JPH0768604B2 - Fe-based magnetic alloy - Google Patents

Fe-based magnetic alloy

Info

Publication number
JPH0768604B2
JPH0768604B2 JP62307273A JP30727387A JPH0768604B2 JP H0768604 B2 JPH0768604 B2 JP H0768604B2 JP 62307273 A JP62307273 A JP 62307273A JP 30727387 A JP30727387 A JP 30727387A JP H0768604 B2 JPH0768604 B2 JP H0768604B2
Authority
JP
Japan
Prior art keywords
atomic
less
alloy
crystal grains
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62307273A
Other languages
Japanese (ja)
Other versions
JPH01149940A (en
Inventor
克仁 吉沢
清隆 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62307273A priority Critical patent/JPH0768604B2/en
Publication of JPH01149940A publication Critical patent/JPH01149940A/en
Publication of JPH0768604B2 publication Critical patent/JPH0768604B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高周波帯で用いるのに適するFe基磁性合金、
特に圧粉磁心や磁気シールド材に適する粉末化が容易で
組織の大半が超微細な結晶粒からなるFe基磁性合金に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a Fe-based magnetic alloy suitable for use in a high frequency band,
In particular, the present invention relates to a Fe-based magnetic alloy suitable for a dust core or a magnetic shield material, which is easy to be powdered and whose structure has most of ultrafine crystal grains.

〔従来の技術〕[Conventional technology]

従来、圧粉磁心や磁気シールド材等の磁心材料として
は、Feやパーマロイ、ケイ素鋼等が用いられていた。
Conventionally, Fe, permalloy, silicon steel and the like have been used as magnetic core materials such as dust cores and magnetic shield materials.

また最近ではFe系やCo系の非晶質合金も検討されてお
り、これらの粉末を圧縮成形した圧粉磁心や樹脂と混ぜ
シート状にしたシールド材等が検討されている。
Recently, Fe-based and Co-based amorphous alloys have also been studied, and a powder magnetic core formed by compression molding of these powders, a shielding material formed into a sheet by mixing with a resin, and the like have been studied.

これらの合金粉末に関しては例えば特公昭54−50463、
特公昭55−128507号に記載されている。
Regarding these alloy powders, for example, Japanese Examined Patent Publication No. 54-50463,
It is described in JP-B-55-128507.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、これらの合金には種々の問題点がある。 However, these alloys have various problems.

パーマロイ合金の場合は、磁気特性の良好な80重量%Ni
付近の組成の合金の場合、飽和磁気密度が7.5kG前後と
低い欠点があり、ケイ素鋼の場合は軟磁気特性に劣る欠
点がある。
In the case of permalloy alloy, 80 wt% Ni with good magnetic properties
In the case of alloys having similar compositions, there is a defect that the saturation magnetic density is as low as 7.5 kG, and in the case of silicon steel, there is a defect that the soft magnetic properties are inferior.

Fe系の非晶質合金の場合は飽和磁束密度は高いが、磁歪
が大きく歪の影響で磁気特性が大きく劣化する欠点があ
る。一方Co系の非晶質合金は、磁歪が小さく歪の影響を
受けにくいが、パーマロイ合金と同様飽和磁束密度が通
常10kG以下であり十分でない。また経時変化も大きい欠
点がある。
In the case of Fe-based amorphous alloy, the saturation magnetic flux density is high, but there is a drawback that the magnetostriction is large and the magnetic characteristics are largely deteriorated by the influence of the distortion. On the other hand, a Co-based amorphous alloy has a small magnetostriction and is hardly affected by the strain, but the saturation magnetic flux density is usually 10 kG or less, which is not sufficient like the permalloy alloy. Further, there is a drawback that the change over time is large.

また、最近我々は、CuとNb,Mo,Ta、W等を複合添加した
Fe基合金が超微細な結晶粒組織となり、優れた軟磁性、
低磁歪特性を示すことを見い出している。
Recently, we have added Cu and Nb, Mo, Ta, W, etc. in combination.
Fe-based alloy has an ultra-fine grain structure, excellent soft magnetism,
It has been found that it exhibits low magnetostriction characteristics.

しかし、粉末化し使用する様な用途の場合、脆化しやす
い組成の方が粉末化が容易であり、より好ましい。
However, in the case where the powder is used after being powdered, a composition that is easily embrittled is more preferable because powdering is easier.

本発明の目的は、軟磁気特性に優れ、磁歪が小さく、粉
末化等が容易なFe基磁性合金を提供することである。
An object of the present invention is to provide an Fe-based magnetic alloy having excellent soft magnetic properties, small magnetostriction, and easily powdered.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の第1の発明は、Cuを3〜10原子%、Bを25原子
%以下、Nb,W,Ta,Zr,Hf,Ti及びMoからなる群から選ばれ
た少なくとも1種の元素を0.1〜30原子%含み、残部がF
e及び不可避不純物からなる組成を有し、組織の少なく
とも50%が微細な結晶粒からなり、前記結晶粒の最大寸
法で測定した粒径の平均が1000Å以下であることを特徴
とするFe基磁性合金である。
A first invention of the present invention is that Cu is 3 to 10 atom%, B is 25 atom% or less, and at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo is used. Contains 0.1 to 30 atom%, balance F
Fe-based magnetism characterized by having a composition consisting of e and unavoidable impurities, at least 50% of the structure consisting of fine crystal grains, and having an average grain size of 1000 Å or less measured by the maximum dimension of the crystal grains. It is an alloy.

また第2の発明は、Cuを3〜10原子%、Bを25原子%以
下、Siを30原子%以下、Nb,W,Ta,Zr,Hf,Ti及びMoからな
る群から選ばれた少なくとも1種の元素を0.1〜30原子
%含み、残部がFe及び不可避不純物からなる組成を有
し、組織の少なくとも50%が微細な結晶粒からなり、前
記結晶粒の最大寸法で測定した粒径の平均が1000Å以下
であることを特徴とするFe基磁性合金である。
The second invention is at least 3 to 10 atomic% of Cu, 25 atomic% or less of B, 30 atomic% or less of Si, and at least one selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo. It has a composition containing 0.1 to 30 atomic% of one element, the balance being Fe and unavoidable impurities, and at least 50% of the structure is composed of fine crystal grains. It is an Fe-based magnetic alloy characterized by having an average of 1000Å or less.

また第3の発明は、Cuを3〜10原子%、Bを25原子%以
下、Siを30原子%以下、Nb,W,Ta,Zr,Hf,Ti及びMoからな
る群から選ばれた少なくとも1種の元素を0.1〜30原子
%含み、残部がFe及びFeの50原子%未満をCo及び/又は
Niで置換しさらに不可避不純物からなる組成を有し、組
織の少なくとも50%が微細な結晶粒からなり、前記結晶
粒の最大寸法で測定した粒径の平均が1000Å以下である
ことを特徴とするFe基磁性合金である。
A third aspect of the invention is at least Cu selected from the group consisting of 3 to 10 at%, B at 25 at% or less, Si at 30 at% or less, and Nb, W, Ta, Zr, Hf, Ti and Mo. 0.1 to 30 atomic% of one element, the balance Fe and Fe less than 50 atomic% Co and / or
Characterized by having a composition consisting of inevitable impurities substituted by Ni, at least 50% of the structure consisting of fine crystal grains, and having an average grain size of 1000 Å or less measured by the maximum dimension of the crystal grains. It is a Fe-based magnetic alloy.

また第4の発明は、Cuを3〜10原子%、Bを25原子%以
下、Siを30原子%以下、Nb,W,Ta,Zr,Hf,Ti及びMoからな
る群から選ばれた少なくとも1種の元素を0.1〜30原子
%、V,Cr,Mn,Al,白金属元素,Sc,Y,希土類元素,Au,Zn,S
n,Reからなる群から選ばれた少なくとも1種の元素を10
原子%以下含み、残部がFe及び不可避不純物からなる組
成を有し、組織の少なくとも50%が微細な結晶粒からな
り、前記結晶粒の最大寸法で測定した粒径の平均が1000
Å以下であることを特徴とするFe基磁性合金である。
The fourth invention is at least Cu selected from the group consisting of 3 to 10 at%, B at 25 at% or less, Si at 30 at% or less, and Nb, W, Ta, Zr, Hf, Ti and Mo. 0.1 to 30 atomic% of one element, V, Cr, Mn, Al, white metal element, Sc, Y, rare earth element, Au, Zn, S
10 at least one element selected from the group consisting of n and Re
Containing less than or equal to atomic%, the balance has a composition consisting of Fe and unavoidable impurities, at least 50% of the structure consists of fine crystal grains, and the average grain size measured by the maximum dimension of the crystal grains is 1000.
Fe-based magnetic alloy characterized by being Å or less.

さらに第5の発明は、Cuを3〜10原子%、Bを25原子%
以下、Siを30原子%以下、Nb,W,Ta,Zr,Hf,Ti及びMoから
なる群から選ばれた少なくとも1種の元素を0.1〜30原
子%、C,Ge,P,Ca,Sb,In,Be,Asからなる群から選ばれた
少なくとも1種の元素を20原子%以下含み、残部がFe及
び不可避不純物からなる組成を有し、組織の少なくとも
50%が微細な結晶粒からなり、前記結晶粒の最大寸法で
測定した粒径の平均が1000Å以下であることを特徴とす
るFe基磁性合金である。
Further, the fifth invention is such that Cu is 3 to 10 atom% and B is 25 atom%.
Hereinafter, Si is 30 atomic% or less, 0.1 to 30 atomic% of at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo, C, Ge, P, Ca, Sb. , In, Be, As containing at least one element selected from the group consisting of 20 atomic% or less and the balance being Fe and inevitable impurities, and at least the texture
The Fe-based magnetic alloy is characterized in that 50% consists of fine crystal grains, and the average grain size measured by the maximum dimension of the crystal grains is 1000 Å or less.

本発明において、上記の組成を有し、組織の少なくとも
50%が微細な結晶粒からなり、前記結晶粒の最大寸法で
測定した粒径の平均が1000Å以下である合金が優れた軟
磁気特性を示し、粉末化が容易であり圧粉磁心やシール
ド材等に好適な合金であることを見い出し、本発明に想
到した。
In the present invention, at least the tissue having the above composition is
Alloys that consist of 50% of fine crystal grains and have an average grain size of 1000Å or less measured by the maximum dimension of the crystal grains exhibit excellent soft magnetic properties and are easy to be powdered. The present invention has been accomplished by finding that it is a suitable alloy for the above.

本発明において、Cuは必須の元素であり、適量含まれる
ことにより合金を脆化しやすくし粉末化を容易にする効
果を有する。また耐食性を改善する効果もある。その含
有量は3〜10原子%の範囲である。3原子%より少ない
と粉末化がしにくく10原子%を越えると飽和磁束密度が
著しく低下し好ましくない。
In the present invention, Cu is an essential element, and when contained in an appropriate amount, it has the effect of making the alloy easily brittle and making it powdery. It also has the effect of improving corrosion resistance. Its content is in the range of 3 to 10 atomic%. If it is less than 3 atom%, it is difficult to pulverize, and if it exceeds 10 atom%, the saturation magnetic flux density is remarkably lowered, which is not preferable.

本発明に係る合金は通常次のようにして製造される。The alloy according to the present invention is usually manufactured as follows.

まず、前記組成の非晶質合金を溶湯から急冷し作製、あ
るいはスパッタ法、蒸着法等の気相急冷法により作製
し、更にこれを加熱し組織の少なくとも50%以上を微細
なbcc Fe固溶体結晶粒とする工程により製造される。
First, an amorphous alloy having the above composition is rapidly cooled from molten metal, or is manufactured by a vapor phase quenching method such as a sputtering method or a vapor deposition method, which is further heated to form at least 50% or more of the microstructure of a fine bcc Fe solid solution crystal. It is manufactured by the step of forming into grains.

Cuは軟磁性を改善する効果があるが3原子%以上の組成
ではややわるくなる。この軟磁性を改善する理由は明ら
かではないが次のように考えられる。
Cu has an effect of improving soft magnetism, but becomes slightly harder in a composition of 3 atomic% or more. Although the reason for improving this soft magnetism is not clear, it is considered as follows.

CuとFeの相互作用パラメータは正であり、固溶度が低く
分離する傾向があり、前述の組成の非晶質合金を加熱す
ると、Feリッチ領域が多数形成され、そこを核として結
晶化が進行し、Cuは周囲にはき出される。
The interaction parameter between Cu and Fe is positive, the solid solubility is low and there is a tendency to separate, and when an amorphous alloy of the above composition is heated, a large number of Fe-rich regions are formed, and crystallization occurs with these as nuclei. As it progresses, Cu is extruded around.

このCuによる結晶核形成効果が組織が微細化される1つ
の理由であるが、もう1つの大きな理由としてはNb,Ta,
Mo,W等による結晶粒成長抑制効果を挙げることができ
る。このNb,Ta,Mo,W等の添加とCuとの複合効果により結
晶粒は著しく微細化され優れた軟磁性が得られる。
This crystal nucleation effect by Cu is one of the reasons why the structure is made finer, and the other major reason is that Nb, Ta,
The crystal grain growth suppressing effect by Mo, W, etc. can be mentioned. The addition of Nb, Ta, Mo, W, etc. and the combined effect of Cu make the crystal grains extremely fine and provide excellent soft magnetism.

ところで本発明合金のCu量は3原子%以上であり、液体
急冷法により製造方法ではCuが分離し易くなり、熱処理
前にCuが分離したり、熱処理し結晶化させた際結晶粒界
付近のCu濃度が著しく高くなる。このため軟磁気特性は
Cu量が3原子%未満の合金と比較しある程度劣化する
が、十分軟磁性材料として使用でき、かつ脆化しやすく
なり粉末化が容易となる。このため圧粉磁心や粉末を使
用するシールド材等に好適な合金となる。
By the way, the Cu content of the alloy of the present invention is 3 atomic% or more, and Cu is easily separated in the manufacturing method by the liquid quenching method, and Cu is separated before the heat treatment or near the grain boundary when crystallized by heat treatment. Cu concentration becomes extremely high. Therefore, the soft magnetic characteristics
Although it deteriorates to some extent as compared with an alloy having a Cu content of less than 3 atomic%, it can be sufficiently used as a soft magnetic material, is easily embrittled, and is easily powdered. Therefore, the alloy is suitable as a dust core or a shield material using powder.

Nb,W,Ta,Zr,Hf,Ti及びMoからなる群から選ばれた少なく
とも1種の元素は、前述のように結晶粒を微細化し軟磁
性を向上させる効果を有する。その含有量は0.1〜30原
子%であり、より望ましい範囲は1〜10原子%である。
この範囲で特に優れた軟磁性が得られる。これらの元素
を含まない場合結晶粒は大きくなり著しく軟磁気特性は
劣化し好ましくない。
At least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo has the effect of refining crystal grains and improving soft magnetism as described above. The content is 0.1 to 30 atomic%, and a more desirable range is 1 to 10 atomic%.
In this range, particularly excellent soft magnetism can be obtained. If these elements are not contained, the crystal grains become large and the soft magnetic characteristics are significantly deteriorated, which is not preferable.

Si及びBは合金の微細化および磁歪調整に有用な元素で
ある。本発明の合金は、好ましくは、一旦Si,B添加効果
により非晶質合金とした後で、熱処理により微細結晶粒
を形成することにより得られる。
Si and B are elements useful for refining the alloy and adjusting the magnetostriction. The alloy of the present invention is preferably obtained by once forming an amorphous alloy by the effect of adding Si and B and then forming fine crystal grains by heat treatment.

Si含有量の限定理由は、30原子%を超えると軟磁気特性
の良好な条件では磁歪が大きくなってしまい好ましくな
いためであり、より好ましくは10〜25原子%である。こ
の範囲では特に良好な軟磁気特性が得られる。
The reason for limiting the Si content is that if it exceeds 30 atomic%, the magnetostriction becomes large under the condition of good soft magnetic characteristics, which is not preferable, and more preferably 10 to 25 atomic%. In this range, particularly good soft magnetic characteristics can be obtained.

B含有量の限定理由は、25原子%を越えると軟磁性の良
好な条件では磁歪が大きくなり好ましくないためであ
り、特に好ましい組成範囲は3〜12原子%の範囲であ
る。この範囲では特に軟磁性が良好で磁歪の小さい合金
が得られる。
The reason for limiting the B content is that if it exceeds 25 atomic%, the magnetostriction becomes large under the condition of good soft magnetism, which is not preferable, and the particularly preferable composition range is 3 to 12 atomic%. Within this range, an alloy having particularly good soft magnetism and small magnetostriction can be obtained.

C,Ge,P,Ga,Sb,In,BeおよびAsからなる群から選ばれた少
なくとも1種の元素であり、磁歪を調整したりその含有
量は20原子%以下の範囲である。この理由は20原子%を
越えると著しい飽和磁束密度の低下を招くためであり、
より好ましくは10原子%以下である。この範囲で比較的
良好な軟磁性が得られ易い。
It is at least one element selected from the group consisting of C, Ge, P, Ga, Sb, In, Be and As, and its magnetostriction is adjusted and its content is in the range of 20 atomic% or less. The reason for this is that if it exceeds 20 atom%, the saturation magnetic flux density will drop significantly,
More preferably, it is 10 atomic% or less. In this range, relatively good soft magnetism is easily obtained.

V,Cr,Mn,Al,白金属元素,Sc,Y,希土類元素,Au,Zn,Snおよ
びReからなる群から選ばれた少なくとも1種の元素であ
り、耐食性の改善、磁歪調整効果等があり、その含有量
は10原子%以下である。この限定理由は10原子%を超え
ると著しく飽和磁束密度が低下するためである。
It is at least one element selected from the group consisting of V, Cr, Mn, Al, white metal elements, Sc, Y, rare earth elements, Au, Zn, Sn and Re, and has the effects of improving corrosion resistance and adjusting magnetostriction. And its content is 10 atomic% or less. The reason for this limitation is that the saturation magnetic flux density is significantly reduced when the content exceeds 10 atomic%.

また本発明合金はLi,Mg,Ca,Sr,Ba,Ag,Cd,Pb,Bi,N,O,S,S
e及びTe等を2原子%以下含んでも良いが2原子%を超
えて含有すると軟磁性を著しく劣化させ好ましくない。
The alloys of the present invention are Li, Mg, Ca, Sr, Ba, Ag, Cd, Pb, Bi, N, O, S, S
The content of e, Te, etc. may be 2 atomic% or less, but if it exceeds 2 atomic%, soft magnetism is significantly deteriorated, which is not preferable.

残部は不純物を除いて実質的にFeが主体であるがFeの1
部は成分M(Co及び/又はNi)により置換されていても
良い。Mの含有量はFeの50原子%未満であるが好ましく
は30原子%未満であり、より好ましくは10原子%未満で
ある。この範囲でより好ましい軟磁性が得られる。
The balance is mainly Fe, except for impurities.
Parts may be replaced by the components M (Co and / or Ni). The content of M is less than 50 atomic% of Fe, preferably less than 30 atomic%, and more preferably less than 10 atomic%. In this range, more preferable soft magnetism can be obtained.

本発明合金はbcc構造のFe固溶体を主体とする合金であ
るが、非晶質相やFe2B,Fe3B,Nb等の遷移金属の化合物Fe
3Si規則相等を含む場合もある。これらの相は磁気特性
を劣化させる場合があり、特にFe2B等の化合物相は影響
が大きくできるだけ存在しない方が望ましい。
The alloy of the present invention is mainly composed of a Fe solid solution having a bcc structure, but it is a compound Fe of an amorphous phase or a transition metal such as Fe 2 B, Fe 3 B or Nb.
It may also contain 3 Si ordered phase. These phases may deteriorate the magnetic properties, and it is particularly desirable that the compound phases such as Fe 2 B have a great influence and are not present as much as possible.

本発明合金は主に1000Å以下の粒径の超微細な均一に分
布した結晶粒からなるが、より優れた軟磁性を示す合金
の場合は500Å以下の平均粒径を有する場合が多い。特
に好ましい軟磁気特性はその粒径が20〜200Å平均の場
合である。
The alloys of the present invention are mainly composed of ultrafine and uniformly distributed crystal grains having a grain size of 1000 Å or less, but alloys exhibiting more excellent soft magnetism often have an average grain size of 500 Å or less. Particularly preferred soft magnetic properties are when the particle size is 20 to 200Å average.

合金組織のうち微細結晶粒以外の部分は主に非晶質ある
いはCuであるが、結晶相が実質的に100%になっても本
発明合金は十分に優れた軟磁性を示す。
The part of the alloy structure other than the fine crystal grains is mainly amorphous or Cu, but the alloy of the present invention exhibits sufficiently excellent soft magnetism even when the crystal phase becomes substantially 100%.

本発明合金は、単ロール法、双ロール法、遠心急冷法等
により非晶質薄帯を作製後熱処理を行ない微細な結晶粒
を形成する方法、蒸着法、スパッター法やイオンプレー
ティング等により非晶質膜を作製後熱処理し結晶化させ
る方法や回転液中紡糸法やガラス被膜紡糸法により、非
晶質線を得た後熱処理し結晶化させる方法等いろいろな
方法で作製することができる。
The alloy of the present invention is produced by a method such as a single roll method, a twin roll method, a centrifugal quenching method, etc., after which an amorphous ribbon is produced and then heat-treated to form fine crystal grains, a vapor deposition method, a sputtering method or an ion plating method. The crystalline film can be prepared by various methods such as a method of heat-treating and crystallization after preparation, a method of spinning in a rotating liquid or a glass coating spinning method, and a method of obtaining an amorphous wire and then heat-treating and crystallizing.

本発明合金を得る際行われる熱処理は内部歪を小さくす
ることと、微細結晶粒組織とし軟磁性を向上させるとと
もに磁歪を小さくし粉末化を容易にする目的で行われ
る。
The heat treatment performed to obtain the alloy of the present invention is carried out for the purpose of reducing internal strain, improving the soft magnetism with a fine grain structure, and reducing magnetostriction to facilitate pulverization.

熱処理は通常真空中または水素ガス、窒素ガス、アルゴ
ンガス等の不活性ガス雰囲気中において行なわれる。し
かし場合によっては大気中等の酸化性雰囲気で行っても
良い。
The heat treatment is usually performed in vacuum or in an atmosphere of an inert gas such as hydrogen gas, nitrogen gas or argon gas. However, in some cases, it may be performed in an oxidizing atmosphere such as in the air.

熱処理温度及び時間は非晶質合金の形状、サイズ、組成
により異なるが一般的に結晶化温度より高い450℃〜700
℃で5分から24時間程度が望ましい。
The heat treatment temperature and time vary depending on the shape, size, and composition of the amorphous alloy, but generally higher than the crystallization temperature 450 ℃ ~ 700
5 minutes to 24 hours at ℃ is desirable.

熱処理の際の昇温や急冷の条件は状況に応じて任意に変
えることができる。また同一温度または異なる温度で複
数回に分け熱処理を行ったり、多段の熱処理パターンで
熱処理を行うこともできる。更には、本合金は熱処理を
直流あるいは交流の磁場中で行なうこともできる。磁場
中熱処理により本合金に磁気異方性を生じさせることが
できる。
The conditions of temperature rising and quenching during the heat treatment can be arbitrarily changed depending on the situation. Further, the heat treatment may be performed at the same temperature or different temperatures in a plurality of times, or the heat treatment may be performed in a multi-step heat treatment pattern. Further, the present alloy can be heat-treated in a DC or AC magnetic field. Magnetic anisotropy can be generated in the present alloy by heat treatment in a magnetic field.

磁場は熱処理の間中かける必要はなく、本発明に係る合
金のキュリー温度Tcより低い温度だけ印加しても十分効
果が得られる。本発明に係る合金のキュリー温度は非晶
質の場合より熱処理により形成される主相のキュリー温
度が上昇しており、非晶質合金のキュリー温度より高い
温度でも磁場中熱処理が適用できる。また、回転磁場中
熱処理を熱処理工程の1部で行っても良い。また、熱処
理の際合金に電流を流したり、高周波磁界を印加し合金
を発熱させることにより合金を熱処理することもでき
る。また磁場中熱処理の場合、熱処理を2段階以上で行
うことができる。また、圧縮力を加えながら熱処理を行
ない磁気特性を調整することもできる。
It is not necessary to apply a magnetic field during the heat treatment, and a sufficient effect can be obtained even when applied at a temperature lower than the Curie temperature Tc of the alloy according to the present invention. The Curie temperature of the main phase formed by heat treatment of the alloy according to the present invention is higher than that of the amorphous case, and the heat treatment in the magnetic field can be applied even at a temperature higher than the Curie temperature of the amorphous alloy. Further, the heat treatment in the rotating magnetic field may be performed as part of the heat treatment process. The alloy can also be heat-treated by applying an electric current to the alloy during the heat treatment or applying a high-frequency magnetic field to heat the alloy. In the case of heat treatment in a magnetic field, heat treatment can be performed in two or more steps. Further, it is possible to adjust the magnetic characteristics by applying heat treatment while applying compressive force.

本発明合金は前述のように熱処理後脆化しやすく機械的
粉砕により薄帯も容易に粉末化できる。またアトマイズ
粉等すでに粉末になっている合金も更に容易に微粉末化
が可能である。
As described above, the alloy of the present invention is easily embrittled after the heat treatment, and the ribbon can be easily pulverized by mechanical grinding. Further, an already powdered alloy such as atomized powder can be easily pulverized.

圧粉磁心を製造する場合、粉末化した本発明合金の表面
に絶縁層を形成し使用したり、シールド材等に使用する
場合は表面をメッキしたりして使用できる。
In the case of producing a dust core, it can be used by forming an insulating layer on the surface of the powdered alloy of the present invention, or by plating the surface when using it as a shield material or the like.

〔実施例〕〔Example〕

本発明を以下の実施例により詳細に説明するが、本発明
はこれらに限定されるものではない。
The present invention will be described in detail with reference to the following examples, but the present invention is not limited thereto.

実施例1 原子%でCu5%,Si16.5%,B6%,Nb3%及び残部実質的にF
eからなる組成の溶湯から、単ロール法により幅5mm、厚
さ18μmのリボンを作製した。
Example 1 Cu 5%, Si 16.5%, B 6%, Nb 3% and the balance substantially F in atomic%
A ribbon having a width of 5 mm and a thickness of 18 μm was produced from a molten metal having a composition of e by a single roll method.

X線回折及び組織観察の結果、この合金リボンはアモル
ファス相主体であることが確認された。次にこの合金を
外径19mm、内径15mmのトロイダル状に巻きN2ガス雰囲気
550℃に1時間保持後室温まで冷却し、磁気特性を測定
した。
As a result of X-ray diffraction and structure observation, it was confirmed that this alloy ribbon was mainly composed of an amorphous phase. Next, wind this alloy in a toroidal shape with an outer diameter of 19 mm and an inner diameter of 15 mm in N 2 gas atmosphere.
After holding at 550 ° C. for 1 hour, it was cooled to room temperature and magnetic properties were measured.

飽和磁束密度Bsは1.1kG,100kHz,2kGにおけるコア損失が
530mW/ccであった、1kHzにおける実効透磁率5500、保持
力Hcが0.120e飽和磁歪λsが+0.5×10-6であった。こ
の合金は組織観察の結果1000Å以下の粒径の超微細な結
晶粒からなることが確認された。
Saturation magnetic flux density Bs is 1.1kG, 100kHz, 2kG core loss
It was 530 mW / cc, the effective magnetic permeability at 1 kHz was 5500, the coercive force Hc was 0.120e, and the saturation magnetostriction λs was + 0.5 × 10 -6 . As a result of microscopic observation, it was confirmed that this alloy was composed of ultrafine crystal grains with a grain size of 1000 Å or less.

この熱処理後の合金薄帯は著しく脆化しており、振動ミ
ルにより粉砕したところ、Cu添加量が1原子%の合金に
比べ容易に微粉化でき2割程度粉砕時間が短縮された。
The alloy ribbon after this heat treatment was extremely brittle, and when pulverized with a vibration mill, it could be easily pulverized compared to an alloy with a Cu addition amount of 1 atom%, and the pulverization time was shortened by about 20%.

次にこの合金粉末に耐熱製無機ワニスをバインダーとし
て7wt%加え、500℃まで昇温し圧力を加えながら圧粉磁
心を作製した。
Next, 7 wt% of a heat-resistant inorganic varnish was added to this alloy powder as a binder, the temperature was raised to 500 ° C., and a powder magnetic core was produced while applying pressure.

実効透磁率は160であり周波数特性も良好であった。The effective magnetic permeability was 160 and the frequency characteristics were good.

実施例2 第1表に示す組成の合金溶湯から単ロール法により幅10
mm、板厚15μmのリボンを作製した。X線回折及び透過
電子顕微鏡による組織観察の結果、結晶相が1部観察さ
れるものもあるが、大部分が非晶質相であることが確認
された。
Example 2 The width of the molten alloy having the composition shown in Table 1 was 10 by the single roll method.
A ribbon having a thickness of 15 mm and a plate thickness of 15 μm was produced. As a result of observing the structure by X-ray diffraction and a transmission electron microscope, it was confirmed that most of the crystalline phase was an amorphous phase although some of the crystalline phase was observed.

次にこの合金薄帯を実施例1と同様にトロイダル状に巻
き結晶化温度以上の温度で熱処理した。熱処理後の合金
の組織は実施例1と同様であり、微細な結晶粒組織から
なることが確認された。次に熱処理後の磁心の磁気特性
を測定した。得られた結果を第1表に示す。またFe基ア
モルファス合金を振動ミルで粉砕し、48meshアンダーの
粉末が50%になる粉砕時間と48meshアンダーの粉末が50
%になる本発明合金の粉砕時間との比tc/toも示す。
Next, this alloy ribbon was wound into a toroidal shape in the same manner as in Example 1 and heat-treated at a temperature equal to or higher than the crystallization temperature. The structure of the alloy after heat treatment was similar to that of Example 1, and it was confirmed that the alloy had a fine crystal grain structure. Next, the magnetic characteristics of the magnetic core after the heat treatment were measured. The results obtained are shown in Table 1. In addition, the Fe-based amorphous alloy is crushed with a vibration mill, and the crushing time when the powder of 48mesh under is 50% and the powder of 48mesh under is 50%.
The ratio tc / to with the crushing time of the alloy of the present invention, which is%, is also shown.

表からわかるように本発明合金は高透磁率低損失であり
Fe基アモルファス合金と同等以上の優れた軟磁気特性を
示す。
As can be seen from the table, the alloy of the present invention has high permeability and low loss.
It exhibits excellent soft magnetic properties equivalent to or better than Fe-based amorphous alloys.

また48meshアンダーの粉末が50%以上になる粉砕時間は
Fe基アモルファスやCu無添加材に比べ短く、微粉化が容
易である。
Also, the crushing time when the powder of 48mesh under becomes 50% or more
Shorter than Fe-based amorphous and Cu-free materials, and easy to pulverize.

このため圧粉磁心やシールド材等の用途をはじめ、各種
磁心材に適する。
Therefore, it is suitable for various magnetic core materials such as dust cores and shield materials.

実施例3 第2表に示す組成の合金溶湯から、双ロール法により厚
さ25μm、幅3mmのリボンを作製した。次に実施例2と
同様熱処理後振動ミルで粉砕し48meshアンダーの粉末が
50%になる粉砕時間を求めた。第2表にFe74.5Cu1Nb2Si
13.5B9合金の場合の48meshアンダーの粉末が50%になる
粉砕時間と本発明の場合の粉砕時間の比tc/toを示す。
Example 3 A ribbon having a thickness of 25 μm and a width of 3 mm was produced from the molten alloy having the composition shown in Table 2 by the twin roll method. Then, after heat treatment in the same manner as in Example 2, the powder was crushed with a vibration mill to obtain 48 mesh under powder.
The grinding time to reach 50% was determined. Table 2 shows Fe 74.5 Cu 1 Nb 2 Si.
The ratio tc / to of the crushing time when the powder of 48 mesh under is 50% in the case of 13.5 B 9 alloy and the crushing time in the case of the present invention is shown.

〔発明の効果〕 本発明によれば、超微細結晶粒組織からなり粉末化が容
易で軟磁気特性に優れた合金を得ることができるためそ
の効果は著しいものがある。
[Effects of the Invention] According to the present invention, it is possible to obtain an alloy having an ultrafine crystal grain structure, which can be easily pulverized and has excellent soft magnetic properties, and therefore the effects are remarkable.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】Cuを3〜10原子%、Bを25原子%以下、N
b,W,Ta,Zr,Hf,Ti及びMoからなる群から選ばれた少なく
とも1種の元素を0.1〜30原子%含み、残部がFe及び不
可避不純物からなる組成を有し、組織の少なくとも50%
が微細な結晶粒からなり、前記結晶粒の最大寸法で測定
した粒径の平均が1000Å以下であることを特徴とするFe
基磁性合金。
1. A Cu content of 3 to 10 atom%, a B content of 25 atom% or less, and an N content.
At least one element selected from the group consisting of b, W, Ta, Zr, Hf, Ti and Mo is contained in an amount of 0.1 to 30 atomic%, and the balance has a composition consisting of Fe and unavoidable impurities and has at least 50 %
Fe is characterized in that it is composed of fine crystal grains, and the average grain size measured by the maximum dimension of the crystal grains is 1000 Å or less.
Base magnetic alloy.
【請求項2】Cuを3〜10原子%、Bを25原子%以下、Si
を30原子%以下、Nb,W,Ta,Zr,Hf,Ti及びMoからなる群か
ら選ばれた少なくとも1種の元素を0.1〜30原子%含
み、残部がFe及び不可避不純物からなる組成を有し、組
織の少なくとも50%が微細な結晶粒からなり、前記結晶
粒の最大寸法で測定した粒径の平均が1000Å以下である
ことを特徴とするFe基磁性合金。
2. Cu of 3 to 10 atomic%, B of 25 atomic% or less, Si
Is contained in an amount of 30 atomic% or less, 0.1 to 30 atomic% of at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo, and the balance being Fe and inevitable impurities. The Fe-based magnetic alloy is characterized in that at least 50% of the structure is composed of fine crystal grains, and the average grain size measured by the maximum dimension of the crystal grains is 1000 Å or less.
【請求項3】Cuを3〜10原子%、Bを25原子%以下、Si
を30原子%以下、Nb,W,Ta,Zr,Hf,Ti及びMoからなる群か
ら選ばれた少なくとも1種の元素を0.1〜30原子%含
み、残部がFe及びFeの50原子%未満をCo及び/又はNiで
置換しさらに不可避不純物からなる組成を有し、組織の
少なくとも50%が微細な結晶粒からなり、前記結晶粒の
最大寸法で測定した粒径の平均が1000Å以下であること
を特徴とするFe基磁性合金。
3. Cu of 3 to 10 atomic%, B of 25 atomic% or less, Si
Of 30 at% or less, 0.1 to 30 at% of at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo, and the balance Fe and less than 50 at% of Fe. Substitute with Co and / or Ni and have a composition of unavoidable impurities, at least 50% of the structure consists of fine crystal grains, and the average grain size measured by the maximum dimension of the crystal grains is 1000Å or less. Fe-based magnetic alloy characterized by.
【請求項4】Cuを3〜10原子%、Bを25原子%以下、Si
を30原子%以下、Nb,W,Ta,Zr,Hf,Ti及びMoからなる群か
ら選ばれた少なくとも1種の元素を0.1〜30原子%、V,C
r,Mn,Al,白金属元素,Sc,Y,希土類元素,Au,Zn,Sn,Reから
なる群から選ばれた少なくとも1種の元素を10原子%以
下含み、残部がFe及び不可避不純物からなる組成を有
し、組織の少なくとも50%が微細な結晶粒からなり、前
記結晶粒の最大寸法で測定した粒径の平均が1000Å以下
であることを特徴とするFe基磁性合金。
4. Cu of 3 to 10 atomic%, B of 25 atomic% or less, Si
Is 30 atomic% or less, 0.1 to 30 atomic% of at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo, V, C
Contains at least one element selected from the group consisting of r, Mn, Al, white metal elements, Sc, Y, rare earth elements, Au, Zn, Sn, Re in an amount of 10 atom% or less, and the balance Fe and inevitable impurities. Fe-based magnetic alloy having the following composition, wherein at least 50% of the structure is composed of fine crystal grains, and the average grain size measured by the maximum dimension of the crystal grains is 1000Å or less.
【請求項5】Cuを3〜10原子%、Bを25原子%以下、Si
を30原子%以下、Nb,W,Ta,Zr,Hf,Ti及びMoからなる群か
ら選ばれた少なくとも1種の元素を0.1〜30原子%、C,G
e,P,Ca,Sb,In,Be,Asからなる群から選ばれた少なくとも
1種の元素を20原子%以下含み、残部がFe及び不可避不
純物からなる組成を有し、組織の少なくとも50%が微細
な結晶粒からなり、前記結晶粒の最大寸法で測定した粒
径の平均が1000Å以下であることを特徴とするFe基磁性
合金。
5. A Cu content of 3 to 10 atomic%, a B content of 25 atomic% or less, and a Si content.
Is 30 atomic% or less, 0.1 to 30 atomic% of at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo, C, G
At least one element selected from the group consisting of e, P, Ca, Sb, In, Be, As is contained at 20 atomic% or less, and the balance is composed of Fe and inevitable impurities, and at least 50% of the structure. Is composed of fine crystal grains, and the average grain size measured by the maximum dimension of the crystal grains is 1000 Å or less, Fe-based magnetic alloy.
JP62307273A 1987-12-04 1987-12-04 Fe-based magnetic alloy Expired - Lifetime JPH0768604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62307273A JPH0768604B2 (en) 1987-12-04 1987-12-04 Fe-based magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62307273A JPH0768604B2 (en) 1987-12-04 1987-12-04 Fe-based magnetic alloy

Publications (2)

Publication Number Publication Date
JPH01149940A JPH01149940A (en) 1989-06-13
JPH0768604B2 true JPH0768604B2 (en) 1995-07-26

Family

ID=17967136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62307273A Expired - Lifetime JPH0768604B2 (en) 1987-12-04 1987-12-04 Fe-based magnetic alloy

Country Status (1)

Country Link
JP (1) JPH0768604B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104032220A (en) * 2014-05-09 2014-09-10 无锡市华尔泰机械制造有限公司 Flange applied under high-pressure hydrogen-atmosphere condition and heat treatment technology thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2894561B2 (en) * 1988-05-23 1999-05-24 株式会社東芝 Soft magnetic alloy
KR0168495B1 (en) * 1994-11-12 1999-01-15 정명세 Ñß-FE BASE RE-FE-B NM CRYSTAL ALLOY AND ITS PRODUCING METHOD AND USE
CN1294285C (en) * 2005-01-13 2007-01-10 中国科学院物理研究所 Scandium-base large amorphous alloy and method for preparing same
JP5490556B2 (en) * 2009-03-18 2014-05-14 アルプス電気株式会社 Fe-based soft magnetic alloy powder, method for producing the same, and magnetic sheet using the Fe-based soft magnetic alloy powder
CN104036904A (en) * 2014-05-28 2014-09-10 浙江大学 High saturation magnetic induction intensity iron-based amorphous soft magnetic composite material and manufacturing method thereof
CN107217207A (en) * 2017-06-11 2017-09-29 太仓捷公精密金属材料有限公司 A kind of high-performance metal materials

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627101A (en) * 1985-07-03 1987-01-14 Hitachi Metals Ltd Common mode choke coil using composite magnetic core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104032220A (en) * 2014-05-09 2014-09-10 无锡市华尔泰机械制造有限公司 Flange applied under high-pressure hydrogen-atmosphere condition and heat treatment technology thereof
CN104032220B (en) * 2014-05-09 2016-05-25 无锡市华尔泰机械制造有限公司 A kind of high-pressure hydro operating mode flange

Also Published As

Publication number Publication date
JPH01149940A (en) 1989-06-13

Similar Documents

Publication Publication Date Title
JP2611994B2 (en) Fe-based alloy powder and method for producing the same
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
KR910003977B1 (en) Fe-base soft magnetic alloy and method of producing same
JP2713363B2 (en) Fe-based soft magnetic alloy compact and manufacturing method thereof
JP2710938B2 (en) High saturation magnetic flux density soft magnetic alloy
JP2672306B2 (en) Fe-based amorphous alloy
JP2008294411A (en) Soft magnetism powder, manufacturing method for dust core, dust core, and magnetic component
JP2710948B2 (en) Ultrafine crystalline Fe-based alloy with excellent corrosion resistance and method for producing the same
JP3231149B2 (en) Noise filter
JP2667402B2 (en) Fe-based soft magnetic alloy
JP2868121B2 (en) Method for producing Fe-based magnetic alloy core
JP3655321B2 (en) Method for producing Fe-based soft magnetic alloy powder
JP7148876B2 (en) Amorphous alloy ribbon, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
JPH0768604B2 (en) Fe-based magnetic alloy
JPH0448005A (en) Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same
JP7326777B2 (en) Soft magnetic alloys and magnetic parts
JPH0711396A (en) Fe base soft magnetic alloy
JP3460763B2 (en) Manufacturing method of soft magnetic alloy
JP2713373B2 (en) Magnetic core
JPH0479302A (en) Dust core
JP2713714B2 (en) Fe-based magnetic alloy
JP3233289B2 (en) Ultra-microcrystalline alloy ribbon and powder and magnetic core using the same
JPH08948B2 (en) Fe-based magnetic alloy
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JPH0610105A (en) Fe base soft magnetic alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 13