powder) is preferably 1 or less, and more preferably less than 0.45. In this case, the nanocrystalline powder is easily oriented in a direction perpendicular to the molding direction of the powder magnetic core (powder compact), so that the nanocrystalline powder is oriented perpendicular to the molding direction of the powder magnetic core (powder compact). In other words, the long axes of the nanocrystalline powder are oriented, and exhibit high magnetic permeability in the orientation direction.

なお、上記粒径比の下限値は特に限定されないが、例えば0.02とすることができる。当該下限値より粒径比を小さくしても、最早配向性に影響を及ぼさず、透磁率に影響を与えない。 Note that the lower limit of the particle size ratio is not particularly limited, but may be set to 0.02, for example. Even if the particle size ratio is made smaller than the lower limit value, it no longer affects the orientation and does not affect the magnetic permeability.

また、ナノ結晶粉末の結晶化度は25%以上であることが好ましく、さらには35%以上であることが好ましい。この場合、bcc-Fe(-Si)の結晶割合が増大するので、飽和磁束密度や透磁率などの磁気特性が良好となる。 Further, the degree of crystallinity of the nanocrystalline powder is preferably 25% or more, more preferably 35% or more. In this case, since the crystal proportion of bcc-Fe(-Si) increases, magnetic properties such as saturation magnetic flux density and magnetic permeability become better.

なお、ナノ結晶粉末の結晶化度の上限は特に限定されないが、例えば70%である。当該上限値を超えて結晶化度が増大しても、最早磁気特性に影響を与えない。 Note that the upper limit of the crystallinity of the nanocrystalline powder is not particularly limited, but is, for example, 70%. Even if the crystallinity increases beyond the upper limit, it no longer affects the magnetic properties.

また、ナノ結晶粉末の結晶粒径は、45nm以下であることが好ましく、30nm以下であることがさらに好ましい。この場合、保磁力が小さくなるので、圧粉磁心としての磁気特性が良好となる。なお、10nm未満としても最早保磁力の減少には影響を与えないので、当該値が下限値となる。 Further, the crystal grain size of the nanocrystalline powder is preferably 45 nm or less, more preferably 30 nm or less. In this case, since the coercive force becomes small, the magnetic properties as a powder magnetic core are improved. Note that even if it is less than 10 nm, it no longer affects the decrease in coercive force, so this value becomes the lower limit.

次に、本発明のナノ結晶粉末の組成成分について説明する。なお、特に断らない限り、以下に示す%は原子%である。 Next, the compositional components of the nanocrystalline powder of the present invention will be explained. Note that unless otherwise specified, the percentages shown below are atomic percentages.

Si:0~17%
Siは、ΔT(化合物析出温度とbcc-Fe(-Si)析出温度の差)を拡大して安定的に熱処理を行うための元素である。Siが17%を超えるとアモルファス形成能が低下し、非晶質を主相とする粉末を得ることが困難となり、熱処理後の軟磁気特性が劣化する。
Si: 0-17%
Si is an element for expanding ΔT (difference between compound precipitation temperature and bcc-Fe(-Si) precipitation temperature) to stably perform heat treatment. If Si exceeds 17%, the ability to form an amorphous layer decreases, making it difficult to obtain a powder having an amorphous main phase, and the soft magnetic properties after heat treatment deteriorate.

B:2~15%
Bが2%未満であると、急冷によるアモルファス相の形成が困難になり、熱処理後の軟磁気特性が低下する。Bが15%を超えると、融点が高くなり製造上好ましくなく、アモルファス形成能も低下して軟磁気特性が劣化するので好ましくない。
B: 2-15%
If B is less than 2%, it becomes difficult to form an amorphous phase by rapid cooling, and the soft magnetic properties after heat treatment deteriorate. If B exceeds 15%, the melting point becomes high, which is unfavorable in terms of manufacturing, and the ability to form an amorphous layer also decreases, resulting in deterioration of soft magnetic properties.

P:0~15%
Pは、微細で均一なナノ結晶粉末を形成しやすく、良好な磁気特性を得るための元素である。Pが15%を超えると、他のメタロイド元素とのバランスが悪くなり、アモルファス形成能が低下して、飽和磁束密度が低下する。
P: 0-15%
P is an element that easily forms fine and uniform nanocrystalline powder and provides good magnetic properties. When P exceeds 15%, the balance with other metalloid elements deteriorates, the ability to form an amorphous layer decreases, and the saturation magnetic flux density decreases.

Cr+Nb:0~5%
Crは粉末表面に酸化膜を形成し、耐食性を向上させる作用がある。また、Nbは、ナノ結晶化の際に、bcc結晶粒の成長を抑制し、微細なナノ結晶粉末を形成させる作用がある。しかしながら、Cr及びNbを添加することで相対的にFe量が減少し、飽和磁束密度が減少する。また、アモルファス形成能が低下してしまうため、5%以下であることが好ましい。
Cr+Nb: 0-5%
Cr forms an oxide film on the powder surface and has the effect of improving corrosion resistance. Furthermore, Nb has the effect of suppressing the growth of BCC crystal grains and forming fine nanocrystal powder during nanocrystallization. However, by adding Cr and Nb, the amount of Fe is relatively reduced, and the saturation magnetic flux density is reduced. Furthermore, since the ability to form an amorphous layer decreases, the content is preferably 5% or less.

Cu:0.2~2%
Cuが0.2%未満ではナノ結晶化熱処理時のクラスター析出が少なく、均一なナノ結晶化が困難となる。一方、Cuが2%を超えると、Cu量が過多となるため、アモルファス形成能が低下し、軟磁気特性が低下してしまう。
Cu: 0.2-2%
If Cu is less than 0.2%, there will be little cluster precipitation during nanocrystallization heat treatment, making uniform nanocrystalization difficult. On the other hand, when Cu exceeds 2%, the amount of Cu becomes excessive, so that the ability to form an amorphous layer decreases and the soft magnetic properties deteriorate.

不可避不純物
不可避不純物としては、Co,Ni,Zn,Zr,Hf,Mo,Ta,W,Ag,Au,Pd,K,Ca,Mg,Sn,Ti,V,Mn,Al,S,C,O,N,Bi,希土類元素から選ばれる少なくとも1種であることが好ましい。このような元素が含まれることにより、熱処理後において、均一なナノ結晶粉末を容易に得ることができる。
Unavoidable impurities Unavoidable impurities include Co, Ni, Zn, Zr, Hf, Mo, Ta, W, Ag, Au, Pd, K, Ca, Mg, Sn, Ti, V, Mn, Al, S, C, O , N, Bi, and rare earth elements. By including such elements, uniform nanocrystalline powder can be easily obtained after heat treatment.

なお、ナノ結晶粉末は、原料となる純鉄、フェロシリコン、フェロリン、フェロボロン、フェロクロム及び電解銅などを1250~1450℃の温度で溶解して粉末化して得ることができる。 Note that nanocrystalline powder can be obtained by melting and powdering raw materials such as pure iron, ferrosilicon, ferroline, ferroboron, ferrochrome, and electrolytic copper at a temperature of 1250 to 1450°C.

また、粉末化は、例えば、水アトマイズ法、ガスアトマイズ法、回転水流アトマイズ法、スプレー法、キャビテーション法、スパークエロージョン法等の各種粉末化法により行うことができるが、水アトマイズ法、ガスアトマイズ法、回転水流アトマイズ法等のアトマイズ法が好ましい。アトマイズ法は、母合金を高周波誘導加熱装置で溶解し、母合金の溶湯をノズルから高速で噴射してできた合金溶湯の流れに冷却媒体(液体又は気体)を衝突させて、合金溶湯を微細化すると共に急冷し、ナノ結晶粉末を得る方法である。かかる方法によれば、極めて微小なナノ結晶粉末を効率よく製造することができる。 Powderization can be performed by various powdering methods such as water atomization method, gas atomization method, rotary water flow atomization method, spray method, cavitation method, and spark erosion method, but water atomization method, gas atomization method, rotation An atomization method such as a water jet atomization method is preferred. In the atomization method, the mother alloy is melted using a high-frequency induction heating device, and the molten mother alloy is injected from a nozzle at high speed. A cooling medium (liquid or gas) is collided with the flow of the molten alloy, making the molten alloy fine. In this method, nanocrystalline powder is obtained by rapidly cooling the nanocrystalline powder. According to this method, extremely fine nanocrystalline powder can be efficiently produced.

なお、目的とするナノ結晶粉末を得るに際には、上述のように、例えばアトマイズ法で得た粉末を適宜、不活性雰囲気中で、所定の時間、例えば0~180分間、所定の温度、例えば350~600℃で熱処理してもよい。なお、熱処理温度が0分というのは、昇温中に反応が終了してしまう場合を意味するものである。熱処理雰囲気は、粉末の表面酸化を抑制するためには不活性雰囲気が望ましいが、特定の目的のために大気等の酸化雰囲気や水素等の還元雰囲気でも可能である。 In addition, when obtaining the desired nanocrystal powder, as mentioned above, the powder obtained by, for example, the atomization method is suitably heated in an inert atmosphere for a predetermined time, for example, 0 to 180 minutes, at a predetermined temperature, For example, heat treatment may be performed at 350 to 600°C. Note that the heat treatment temperature of 0 minutes means that the reaction ends during the temperature increase. The heat treatment atmosphere is preferably an inert atmosphere in order to suppress surface oxidation of the powder, but for specific purposes, an oxidizing atmosphere such as air or a reducing atmosphere such as hydrogen may also be used.

本発明の圧粉磁心を得るには、上述のようにして得たナノ結晶粉末と展性粉末とを混合して混合粉末を調整し、その後、当該混合粉末を例えば190~2000MPaの成型圧力で成型して圧粉体を形成することによって、当該圧粉体から目的とする圧粉磁心を得ることができる。 In order to obtain the powder magnetic core of the present invention, a mixed powder is prepared by mixing the nanocrystalline powder obtained as described above and a malleable powder, and then the mixed powder is subjected to a molding pressure of, for example, 190 to 2000 MPa. By molding to form a powder compact, a desired powder magnetic core can be obtained from the compact.

このとき、圧粉体の成型方向に垂直な方向に対する当該ナノ結晶粉末の配向角が45°未満である粉末の割合が65~85%、好ましくは70~80%である。したがって、特に高透磁率であって、リアクトル等の磁性部品の小型化に寄与することができる圧粉磁心及びその製造方法を提供することができる。 At this time, the proportion of the powder in which the orientation angle of the nanocrystal powder with respect to the direction perpendicular to the molding direction of the green compact is less than 45° is 65 to 85%, preferably 70 to 80%. Therefore, it is possible to provide a powder magnetic core that has particularly high magnetic permeability and can contribute to downsizing of magnetic components such as reactors, and a method for manufacturing the same.

なお、混合粉末を成型する際には、適宜、結合材を混合し、圧粉体を熱処理して当該結合材を硬化させ、当該結合材を介してナノ結晶粉末及び展性粉末を結合するようにすることもできる。 In addition, when molding the mixed powder, a binder is mixed as appropriate, the green compact is heat-treated to harden the binder, and the nanocrystal powder and malleable powder are bonded through the binder. It can also be done.

結着材としては、例えば、シリコーン系樹脂、エポキシ系樹脂、フェノール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリフェニレンサルファイド系樹脂等の有機材料、リン酸マグネシウム、リン酸カルシウム、リン酸亜鉛、リン酸マンガン、リン酸カドミウムのようなリン酸塩、ケイ酸ナトリウムのようなケイ酸塩(水ガラス)等の熱硬化性無機材料等が挙げられる。 Examples of the binder include organic materials such as silicone resin, epoxy resin, phenol resin, polyamide resin, polyimide resin, and polyphenylene sulfide resin, magnesium phosphate, calcium phosphate, zinc phosphate, and manganese phosphate. , thermosetting inorganic materials such as phosphates such as cadmium phosphate, silicates (water glass) such as sodium silicate, and the like.

(実施例1~5及び比較例1~2)
工業純鉄、フェロシリコン、フェロリン、フェロボロン、及び電解銅からなる原料を所定の合金組成(Fe81.9Si6.5Cu0.6)になるように秤量し、不活性雰囲気中、高周波溶解を用いて1450℃にて溶解した。その後、溶解した合金溶湯を水アトマイズ法にて処理し、-63μm、±90μm、±150μm、±250μmで分級し、合金粉末を作製した。
(Examples 1 to 5 and Comparative Examples 1 to 2)
Raw materials consisting of industrially pure iron, ferrosilicon, ferroline, ferroboron, and electrolytic copper were weighed to have a predetermined alloy composition (Fe 81.9 Si 4 B 7 P 6.5 Cu 0.6 ) and placed in an inert atmosphere. Melting was performed at 1450°C using medium and high frequency melting. Thereafter, the molten alloy was treated by water atomization and classified at −63 μm, ±90 μm, ±150 μm, and ±250 μm to produce alloy powder.

赤外線加熱装置を用いて、得られた合金粉末を不活性雰囲気中で加熱した。合金粉末を毎分30℃の昇温速度で440℃まで加熱して20分保持し、その後、空冷した。熱処理後の粉末(ナノ結晶粉末)をXRDにより解析したところ、いずれの粉末も結晶化度は45%、結晶粒径は35nmであった。 The obtained alloy powder was heated in an inert atmosphere using an infrared heating device. The alloy powder was heated to 440°C at a heating rate of 30°C per minute, held for 20 minutes, and then cooled in air. When the heat-treated powders (nanocrystalline powders) were analyzed by XRD, the crystallinity of each powder was 45% and the crystal grain size was 35 nm.

次いで、ナノ結晶粉末にビッカース硬さHvが350のFe-Si-Cr粉末(展性粉末)を30質量%の割合で混合し、得られた混合粉末に対して質量比で3%となるように結合材を加え、攪拌混合した。ここでは、結合材として、シリコーン樹脂を使用した。 Next, Fe-Si-Cr powder (malleable powder) having a Vickers hardness Hv of 350 was mixed with the nanocrystal powder at a ratio of 30% by mass, so that the mass ratio was 3% with respect to the obtained mixed powder. The binder was added to the mixture and mixed by stirring. Here, silicone resin was used as the binding material.

次いで、目開き500μmのメッシュを用いて、結合材を混合した混合粉末の粒度調整を行い、造粒粉末を得た。この造粒粉末の2.0gを秤量し、金型に入れ、油圧式自動プレス機により圧力294MPaにて成型し、外形13mm、内径8mmの円筒形状の圧粉体を製造した。 Next, the particle size of the mixed powder containing the binder was adjusted using a mesh with an opening of 500 μm to obtain a granulated powder. 2.0 g of this granulated powder was weighed, put into a mold, and molded using a hydraulic automatic press machine at a pressure of 294 MPa to produce a cylindrical green compact with an outer diameter of 13 mm and an inner diameter of 8 mm.

次いで、圧粉体を恒温槽内に入れて、大気中150℃にて2時間保持し、結合材を硬化させた。 Next, the green compact was placed in a constant temperature bath and held at 150° C. in the atmosphere for 2 hours to harden the binder.

作製した圧粉磁心の磁気特性評価として、インピーダンスアナライザを用いて、周波数1MHzにおける初透磁率μを測定した。また、電子顕微鏡を用いて圧粉磁心の断面観察を行い、ナノ結晶粉末の形状(長径L1と短径L2の比:L1/L2)における長径方向の、圧粉体の成型方向に垂直な方向に対してなす角度である配向角を測定した。具体的には、圧粉磁心を冷間樹脂中に埋め込み硬化し、圧粉磁心の磁路と垂直に研磨することで圧粉磁心の断面を作製した。EDX(Energy Dispersive X-ray spectropy:エネルギー分散型X線分析)による元素マッピングから、圧粉磁心断面におけるナノ結晶粉末を30個以上ランダムに選択し、各粉末の長径L1と短径L2を測定するとともに、配向角を調べた。長径L1は、各粉末の中で最も長い線分となるところ、短径L2は、長径に対して垂直な線分のうち、最も長いところとした。 To evaluate the magnetic properties of the produced powder magnetic core, the initial magnetic permeability μ at a frequency of 1 MHz was measured using an impedance analyzer. In addition, the cross section of the powder magnetic core was observed using an electron microscope, and the direction perpendicular to the molding direction of the powder compact in the major axis direction in the shape of the nanocrystalline powder (ratio of major axis L1 to minor axis L2: L1/L2). The orientation angle, which is the angle made with respect to Specifically, a powder magnetic core was embedded in a cold resin and hardened, and a cross section of the powder magnetic core was prepared by polishing perpendicular to the magnetic path of the powder magnetic core. From elemental mapping using EDX (Energy Dispersive X-ray spectroscopy), randomly select 30 or more nanocrystal powders in the cross section of the dust core, and measure the major axis L1 and minor axis L2 of each powder. At the same time, the orientation angle was also investigated. The major axis L1 was the longest line segment in each powder, and the minor axis L2 was the longest line segment perpendicular to the major axis.

配向角は、L1/L2比が1.1以上となるナノ結晶粉末を対象に、成型方向に垂直な方向に対するL1の角度を約100個について計測し、45°未満となる粉末の割合を算出した。 For the orientation angle, measure the angle of L1 with respect to the direction perpendicular to the molding direction for approximately 100 nanocrystalline powders with an L1/L2 ratio of 1.1 or more, and calculate the proportion of powders with an orientation angle of less than 45°. did.

表1に、ナノ結晶粉末として、-63μm、±90μm、±150μm、±250μmで分級した合金粉末を用いた場合の、圧粉磁心の磁気特性と粉末形状、配向角45度未満の割合を示す。 Table 1 shows the magnetic properties of the dust core, the powder shape, and the proportion of orientation angles of less than 45 degrees when alloy powders classified at -63 μm, ±90 μm, ±150 μm, and ±250 μm are used as nanocrystal powder. .

これより、目開きが大きい篩で分級した粉末の方が、初透磁率及びL1/L2比が高く配向角45度未満の割合が高いことが分かる。すなわち、異形状のナノ結晶粉末の長軸が、圧粉磁心の成型方向に垂直な方向に配向していることが分かる。また、L1/L2比が大きすぎる場合は、充填率が低下し、初透磁率が下がってしまった。 From this, it can be seen that the powder classified using a sieve with a large opening has a higher initial magnetic permeability and a higher L1/L2 ratio, and a higher proportion of the orientation angle is less than 45 degrees. That is, it can be seen that the long axis of the irregularly shaped nanocrystal powder is oriented in a direction perpendicular to the molding direction of the dust core. Moreover, when the L1/L2 ratio was too large, the filling rate decreased and the initial magnetic permeability decreased.

分級時の目開きが大きいほど異形状の粉末が多くなって、ナノ結晶粉末の長軸が、圧粉磁心の成型方向に垂直な方向に配向する理由は、アトマイズ時に、水で分断された合金溶湯が小さい場合には、表面張力で球状になりやすいが、大きい分断溶湯は球状化する前に凝固するためである。 The larger the opening during classification, the more irregularly shaped powder there is, and the long axis of the nanocrystalline powder is oriented in a direction perpendicular to the molding direction of the dust core. This is because when the molten metal is small, it tends to become spherical due to surface tension, but when the molten metal is large, it solidifies before it becomes spherical.

(実施例6~8及び比較例3)
工業純鉄、フェロシリコン、フェロリン、フェロボロン、フェロクロム及び電解銅からなる原料を所定の合金組成(Fe81.4Si2.58.5Cr1.0Cu0.6)になるように秤量し、不活性雰囲気中、高周波溶解を用いて1250~1550℃にて溶解した。その後、溶解した合金溶湯を水アトマイズ法にて処理し、-45μmで分級し、合金粉末を作製した。
(Examples 6 to 8 and Comparative Example 3)
Raw materials consisting of industrially pure iron, ferrosilicon, ferroline, ferroboron, ferrochrome, and electrolytic copper are made into a predetermined alloy composition (Fe 81.4 Si 2.5 B 6 P 8.5 Cr 1.0 Cu 0.6 ). and melted at 1250-1550°C using high frequency melting in an inert atmosphere. Thereafter, the molten alloy was treated by water atomization and classified at -45 μm to produce alloy powder.

赤外線加熱装置を用いて、得られた合金粉末を不活性雰囲気中で加熱した。合金粉末を毎分30℃の昇温速度で430℃まで加熱して20分保持し、その後、空冷した。熱処理後の粉末(ナノ結晶粉末)をXRDにより解析したところ、いずれの粉末も結晶化度は40%、結晶粒径は24nmであった。 The obtained alloy powder was heated in an inert atmosphere using an infrared heating device. The alloy powder was heated to 430°C at a heating rate of 30°C per minute, held for 20 minutes, and then cooled in air. When the heat-treated powders (nanocrystalline powders) were analyzed by XRD, the crystallinity of each powder was 40% and the crystal grain size was 24 nm.

次いで、ナノ結晶粉末にビッカース硬さHvが110のカルボニル鉄粉(展性粉末)を40質量%の割合で混合し、得られた混合粉末に対して質量比で2.5%となるように結合材を加え、攪拌混合した。ここでは、結合材として、フェノール樹脂を使用した。 Next, carbonyl iron powder (malleable powder) having a Vickers hardness Hv of 110 was mixed with the nanocrystal powder at a ratio of 40% by mass, so that the mass ratio was 2.5% with respect to the obtained mixed powder. The binder was added and mixed by stirring. Here, phenol resin was used as the binding material.

次いで、目開き500μmのメッシュを用いて、結合材を混合した混合粉末の粒度調整を行い、造粒粉末を得た。この造粒粉末の2.5gを秤量し、金型に入れ、油圧式自動プレス機により圧力294MPaにて成型し、外形13mm、内径8mmの円筒形状の圧粉体を製造した。次いで、圧粉体を恒温槽内に入れて、大気中150℃にて2時間保持し、結合材を硬化させた。 Next, the particle size of the mixed powder containing the binder was adjusted using a mesh with an opening of 500 μm to obtain a granulated powder. 2.5 g of this granulated powder was weighed, put into a mold, and molded using a hydraulic automatic press at a pressure of 294 MPa to produce a cylindrical green compact with an outer diameter of 13 mm and an inner diameter of 8 mm. Next, the green compact was placed in a constant temperature bath and held at 150° C. in the atmosphere for 2 hours to harden the binder.

次いで、実施例1等と同様に、作製した圧粉磁心の磁気特性評価として、インピーダンスアナライザを用いて、周波数1MHzにおける初透磁率μを測定した。また、電子顕微鏡を用いて圧粉磁心の断面観察を行い、ナノ結晶粉末の形状(長径L1と短径L2の比:L1/L2)及び配向角を測定した。 Next, in the same manner as in Example 1, the initial magnetic permeability μ at a frequency of 1 MHz was measured using an impedance analyzer to evaluate the magnetic properties of the produced powder magnetic core. In addition, a cross section of the dust core was observed using an electron microscope, and the shape of the nanocrystalline powder (ratio of major axis L1 to minor axis L2: L1/L2) and orientation angle were measured.

表2に、ナノ結晶粉末として、1250~1550℃で溶解した合金粉末を用いた場合の、初透磁率、L1/L2比及び配向角45度未満の割合を示した。 Table 2 shows the initial magnetic permeability, L1/L2 ratio, and proportion of orientation angle of less than 45 degrees when alloy powder melted at 1250 to 1550° C. is used as nanocrystal powder.

表2から、溶解温度の低い粉末の方が、L1/L2比が大きく及び配向角45度未満の割合が高く、初透磁率が高いことが分かる。これは溶解温度の低い方が合金溶湯が凝固するまでの時間が短くなり、表面張力によって球状化する前に凝固して異形状となり、ナノ結晶粉末の長軸が、圧粉磁心の成型方向に垂直な方向に配向するためである。 From Table 2, it can be seen that the powder with a lower melting temperature has a larger L1/L2 ratio, a higher proportion of orientation angles of less than 45 degrees, and a higher initial magnetic permeability. This is because the lower the melting temperature, the shorter the time it takes for the molten alloy to solidify, and the nanocrystalline powder solidifies into an irregular shape before it becomes spheroidized due to surface tension, and the long axis of the nanocrystalline powder is aligned with the molding direction of the dust core. This is because the orientation is perpendicular.

(実施例9~15)
工業純鉄、フェロシリコン、フェロリン、フェロボロン、フェロニオブ、フェロクロム及び電解銅からなる原料を表3に示すような合金組成になるように秤量し、不活性雰囲気中、高周波溶解を用いて1450℃にて溶解した。その後、溶解した合金溶湯を水アトマイズ法にて処理し、-150μmで分級し、合金粉末を作製した。
(Examples 9 to 15)
Raw materials consisting of industrially pure iron, ferrosilicon, ferroline, ferroboron, ferroniobium, ferrochrome, and electrolytic copper were weighed to give the alloy composition shown in Table 3, and heated at 1450°C using high frequency melting in an inert atmosphere. Dissolved. Thereafter, the molten alloy was treated by water atomization and classified at -150 μm to produce alloy powder.

赤外線加熱装置を用いて、得られた合金粉末を不活性雰囲気中で加熱した。合金粉末を毎分30℃の昇温速度で440℃まで加熱して20分保持し、その後、空冷した。次いで、ナノ結晶粉末に表3に示すようなビッカース硬さHvの粉末(展性粉末)を40質量%の割合で混合し、得られた混合粉末に対して質量比で3%となるように結合材を加え、攪拌混合した。ここでは、結合材として、フェノール樹脂を使用した。 The obtained alloy powder was heated in an inert atmosphere using an infrared heating device. The alloy powder was heated to 440°C at a heating rate of 30°C per minute, held for 20 minutes, and then cooled in air. Next, a powder (malleable powder) having a Vickers hardness Hv as shown in Table 3 was mixed with the nanocrystal powder at a ratio of 40% by mass, so that the mass ratio was 3% with respect to the obtained mixed powder. The binder was added and mixed by stirring. Here, phenol resin was used as the binding material.

次いで、目開き500μmのメッシュを用いて、結合材を混合した混合粉末の粒度調整を行い、造粒粉末を得た。この造粒粉末の2.5gを秤量し、金型に入れ、油圧式自動プレス機により圧力780MPaにて成型し、外形13mm、内径8mmの円筒形状の圧粉体を製造した。次いで、圧粉体を恒温槽内に入れて、不活性雰囲気中160℃にて4時間保持し、結合材を硬化させた。 Next, the particle size of the mixed powder containing the binder was adjusted using a mesh with an opening of 500 μm to obtain a granulated powder. 2.5 g of this granulated powder was weighed, put into a mold, and molded using a hydraulic automatic press machine at a pressure of 780 MPa to produce a cylindrical green compact with an outer diameter of 13 mm and an inner diameter of 8 mm. Next, the green compact was placed in a constant temperature bath and held at 160° C. for 4 hours in an inert atmosphere to harden the binder.

次いで、実施例1等と同様に、作製した圧粉磁心の磁気特性評価として、インピーダンスアナライザを用いて、周波数1MHzにおける初透磁率μを測定した。また、電子顕微鏡を用いて圧粉磁心の断面観察を行い、ナノ結晶粉末の形状(長径L1と短径L2の比:L1/L2)及び配向角を測定した。 Next, in the same manner as in Example 1, the initial magnetic permeability μ at a frequency of 1 MHz was measured using an impedance analyzer to evaluate the magnetic properties of the produced powder magnetic core. In addition, a cross section of the dust core was observed using an electron microscope, and the shape of the nanocrystalline powder (ratio of major axis L1 to minor axis L2: L1/L2) and orientation angle were measured.

表3から、添加粉末が軟らかい方が、L1/L2比が大きく及び配向角45度未満の割合が高く、初透磁率が高いことが分かる。これは添加粉末が、ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向しやすくする助剤として機能するようになるので、当該ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向し、すなわち、ナノ結晶粉末の長軸が配向して、当該配向方向に高い透磁率を示すようになるためである。 Table 3 shows that the softer the additive powder, the larger the L1/L2 ratio, the higher the proportion of orientation angles of less than 45 degrees, and the higher the initial magnetic permeability. This is because the additive powder functions as an auxiliary agent that makes it easier for the nanocrystalline powder to orient in the direction perpendicular to the molding direction of the powder magnetic core (powder compact). This is because the nanocrystal powder is oriented in a direction perpendicular to the molding direction of the powder compact, that is, the long axis of the nanocrystal powder is oriented, and exhibits high magnetic permeability in the orientation direction.

(実施例16~22)
工業純鉄、フェロシリコン、フェロリン、フェロボロン、フェロニオブ、フェロカーボン、フェロクロム及び電解銅からなる原料を表4に示すような合金組成になるように秤量し、不活性雰囲気中、高周波溶解を用いて1450℃にて溶解した。その後、溶解した合金溶湯を水アトマイズ法にて処理し、-150μmで分級し、合金粉末を作製した。
(Examples 16-22)
Raw materials consisting of industrially pure iron, ferrosilicon, ferroline, ferroboron, ferroniobium, ferrocarbon, ferrochrome, and electrolytic copper were weighed to give an alloy composition as shown in Table 4, and heated to 1450% by high-frequency melting in an inert atmosphere. Dissolved at ℃. Thereafter, the molten alloy was treated by water atomization and classified at -150 μm to produce alloy powder.

赤外線加熱装置を用いて、得られた合金粉末を不活性雰囲気中で加熱した。合金粉末を毎分30℃の昇温速度で440℃まで加熱して20分保持し、その後、空冷した。次いで、ナノ結晶粉末に表4に示すような粉末(展性粉末)を表4に示す割合で混合し、得られた混合粉末に対して質量比で1.5%となるように結合材を加え、攪拌混合した。ここでは、結合材として、フェノール樹脂を使用した。 The obtained alloy powder was heated in an inert atmosphere using an infrared heating device. The alloy powder was heated to 440°C at a heating rate of 30°C per minute, held for 20 minutes, and then cooled in air. Next, powders shown in Table 4 (malleable powders) were mixed with the nanocrystal powder in the proportions shown in Table 4, and a binder was added to the resulting mixed powder at a mass ratio of 1.5%. The mixture was added and mixed by stirring. Here, phenol resin was used as the binding material.

次いで、目開き500μmのメッシュを用いて、結合材を混合した混合粉末の粒度調整を行い、造粒粉末を得た。この造粒粉末の4.5gを秤量し、金型に入れ、油圧式自動プレス機により圧力294MPaにて成型し、外形20mm、内径13mmの円筒形状の圧粉体を製造した。次いで、圧粉体を恒温槽内に入れて、不活性雰囲気中160℃にて4時間保持し、結合材を硬化させた。 Next, the particle size of the mixed powder containing the binder was adjusted using a mesh with an opening of 500 μm to obtain a granulated powder. 4.5 g of this granulated powder was weighed, put into a mold, and molded using a hydraulic automatic press at a pressure of 294 MPa to produce a cylindrical green compact with an outer diameter of 20 mm and an inner diameter of 13 mm. Next, the green compact was placed in a constant temperature bath and held at 160° C. for 4 hours in an inert atmosphere to harden the binder.

次いで、実施例1等と同様に、作製した圧粉磁心の磁気特性評価として、インピーダンスアナライザを用いて、周波数1MHzにおける初透磁率μを測定した。また、電子顕微鏡を用いて圧粉磁心の断面観察を行い、ナノ結晶粉末の形状(長径L1と短径L2の比:L1/L2)及び配向角を測定した。さらには、展性粉末の添加割合を、圧粉磁心の電子顕微鏡写真において500μm×500μmの領域を画定し、当該領域における展性粉末のナノ結晶粉末に対する面積比から求めた。 Next, in the same manner as in Example 1, the initial magnetic permeability μ at a frequency of 1 MHz was measured using an impedance analyzer to evaluate the magnetic properties of the produced powder magnetic core. In addition, a cross section of the dust core was observed using an electron microscope, and the shape of the nanocrystalline powder (ratio of major axis L1 to minor axis L2: L1/L2) and orientation angle were measured. Further, the addition ratio of the malleable powder was determined by defining a region of 500 μm×500 μm in an electron micrograph of the dust core, and determining the area ratio of the malleable powder to the nanocrystalline powder in the region.

表4から、圧粉体における展性粉末の割合が10~90%、特に30~70%であると、展性粉末が、ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向しやすくする助剤として機能するようになるので、当該ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向し、すなわち、ナノ結晶粉末の長軸が配向して、当該配向方向に高い透磁率を示すことが分かる。 From Table 4, when the proportion of malleable powder in the powder compact is 10 to 90%, especially 30 to 70%, the malleable powder and the nanocrystalline powder are different from each other in the molding direction of the powder magnetic core (powder compact). Since it functions as an auxiliary agent that facilitates orientation in the vertical direction, the nanocrystalline powder is oriented in the direction perpendicular to the molding direction of the powder magnetic core (powder compact), that is, the length of the nanocrystalline powder is It can be seen that the axes are oriented and high magnetic permeability is exhibited in the orientation direction.

(実施例23~28)
工業純鉄、フェロシリコン、フェロリン、フェロボロン、フェロニオブ、フェロカーボン、フェロクロム及び電解銅からなる原料を表5に示すような合金組成になるように秤量し、不活性雰囲気中、高周波溶解を用いて1450℃にて溶解した。その後、溶解した合金溶湯を水アトマイズ法にて処理し、-150μmで分級し、合金粉末を作製した。
(Examples 23 to 28)
Raw materials consisting of industrially pure iron, ferrosilicon, ferroline, ferroboron, ferronniobium, ferrocarbon, ferrochrome, and electrolytic copper were weighed to give an alloy composition as shown in Table 5, and heated to 1450% by high-frequency melting in an inert atmosphere. Dissolved at ℃. Thereafter, the molten alloy was treated by water atomization and classified at -150 μm to produce alloy powder.

赤外線加熱装置を用いて、得られた合金粉末を不活性雰囲気中で加熱した。合金粉末を毎分30℃の昇温速度で440℃まで加熱して20分保持し、その後、空冷した。次いで、ナノ結晶粉末に粉末(展性粉末)を表5に示すような割合で混合し、得られた混合粉末に対して質量比で1.5%となるように結合材を加え、攪拌混合した。ここでは、結合材として、フェノール樹脂を使用した。 The obtained alloy powder was heated in an inert atmosphere using an infrared heating device. The alloy powder was heated to 440°C at a heating rate of 30°C per minute, held for 20 minutes, and then cooled in air. Next, powder (malleable powder) was mixed with the nanocrystal powder in the ratio shown in Table 5, and a binder was added to the resulting mixed powder so that the mass ratio was 1.5%, and the mixture was stirred. did. Here, phenol resin was used as the binding material.

次いで、目開き500μmのメッシュを用いて、結合材を混合した混合粉末の粒度調整を行い、造粒粉末を得た。この造粒粉末の4.5gを秤量し、金型に入れ、油圧式自動プレス機により圧力294MPaにて成型し、外形20mm、内径13mmの円筒形状の圧粉体を製造した。次いで、圧粉体を恒温槽内に入れて、不活性雰囲気中160℃にて4時間保持し、結合材を硬化させた。 Next, the particle size of the mixed powder containing the binder was adjusted using a mesh with an opening of 500 μm to obtain a granulated powder. 4.5 g of this granulated powder was weighed, put into a mold, and molded using a hydraulic automatic press at a pressure of 294 MPa to produce a cylindrical green compact with an outer diameter of 20 mm and an inner diameter of 13 mm. Next, the green compact was placed in a constant temperature bath and held at 160° C. for 4 hours in an inert atmosphere to harden the binder.

次いで、実施例1等と同様に、作製した圧粉磁心の磁気特性評価として、インピーダンスアナライザを用いて、周波数1MHzにおける初透磁率μを測定した。また、電子顕微鏡を用いて圧粉磁心の断面観察を行い、ナノ結晶粉末の形状(長径L1と短径L2の比:L1/L2)及び配向角を測定した。さらには、展性粉末の添加割合を、圧粉磁心の電子顕微鏡写真において500μm×500μmの領域を画定し、当該領域における展性粉末のナノ結晶粉末に対する面積比から求めた。 Next, in the same manner as in Example 1, the initial magnetic permeability μ at a frequency of 1 MHz was measured using an impedance analyzer to evaluate the magnetic properties of the produced powder magnetic core. In addition, a cross section of the dust core was observed using an electron microscope, and the shape of the nanocrystalline powder (ratio of major axis L1 to minor axis L2: L1/L2) and orientation angle were measured. Further, the addition ratio of the malleable powder was determined by defining a region of 500 μm×500 μm in an electron micrograph of the dust core, and determining the area ratio of the malleable powder to the nanocrystalline powder in the region.

表5から、展性粉末のナノ結晶粉末に対する粒径比(展性粉末の粒径/ナノ結晶粉末)は1以下、特に0.45未満の場合、ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向しやすくなるので、当該ナノ結晶粉末が、圧粉磁心(圧粉体)の成型方向と垂直な方向に配向し、すなわち、ナノ結晶粉末の長軸が配向して、当該配向方向に高い透磁率を示すようになる。 From Table 5, when the particle size ratio of malleable powder to nanocrystalline powder (particle size of malleable powder/nanocrystalline powder) is less than 1, especially less than 0.45, nanocrystalline powder The nanocrystalline powder is easily oriented in the direction perpendicular to the molding direction of the powder core (powder body), so the long axis of the nanocrystalline powder is oriented perpendicular to the molding direction of the powder magnetic core (powder compact). It becomes oriented and exhibits high magnetic permeability in the orientation direction.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として掲示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments and their modifications are included within the scope and gist of the invention, as well as within the scope of the invention described in the claims and its equivalents.

Claims (7)

長径L1と短径L2との比(L1/L2)が1.1~5.0の範囲のナノ結晶粉末と、展性粉末とからなる圧粉体を含み、
前記圧粉体の成型方向に垂直な方向に対する当該ナノ結晶粉末の配向角が45度未満である粉末の割合が65~85%であることを特徴とする、圧粉磁心。
A compact comprising nanocrystalline powder having a ratio of the major axis L1 to the minor axis L2 (L1/L2) in the range of 1.1 to 5.0 and malleable powder,
A powder magnetic core, characterized in that the ratio of the powder in which the orientation angle of the nanocrystalline powder with respect to the direction perpendicular to the molding direction of the powder compact is less than 45 degrees is 65 to 85%.
前記展性粉末のビッカース硬さHvが500以下であることを特徴とする、請求項1に記載の圧粉磁心。 The powder magnetic core according to claim 1, wherein the malleable powder has a Vickers hardness Hv of 500 or less. 前記圧粉体の電子顕微鏡写真において画定した500μm×500μmの領域における前記展性粉末の前記ナノ結晶粉末に対する面積比が、10~90%であることを特徴とする、請求項1又は2に記載の圧粉磁心。 According to claim 1 or 2, the area ratio of the malleable powder to the nanocrystalline powder in a region of 500 μm x 500 μm defined in an electron micrograph of the green compact is 10 to 90%. powder magnetic core. 前記圧粉体における前記展性粉末の前記ナノ結晶粉末に対する粒径比が1以下であることを特徴とする、請求項1~3のいずれか1項に記載の圧粉磁心。 The powder magnetic core according to any one of claims 1 to 3, characterized in that the particle size ratio of the malleable powder to the nanocrystalline powder in the powder compact is 1 or less. 前記ナノ結晶粉末の結晶化度が25%以上であることを特徴とする、請求項1~4のいずれか1項に記載の圧粉磁心。 The powder magnetic core according to any one of claims 1 to 4, wherein the nanocrystalline powder has a crystallinity of 25% or more. 前記ナノ結晶粉末の結晶粒径が45nm以下であることを特徴とする、請求項1~5のいずれか1項に記載の圧粉磁心。 The powder magnetic core according to any one of claims 1 to 5, wherein the nanocrystalline powder has a crystal grain size of 45 nm or less. 前記ナノ結晶粉末の組成が、原子%で、
Si:0~17%、
B:2~15%、
P:0~15%、
Cr+Nb:0~5%、
Cu:0.2~2%、
残部:Fe+不可避不純物であることを特徴とする、請求項1~6のいずれか1項に記載の圧粉磁心。
The composition of the nanocrystalline powder is in atomic %,
Si: 0-17%,
B: 2-15%,
P: 0-15%,
Cr+Nb: 0-5%,
Cu: 0.2-2%,
The powder magnetic core according to any one of claims 1 to 6, wherein the remainder is Fe + inevitable impurities.
JP2020050596A 2020-03-23 2020-03-23 Powder magnetic core and its manufacturing method Active JP7419127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020050596A JP7419127B2 (en) 2020-03-23 2020-03-23 Powder magnetic core and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020050596A JP7419127B2 (en) 2020-03-23 2020-03-23 Powder magnetic core and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021150555A JP2021150555A (en) 2021-09-27
JP7419127B2 true JP7419127B2 (en) 2024-01-22

Family

ID=77849461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020050596A Active JP7419127B2 (en) 2020-03-23 2020-03-23 Powder magnetic core and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7419127B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281074A (en) 2006-04-04 2007-10-25 Hitachi Metals Ltd Noise suppression sheet
JP2015167183A (en) 2014-03-04 2015-09-24 Necトーキン株式会社 Nanocrystal soft magnetic alloy powder and powder-compact magnetic core arranged by use thereof
WO2019065500A1 (en) 2017-09-29 2019-04-04 株式会社トーキン Method for manufacturing powder magnetic core, powder magnetic core, and inductor
JP2019057693A (en) 2017-09-22 2019-04-11 株式会社村田製作所 Composite magnetic material and coil component using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281074A (en) 2006-04-04 2007-10-25 Hitachi Metals Ltd Noise suppression sheet
JP2015167183A (en) 2014-03-04 2015-09-24 Necトーキン株式会社 Nanocrystal soft magnetic alloy powder and powder-compact magnetic core arranged by use thereof
JP2019057693A (en) 2017-09-22 2019-04-11 株式会社村田製作所 Composite magnetic material and coil component using the same
WO2019065500A1 (en) 2017-09-29 2019-04-04 株式会社トーキン Method for manufacturing powder magnetic core, powder magnetic core, and inductor

Also Published As

Publication number Publication date
JP2021150555A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
KR101932422B1 (en) Manufacturing method of soft magnetic powder, compacted core, magnetic component and compacted core
CN110225801B (en) Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic component, and dust core
JP6482718B1 (en) Soft magnetic material and manufacturing method thereof
JP5537534B2 (en) Fe-based nanocrystalline alloy powder and manufacturing method thereof, and dust core and manufacturing method thereof
JP7132231B2 (en) Powder magnetic core manufacturing method, powder magnetic core and inductor
JP6669304B2 (en) Crystalline Fe-based alloy powder and method for producing the same
WO2011024580A1 (en) ALLOY COMPOSITION, NANOCRYSTALLINE Fe ALLOY, AND PREPARATION METHOD THEREFOR
JP6088192B2 (en) Manufacturing method of dust core
EP0302355A1 (en) Fe-base soft magnetic alloy powder and magnetic core thereof and method of producing same
JP5305126B2 (en) Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component
JP6101034B2 (en) Manufacturing method of dust core
JP2713363B2 (en) Fe-based soft magnetic alloy compact and manufacturing method thereof
WO2020026949A1 (en) Soft magnetic powder, fe-based nano-crystal alloy powder, magnetic member, and dust core
WO2016121950A1 (en) Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor
JP7024859B2 (en) Iron-based soft magnetic powder and its manufacturing method, and articles containing iron-based soft magnetic alloy powder and its manufacturing method
JP7419127B2 (en) Powder magnetic core and its manufacturing method
JP4936593B2 (en) Method for producing magnet powder
JP2021158340A (en) Magnetic core, magnetic component, and electronic device
JPH0479302A (en) Dust core
WO2023153366A1 (en) Soft magnetic powder
JP2021153175A (en) Magnetic core, magnetic component and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20230920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240110

R150 Certificate of patent or registration of utility model

Ref document number: 7419127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150