JP2713363B2 - Fe-based soft magnetic alloy compact and manufacturing method thereof - Google Patents

Fe-based soft magnetic alloy compact and manufacturing method thereof

Info

Publication number
JP2713363B2
JP2713363B2 JP62140336A JP14033687A JP2713363B2 JP 2713363 B2 JP2713363 B2 JP 2713363B2 JP 62140336 A JP62140336 A JP 62140336A JP 14033687 A JP14033687 A JP 14033687A JP 2713363 B2 JP2713363 B2 JP 2713363B2
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic alloy
based soft
crystal grains
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62140336A
Other languages
Japanese (ja)
Other versions
JPS63304603A (en
Inventor
清隆 山内
克仁 吉沢
Original Assignee
日立金属 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属 株式会社 filed Critical 日立金属 株式会社
Priority to JP62140336A priority Critical patent/JP2713363B2/en
Publication of JPS63304603A publication Critical patent/JPS63304603A/en
Application granted granted Critical
Publication of JP2713363B2 publication Critical patent/JP2713363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • H01F1/15375Making agglomerates therefrom, e.g. by pressing using a binder using polymers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は優れた磁気特性を有するFe基軟磁性合金圧粉
体、特に組織の大部分が微細な結晶粒から成るFe基軟磁
性合金圧粉体及びその製造方法に関するものである。 〔従来の技術〕 従来から交流で使用する変圧器、電動機、チョーク、
ノイズフィルタなどに用いる磁心には、Fe−Si合金、パ
ーマロイ、フェライトなどの結晶質材料がそれぞれ用途
に合わせて使用されている。しかしながら、Fe−Si合金
は比抵抗が小さく、かつ結晶磁気異方性が零でない為周
波数の比較的高い領域では鉄損が大きくなるという問題
点を有している。パーマロイは比抵抗が小さいので、高
周波での鉄損が大きくなるという問題点を有している。
又、フェライトは高周波での損失は小さいが磁束密度も
せいぜい5000Gと小さく、その為大きな動作磁束密度で
の使用時にあっては、飽和に近くなり、その結果鉄損が
増大するという問題点を有している。近年、スイッチン
グレギュレータに使用される電源トランス等の高周波で
使用されるトランスにおいては、形状の小形化が望まれ
ているが、その場合は、動作磁束密度の増大が必要とな
るため、フェライトの鉄損増大は実用上大きな問題とな
る。 高周波における鉄損を小さくしたり、透磁率の周波数
特性を向上させる目的で、上記磁性合金の圧粉体が使用
されることもある。これは上記金属の粉末を作製し、そ
れを絶縁層を介して固めたものであり、絶縁層としては
有機物が使用されている。これらの磁心は主としてチョ
ークやノイズフィルタとして使用されている。 しかしながら、上記磁性粉末から成る圧粉体は透磁率
が小さくそのため充分なインダクタンスを得るためには
巻線の数を増やさなければならず、従って小形化しにく
いという欠点があった。また鉄損が大きい為、実用時の
発熱が大きいという問題があった。 一方、結晶構造を持たない非晶質磁性合金は、高透磁
率、低保磁力等の優れた軟質磁気特性を示すので、最近
注目を集めている。これらの非晶質磁性合金は鉄(F
e)、コバルト(Co)、ニッケル(Ni)等を基本とし、
これに非晶質化元素(メタロイド)として、リン
(P)、炭素(C)、ホウ素(B)、ケイ素(Si)、ア
ルミニウム(Al)、ゲルマニウム(Ge)等を含有せしめ
たものである。 また、Fe、Co、Ni、とTi、Zr、Hf、Nb等の合金から成
る非晶質合金も知られている。 これらの非晶質合金は通常薄帯の形で得られ、それら
の磁心として用いるときには薄帯をトロイダル状やU
形、E形に成形した巻鉄心、あるいは薄帯を一定の形状
に打抜いて積層した積層鉄心として使用されている。し
かしながらこれらの磁心は特にU形、E形においてその
作製法が困難である。 上記欠点を解消する為に、非晶質磁性合金の粉末を作
製し、バインダを用いてこれを圧密化し、圧粉体を作製
する方法が、例えば特開55−133507,61−154014,61−15
4111,61−166902等に開示されている。また、非晶質磁
性合金の粉末を衝撃力により瞬時に圧縮せしめることに
より、高密度の圧粉体を得る方法が例えば特開61−2884
04,62−23905等に開示されている。これらの圧粉体に用
いられる非晶質合金は主としてFe系とCo系に大別され、
Fe系の非晶質合金は飽和磁束密度が大きく、材料コスト
がCo系に比べ安くつくという利点がある反面一般的に高
周波においてCo系非晶質合金よりコア損失が大きく、透
磁率も低いという問題がある。これに対しCo系の非晶質
合金は高周波のコア損失が小さく、透磁率も高いが飽和
磁束密度が小さくコア損失や透磁率の経時変化が大きく
実用上問題が多い。さらに高価なCoを主原料とするため
価格的な不利は免れない。この様なFe系およびCo系非晶
質合金の得失は、これを圧粉体とした場合にもほぼあて
はまる。 〔発明が解決しようとする問題点〕 本発明の目的は、飽和磁束密度が大きくコア損失およ
びコア損失の経時変化、透磁率その他の磁気特性に優れ
た、新規な軟磁性合金圧粉体を提供することにある。 本発明のもう1つの目的は、上記Fe基軟磁性合金圧粉
体を製造する方法を提供することである。 〔問題点を解決するための手段〕 上記目的に鑑み鋭意研究の結果、本発明者等はFe−Si
−Bを基本成分とする合金にCuと、Nb、W、Ta、Zr、H
f、Ti、Moから選ばれる少なくとも一種の元素とを複合
添加することにより、非晶質合金の適当な熱処理により
組織の大部分が微細結晶粒からなるとともに優れた磁気
特性を有するFe基軟磁性合金粉末が得られることを発見
し、本発明に想到した。 すなわち、本発明のFe基軟磁性合金圧粉体は 一般式: (Fe1-aMa100−x−y−z−α−β−γCuxSiyBzM′αM″βγ (原子%) (ただし、MはCo及び/又はNiであり、M′はNb,W,Ta,
Zr,Hf,Ti及びMoから成る群から選ばれた少なくとも一種
の元素、M″はV,Cr,Mn,Al,白金属元素,Sc,Y,希土類元
素,Au,Zn,Sn,Reから成る群から選ばれた少なくとも一種
の元素、XはBe,C,Ge,P,Ga,Sb,As,Inから成る群から選
ばれた少なくとも1種の元素であり、a,x,y,z,α,β及
びγはそれぞれ 0≦a<0.5,0.1≦x≦3,0≦y≦30, 0≦z≦25,0.1≦α≦30,0≦β≦10 0≦γ≦10及び0≦y+z≦35 を満たす。)により表わされる組成を有する微粉末を出
発原料とし、これを圧密化し、塊状とした圧粉体におい
て、その組成の少なくとも50%が微細な結晶粒からなる
ものである。 また本発明のFe基軟磁性合金圧粉体の製造方法は、前
記非晶質合金微粉末を溶湯を急冷することにより得る工
程と、これを加圧し圧粉体とする工程と、これを加熱し
微細な結晶粒を形成する熱処理工程とを有することを特
徴とする。ここで、圧粉体の成形方法としては、冷間プ
レス、温間プレス、爆発圧着等の方法が可能である。 本発明において、Cuは必須元素であり、その含有量x
は0.1〜3原子%の範囲である。0.1原子%より少ないと
Cuの添加によるコア損失低下の効果がほとんどなく、一
方3原子%より多いとコア損失が未添加のものよりかえ
って大きくなる。また本発明において特に好ましいCuの
含有量xは0.5〜2原子%であり、この範囲ではコア損
失が特に小さい。Cuのコア損失低下作用の原因は明らか
ではないが次のように考えられる。すなわち、CuとFeの
相互作用パラメータは正であり、固溶度は低いが、Fe基
非晶質合金中に適量含有され熱処理されると、Fe原子同
志またはCu原子同志が寄り集りクラスタリングが起こ
り、組成ゆらぎが生ずる。このため部分的に結晶化しや
すい領域が多数できそこを核として結晶化が始まる。こ
の結晶はFeを主成分とするものであり、Cuの固溶度はほ
とんどないため結晶化によりCuは結晶粒の周囲にはき出
され、結晶粒の周辺のCu濃度が高くなる。このため結晶
粒は成長しにくいと考えられる。すなわち、Cu添加によ
り結晶核が多数できることと、結晶粒が成長しにくいた
め結晶粒の微細化が起こると考えられる。この結晶粒の
微細化により磁気的に等方的になるため結晶化してもCo
基非晶質合金並の軟磁性が得られると考えられる。この
作用はNb、Ta、W、Mo、Zr、Hf、Ti等の存在により著し
くなると考えられ、Nb、Ta、W、Mo、Zr、Hf、Ti等が存
在しない場合は結晶粒はあまり微細化されない。またFe
を主成分とする微細結晶相が生ずるためFe基非晶質合金
等に比べ磁歪が小さくなり内部応力一歪による磁気異方
性が小さくなることも軟磁気特性が改善される理由と考
えられる。またNb、Ta、W、Mo、Zr、Hf等を添加しても
Cuを添加しない場合は結晶粒は微細化されにくく、化合
物相が形成しやすいため、結晶化により磁気特性は劣化
する。 またSi及びBは、合金の非晶質化に望ましい。という
のは後述するように、一般的には、本発明のFe基軟磁性
合金圧粉体は一旦非晶質合金微粉末とした後で熱処理に
より微細結晶粒を形成させることにより得られるもので
あるからである。両者の含有量y及びzの限定理由は、
yが30原子%以下、zが0〜25原子%かつy+zが0〜
35原子%の範囲を外れると、合金の非晶質化が困難とな
ることがある。本発明おいて、yの好ましい範囲は10〜
25原子%であり、zの好ましい範囲は3〜12原子%であ
り、y+zの好ましい範囲は18〜28原子%の範囲であ
る。この範囲であるとコア損失が小さいものが容易に得
られる。 本発明においてM′はCuとの複合添加により析出する
結晶粒を微細化する作用を有するものであり、Nb、W、
Ta、Zr、Hf及びMoからなる群から選ばれた少なくとも1
種の元素である。Nb等は合金の結晶化温度を上昇させる
作用を有するが、クラスターを形成し結晶化温度を低下
させる作用を有するCuとの相互作用により析出する結晶
粒が微細化するものと考えられる。M′の含有量αは0.
1〜30原子%であり、0.1原子%未満だと結晶粒微細化の
効果が不十分であり、30原子%を超えると飽和磁束密度
の著しい低下を招く。好ましいM′の含有量αは2〜8
原子%である。なおM′としてNbが磁気特性の面で最も
好ましい。またM′の添加によりCo基高透磁率非晶質合
金を用いた圧粉体と同等以上の高い透磁率を有するよう
になる。 残部は不純物を除いて実質的にFeであるが、Feの一部
は添加成分M(Co及び/又はNi)により置換されていて
もよい。Mの含有量aは0≦a<0.5であるが、これは
αが0.5を越えると、コア損失が増加するためである。 上記組成を有する本発明のFe基軟磁性合金圧粉体はま
た合金組織の少くとも50%以上が微細な結晶粒からな
る。 この結晶粒はα−Feを主体とするものでSiやB等が固
溶していると考えられる。この結晶粒はその最大寸法で
測定した場合、平均粒径が500Å以下と著しく小さな平
均粒径を有し、合金組織中に均一に分布している。合金
組織のうち微細結晶粒以外の部分は主に非晶質である。
なお微細結晶粒の割合が実質的に100%になっても本発
明のFe基軟磁性合金圧粉体は十分に優れた磁気特性を示
す。 また本発明のFe基軟磁性合金圧粉体は以上の成分以外
に、V、Cr、Mn、Al、白金属元素等を必要に応じて含ん
でも良い。また非晶質形成元素として、C、Ge、P、Ga
等を含んでも良い。なお、N、O、S等の不可避的不純
物については所望の特性が劣化しない程度に含有してい
ても本発明の合金組成と同一とみなすことができるのは
もちろんである。 次に本発明のFe基軟磁性合金圧粉体の製造方法につい
て説明する。 まず非晶質合金粉末を形成する方法としては、上記所
定の組成の溶湯から、片ロール法、多ロール法等の公知
の液体急冷法により、リボン状の非晶質合金を形成し、
これを加熱脆化後粉砕する事により粉末化する方法があ
る。また、所定の組成の溶湯から、アトマイズ法、キャ
ビテーション法等公知の液体急冷法により、非晶質合金
微粉末を直接得る方法がある。後者の方が一般に量産性
が優れるが、前者の方法ではリン片状の粉末が得易い事
もあり、目的に応じて使いわけられる。 この非晶質合金微粉末は若干の結晶相を含んでいても
よいが、後の熱処理により微細な結晶粒を均一に生成す
る為には、できるだけ非晶質であることが望ましい。 次にこれを圧密化し、圧粉体とするには、結合材(例
えばフェノール樹脂やエポキシ樹脂等でも良いが、プレ
ス成形後熱処理をほどこす工程を含む場合は、無機ワニ
ス等耐熱性のあるバインダーが望ましい)を添加し、プ
レス成形する方法がある。 また、結合材を用いずにこれを圧粉体とするには、い
わゆる温間領域における粘性流動による変形を利用し、
非晶質合金の結晶化温度近傍にて非晶質合金粉末を加圧
し、圧密化することにより塊状とすることができる。ま
た、いわゆる爆発成形なる手法によっても塊状とするこ
とは可能である。 尚、前記圧粉体を電気部品として用いる場合には、渦
電流損失を低下する目的で、粉末間に絶縁層を設ける事
が好ましい。その方法としてはあらかじめ出発原料であ
る非晶質合金粉末の表面を酸化する方法あるいは水ガラ
スや金属アルコキシド、セラミック超微粉末等を添加
後、圧粉体とすることにより目的を達成することができ
る。 また、以上に記載した粉末はいずれも非晶質粉末であ
るが、非晶質の薄帯に結晶化熱処理を施し、これを粉砕
した粉末で行ってもよい。 ただし、熱処理は薄帯や粉末の状態で行うことも可能
であるが、磁歪がゼロに近い場合を除いては、圧粉体と
したのちに行うことが望ましい。その方法は通常真空中
または水素、窒素等の不活性ガス雰囲気中において一定
時間保持し行なう。熱処理温度及び時間は非晶質合金微
粉末からなる磁心の形状、サイズ、組成等により異なる
が、一般的に450℃〜700℃で5分から24時間程度が望ま
しい。熱処理温度が450℃未満であると結晶化が起こり
にくく、熱処理に時間がかかりすぎる。また700℃より
高いと粗大な結晶粒が生成するおそれがあり、微細な結
晶粒を均一に得ることができなくなる。また熱処理時間
については、5分未満では加工した合金全体を均一な温
度とすることが困難であり磁気特性がばらつきやすく、
24時間より長いと生産性が悪くなるだけでなく、結晶粒
の過剰な成長により磁気特性の低下が起こりやすい。好
ましい熱処理条件は、実用性及び均一な温度コントロー
ル等を考慮して、500〜650℃で5分〜6時間である。 熱処理雰囲気はAr、N2、H2等の雰囲気が望ましいが、
大気中等の酸化性雰囲気でも良い。冷却は空冷や炉冷等
によりなど、適宜行うことができる。また場合によって
は多段の熱処理を行うこともできる。 〔実施例〕 以下、本発明の実施例につき説明する。 実施例1 原子%でCu1%、Si15%、B9%、Nb3%、Cr1%及び残
部実質的にFeからなる組成の溶湯から、単ロール法によ
り幅20mm、厚さ18μmのリボンを作製した。このリボン
のX線回折を測定したところ第1図(a)に示すような
非晶質合金に典型的なハローパターンが得られた。また
このリボンの透過電子顕微鏡写真(30万倍)を第2図
(a)に示す。X線回折及び第2図(a)から明らかな
ように、得られたリボンはほぼ完全な非晶質であった。 次にこの非晶質リボンを窒素雰囲気中、300℃で30分
加熱したのち、振動ミルにて粉砕し、48メッシュ以下の
粉末とした。得られた粉末の形状を走査型電子顕微鏡
(SEM)で観察した結果を第3図に示すが、粉末の形状
は鱗片状をしているのがわかる。一方、この粉末をX線
回折した結果、第1図(a)に示したとほぼ同じハロー
パターンが得られ、この段階では粉末がほぼ非晶質であ
ることを確認した。 次に得られた粉末に耐熱性無機ワニス(変性アルキル
シリケート)をバインダーとして7wt%加え、約250℃で
温間プレスを行ない、外径20mm、内径12mm、厚さ6mmの
圧粉磁心を作製した。得られた圧粉磁心の断面マクロ組
織を第4図に示す。 この磁心を、窒素ガス雰囲気中、550℃で1時間熱処
理を行ない、徐冷した。同時に、上記非晶質粉末を同じ
条件で熱処理し、そのX線回折を行なった結果、第1図
(b)に示す様に結晶ピークが認められた。第2図
(b)はこの熱処理後の粉末の透過電子顕微鏡写真(30
万倍)であり、熱処理後の組織の大部分が微細な結晶粒
からなることがわかる。結晶粒の平均粒径は約100Åで
あった。 CuとNbを複合添加した本発明の合金の結晶粒の形は球
状に近く、平均粒径は約100Å程度と著しく微細化され
ている。X線回折パターン及び透過電子顕微鏡による分
析から、この結晶粒はSi,B等が固溶したα−Feであると
推定される。Cuを添加しない場合は結晶粒は大きくな
り、微細化されにくく、このようにCu及びNbの複合添加
により、得られる結晶粒の大きさ及び形態が著しく変化
することが確認された。 次に、熱処理前後の上記圧粉磁心につき、磁束密度の
波高値Bm=2kG及び周波数100KHzにおけるコア損失W
2/100Kを測定したところ、熱処理前のものは7500mW/c
c、熱処理後のものは530mW/ccであった。これから、本
発明の熱処理により、非晶質合金中に微細な結晶粒を均
一に形成することにより、コア損失が著しく低下するこ
とがわかる。 実施例2 実施例1と同様の条件により、下記の第1表に示す組
成のFe基非晶質圧粉磁心を作製した。得られた各合金を
2つに分け、一方には実施例1と同じ条件の熱処理を施
し、他方には非晶質を保持するような従来の熱処理(40
0℃×1時間)を施し、それぞれについて100kHz、2KGに
おけるコア損失W2/100Kを測定した。 結果を第1表に示すが、いずれの組成においても本発
明の熱処理により非晶質合金中に微細な結晶粒を均一に
形成することにより、コア損失が著しく低下することが
わかる。また比較として示した、従来の熱処理によって
非晶質状態を保持した合金に関しては、いずれの組成に
おいてもコア損失の著しい低下が認められないことがわ
かる。実施例3 実施例1と同様の方法によりFe73-xCuxSi14B9Nb3Cr1
により表わされる組成(0≦x≦3.5)の非晶質合金圧
粉体を作製し、各々の試料を下記の最適熱処理温度で1
時間熱処理し、磁束密度の波高値Bm=2kG、周波数f=1
00KHzにおけるコア損失W2/100Kを測定した。 xの値(原子%) 熱処理温度(℃) 0 510 0.05 515 0.1 530 0.5 550 1.0 570 1.5 570 2.0 560 2.5 540 3.0 510 3.2 500 3.5 490 第5図にCuの含有量x(原子%)とコア損失W2/100K
との関係を示す。 第5図から明らかなように、Cuの含有量xが0から増
大するにつれてコア損失が低下するが、約3原子%を超
えるとコア損失が無添加のもの並に大きくなる。xが0.
1〜3原子%の範囲にある場合、コア損失は十分に小さ
いことがわかる。特に望ましいxの範囲は0.5〜2原子
%である。 実施例4 実施例1と同様の方法でFe75.5−αCu1Si13B9.5M′
αTi1により表わされる組成の非晶質合金(M′=Nb,W,
Ta又はMo)圧粉体を作製し、各々の試料を下記の最適熱
処理温度で1時間熱処理し、それぞれのコア損失W
2/100Kを測定した。 αの値(原子%) 熱処理温度(℃) 0 410 0.1 420 0.2 425 1.0 445 2.0 500 3.0 550 5.0 580 7.0 590 8.0 600 10.0 600 11.0 605 結果を第6図に示す。第6図においてグラフA、B、
C、DはそれぞれM′がNb,W,Ta及びMoの場合を示す。 第6図から明らかな通りM′の量αが0.1〜10原子%
範囲でコア損失が十分に小さくなっている。またM′が
Nbのときに特にコア損失が低かった。特に望ましいαの
範囲は2≦α≦8である。 実施例5 Fe72Cu1Si13.59.5Nb3Ru1なる組成を有する合金を水
アトマイズ法により粉末化し、フルイにより48mesh以下
の粉末を得た。得られた粉末をX線回折した結果、第1
図aに示すと同様のハローパターンが得られ、ほぼ完全
な非晶質であることを確認した。得られた粉末に水ガラ
ス(JIS 3号)を0.7%添加し、十分撹拌したのち、18
0℃で2時間乾燥した。 この粉末を衝撃圧着法によりバルク化し、外径20mm、
内径12mm、厚さ5mmのトロイダル磁心を作製した。バル
ク化の手法は、衝撃銃法により、衝撃圧力は7GPa、得ら
れた成形体の密度は97%であった。 これを550℃で1時間熱処理したものについて、飽和
磁束密度Bs1kHzの実効透磁率μe1K,および1kG,10kHzに
おけるコア損失W1/10Kを測定した。また比較の為にFe
基非晶質合金圧粉体(組成:Fe78B13Si9)及びフェライ
ト(Mn−Zn系)についても、実効透磁率を測定した。第
2表に結果を示す。なおFe基非晶質合金圧粉体の製法
は、圧粉体を形成するまでは上記Fe72Cu1Si13.59.5Nb
3Ru1と同様の手法によった。得られた圧粉体は非晶質性
を保つ温度範囲である400℃で2時間焼鈍を行なった。 第2表から本発明のFe基軟磁性合金圧粉体は飽和磁束
密度がCo基非晶質合金圧粉体やパーマロイ圧粉体に比べ
て大きく、かつFe基非晶質合金圧粉体等に比べ優れた透
磁率およびコア損失を有することがわかる。このため、
本発明のFe基軟磁性合金圧粉体はチョークコイル等に好
適である。 実施例6 第3表に示す組成の非晶質合金リボンから、実施例1
と同様の方法により、Fe基軟磁性合金圧粉体を得た。第
3表に各々の圧粉体を高温高湿下(80℃,95%RH)で100
0時間保持した後の耐食性の程度およびコア損失の変化
量ΔW を示す。第3表から明らかな様に、Ru、Rh、Pd、Os、I
r、Pt、Au、Cr、Ti、V等を添加した本発明Fe基軟磁性
合金圧粉体は、耐食性に優れ、高温高湿下におけるコア
損失の劣化が小さい為、厳しい環境下で使用する場合に
おいても実用的である。 実施例7 原子%でCu1%、Si13.8%、B8.9%、Nb3.2%、Cr0.5
%、C1%及び残部実質的にFeからなる組成の溶湯から、
単ロール法により幅10mm、厚さ18μmのリボンを作製し
た。このリボンのX線回折を測定したところ非晶質合金
に典型的なハローパターンが得られた。またこのリボン
の透過電子顕微鏡写真(30万倍)によりほぼ完全な非晶
質であることを確認した。 次にこの非晶質リボンを窒素ガス雰囲気中570℃で1
時間熱処理を行った。透過電子顕微鏡写真(30万倍)に
より、熱処理後のリボンの組織の大部分は第2図(b)
に示されるものと同様に微細な結晶粒からなることがわ
かった。結晶粒の平均粒径は約100Åであった。Cu無添
加の場合は結晶粒が粗大化することが確認されており、
CuとNb等の複合添加により、著しい結晶粒微細化効果が
得られる。これを振動ミルにて48mesh以下に粉砕し、実
施例1と同様の方法にて外径20mm、内径12mm、厚さ6mm
の圧粉磁心を作製した。 一方、上記非晶質リボンを、非晶質を保持するような
従来の熱処理(400℃×1時間)を施し、上記と同様な
手法にて同一形状の圧粉磁心を作製した。 得られたFe基軟磁性合金からなる圧粉磁心について、
磁束密度の波高値Bm=2kG及び周波数100KHzにおけるコ
ア損失W2/100Kを測定したところ、従来の熱処理のもの
は5500mW/cc、本発明による熱処理後のものは930mW/cc
であった。これから、本発明の熱処理により非晶質合金
中に微細な結晶粒を均一に形成することにより、コア損
失が著しく低下することがわかる。 実施例8 実施例7と同一の条件により、下記の第4表に示す組
成のFe基圧粉磁心を実施例7と同様な方法により作製し
た。リボンの状態で本発明による熱処理をほどこした場
合と、非晶質を保持する様な従来の熱処理を施した場合
とにつき、コア損失W2/100Kの値を比較して示す。本発
明の熱処理により低コア損失の磁気特性を有する合金が
得られることがわかる。 実施例9 Fe73-xCuxSi13B9Nb3Cr1C1の組成を有する非晶質合金
リボンから、実施例1と同様な方法により、外径20mm、
内径12mm、厚さ6mmの圧粉磁心を作製し、種々の温度で
1時間熱処理した。それぞれについて2kG、100kHzにお
けるコア損失W2/100Kを測定した。結果を第7図に示
す。 また各磁心に用いた非晶質合金の結晶化温度(Tx)を
示差走査熱量計(DSC)で測定した。各合金の結晶化温
度Txは10℃/分の昇温速度でそれぞれ580℃(x=0)
及び505℃(x=0.5,1.0,1.5)であった。 第7図から明らかなように、Cuの含有量(x)が0の
ときコア損失W2/100Kは著しく大きく、Cuを添加した場
合コア損失は小さくなるばかりでなく、適切な熱処理温
度範囲も540℃〜580℃とCu無添加材に比べ高くなってい
ることがわかる。この温度は10℃/分の昇温速度でDSC
で測定した結晶化温度Txより高い。 なお透過電子顕微鏡による観察の結果、Cuを含有する
本発明のFe基軟磁性合金を用いた圧粉磁心の場合、個々
の粉末は50%以上が微細な結晶粒からなることが確認さ
れた。 実施例10 水アトマイズ法により第5表に示す組成の合金粉を作
製し、フルイにより48mesh以下の粉末を得た。得られた
粉末をX線回折した結果、第1図(a)と同様のハロー
パターンが得られ、ほぼ完全な非晶質であることを確認
した。次に得られた粉末に変性アルキルシリケートから
なる耐熱性ワニスをバインダーとして7wt%加え圧力を
加えながら50℃/minで昇温し約530℃で温間プレスを行
ない30分保持後冷却し、外径20mm、内径12mm、厚さ6mm
の圧粉磁心を作製した。 その磁心をX線回折した結果第1図(b)に示す様に
結晶ピークが認められほぼ結晶化していた。 第5表に1kHzにおける実効透磁率μe1Kを測定した結
果を示す。 本発明のFe基軟磁性合金圧粉体は飽和磁束密度が10kG
以上あり、μe1Kも1000以上のものが得られるためノイ
ズフィルターやチョークコイル用磁心に最適である。 実施例11 Fe73.5Cu1Nb3Si16.5B6の組成を有するフレーク状の非
晶質合金粉末をキャビテーション法により作製した。 次にこの粉末に水ガラス、リン酸アルミニウム粉末ア
セトン、メタノールを混ぜた後、金型を450℃に加熱
し、15T/cm2の圧力で30分保持し圧粉成形した。得られ
た外径21mm、内径12mm、高さ8mmの圧粉体を更に530℃で
30分熱処理した。磁気特性測定後X線回折を行った結果
圧粉体はほぼ結晶相からなることが確認された。 第8図に作製した本発明圧粉磁心AおよびMoパーマロ
イ圧粉磁心B、Fe−Si−Al圧粉磁心Cの10kHzにおける
直流重畳特性の1例を示す。 本発明の圧粉磁心Aは従来の圧粉磁心より優れた直流
重畳特性を示し、スイッチング電源の平滑チョーク等に
好適である。 実施例12 Fe71.5Cu1Nb5Si15.5B7の組成を有する幅5mm、厚さ15
μmの非晶質合金薄帯を作製し、450℃で1時間保持後
冷却し振動ミルにて粉砕し48メッシュ以下の粉末とし
た。 得られた粉末に水ガラス、リン酸アルミニウム粉末、
アセトン、メタノールを混ぜた後500℃に加熱し、15T/c
m2の圧力で30分保持し圧粉成形した。得られた外径21m
m、内径12mm、高さ8mmの圧粉体を更に570℃で30分熱処
理した。次にこの圧粉磁心にエポキシ樹脂の粉体コーテ
ィングをほどこし、実効透磁率μeの周波数特性を測定
した。測定後X線回折を行った結果結晶ピークが認めら
れほぼ完全に結晶化していた。得られた結果の1例を第
9図に示す。比較のためMoパーマロイ圧粉磁心の実効透
磁率の周波数依存性を示す。 本発明の圧粉磁心は従来のMoパーマロイ圧粉磁心より
も優れた実効透磁率の周波数特性を示し、高周波で使用
される各種インダクターに好適である。 〔発明の効果〕 以上詳述した様に、本発明のFe基軟磁性合金圧粉体は
熱処理により従来のFe基非晶質合金圧粉体に比べてコア
損失が著しく低下しており、Co基非晶質合金と同程度で
あるとともに、コア損失の経時変化が小さく、透磁率が
高いものができるため実用上の効果が著しく大である。
The present invention relates to a Fe-based soft magnetic alloy compact having excellent magnetic properties, and in particular, to a Fe-based soft magnetic alloy compact comprising a large number of fine grains. The present invention relates to a powder and a method for producing the powder. [Prior art] Transformers, motors, chokes,
For a magnetic core used for a noise filter or the like, a crystalline material such as an Fe-Si alloy, permalloy, or ferrite is used according to the application. However, the Fe-Si alloy has a problem that the iron loss increases in a relatively high frequency region because the specific resistance is small and the magnetocrystalline anisotropy is not zero. Permalloy has a problem that the iron loss at a high frequency increases because the specific resistance is small.
Ferrite has a small loss at high frequencies but a small magnetic flux density of at most 5000G.Therefore, when used with a large operating magnetic flux density, it is close to saturation, resulting in an increase in iron loss. doing. In recent years, it has been desired to reduce the size of transformers used at high frequencies such as power supply transformers used in switching regulators. In that case, however, it is necessary to increase the operating magnetic flux density. The increase in loss is a serious problem in practical use. For the purpose of reducing iron loss at high frequency and improving frequency characteristics of magnetic permeability, a compact of the above magnetic alloy may be used. This is a method in which a powder of the above-described metal is produced and solidified via an insulating layer, and an organic material is used as the insulating layer. These magnetic cores are mainly used as chokes and noise filters. However, the green compact made of the above magnetic powder has a low magnetic permeability, so that the number of windings must be increased in order to obtain a sufficient inductance. In addition, there is a problem that heat generation in practical use is large due to large iron loss. On the other hand, amorphous magnetic alloys having no crystalline structure have recently attracted attention because they exhibit excellent soft magnetic properties such as high magnetic permeability and low coercive force. These amorphous magnetic alloys are made of iron (F
e), cobalt (Co), nickel (Ni), etc.
This contains phosphorus (P), carbon (C), boron (B), silicon (Si), aluminum (Al), germanium (Ge), etc. as an amorphizing element (metalloid). Further, amorphous alloys composed of Fe, Co, Ni, and alloys such as Ti, Zr, Hf, and Nb are also known. These amorphous alloys are usually obtained in the form of ribbons, and when used as their magnetic cores, the ribbons are toroidally or U-shaped.
It is used as a wound iron core formed into a shape, an E shape, or a laminated iron core obtained by stamping and laminating a thin ribbon into a predetermined shape. However, these magnetic cores are particularly difficult to produce in U-shape and E-shape. In order to solve the above-mentioned drawbacks, a method of producing a powder of an amorphous magnetic alloy, consolidating the powder with a binder, and producing a compact is disclosed in, for example, JP-A-55-133507, 61-154014, 61-. Fifteen
4111, 61-166902 and the like. Further, a method of obtaining a high-density green compact by instantaneously compressing the powder of an amorphous magnetic alloy by an impact force is disclosed in, for example, JP-A-61-28884.
04, 62-23905 and the like. Amorphous alloys used for these compacts are mainly classified into Fe-based and Co-based,
Fe-based amorphous alloys have the advantage of higher saturation magnetic flux density and lower material cost than Co-based alloys, but generally have higher core loss and lower magnetic permeability than Co-based amorphous alloys at high frequencies. There's a problem. On the other hand, a Co-based amorphous alloy has a small high-frequency core loss and a high magnetic permeability, but has a small saturation magnetic flux density and a large change with time in the core loss and the magnetic permeability. Furthermore, since expensive Co is used as a main raw material, disadvantages in terms of price are inevitable. Such advantages and disadvantages of the Fe-based and Co-based amorphous alloys are substantially applicable even when they are used as green compacts. [Problems to be Solved by the Invention] An object of the present invention is to provide a novel soft magnetic alloy green compact having a large saturation magnetic flux density, excellent core loss and aging of the core loss, excellent magnetic permeability and other magnetic properties. Is to do. Another object of the present invention is to provide a method for producing the Fe-based soft magnetic alloy compact. [Means for Solving the Problems] As a result of intensive studies in view of the above object, the present inventors found that Fe-Si
Alloys containing -B as basic components include Cu, Nb, W, Ta, Zr, and H
By adding a combination of at least one element selected from the group consisting of f, Ti, and Mo, an appropriate heat treatment of the amorphous alloy enables the majority of the structure to be composed of fine crystal grains and Fe-based soft magnetism with excellent magnetic properties They discovered that an alloy powder could be obtained, and reached the present invention. That is, the Fe-based soft magnetic alloy compact of the present invention has the general formula: (Fe 1-a M a ) 100-xyz-α-β-γ Cu x Si y B z M ′ α M ″ β X γ (atomic%) (where M is Co and / or Ni, and M ′ is Nb, W, Ta,
At least one element selected from the group consisting of Zr, Hf, Ti and Mo, M ″ is composed of V, Cr, Mn, Al, white metal element, Sc, Y, rare earth element, Au, Zn, Sn, Re X is at least one element selected from the group consisting of Be, C, Ge, P, Ga, Sb, As, In, and a, x, y, z, α, β and γ are respectively 0 ≦ a <0.5, 0.1 ≦ x ≦ 3, 0 ≦ y ≦ 30, 0 ≦ z ≦ 25, 0.1 ≦ α ≦ 30, 0 ≦ β ≦ 100 0 ≦ γ ≦ 10 and 0 ≦ y + z ≦ 35 is satisfied.) A fine powder having a composition represented by the following formula is used as a starting material, and this is compacted to form a compact green compact in which at least 50% of the composition is composed of fine crystal grains. Further, the method for producing a Fe-based soft magnetic alloy compact of the present invention includes a step of obtaining the amorphous alloy fine powder by quenching a molten metal, a step of pressing the same to form a compact, and a step of heating the compact. Heat treatment process to form fine crystal grains Here, as a method for forming the green compact, a method such as a cold press, a warm press, and an explosion pressure bonding is possible.In the present invention, Cu is an essential element, and its content is included. Quantity x
Ranges from 0.1 to 3 atomic%. If less than 0.1 atomic%
There is almost no effect of reducing the core loss by the addition of Cu. On the other hand, if it is more than 3 atomic%, the core loss becomes larger than that of the non-added one. In the present invention, the particularly preferable Cu content x is 0.5 to 2 atomic%, and in this range, the core loss is particularly small. Although the cause of the core loss reducing effect of Cu is not clear, it is considered as follows. In other words, the interaction parameter between Cu and Fe is positive and the solid solubility is low, but when an appropriate amount is contained in the Fe-based amorphous alloy and heat treatment is performed, clustering of clusters of Fe atoms or Cu atoms occurs. , Composition fluctuations occur. For this reason, a large number of regions that are likely to be partially crystallized are formed, and crystallization starts with the regions as nuclei. Since these crystals are mainly composed of Fe and have almost no solid solubility of Cu, Cu is extruded around the crystal grains by crystallization, and the Cu concentration around the crystal grains increases. For this reason, it is considered that crystal grains are unlikely to grow. That is, it is considered that a large number of crystal nuclei can be formed by the addition of Cu, and the crystal grains are difficult to grow. Since the crystal grains become magnetically isotropic due to the refinement of the crystal grains, even if the
It is considered that soft magnetism comparable to that of the base amorphous alloy can be obtained. This effect is considered to be remarkable due to the presence of Nb, Ta, W, Mo, Zr, Hf, Ti, etc., and in the absence of Nb, Ta, W, Mo, Zr, Hf, Ti, etc., the crystal grains become very fine. Not done. Also Fe
It is also considered that the soft magnetic characteristics are improved due to the fact that a fine crystal phase mainly composed of γ is generated, so that the magnetostriction is reduced and the magnetic anisotropy due to internal stress-strain is reduced as compared with an Fe-based amorphous alloy or the like. Even if Nb, Ta, W, Mo, Zr, Hf, etc. are added,
When Cu is not added, the crystal grains are hard to be refined and a compound phase is easily formed, so that the magnetic properties are degraded by crystallization. Si and B are desirable for making the alloy amorphous. Because, as will be described later, generally, the Fe-based soft magnetic alloy compact of the present invention is obtained by forming fine crystal grains by heat treatment after forming an amorphous alloy fine powder once. Because there is. The reasons for limiting the contents y and z of both are as follows:
y is 30 atomic% or less, z is 0 to 25 atomic%, and y + z is 0 to
If the content is out of the range of 35 atomic%, it may be difficult to make the alloy amorphous. In the present invention, the preferable range of y is 10 to
The preferred range of z is 3 to 12 atomic% and the preferred range of y + z is 18 to 28 atomic%. Within this range, one with a small core loss can be easily obtained. In the present invention, M ′ has an action of refining crystal grains precipitated by complex addition with Cu, and Nb, W,
At least one selected from the group consisting of Ta, Zr, Hf and Mo
It is a seed element. Nb and the like have an effect of increasing the crystallization temperature of the alloy, but it is considered that the crystal grains precipitated by the interaction with Cu which forms a cluster and has an effect of lowering the crystallization temperature are refined. The content α of M ′ is 0.
If it is 1 to 30 atomic%, the effect of grain refinement is insufficient if it is less than 0.1 atomic%, and if it exceeds 30 atomic%, the saturation magnetic flux density is remarkably reduced. The preferable content α of M ′ is 2 to 8
Atomic%. Note that Nb is most preferable as M 'in terms of magnetic characteristics. Further, the addition of M 'results in a high magnetic permeability equal to or higher than that of a green compact using a Co-based high magnetic permeability amorphous alloy. The balance is substantially Fe except for impurities, but a part of Fe may be replaced by the additional component M (Co and / or Ni). The content a of M is 0 ≦ a <0.5, because when α exceeds 0.5, the core loss increases. The Fe-based soft magnetic alloy green compact of the present invention having the above composition has at least 50% or more of the alloy structure composed of fine crystal grains. These crystal grains are mainly composed of α-Fe, and it is considered that Si, B, and the like are in a solid solution. These crystal grains, when measured at their maximum dimensions, have a remarkably small average particle size of 500 ° or less and are uniformly distributed in the alloy structure. The portion other than the fine crystal grains in the alloy structure is mainly amorphous.
The Fe-based soft magnetic alloy compact of the present invention shows sufficiently excellent magnetic properties even when the ratio of fine crystal grains is substantially 100%. Further, the Fe-based soft magnetic alloy compact of the present invention may contain V, Cr, Mn, Al, a white metal element, and the like, as necessary, in addition to the above components. C, Ge, P, Ga
Etc. may be included. It is needless to say that unavoidable impurities such as N, O and S can be regarded as the same as the alloy composition of the present invention even if they are contained to such an extent that the desired characteristics are not deteriorated. Next, a method for producing the Fe-based soft magnetic alloy compact of the present invention will be described. First, as a method of forming the amorphous alloy powder, from a molten metal of the above predetermined composition, by a known liquid quenching method such as a single roll method, a multi-roll method, to form a ribbon-shaped amorphous alloy,
There is a method of pulverizing the powder by heat embrittlement followed by grinding. There is also a method of directly obtaining an amorphous alloy fine powder from a molten metal having a predetermined composition by a known liquid quenching method such as an atomizing method and a cavitation method. The latter method is generally superior in mass productivity, but the former method can easily obtain scaly powder, and is used depending on the purpose. This amorphous alloy fine powder may contain a slight crystal phase, but is desirably as amorphous as possible in order to uniformly generate fine crystal grains by a subsequent heat treatment. Next, in order to consolidate this into a green compact, a binder (for example, a phenol resin or an epoxy resin may be used, but if a heat treatment is performed after press molding, a heat-resistant binder such as an inorganic varnish is used). Is desirable) and press-molding. Also, in order to make this into a compact without using a binder, use the deformation due to viscous flow in the so-called warm region,
The amorphous alloy powder can be formed into a bulk by pressing and consolidating the amorphous alloy powder in the vicinity of the crystallization temperature of the amorphous alloy. It is also possible to form a lump by a so-called explosion molding technique. When the green compact is used as an electric component, it is preferable to provide an insulating layer between the powders for the purpose of reducing eddy current loss. The method can be achieved by previously oxidizing the surface of the amorphous alloy powder, which is the starting material, or by adding water glass, metal alkoxide, ceramic ultrafine powder, etc., and then forming a green compact. . In addition, all of the powders described above are amorphous powders. However, crystallization heat treatment may be performed on the amorphous ribbon, and the powder may be pulverized. However, the heat treatment can be performed in the form of a ribbon or powder, but it is preferable to perform the heat treatment after forming the green compact except when the magnetostriction is close to zero. The method is usually carried out in a vacuum or in an atmosphere of an inert gas such as hydrogen or nitrogen for a certain period of time. The heat treatment temperature and time vary depending on the shape, size, composition and the like of the magnetic core made of the amorphous alloy fine powder, but it is generally desirable that the temperature is 450 ° C. to 700 ° C. for about 5 minutes to 24 hours. If the heat treatment temperature is lower than 450 ° C., crystallization hardly occurs, and the heat treatment takes too much time. If the temperature is higher than 700 ° C., coarse crystal grains may be generated, and fine crystal grains cannot be obtained uniformly. When the heat treatment time is less than 5 minutes, it is difficult to make the entire processed alloy a uniform temperature, and the magnetic properties are likely to vary,
If the time is longer than 24 hours, not only the productivity will deteriorate, but also the magnetic properties will be likely to deteriorate due to excessive growth of crystal grains. Preferred heat treatment conditions are 500 to 650 ° C. for 5 minutes to 6 hours in consideration of practicality and uniform temperature control. The heat treatment atmosphere is preferably an atmosphere of Ar, N 2 , H 2, etc.
An oxidizing atmosphere such as the air may be used. Cooling can be appropriately performed by air cooling, furnace cooling, or the like. In some cases, multi-stage heat treatment can be performed. [Example] Hereinafter, an example of the present invention will be described. Example 1 A ribbon having a width of 20 mm and a thickness of 18 μm was produced by a single roll method from a molten metal having a composition consisting of 1% of Cu, 15% of Si, 9% of B, 9% of Nb, 1% of Cr and the balance substantially of Fe. When the X-ray diffraction of this ribbon was measured, a halo pattern typical of an amorphous alloy as shown in FIG. 1A was obtained. FIG. 2A shows a transmission electron micrograph (magnification: 300,000) of this ribbon. As is clear from X-ray diffraction and FIG. 2 (a), the obtained ribbon was almost completely amorphous. Next, this amorphous ribbon was heated at 300 ° C. for 30 minutes in a nitrogen atmosphere, and then pulverized by a vibration mill to obtain a powder having a size of 48 mesh or less. The result of observing the shape of the obtained powder with a scanning electron microscope (SEM) is shown in FIG. 3, and it can be seen that the shape of the powder is scaly. On the other hand, as a result of X-ray diffraction of this powder, almost the same halo pattern as shown in FIG. 1A was obtained. At this stage, it was confirmed that the powder was substantially amorphous. Next, 7 wt% of a heat-resistant inorganic varnish (modified alkyl silicate) was added as a binder to the obtained powder, and warm pressing was performed at about 250 ° C. to produce a dust core having an outer diameter of 20 mm, an inner diameter of 12 mm, and a thickness of 6 mm. . FIG. 4 shows a cross-sectional macrostructure of the obtained dust core. This magnetic core was heat-treated at 550 ° C. for 1 hour in a nitrogen gas atmosphere, and was gradually cooled. At the same time, the amorphous powder was heat-treated under the same conditions and subjected to X-ray diffraction. As a result, a crystal peak was observed as shown in FIG. 1 (b). FIG. 2 (b) is a transmission electron micrograph (30
It is clear that most of the structure after the heat treatment is composed of fine crystal grains. The average grain size of the crystal grains was about 100 °. The shape of the crystal grains of the alloy of the present invention to which Cu and Nb are added in combination is nearly spherical, and the average grain size is remarkably refined to about 100 °. From the X-ray diffraction pattern and the analysis by the transmission electron microscope, it is presumed that these crystal grains are α-Fe in which Si, B and the like are dissolved. When Cu was not added, the crystal grains became large and hard to be miniaturized. Thus, it was confirmed that the combined addition of Cu and Nb significantly changed the size and morphology of the obtained crystal grains. Next, the core loss W at a peak value Bm of magnetic flux density of 2 kG and a frequency of 100 KHz for the above-mentioned dust core before and after the heat treatment.
When measuring 2 / 100K , the one before heat treatment was 7500mW / c
c, that after heat treatment was 530 mW / cc. From this, it can be seen that the core loss is significantly reduced by uniformly forming fine crystal grains in the amorphous alloy by the heat treatment of the present invention. Example 2 Under the same conditions as in Example 1, an Fe-based amorphous dust core having the composition shown in Table 1 below was produced. Each of the obtained alloys was divided into two parts. One part was subjected to a heat treatment under the same conditions as in Example 1, and the other part was subjected to a conventional heat treatment (40
(0 ° C. × 1 hour), and the core loss W 2 / 100K at 100 kHz and 2KG was measured for each. The results are shown in Table 1. It can be seen that the core loss is remarkably reduced by uniformly forming fine crystal grains in the amorphous alloy by the heat treatment of the present invention in any composition. In addition, it can be seen that, for the alloys shown in the comparative example, in which the amorphous state was maintained by the conventional heat treatment, no significant decrease in the core loss was observed in any of the compositions. Example 3 In the same manner as in Example 1, Fe 73-x Cu x Si 14 B 9 Nb 3 Cr 1
An amorphous alloy compact having a composition represented by the following formula (0 ≦ x ≦ 3.5) is prepared, and each sample is subjected to the following optimal heat treatment temperature at 1
Time heat treatment, peak value of magnetic flux density Bm = 2kG, frequency f = 1
The core loss W2 / 100K at 00 KHz was measured. Value of x (atomic%) Heat treatment temperature (° C) 0 510 0.05 515 0.1 530 0.5 550 1.0 570 1.5 570 2.0 560 2.5 540 3.0 510 3.2 500 3.5 490 Figure 5 shows Cu content x (atomic%) and core loss W 2 / 100K
The relationship is shown below. As is clear from FIG. 5, the core loss decreases as the Cu content x increases from 0, but when the content exceeds about 3 atomic%, the core loss becomes as large as that of the case where no Cu is added. x is 0.
When it is in the range of 1 to 3 atomic%, it can be seen that the core loss is sufficiently small. A particularly desirable range of x is 0.5 to 2 atomic%. Example 4 Fe 75.5-α Cu 1 Si 13 B 9.5 M ′ was prepared in the same manner as in Example 1.
An amorphous alloy having a composition represented by α Ti 1 (M ′ = Nb, W,
Ta or Mo) compacts are prepared, and each sample is heat-treated for 1 hour at the following optimum heat treatment temperature, and each core loss W
2 / 100K was measured. Value of α (atomic%) Heat treatment temperature (° C.) 0 410 0.1 420 0.2 425 1.0 445 2.0 500 3.0 550 5.0 580 7.0 590 8.0 600 10.0 600 11.0 605 The results are shown in FIG. In FIG. 6, graphs A, B,
C and D show the cases where M 'is Nb, W, Ta and Mo, respectively. As is apparent from FIG. 6, the amount α of M ′ is 0.1 to 10 atomic%.
The core loss is sufficiently small in the range. M '
Core loss was particularly low at Nb. A particularly desirable range of α is 2 ≦ α ≦ 8. Example 5 An alloy having a composition of Fe 72 Cu 1 Si 13.5 B 9.5 Nb 3 Ru 1 was powdered by a water atomizing method, and a powder having a mesh of 48 mesh or less was obtained with a sieve. As a result of X-ray diffraction of the obtained powder,
A halo pattern similar to that shown in FIG. A was obtained, and it was confirmed that the film was almost completely amorphous. 0.7% of water glass (JIS No. 3) is added to the obtained powder, and the mixture is sufficiently stirred.
Dry at 0 ° C. for 2 hours. This powder is made into a bulk by the impact compression method, and the outer diameter is 20 mm.
A toroidal magnetic core having an inner diameter of 12 mm and a thickness of 5 mm was manufactured. The bulking was performed by an impact gun method, and the impact pressure was 7 GPa and the density of the obtained molded body was 97%. This was heat-treated at 550 ° C. for 1 hour, and the effective magnetic permeability μ e1K at a saturation magnetic flux density Bs1 kHz and the core loss W 1 / 10K at 1 kG, 10 kHz were measured. For comparison, Fe
The effective magnetic permeability was also measured for the base amorphous alloy green compact (composition: Fe 78 B 13 Si 9 ) and ferrite (Mn-Zn system). Table 2 shows the results. Note that the method for producing the Fe-based amorphous alloy compact is as described above until the formation of the compact is Fe 72 Cu 1 Si 13.5 B 9.5 Nb
3 Following the same method as Ru 1 . The obtained green compact was annealed for 2 hours at 400 ° C., which is a temperature range for maintaining the amorphous property. Table 2 shows that the Fe-based soft magnetic alloy compact of the present invention has a higher saturation magnetic flux density than the Co-based amorphous alloy compact and the permalloy compact, and the Fe-based amorphous alloy compact. It can be seen that they have excellent magnetic permeability and core loss as compared to For this reason,
The Fe-based soft magnetic alloy compact of the present invention is suitable for choke coils and the like. Example 6 Example 1 was obtained from an amorphous alloy ribbon having the composition shown in Table 3.
A Fe-based soft magnetic alloy green compact was obtained in the same manner as described above. Table 3 shows that each green compact was treated under high temperature and high humidity (80 ° C, 95% RH).
The degree of corrosion resistance and the amount of change in core loss ΔW after holding for 0 hours Is shown. As is clear from Table 3, Ru, Rh, Pd, Os, I
The Fe-based soft magnetic alloy compact of the present invention to which r, Pt, Au, Cr, Ti, V, etc. are added has excellent corrosion resistance, and has a small deterioration of core loss under high temperature and high humidity. It is practical in some cases. Example 7 Atomic%: Cu 1%, Si 13.8%, B8.9%, Nb 3.2%, Cr 0.5
%, C1%, and the balance substantially from Fe,
A ribbon having a width of 10 mm and a thickness of 18 μm was produced by a single roll method. When the X-ray diffraction of this ribbon was measured, a halo pattern typical of an amorphous alloy was obtained. The transmission electron micrograph (magnification 300,000) of this ribbon confirmed that it was almost completely amorphous. Next, this amorphous ribbon is heated at 570 ° C. for 1 hour in a nitrogen gas atmosphere.
Heat treatment was performed for a time. According to the transmission electron micrograph (magnification 300,000), most of the structure of the ribbon after heat treatment is shown in FIG. 2 (b).
It was found that the particles consisted of fine crystal grains like those shown in FIG. The average grain size of the crystal grains was about 100 °. It has been confirmed that the crystal grains become coarse when Cu is not added,
A remarkable grain refinement effect can be obtained by adding Cu and Nb in combination. This is crushed to 48 mesh or less by a vibration mill, and the outer diameter is 20 mm, the inner diameter is 12 mm, and the thickness is 6 mm in the same manner as in Example 1.
Was prepared. On the other hand, the amorphous ribbon was subjected to a conventional heat treatment (400 ° C. × 1 hour) to maintain the amorphous state, and a dust core having the same shape was produced by the same method as described above. Regarding the dust core made of the obtained Fe-based soft magnetic alloy,
When the peak value Bm of the magnetic flux density Bm = 2 kG and the core loss W2 / 100K at a frequency of 100 KHz were measured, the conventional heat treatment was 5500 mW / cc, and the heat treatment according to the present invention was 930 mW / cc.
Met. This indicates that the core loss is significantly reduced by uniformly forming fine crystal grains in the amorphous alloy by the heat treatment of the present invention. Example 8 Under the same conditions as in Example 7, an Fe-based dust core having the composition shown in Table 4 below was produced in the same manner as in Example 7. The values of the core loss W 2 / 100K are compared between the case where the heat treatment according to the present invention is performed in the state of the ribbon and the case where the conventional heat treatment for maintaining the amorphous state is performed. It can be seen that the heat treatment of the present invention can provide an alloy having low core loss and magnetic properties. Example 9 amorphous alloy ribbon having a composition of Fe 73-x Cu x Si 13 B 9 Nb 3 Cr 1 C 1, in the same manner as in Example 1, an outer diameter of 20 mm,
Powder magnetic cores having an inner diameter of 12 mm and a thickness of 6 mm were prepared and heat-treated at various temperatures for 1 hour. The core loss W2 / 100K at 2 kG and 100 kHz was measured for each. The results are shown in FIG. The crystallization temperature (Tx) of the amorphous alloy used for each magnetic core was measured with a differential scanning calorimeter (DSC). The crystallization temperature Tx of each alloy is 580 ° C (x = 0) at a rate of 10 ° C / min.
And 505 ° C. (x = 0.5, 1.0, 1.5). As is clear from FIG. 7, when the Cu content (x) is 0, the core loss W 2 / 100K is extremely large, and when Cu is added, not only the core loss becomes small, but also the appropriate heat treatment temperature range is reduced. It can be seen that the temperature was 540 ° C to 580 ° C, which was higher than that of the Cu-free material. This temperature is DSC at a heating rate of 10 ° C / min.
It is higher than the crystallization temperature Tx measured in. As a result of observation by a transmission electron microscope, it was confirmed that in the case of a dust core using the Fe-based soft magnetic alloy of the present invention containing Cu, 50% or more of the individual powders consisted of fine crystal grains. Example 10 An alloy powder having the composition shown in Table 5 was produced by a water atomizing method, and a powder having a mesh of 48 mesh or less was obtained by sieving. As a result of X-ray diffraction of the obtained powder, a halo pattern similar to that of FIG. 1A was obtained, and it was confirmed that the powder was almost completely amorphous. Next, 7 wt% of a heat-resistant varnish made of a modified alkyl silicate was added to the obtained powder as a binder, the temperature was increased at 50 ° C./min while applying pressure, and the mixture was warm-pressed at about 530 ° C., held for 30 minutes, cooled, and cooled Diameter 20mm, inner diameter 12mm, thickness 6mm
Was prepared. As a result of X-ray diffraction of the magnetic core, a crystal peak was recognized as shown in FIG. Table 5 shows the results of measuring the effective magnetic permeability μ e1K at 1 kHz. The Fe-based soft magnetic alloy compact of the present invention has a saturation magnetic flux density of 10 kG.
As described above, since μe1K of 1000 or more is obtained, it is most suitable for a noise filter and a magnetic core for a choke coil. Example 11 A flake-like amorphous alloy powder having a composition of Fe 73.5 Cu 1 Nb 3 Si 16.5 B 6 was produced by a cavitation method. Next, after mixing water glass, aluminum phosphate powder acetone, and methanol with this powder, the mold was heated to 450 ° C. and kept at a pressure of 15 T / cm 2 for 30 minutes to perform compacting. The obtained compact having an outer diameter of 21 mm, an inner diameter of 12 mm, and a height of 8 mm is further heated at 530 ° C.
Heat treated for 30 minutes. As a result of X-ray diffraction after measuring the magnetic properties, it was confirmed that the green compact was substantially composed of a crystalline phase. FIG. 8 shows an example of the DC superposition characteristics at 10 kHz of the dust core A of the present invention, the Mo permalloy dust core B, and the Fe-Si-Al dust core C produced. The powder magnetic core A of the present invention shows a superior DC superposition characteristic than the conventional powder magnetic core, and is suitable for a smoothing choke or the like of a switching power supply. Example 12 Fe 71.5 Cu 1 Nb 5 Si 15.5 B 7 having a composition of width 5 mm and thickness 15
A μm amorphous alloy ribbon was prepared, kept at 450 ° C. for 1 hour, cooled, and crushed by a vibration mill to obtain a powder having a size of 48 mesh or less. Water glass, aluminum phosphate powder,
After mixing acetone and methanol, heat to 500 ℃, 15T / c
The powder was held at a pressure of m 2 for 30 minutes and compacted. Obtained outer diameter 21m
The green compact having a diameter of 12 mm, an inner diameter of 12 mm and a height of 8 mm was further heat-treated at 570 ° C. for 30 minutes. Next, a powder coating of an epoxy resin was applied to the dust core, and the frequency characteristics of the effective magnetic permeability μe were measured. X-ray diffraction was performed after the measurement, and as a result, a crystal peak was recognized, and it was almost completely crystallized. One example of the obtained result is shown in FIG. For comparison, the frequency dependence of the effective permeability of a Mo permalloy powder core is shown. The powder magnetic core of the present invention exhibits better frequency characteristics of effective magnetic permeability than the conventional Mo permalloy powder magnetic core, and is suitable for various inductors used at high frequencies. [Effects of the Invention] As described in detail above, the core loss of the Fe-based soft magnetic alloy compact of the present invention is significantly reduced by heat treatment as compared with the conventional Fe-based amorphous alloy compact, The effect is substantially the same as that of the base amorphous alloy, the change in core loss with time is small, and the magnetic permeability is high.

【図面の簡単な説明】 第1図(a)は実施例1のFe基軟磁性合金圧粉体を構成
する従来の熱処理前のX線回折パターン、第1図(b)
は本発明に係る熱処理後のX線回折パターン、第2図
(a)は第1図(a)に対応し、第2図(b)は第1図
(b)に対応する金属組織の透過電子顕微鏡写真(30万
倍)、 第3図は本発明に係る粒子構造写真、第4図は実施例1
のFe基軟磁性合金圧粉体の断面ミクロ金属組織写真、 第5図はコア損失のCu量依存性を示す図、第6図はコア
損失のM′量依存性を示す図、第7図はコア損失の熱処
理温度依存性を示す図、第8図は直流重畳特性の1例を
示した図、第9図は実効透磁率の周波数依存性の1例を
示した図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) is a conventional X-ray diffraction pattern before heat treatment constituting the Fe-based soft magnetic alloy compact of Example 1, FIG. 1 (b)
Fig. 2 shows the X-ray diffraction pattern after heat treatment according to the present invention, Fig. 2 (a) corresponds to Fig. 1 (a), and Fig. 2 (b) shows the transmission of the metal structure corresponding to Fig. 1 (b). Electron micrograph (× 300,000), FIG. 3 is a photograph of the particle structure according to the present invention, and FIG. 4 is Example 1.
FIG. 5 is a diagram showing the dependency of core loss on Cu content, FIG. 6 is a diagram showing M ′ content dependency of core loss, and FIG. FIG. 8 is a diagram showing the dependence of the core loss on the heat treatment temperature, FIG. 8 is a diagram showing an example of the direct current superposition characteristic, and FIG. 9 is a diagram showing an example of the frequency dependence of the effective magnetic permeability.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−179729(JP,A) 特開 昭61−154014(JP,A) 特開 昭61−166902(JP,A) 特開 昭62−317189(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (56) References JP-A-59-179729 (JP, A)                 JP-A-61-154014 (JP, A)                 JP-A-61-166902 (JP, A)                 JP-A-62-317189 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.一般式: (Fe1-aMaa100−x−y−z−α−β−γCuxSiyBzM′αM″βγ (原子%) (ただし、MはCo及び/又はNiであり、M′はNb,W,Ta,
Zr,Hf,Ti及びMoから成る群から選ばれた少なくとも1種
の元素、M″はV,Cr,Mn,Al,白金属元素,Sc,Y,希土類元
素,Au,Zn,Sn,Reから成る群から選ばれた少なくとも1種
の元素、XはBe,C,Ge,P,Ga,Sb,As,Inから成る群から選
ばれた少なくとも1種の元素であり、a,x,y,z,α,β及
びγはそれぞれ0≦a<0.5,0.1≦x≦3,0≦y≦30,0≦
z≦25,0.1≦α≦30,0≦β≦10,0≦γ≦10及び0≦y+
z≦35を満たす。)により表される組成を有する合金粉
末を圧密化し塊状とした圧粉体であって、その合金組織
の少なくとも50%が微細な結晶粒からなり、その結晶粒
がその最大寸法で測定した場合500Å以下の平均粒径を
有することを特徴とするFe基軟磁性合金圧粉体。 2.特許請求の範囲第1項に記載のFe基軟磁性合金圧粉
体において、前記組織の残部が非晶質であることを特徴
とするFe基軟磁性合金圧粉体。 3.特許請求の範囲第1項に記載のFe基軟磁性合金圧粉
体において、前記組織が実質的に微細な結晶粒からなる
ことを特徴とするFe基軟磁性合金圧粉体。 4.特許請求の範囲第1項乃至第3項のいずれかに記載
のFe基軟磁性合金圧粉体において、0≦a<0.3,0.5≦
x≦2,10≦y≦25,3≦z≦12,18≦y+z≦28,2≦α≦
8であることを特徴とするFe基軟磁性合金圧粉体。 5.特許請求の範囲第1項乃至第4項のいずれかに記載
のFe基軟磁性合金圧粉体において、前記M′がNbである
ことを特徴とするFe基軟磁性合金圧粉体。 6.特許請求の範囲第1項乃至第4項のいずれかに記載
のFe基軟磁性合金圧粉体において、前記M′がTiを含む
2種以上の元素であり、および/または前記M″がRu,R
h,Pd,Os,Ir,Pt,Au,Cr,Vから選ばれた少なくとも1種の
元素であることを特徴とするFe基軟磁性合金圧粉体。 7.一般式: (Fe1-aMaa100−x−y−z−α−β−γCuxSiyBzM′αM″βγ (原子%) (ただし、MはCo及び/又はNiであり、M′はNb,W,Ta,
Zr,Hf,Ti及びMoから成る群から選ばれた少なくとも1種
の元素、M″はV,Cr,Mn,Al,白金属元素,Sc,Y,希土類元
素,Au,Zn,Sn,Reから成る群から選ばれた少なくとも1種
の元素、XはBe,C,Ge,P,Ga,Sb,As,Inから成る群から選
ばれた少なくとも1種の元素であり、a,x,y,α,β及び
γはそれぞれ0≦a<0.5,0.1≦x≦3,0≦y≦30,0≦z
≦25,0.1≦α≦30,0≦β≦10,0≦γ≦10及び0≦y+z
≦35を満たす。)により表される組成を有し、その合金
組織の少なくとも50%が微細な結晶粒からなり、その結
晶粒がその最大寸法で測定した場合500Å以下の平均粒
径を有する合金の微粉末をプレス成形にて圧密化する際
粉末間にバインダーおよび/または電気的絶縁物質を介
在させたことを特徴とするFe基軟磁性合金圧粉体の製造
方法。 8.特許請求の範囲第7項記載のFe基軟磁性合金圧粉体
の製造方法において、非晶質合金薄帯に微細な結晶粒を
形成する熱処理を施し、これを微粉末とした後に、プレ
ス成形工程を行うことを特徴とするFe基軟磁性合金圧粉
体の製造方法。 9.特許請求の範囲第8項に記載のFe基軟磁性合金圧粉
体の製造方法において、微細な結晶粒を形成するための
熱処理が、450〜700℃を5分〜24時間保持したものであ
ることを特徴とするFe基軟磁性合金圧粉体の製造方法。 10.一般式: (Fe1-aMaa100−x−y−z−α−β−γCuxSiyBzM′αM″βγ (原子%) (ただし、MはCo及び/又はNiであり、M′はNb,W,Ta,
Zr,Hf,Ti及びMoから成る群から選ばれた少なくとも1種
の元素、M″はV,Cr,Mn,Al,白金属元素,Sc,Y,希土類元
素,Au,Zn,Sn,Reから成る群から選ばれた少なくとも1種
の元素、XはBe,C,Ge,P,Ga,Sb,As,Inから成る群から選
ばれた少なくとも1種の元素であり、a,x,y,α,β及び
γはそれぞれ0≦a<0.5,0.1≦x≦3,0≦y≦30,0≦z
≦25,0.1≦α≦30,0≦β≦10,0≦γ≦10及び0≦y+z
≦35を満たす。)により表される組成の非晶質合金微粉
末に、バインダーおよび/または電気的絶縁物質を加え
てプレス成形した後、微細な結晶粒を形成するための熱
処理を施したことを特徴とするFe基軟磁性合金圧粉体の
製造方法。 11.特許請求の範囲第10項に記載のFe基軟磁性合金圧
粉体の製造方法において、微細な結晶粒を形成するため
の熱処理が、450〜700℃を5分〜24時間保持したもので
あることを特徴とするFe基軟磁性合金圧粉体の製造方
法。 12.一般式: (Fe1-aMaa100−x−y−z−α−β−γCuxSiyBzM′αM″βγ (原子%) (ただし、MはCo及び/又はNiであり、M′はNb,W,Ta,
Zr,Hf,Ti及びMoから成る群から選ばれた少なくとも1種
の元素、M″はV,Cr,Mn,Al,白金属元素,Sc,Y,希土類元
素,Au,Zn,Sn,Reから成る群から選ばれた少なくとも1種
の元素、XはBe,C,Ge,P,Ga,Sb,As,Inから成る群から選
ばれた少なくとも1種の元素であり、a,x,y,α,β及び
γはそれぞれ0≦a<0.5,0.1≦x≦3,0≦y≦30,0≦z
≦25,0.1≦α≦30,0≦β≦10,0≦γ≦10及び0≦y+z
≦35を満たす。)により表される組成の非晶質合金微粉
末を結晶化温度近傍にて加圧することにより、もしくは
衝撃力により塊状とし、しかる後微細な結晶粒を形成す
る熱処理を行うことを特徴とするFe基軟磁性合金圧粉体
の製造方法。 13.特許請求の範囲第12項に記載のFe基軟磁性合金圧
粉体の製造方法において、微細な結晶粒を形成するため
の熱処理が、450〜700℃を5分〜24時間保持したもので
あることを特徴とするFe基軟磁性合金圧粉体の製造方
法。
(57) [Claims] General formula: (Fe 1-a Ma a ) 100-xy-z-α-β-γ Cu x Si y B z M′α M ″ β X γ (atomic%) (where M is Co and / or Or Ni, and M ′ is Nb, W, Ta,
At least one element selected from the group consisting of Zr, Hf, Ti and Mo, M ″ is from V, Cr, Mn, Al, white metal, Sc, Y, rare earth, Au, Zn, Sn, Re. X is at least one element selected from the group consisting of Be, C, Ge, P, Ga, Sb, As, In, and X is a, x, y, z, α, β and γ are respectively 0 ≦ a <0.5, 0.1 ≦ x ≦ 3, 0 ≦ y ≦ 30, 0 ≦
z ≦ 25,0.1 ≦ α ≦ 30,0 ≦ β ≦ 10,0 ≦ γ ≦ 10 and 0 ≦ y +
Satisfies z ≦ 35. ) Is a compact compacted from an alloy powder having a composition represented by the formula (1), wherein at least 50% of the alloy structure is composed of fine crystal grains, and when the crystal grains are measured at their maximum size, 500 mm A Fe-based soft magnetic alloy green compact having the following average particle size. 2. 2. The Fe-based soft magnetic alloy green compact according to claim 1, wherein the remainder of the structure is amorphous. 3. 2. The Fe-based soft magnetic alloy compact according to claim 1, wherein said structure is made up of substantially fine crystal grains. 4. The Fe-based soft magnetic alloy compact according to any one of claims 1 to 3, wherein 0 ≦ a <0.3,0.5 ≦
x ≦ 2,10 ≦ y ≦ 25,3 ≦ z ≦ 12,18 ≦ y + z ≦ 28,2 ≦ α ≦
8. A green compact of an Fe-based soft magnetic alloy, which is 8. 5. The Fe-based soft magnetic alloy compact according to any one of claims 1 to 4, wherein M 'is Nb. 6. The Fe-based soft magnetic alloy compact according to any one of claims 1 to 4, wherein the M 'is at least two elements including Ti, and / or the M "is Ru. , R
A Fe-based soft magnetic alloy compact comprising at least one element selected from the group consisting of h, Pd, Os, Ir, Pt, Au, Cr, and V. 7. General formula: (Fe 1-a Ma a ) 100-xy-z-α-β-γ Cu x Si y B z M′α M ″ β X γ (atomic%) (where M is Co and / or Or Ni, and M ′ is Nb, W, Ta,
At least one element selected from the group consisting of Zr, Hf, Ti and Mo, M ″ is from V, Cr, Mn, Al, white metal, Sc, Y, rare earth, Au, Zn, Sn, Re. X is at least one element selected from the group consisting of Be, C, Ge, P, Ga, Sb, As, In, and X is a, x, y, α, β and γ are respectively 0 ≦ a <0.5, 0.1 ≦ x ≦ 3, 0 ≦ y ≦ 30, 0 ≦ z
≦ 25, 0.1 ≦ α ≦ 30, 0 ≦ β ≦ 10, 0 ≦ γ ≦ 10 and 0 ≦ y + z
Satisfies ≦ 35. ), Wherein at least 50% of the alloy structure is composed of fine crystal grains, and the crystal grains have an average particle size of 500 mm or less when measured at their maximum size. A method for producing an Fe-based soft magnetic alloy compact, wherein a binder and / or an electrically insulating material is interposed between powders when compacting by molding. 8. 8. The method for producing a Fe-based soft magnetic alloy compact according to claim 7, wherein the amorphous alloy ribbon is subjected to a heat treatment for forming fine crystal grains, and then turned into a fine powder. A method for producing a Fe-based soft magnetic alloy green compact, comprising performing a step. 9. 9. The method for producing an Fe-based soft magnetic alloy compact according to claim 8, wherein the heat treatment for forming fine crystal grains is performed by maintaining 450 to 700 ° C. for 5 minutes to 24 hours. A method for producing a Fe-based soft magnetic alloy green compact, comprising: 10. General formula: (Fe 1-a Ma a ) 100-xy-z-α-β-γ Cu x Si y B z M′α M ″ β X γ (atomic%) (where M is Co and / or Or Ni, and M ′ is Nb, W, Ta,
At least one element selected from the group consisting of Zr, Hf, Ti and Mo, M ″ is from V, Cr, Mn, Al, white metal, Sc, Y, rare earth, Au, Zn, Sn, Re. X is at least one element selected from the group consisting of Be, C, Ge, P, Ga, Sb, As, In, and X is a, x, y, α, β and γ are respectively 0 ≦ a <0.5, 0.1 ≦ x ≦ 3, 0 ≦ y ≦ 30, 0 ≦ z
≦ 25, 0.1 ≦ α ≦ 30, 0 ≦ β ≦ 10, 0 ≦ γ ≦ 10 and 0 ≦ y + z
Satisfies ≦ 35. ), A binder and / or an electrical insulating material added to an amorphous alloy fine powder having a composition represented by formula (1), press-molded, and then heat-treated to form fine crystal grains. A method for producing a base soft magnetic alloy compact. 11. 11. The method for producing a Fe-based soft magnetic alloy compact according to claim 10, wherein the heat treatment for forming fine crystal grains is performed by holding 450 to 700 ° C. for 5 minutes to 24 hours. A method for producing a Fe-based soft magnetic alloy green compact, comprising: 12. General formula: (Fe 1-a Ma a ) 100-xy-z-α-β-γ Cu x Si y B z M′α M ″ β X γ (atomic%) (where M is Co and / or Or Ni, and M ′ is Nb, W, Ta,
At least one element selected from the group consisting of Zr, Hf, Ti and Mo, M ″ is from V, Cr, Mn, Al, white metal, Sc, Y, rare earth, Au, Zn, Sn, Re. X is at least one element selected from the group consisting of Be, C, Ge, P, Ga, Sb, As, In, and X is a, x, y, α, β and γ are respectively 0 ≦ a <0.5, 0.1 ≦ x ≦ 3, 0 ≦ y ≦ 30, 0 ≦ z
≦ 25, 0.1 ≦ α ≦ 30, 0 ≦ β ≦ 10, 0 ≦ γ ≦ 10 and 0 ≦ y + z
Satisfies ≦ 35. Fe) characterized by subjecting the amorphous alloy fine powder having the composition represented by) to a mass by pressing at a temperature near the crystallization temperature or by an impact force, and then performing a heat treatment to form fine crystal grains. A method for producing a base soft magnetic alloy compact. 13. In the method for producing an Fe-based soft magnetic alloy compact according to claim 12, the heat treatment for forming fine crystal grains is performed by holding 450 to 700 ° C for 5 minutes to 24 hours. A method for producing a Fe-based soft magnetic alloy green compact, comprising:
JP62140336A 1987-06-04 1987-06-04 Fe-based soft magnetic alloy compact and manufacturing method thereof Expired - Fee Related JP2713363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62140336A JP2713363B2 (en) 1987-06-04 1987-06-04 Fe-based soft magnetic alloy compact and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62140336A JP2713363B2 (en) 1987-06-04 1987-06-04 Fe-based soft magnetic alloy compact and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS63304603A JPS63304603A (en) 1988-12-12
JP2713363B2 true JP2713363B2 (en) 1998-02-16

Family

ID=15266457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62140336A Expired - Fee Related JP2713363B2 (en) 1987-06-04 1987-06-04 Fe-based soft magnetic alloy compact and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2713363B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081884A2 (en) * 2010-12-13 2012-06-21 주식회사 아모텍 Amorphous magnetic component, electric motor using same and method for manufacturing same
KR101162080B1 (en) 2007-03-22 2012-07-03 히타치 긴조쿠 가부시키가이샤 Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
CN102689010A (en) * 2012-06-19 2012-09-26 浙江科达磁电有限公司 Metal powder used for preparing nanometer crystal magnetic core
CN102699335A (en) * 2012-06-19 2012-10-03 浙江科达磁电有限公司 Preparation method of metal powder for nanocrystalline magnetic core
CN102699320A (en) * 2012-06-20 2012-10-03 浙江科达磁电有限公司 Metal powder for preparing nanocrystalline magnetic core
CN102699336A (en) * 2012-06-20 2012-10-03 浙江科达磁电有限公司 Preparation method of metal powder for nanocrystalline magnetic core
KR20180099502A (en) * 2017-02-27 2018-09-05 티디케이가부시기가이샤 Soft magnetic alloy and magnetic device
KR20190026169A (en) * 2017-09-04 2019-03-13 삼성전기주식회사 Magnetic Sheet and Electronic Device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145442A (en) * 1993-03-15 1995-06-06 Alps Electric Co Ltd Soft magnetic alloy compact and its production
JPH08337839A (en) * 1995-04-03 1996-12-24 Alps Electric Co Ltd Soft magnetic alloy compacted body and its production
FR2764430B1 (en) * 1997-06-04 1999-07-23 Mecagis METHOD OF HEAT TREATMENT IN A MAGNETIC FIELD OF A COMPONENT MADE OF SOFT MAGNETIC MATERIAL
JP2006237368A (en) * 2005-02-25 2006-09-07 Hitachi Metals Ltd Powder magnetic core and its manufacturing method
JP5305126B2 (en) * 2007-04-25 2013-10-02 日立金属株式会社 Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component
EP2806433B1 (en) * 2012-01-18 2018-01-31 Hitachi Metals, Ltd. Metal powder core, coil component, and fabrication method for metal powder core
JP6088192B2 (en) * 2012-10-05 2017-03-01 Necトーキン株式会社 Manufacturing method of dust core
JP6707845B2 (en) 2015-11-25 2020-06-10 セイコーエプソン株式会社 Soft magnetic powder, dust core, magnetic element and electronic device
JP6593146B2 (en) 2015-12-16 2019-10-23 セイコーエプソン株式会社 Soft magnetic powder, dust core, magnetic element and electronic equipment
JP6750437B2 (en) * 2016-09-29 2020-09-02 セイコーエプソン株式会社 Soft magnetic atomized powder, dust core, magnetic element and electronic equipment
JP6862743B2 (en) 2016-09-29 2021-04-21 セイコーエプソン株式会社 Soft magnetic powder, powder magnetic core, magnetic element and electronic equipment
JP6245394B1 (en) * 2017-02-27 2017-12-13 Tdk株式会社 Soft magnetic alloy
CN107365950B (en) * 2017-07-24 2019-03-19 广东咏旺新材料科技有限公司 Fe-Si-B-Nb-Cu is Fe-based amorphous/nanocrystalline magnetically soft alloy material and preparation and heat treatment process
JP7318217B2 (en) * 2019-01-30 2023-08-01 セイコーエプソン株式会社 Soft magnetic powders, dust cores, magnetic elements and electronic devices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179729A (en) * 1983-03-31 1984-10-12 Toshiba Corp Magnetic core of amorphous alloy powder compact
JPS61154014A (en) * 1984-12-27 1986-07-12 Toshiba Corp Dust core
JPS61166902A (en) * 1985-01-17 1986-07-28 Tdk Corp Electromagnetic parts made of amorphous alloy powder and its production

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101162080B1 (en) 2007-03-22 2012-07-03 히타치 긴조쿠 가부시키가이샤 Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
WO2012081884A2 (en) * 2010-12-13 2012-06-21 주식회사 아모텍 Amorphous magnetic component, electric motor using same and method for manufacturing same
WO2012081884A3 (en) * 2010-12-13 2012-09-07 주식회사 아모텍 Amorphous magnetic component, electric motor using same and method for manufacturing same
CN102689010A (en) * 2012-06-19 2012-09-26 浙江科达磁电有限公司 Metal powder used for preparing nanometer crystal magnetic core
CN102699335A (en) * 2012-06-19 2012-10-03 浙江科达磁电有限公司 Preparation method of metal powder for nanocrystalline magnetic core
CN102699320A (en) * 2012-06-20 2012-10-03 浙江科达磁电有限公司 Metal powder for preparing nanocrystalline magnetic core
CN102699336A (en) * 2012-06-20 2012-10-03 浙江科达磁电有限公司 Preparation method of metal powder for nanocrystalline magnetic core
CN102699336B (en) * 2012-06-20 2014-09-03 浙江科达磁电有限公司 Preparation method of metal powder for nanocrystalline magnetic core
KR20180099502A (en) * 2017-02-27 2018-09-05 티디케이가부시기가이샤 Soft magnetic alloy and magnetic device
KR101962569B1 (en) 2017-02-27 2019-03-26 티디케이가부시기가이샤 Soft magnetic alloy and magnetic device
KR20190026169A (en) * 2017-09-04 2019-03-13 삼성전기주식회사 Magnetic Sheet and Electronic Device
KR101963291B1 (en) * 2017-09-04 2019-03-28 삼성전기주식회사 Magnetic Sheet and Electronic Device

Also Published As

Publication number Publication date
JPS63304603A (en) 1988-12-12

Similar Documents

Publication Publication Date Title
JP2713363B2 (en) Fe-based soft magnetic alloy compact and manufacturing method thereof
KR910002350B1 (en) Fe-base soft magnetic alloy powder and magnetic core thereof and method of producing same
CN110225801B (en) Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic component, and dust core
JP6460276B1 (en) Soft magnetic alloys and magnetic parts
US10535455B2 (en) Soft magnetic alloy and magnetic device
JP5305126B2 (en) Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component
US11783974B2 (en) Soft magnetic alloy and magnetic device
JP6669304B2 (en) Crystalline Fe-based alloy powder and method for producing the same
JPWO2008129803A1 (en) Soft magnetic alloy, magnetic component using the same, and manufacturing method thereof
JP6245390B1 (en) Soft magnetic alloys and magnetic parts
JP2022549384A (en) Iron-based amorphous alloy containing sub-nanoscale ordered clusters, preparation method thereof, and nanocrystalline alloy derivative using the same
JP2016104900A (en) Metallic soft magnetic alloy, magnetic core, and production method of the same
JP2019214774A (en) Soft magnetic alloy and magnetic part
US11401590B2 (en) Soft magnetic alloy and magnetic device
JP6338004B1 (en) Soft magnetic alloys and magnetic parts
JP6436206B1 (en) Soft magnetic alloys and magnetic parts
JP7148876B2 (en) Amorphous alloy ribbon, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
US20200291507A1 (en) Soft magnetic alloy and magnetic component
JPH05335129A (en) Fe-based soft magnetic alloy particle and manufacturing method thereof
JP6337994B1 (en) Soft magnetic alloys and magnetic parts
JPH0768604B2 (en) Fe-based magnetic alloy
JPH0479302A (en) Dust core
CN111801437B (en) Soft magnetic alloy and magnetic component
JP2019052367A (en) Soft magnetic alloy and magnetic member
JPH05331603A (en) Green compact of fe-base soft-magnetic alloy and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees