JP2672306B2 - Fe-based amorphous alloy - Google Patents

Fe-based amorphous alloy

Info

Publication number
JP2672306B2
JP2672306B2 JP62225884A JP22588487A JP2672306B2 JP 2672306 B2 JP2672306 B2 JP 2672306B2 JP 62225884 A JP62225884 A JP 62225884A JP 22588487 A JP22588487 A JP 22588487A JP 2672306 B2 JP2672306 B2 JP 2672306B2
Authority
JP
Japan
Prior art keywords
atomic
less
group
element selected
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62225884A
Other languages
Japanese (ja)
Other versions
JPS6468446A (en
Inventor
克仁 吉沢
清隆 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62225884A priority Critical patent/JP2672306B2/en
Publication of JPS6468446A publication Critical patent/JPS6468446A/en
Application granted granted Critical
Publication of JP2672306B2 publication Critical patent/JP2672306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は過飽和リアクトル、トランス、チョークコイ
ル等各種磁性部品に適するFe基アモルファス合金に関す
るものであり、特に20kHz以上の高い周波数において使
用される磁心材料として好適なFe基アモルファス合金に
関するものである。 [従来の技術] 従来、高周波用のトランス、チョーク、過飽和リアク
トル等の磁心材料としては、高抵抗であってうず電流損
が少ない等の利点を有するため、フェライトが主に用い
られていた。しかし、フェライトは飽和磁束密度が低
く、温度特性も悪いため、磁心を小型化することが困難
であるという欠点があった。 近年、従来の磁心材料に対向できる可能性があるもの
として高飽和磁束密度を有するアモルファス合金が有望
視されており、種々の組成のものが開発されている。ア
モルファス合金は主としてFe系とCo系に大別され、Fe系
のアモルファス合金は材料コストがCo系に比べ安くつく
という利点がある反面一般的に高周波においてCo系アモ
ルファス合金よりコア損失が大きく、透磁率も低いとい
う問題がある。これに対しCo系のアモルファス合金は高
周波のコア損失が小さく、透磁率も高いがコア損失や透
磁率の経時変化が大きい。さらに高価なCoを主原料とす
るため価格的な不利は免れない。 このような状況下でFe基アモルファス磁性合金につい
て種々の提案がなされた。 特公昭60−17019号は、74〜84原子%のFeと、8〜24
原子%のBと、16原子%以下のSi及び3原子%以下のC
の内の少なくとも一つ、とからなる組成を有し、その構
造の少なくとも85%がアモルファス金属素地の形を有
し、かつアモルファス金属素地の全体にわたって不連続
に分布された合金成分の結晶質粒子群の析出物を有して
おり、結晶質粒子群は0.05〜1μmの平均粒度及び1〜
10μmの平均粒子間距離を有しており、粒子群は全体の
0.01〜0.3の平均容積分率を占めていることを特徴とす
る鉄基含硼素磁性非晶質合金を開示している。この合金
の結晶質粒子群は磁壁のピンニング点として作用する不
連続な分布のα−(Fe,Si)粒子群であるとされてい
る。 また特開昭60−52557号はFeaCubBcSid(ただし75≦a
≦85、0<b≦1.5、10≦c≦20、d≦10かつc+d≦3
0)からなる低損失非晶質磁性合金を開示している。こ
の非晶質磁性合金は結晶化温度以下でかつキョリー温度
以上で熱処理される。 また、特開昭63−60303号は1〜50%の結晶相を含む
ことを特徴とする高透磁率非晶質合金を開示している。 このなかではFe40Ni40P14B6の組成のアモルファス合
金を熱処理し、結晶相を1〜50%形成し1000を越える実
効透磁率が得られたとされている。 [発明が解決しようとする問題点] 特公昭60−17019号のFe基軟磁性合金は不連続な結晶
質粒子群の存在によりコア損失が減少しているが、それ
でもコア損失は依然大きく、特に透磁率はCo基アモルフ
ァス合金並の特性は得られず、高周波トランスやチョー
クコイル用の磁心材料としては満足できない。 一方特開昭60−52557号のFe基アモルファス合金はCu
を含有しているためにコア損失が低下しているが、上記
結晶質粒子含有Fe基アモルファス合金と同様に満足でき
ない。 また、特開昭53−60303号の中の実施例で示されてい
る1〜50%の結晶相を含むFe40Ni40P14B6アモルファス
合金は5000を越えるようなCo基アモルファス合金並の高
透磁率は得られない。 以上説明してきたようにアモルファス合金中に結晶相
を析出させ軟磁気特性を改善する試みはあるものの充分
な高透磁率特性は得られていない。 従って本発明の目的は超微細なbccFe固溶体結晶粒を5
0%未満含む高周波磁気特性、特に実効透磁率の高いFe
基アモルファス合金を提供することである。 [問題点を解決するための手段] 上記目的を達成するために鋭意研究の結果、本発明者
等はFeとアモルファス形成元素を基本成分とする合金に
CuとNb,Ta,W,Zr,Hf,Ti,V,Cr,Mn及びMoから選ばれる少な
くとも1種の元素とを複合添加することにより、上記組
成のアモルファス合金を熱処理すると超微細なbccFe固
溶体粒がアモルファス母相中に形成しやすくなり、かつ
この結晶粒が超微細に析出するため、軟磁気特性、特に
高周波磁気特性に優れたFe基アモルファス合金が得られ
ることを見出し、本発明に想到した。 本発明のFe基アモルファス合金は、Cuを0.1〜3原子
%、Si30原子%以下B25原子%以下の1種または2種、
M′を0.1〜20原子%(M′はNb,Ta,W,Zr,Hf,Ti,V,Cr,M
n及びMoからなる群から選ばれた少なくとも1種の元
素、Si,BおよびM′の総和は14〜35原子%)、残部Feか
らなる組成を有し、組織の50%未満が粒径1000Å以下の
平均粒径を有するbccFe固溶体結晶粒からなり、かつ前
記結晶粒が1μm以下の平均粒子間距離を有してアモル
ファス母相中に分布していることを特徴とする。 本発明において、Cuは必須の元素であり、その含有量
は0.1〜3原子%の範囲である。0.1原子%より少ないと
Cu添加による透磁率上昇の効果が小さく結晶粒が不均一
に形成しやすい。一方3原子%を超えると透磁率が低下
しやすくなるためである。またCuを添加しないと化合物
相が形成しやすくなる。 本発明において特に好ましいCuの含有量は0.5〜2原
子%でありこの範囲で特に高透磁率となり、微細なbccF
e固溶体結晶粒が生じやすい。 Cuの透磁率上昇bccFe固溶体結晶粒微細化作用の理由
は次のように考えられる。 CuとFeの相互作用パラメータは正であり、固溶度が低
く分離する傾向があるため非晶質状態の合金を加熱する
とFe原子同志またはCu原子またはCu原子同志が寄り集ま
り、クラスターを形成し組成ゆらぎが生じる。このため
部分的に結晶化しやすい領域が多数でき、そこを核とし
た微細な結晶粒が生成される。この結晶はFeを主成分と
するものである。 Cu添加により結晶核が多数できることと、結晶粒が成
長しにくいためほぼ均一に分布した微細な結晶粒が熱処
理により形成されるが、この作用はNb,Ta,W,Zr,Hf,Ti,M
o等の存在により著しく強められると考えられる。即ちN
b,Ta,W,Zr,Hf,Ti,V,Cr,Mn及びMoからなる群から選ばれ
た少なくとも1種の元素(以下、元素M′)はCuとの複
合添加により析出する結晶粒の成長を抑え結晶粒を微細
化する作用を有するものである。M′は合金の結晶化温
度を上昇させる作用を有するが、クラスターを形成し結
晶化温度を低下させる作用を有するCuとの相互作用によ
り結晶粒の成長を抑え析出する結晶粒が微細化するもの
と考えられる。M′の含有量は0.1〜20原子%の範囲が
望ましい。0.1原子%未満では透磁率が十分でなく、20
原子%を超えると著しい飽和磁束密度の低下を招くため
である。特に望ましい範囲は1〜10原子%であり、この
範囲で優れた軟磁性が得られる。M′が存在しない場合
は結晶粒はあまり微細化されず結晶粒が生じても急激な
透磁率の改善は認められない。 また本合金はFeを主成分とする微細結晶相が生じるた
め完全な非晶質合金に比べ磁歪が小さくなることによ
り、内部応力−歪みによる磁気異方性も小さくなること
も軟磁気特性が改善される理由の一つと考えられる。 Cuを添加しない場合は超微細な結晶粒は形成されにく
く分布も不均一である上に、化合物相が形成しやすいた
め透磁率は結晶相が形成されてもあまり改善されない。 SiおよびBはアモルファス形成に有用な元素である。
Si含有量が30原子%を超えると飽和磁束密度の低下があ
る。B含有量が25原子%を超えると飽和磁束密度の著し
い低下がある。特に望ましくは、Si含有量の範囲は6〜
25原子%、B含有量の範囲は2〜25原子%、Si含有量と
B含有量とを合わせた範囲は14〜30原子%である。 本合金はG,Ge,P,Ga,Sb,In,Be及びAsからなる群から選
ばれた少なくとも1種の元素(以下、元素X)を20原子
%以下含有してもよい。20原子%を超えると飽和磁束密
度の著しい低下が起こり好ましくない。Si,B,M′および
Xの総和は14〜35原子%である。14原子%未満では非晶
質化が困難であり、35原子%を超えると飽和磁束密度の
著しい低下が起こり好ましくない。 本合金は白金属元素,Al,Sc,Y,希土類元素,Au,Zn,Sn及
びReからなる群から選ばれた少なくとも1種の元素(以
下、元素M″)を10原子%以上含有してもよい。M″は
耐食性を改善したり、磁歪を調整する等の効果を有する
ものである。M″の含有量が10原子%を超えると飽和磁
束密度の著しい低下が起こり好ましくない。 本合金はLi,Mg,Ca,Sr,Ba,Ag,Cd,Pb,Bi,N,O,S,Se及びT
eからなる群から選ばれた少なくとも1種の元素を2原
子%以下含有してもよい。2原子%を超えると磁気特性
が低下しやすくなり好ましくない。 残部は不純物を除いて実質的にFeが主体であるが、Fe
の50原子%未満がCo及び/又はNiで置換されてもよい。
50原子%以上が置換されると高い透磁率が得られない。
特に望ましい置換量は30原子%未満であり、この範囲で
特に高い透磁率が得られる。 本発明のFe基アモルファス合金は、組成の50%未満が
粒径1000Å以下の平均粒径を有するbccFe固溶体結晶粒
からなり、かつ前記結晶粒が1μm以下の平均粒子間距
離を有してアモルファス母相中に分布した組織を有して
いる。 本発明の合金において前記bccFe固溶体結晶粒が500Å
以下の平均粒径を有し、かつ5000Å以下の平均粒子間距
離を有する場合高透磁率となりやすく、特に前記bccFe
固溶体結晶粒が20〜200Åの平均粒径を有する場合特に
高い透磁率が得られる。 前記bccFe固溶体粒の割合が50%以上になるとさらに
優れた特性が得られるが結晶相主体となりアモルファス
合金の範疇からはずれる。 本発明のFe基アモルファス合金は通常次のようにして
作製される。 まず上記所定の組成の溶湯から、単ロール法、双ロー
ル法、等公知の液体急冷法によりリボン状のほぼ100%
アモルファス相のアモルファス合金薄帯を製造する、あ
るいはスパッター法や蒸気法等の気相急冷法によりほぼ
100%アモルファス相のアモルファス合金膜を作製す
る。次にこのアモルファス合金を加熱し、1000Å以下の
微細なbccFe固溶体粒をアモルファス相中に析出させ
る。 熱処理は通常DSCで測定される結晶化温度よりやや低
い温度あるいはほぼ同じ温度で行われるが熱処理時間を
変えることにより、さらに広い温度範囲で熱処理が可能
である。 熱処理は通常不活性ガス雰囲気中で行われるが、真空
中あるいは大気中でもよい。 また、磁場中や応力下で熱処理を行い磁気異方性をつ
けたり磁気特性を改善することができる。 [実施例] 以下、本発明を実施例により、さらに詳細に説明する
が本発明はこれらに限定されるものではない。 実施例1 原子%でCu0.6原子%、Nb3.2原子%、Si13.7原子%、
B9.2原子%、残部Feからなる組成の合金溶湯を単ロール
法により急冷し、厚さ20μm幅5mmの合金薄帯を得た。 X線回折の結果この合金はアモルファス特有のハロー
パターンを示し、結晶ピークは認められなかった。 次にこの合金薄帯を外径25mm、内径20mmにトロイダル
状に巻き回し、450℃1時間および500℃1時間の熱処理
を行った。 450℃1時間の熱処理を行った場合はX線回折および
透過電子顕微鏡観察の結果アモルファス単相状態である
ことが確認された。 一方500℃1時間の熱処理を行った場合は第1図に示
した透過電子顕微鏡により観察した組織の概略図からわ
かるようにほぼ均一に分布したbccFe固溶体粒からなっ
ていることが確認された。またX線回折の結果でも結晶
ピークが認められた。結晶粒径は100〜200Å程度であ
り、平均結晶粒子間距離は1000Å以下であった。また結
晶粒の割合は50%未満であった。 100kHzにおける実効透磁率μe100Kは450℃1時間の熱
処理を行ったアモルファス状態の場合6800、500℃1時
間の熱処理を行ったbccFe固溶体結晶粒が含まれる場合1
4000であった。 実施例2 第1表に示す組成の板厚15μm、幅5mmのアモルファ
ス合金を単ロール法により作製し、外径13mm、内径10mm
に巻き回しトロイダル磁心としアモルファス単相を状態
を保つ熱処理とbccFe固溶体結晶粒を50%未満含む状態
とする熱処理を行い100kHzにおける実効透磁率μe100K
を測定した。 第1表にアモルファス単相状態の磁心の100kHzにおけ
る実効透磁率μea,bccFe固溶体結晶粒を50%未満含む状
態の磁心の100kHzにおける実効透磁率μebの比μeb/μe
aを示す。 実施例3 第2表に示す組成の板圧18μm、幅10mmのアモルファ
ス合金を単ロール法により作製し、外径22mm、内径18mm
に巻き回しトロイダル磁心とし次のこの磁心を熱処理し
結晶相を一部析出させ100kHzにおける実効透磁率μe
100Kを測定した。得られた結果を第2表に示す。 本発明の方が結晶粒が小さくなり、μe100Kも高い。 実施例4 Cu1.0原子%、Nb3.0原子%、Si18.2原子%、B5.1原子
%、残部Feからなる合金溶湯を単ロール法により急冷
し、幅5mm、厚さ18μmの合金薄帯を作製した。次にこ
の合金を外径18mm、内径12mmに巻きトロイダル磁心と
し、第3表に示す条件で熱処理し100kHzにおける実効透
磁率μe100K、飽和磁歪λを測定した。また各磁心の
合金組織を透過電子顕微鏡により観察し結晶相の割合を
求めた。得られた結果を第3表に示す。 実施例5 第4表に示す組成の厚さ3μmのアモルファス合金膜
をマグネトロンスパッタ装置を用い作製した。 次にこの合金膜を熱処理しbccFe結晶粒を析出させ
た。透過電子顕微鏡による観察の結果液体急冷法により
作製した合金を熱処理した場合と同様の組織を有してい
た。平均粒径、結晶相の割合を第4表に示す。 〔発明の効果〕 本発明によれば従来のFe基アモルファス合金より高周
波磁気特性、特に透磁率に優れたFe基アモルファス合金
を得ることができるためその効果は著しいものがある。
TECHNICAL FIELD The present invention relates to an Fe-based amorphous alloy suitable for various magnetic components such as supersaturated reactors, transformers, choke coils, etc., and particularly a magnetic core used at a high frequency of 20 kHz or more. The present invention relates to a Fe-based amorphous alloy suitable as a material. [Prior Art] Conventionally, ferrite has been mainly used as a magnetic core material for high frequency transformers, chokes, supersaturated reactors, etc. because of its advantages such as high resistance and little eddy current loss. However, since ferrite has a low saturation magnetic flux density and poor temperature characteristics, it is difficult to miniaturize the magnetic core. In recent years, an amorphous alloy having a high saturation magnetic flux density has been considered promising as a material that can face conventional magnetic core materials, and various compositions have been developed. Amorphous alloys are mainly divided into Fe-based alloys and Co-based alloys.Fe-based amorphous alloys have the advantage that the material cost is cheaper than Co-based alloys, but they generally have a larger core loss than Co-based amorphous alloys at high frequencies. There is a problem that magnetic susceptibility is also low. On the other hand, a Co-based amorphous alloy has a small high-frequency core loss and a high magnetic permeability, but has a large core loss and a large change over time in the magnetic permeability. Furthermore, since expensive Co is used as a main raw material, disadvantages in terms of price are inevitable. Under such circumstances, various proposals have been made for Fe-based amorphous magnetic alloys. JP-B-60-17019 discloses that 74 to 84 atomic% of Fe and 8 to 24
Atomic% B, 16 atomic% or less Si and 3 atomic% or less C
Crystalline particles of an alloy component having a composition consisting of at least one of, and having at least 85% of its structure in the form of an amorphous metal matrix, and being discontinuously distributed throughout the amorphous metal matrix. The crystalline particles have an average particle size of 0.05 to 1 μm and 1 to
It has an average interparticle distance of 10 μm and the particle group is
Disclosed is an iron-based boron-containing magnetic amorphous alloy characterized by occupying an average volume fraction of 0.01 to 0.3. The crystalline particle group of this alloy is said to be a discontinuous α- (Fe, Si) particle group that acts as a pinning point for the domain wall. The JP 60-52557 is Fe a Cu b B c Si d ( provided that 75 ≦ a
≦ 85, 0 <b ≦ 1.5, 10 ≦ c ≦ 20, d ≦ 10 and c + d ≦ 3
0) is disclosed. This amorphous magnetic alloy is heat-treated below the crystallization temperature and above the Kyoly temperature. Further, JP-A-63-60303 discloses a high magnetic permeability amorphous alloy characterized by containing 1 to 50% of a crystal phase. Among them, it is said that an amorphous alloy having a composition of Fe 40 Ni 40 P 14 B 6 was heat-treated to form a crystal phase of 1 to 50% and an effective magnetic permeability of more than 1000 was obtained. [Problems to be solved by the invention] In the Fe-based soft magnetic alloy of Japanese Examined Patent Publication No. 60-17019, the core loss is reduced due to the presence of discontinuous crystalline particles, but the core loss is still large, and Permeability is not as good as that of Co-based amorphous alloys, and is not satisfactory as a core material for high frequency transformers and choke coils. On the other hand, the Fe-based amorphous alloy disclosed in JP-A-60-52557 is Cu.
However, the core loss is reduced due to the inclusion of Fe, but it is not satisfactory like the Fe-based amorphous alloy containing crystalline particles. Further, the Fe 40 Ni 40 P 14 B 6 amorphous alloy containing 1 to 50% of the crystal phase shown in the examples in JP-A-53-60303 is equivalent to a Co-based amorphous alloy exceeding 5000. High magnetic permeability cannot be obtained. As described above, although attempts have been made to improve the soft magnetic characteristics by precipitating a crystalline phase in the amorphous alloy, sufficient high magnetic permeability characteristics have not been obtained. Therefore, the object of the present invention is to obtain ultrafine bccFe solid solution crystal grains.
High frequency magnetic properties including less than 0%, especially Fe with high effective permeability
To provide a base amorphous alloy. [Means for Solving Problems] As a result of earnest research to achieve the above object, the present inventors have found that an alloy containing Fe and an amorphous forming element as a basic component.
When Cu and at least one element selected from Nb, Ta, W, Zr, Hf, Ti, V, Cr, Mn and Mo are added in combination, heat treatment of an amorphous alloy of the above composition produces an ultrafine bccFe solid solution. It is found that grains are easily formed in the amorphous matrix and that the crystal grains are precipitated ultrafinely, so that an Fe-based amorphous alloy having excellent soft magnetic characteristics, particularly high-frequency magnetic characteristics, can be obtained, and the present invention is conceived. did. The Fe-based amorphous alloy of the present invention is one or two of Cu: 0.1 to 3 atomic%, Si: 30 atomic% or less and B25 atomic% or less,
0.1 to 20 atomic% of M '(M' is Nb, Ta, W, Zr, Hf, Ti, V, Cr, M
At least one element selected from the group consisting of n and Mo, the sum of Si, B and M'is 14 to 35 atom%, and the balance is Fe, and less than 50% of the structure has a grain size of 1000Å It is characterized in that it consists of bccFe solid solution crystal grains having the following average grain size, and that the crystal grains are distributed in the amorphous matrix with an average interparticle distance of 1 μm or less. In the present invention, Cu is an essential element, and its content is in the range of 0.1 to 3 atom%. If less than 0.1 atomic%
The effect of increasing the magnetic permeability due to the addition of Cu is small and crystal grains are likely to form unevenly. On the other hand, if it exceeds 3 atomic%, the magnetic permeability tends to decrease. If Cu is not added, a compound phase will be easily formed. In the present invention, the particularly preferable Cu content is 0.5 to 2 atomic%, and in this range, the magnetic permeability is particularly high and the fine bccF is fine.
e Solid solution crystal grains are easily generated. The reason for the Cu permeability increasing bccFe solid solution crystal grain refining action is considered as follows. Since the interaction parameter between Cu and Fe is positive and the solid solubility is low and tends to separate, heating the amorphous alloy causes Fe atoms or Cu atoms or Cu atoms to gather and form clusters. Composition fluctuation occurs. For this reason, a large number of regions that are likely to be partially crystallized are formed, and fine crystal grains having the nuclei as the nuclei are generated. This crystal has Fe as a main component. Due to the large number of crystal nuclei created by Cu addition and the fact that crystal grains do not grow easily, fine crystal grains that are almost uniformly distributed are formed by heat treatment.This action is caused by Nb, Ta, W, Zr, Hf, Ti, M
It is thought that the existence of such things as o will remarkably strengthen it. That is N
At least one element selected from the group consisting of b, Ta, W, Zr, Hf, Ti, V, Cr, Mn and Mo (hereinafter referred to as element M ′) is a crystal grain precipitated by complex addition with Cu. It has the effect of suppressing the growth and refining the crystal grains. M'has the effect of increasing the crystallization temperature of the alloy, but has the effect of forming clusters and lowering the crystallization temperature, and suppresses the growth of the crystal grains, resulting in the refinement of the precipitated crystal grains. it is conceivable that. The content of M'is preferably in the range of 0.1 to 20 atomic%. If it is less than 0.1 atom%, the magnetic permeability is insufficient and
This is because if it exceeds atomic%, the saturation magnetic flux density will be significantly reduced. A particularly desirable range is 1 to 10 atomic%, and excellent soft magnetism can be obtained in this range. When M'is absent, the crystal grains are not so finely refined that even if the crystal grains are generated, the magnetic permeability is not rapidly improved. In addition, since a fine crystalline phase containing Fe as a main component is generated in this alloy, the magnetostriction is smaller than that of a completely amorphous alloy, and the magnetic anisotropy due to internal stress-strain is also small, and the soft magnetic characteristics are improved. This is considered to be one of the reasons why When Cu is not added, ultrafine crystal grains are hard to form and the distribution is non-uniform, and since the compound phase is easily formed, the magnetic permeability is not so improved even if the crystal phase is formed. Si and B are elements useful for forming an amorphous.
When the Si content exceeds 30 atomic%, the saturation magnetic flux density is lowered. If the B content exceeds 25 atomic%, the saturation magnetic flux density is significantly reduced. Particularly preferably, the Si content range is 6 to
The range of 25 atomic% and B content is 2 to 25 atomic%, and the combined range of Si content and B content is 14 to 30 atomic%. The present alloy may contain 20 atomic% or less of at least one element selected from the group consisting of G, Ge, P, Ga, Sb, In, Be and As (hereinafter, element X). If it exceeds 20 atom%, the saturation magnetic flux density is remarkably lowered, which is not preferable. The sum of Si, B, M'and X is 14 to 35 atom%. If it is less than 14 atom%, it is difficult to amorphize, and if it exceeds 35 atom%, the saturation magnetic flux density is remarkably lowered, which is not preferable. This alloy contains 10 atomic% or more of at least one element selected from the group consisting of white metal elements, Al, Sc, Y, rare earth elements, Au, Zn, Sn and Re (hereinafter element M ″). M ″ has the effect of improving the corrosion resistance and adjusting the magnetostriction. When the content of M ″ exceeds 10 atomic%, the saturation magnetic flux density is remarkably reduced. This alloy is not suitable for Li, Mg, Ca, Sr, Ba, Ag, Cd, Pb, Bi, N, O, S, Se and T
At least one element selected from the group consisting of e may be contained in an amount of 2 atomic% or less. If it exceeds 2 atomic%, the magnetic properties are likely to deteriorate, which is not preferable. The balance is substantially Fe-excluding impurities, but Fe
Less than 50 at% may be replaced by Co and / or Ni.
If 50 atom% or more is substituted, high magnetic permeability cannot be obtained.
A particularly desirable substitution amount is less than 30 atomic%, and a particularly high magnetic permeability is obtained in this range. The Fe-based amorphous alloy of the present invention comprises less than 50% of the composition of bccFe solid solution crystal grains having an average grain size of 1000Å or less, and the crystal grains have an average interparticle distance of 1 μm or less. It has a texture distributed in the phases. In the alloy of the present invention, the bccFe solid solution crystal grains are 500Å
When the average particle size is below and the average interparticle distance is 5000 Å or less, high magnetic permeability is likely to occur,
Particularly high magnetic permeability can be obtained when the solid solution crystal grains have an average particle size of 20 to 200Å. When the ratio of the bccFe solid solution particles is 50% or more, more excellent characteristics can be obtained, but the crystalline phase becomes the main component, which falls outside the category of amorphous alloys. The Fe-based amorphous alloy of the present invention is usually produced as follows. First, from the molten metal of the above-mentioned predetermined composition, a ribbon-shaped almost 100% by known liquid quenching method such as single roll method, twin roll method, etc.
Amorphous alloy ribbons of amorphous phase are manufactured, or almost all are produced by vapor phase quenching method such as sputtering method or vapor method.
An amorphous alloy film with 100% amorphous phase is prepared. Next, this amorphous alloy is heated to deposit fine bccFe solid solution particles of 1000 Å or less in the amorphous phase. The heat treatment is usually performed at a temperature slightly lower than or equal to the crystallization temperature measured by DSC, but the heat treatment can be performed in a wider temperature range by changing the heat treatment time. The heat treatment is usually carried out in an inert gas atmosphere, but it may be carried out in vacuum or in the air. Further, it is possible to impart magnetic anisotropy or improve magnetic characteristics by performing heat treatment in a magnetic field or under stress. [Examples] Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. Example 1 Cu at 0.6 atomic%, Nb at 3.2 atomic%, Si at 13.7 atomic%,
A molten alloy having a composition of B9.2 atomic% and the balance Fe was rapidly cooled by a single roll method to obtain an alloy ribbon having a thickness of 20 μm and a width of 5 mm. As a result of X-ray diffraction, this alloy showed a halo pattern peculiar to amorphous, and no crystal peak was observed. Next, this alloy ribbon was wound in a toroidal shape with an outer diameter of 25 mm and an inner diameter of 20 mm and heat-treated at 450 ° C. for 1 hour and 500 ° C. for 1 hour. When heat treatment was performed at 450 ° C. for 1 hour, it was confirmed by X-ray diffraction and transmission electron microscope observation that it was in an amorphous single-phase state. On the other hand, when the heat treatment was carried out at 500 ° C. for 1 hour, it was confirmed that the particles were composed of bccFe solid solution particles which were distributed almost uniformly, as can be seen from the schematic view of the structure observed by the transmission electron microscope shown in FIG. A crystal peak was also recognized in the result of X-ray diffraction. The crystal grain size was about 100 to 200Å, and the average distance between crystal grains was 1000 Å or less. The proportion of crystal grains was less than 50%. Effective permeability at 100kHz μe 100K is 6800 in the amorphous state after heat treatment at 450 ℃ for 1 hour, and bccFe solid solution crystal grains after heat treatment at 500 ℃ for 1 hour 1
It was 4000. Example 2 An amorphous alloy having a composition shown in Table 1 and a plate thickness of 15 μm and a width of 5 mm was prepared by a single roll method, and the outer diameter was 13 mm and the inner diameter was 10 mm.
The effective magnetic permeability at 100kHz μe 100K was obtained by applying a heat treatment to keep the amorphous single phase as a toroidal magnetic core wound around and a heat treatment to contain less than 50% of bccFe solid solution crystal grains.
Was measured. Table 1 shows the effective permeability at 100kHz of amorphous single-phase core μe a , bccFe ratio of effective permeability μe b at 100kHz of solid core particles containing less than 50% μe b / μe
shows the a. Example 3 An amorphous alloy having a composition shown in Table 2 and a plate pressure of 18 μm and a width of 10 mm was produced by a single roll method, and the outer diameter was 22 mm and the inner diameter was 18 mm.
The core is wound around to form a toroidal core, and the following core is heat treated to partially precipitate the crystal phase and the effective permeability at 100 kHz μe
100K was measured. Table 2 shows the obtained results. In the present invention, the crystal grains are smaller and μe 100K is higher. Example 4 A molten alloy consisting of 1.0 atomic% Cu, 3.0 atomic% Nb, 18.2 atomic% Si, B5.1 atomic% and the balance Fe was rapidly cooled by a single roll method to obtain an alloy thin film having a width of 5 mm and a thickness of 18 μm. A band was made. Next, this alloy was wound around an outer diameter of 18 mm and an inner diameter of 12 mm to form a toroidal magnetic core, which was heat treated under the conditions shown in Table 3 to measure the effective permeability at 100 kHz μe 100K and the saturation magnetostriction λ S. The alloy structure of each magnetic core was observed with a transmission electron microscope to determine the proportion of crystal phase. Table 3 shows the obtained results. Example 5 An amorphous alloy film having a composition shown in Table 4 and a thickness of 3 μm was produced using a magnetron sputtering apparatus. Next, this alloy film was heat-treated to deposit bccFe crystal grains. As a result of observation with a transmission electron microscope, the alloy produced by the liquid quenching method had a structure similar to that in the case of heat treatment. Table 4 shows the average particle size and the proportion of the crystal phase. [Effects of the Invention] According to the present invention, it is possible to obtain an Fe-based amorphous alloy that is superior in high-frequency magnetic characteristics, particularly in magnetic permeability, to the conventional Fe-based amorphous alloy, so that the effect is remarkable.

【図面の簡単な説明】 第1図は本発明の係るFe基アモルファス合金の透過電子
顕微鏡により観察した組織の一例を示した図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an example of a structure of a Fe-based amorphous alloy according to the present invention observed by a transmission electron microscope.

Claims (1)

(57)【特許請求の範囲】 1.Cuを0.1〜3原子%、Si30原子%以下B25原子%以下
の1種または2種、M′を0.1〜20原子%(M′はNb,T
a,W,Zr,Hf,Ti,V,Cr,Mn及びMoからなる群から選ばれた少
なくとも1種の元素、Si,BおよびM′の総和は14〜35原
子%)、残部Feからなる組成を有し、組織の50%未満が
粒径1000Å以下の平均粒径を有するbccFe固溶体結晶粒
からなり、かつ前記結晶粒が1μm以下の平均粒子間距
離を有してアモルファス母相中に分布していることを特
徴とするFe基アモルファス合金。 2.Cuを0.1〜3原子%、Si30原子%以下B25原子%以下
の1種または2種、M′を0.1〜20原子%(M′はNb,T
a,W,Zr,Hf,Ti,V,Cr,Mn及びMoからなる群から選ばれた少
なくとも1種の元素、Si,BおよびM′の総和は14〜35原
子%)、Yを2原子%以下(YはLi,Mg,Ca,Sr,Ba,Ag,C
d,Pb,Bi,N,O,S,Se及びTeからなる群から選ばれた少なく
とも1種の元素)、残部Feからなる組成を有し、組織の
50%未満が粒径1000Å以下の平均粒径を有するbccFe固
溶体結晶粒からなり、かつ前記結晶粒が1μm以下の平
均粒子間距離を有してアモルファス母相中に分布してい
ることを特徴とするFe基アモルファス合金。 3.Cuを0.1〜3原子%、Si30原子%以下B25原子%以下
の1種または2種、M′を0.1〜20原子%(M′はNb,T
a,W,Zr,Hf,Ti,V,Cr,Mn及びMoからなる群から選ばれた少
なくとも1種の元素)、Xを20原子%以下(XはC,Ge,
P,Ga,Sb,In,Be及びAsからなる群から選ばれた少なくと
も1種の元素、Si,B,M′およびXの総和は14〜35原子
%)、残部Feからなる組成を有し、組織の50%未満が粒
径1000Å以下の平均粒径を有するbccFe固溶体結晶粒か
らなり、かつ前記結晶粒が1μm以下の平均粒子間距離
を有してアモルファス母相中に分布していることを特徴
とするFe基アモルファス合金。 4.Cuを0.1〜3原子%、Si30原子%以下B25原子%以下
の1種または2種、M′を0.1〜20原子%(M′はNb,T
a,W,Zr,Hf,Ti,V,Cr,Mn及びMoからなる群から選ばれた少
なくとも1種の元素)、Xを20原子%以下(XはC,Ge,
P,Ga,Sb,In,Be及びAsからなる群から選ばれた少なくと
も1種の元素、Si,B,M′およびXの総和は14〜35原子
%)、Yを2原子%以下(YはLi,Mg,Ca,Sr,Ba,Ag,Cd,P
b,Bi,N,O,S,Se及びTeからなる群から選ばれた少なくと
も1種の元素)、残部Feからなる組成を有し、組織の50
%未満が粒径1000Å以下の平均粒径を有するbccFe固溶
体結晶粒からなり、かつ前記結晶粒が1μm以下の平均
粒子間距離を有してアモルファス母相中に分布している
ことを特徴とするFe基アモルファス合金。 5.Cuを0.1〜3原子%、Si30原子%以下B25原子%以下
の1種または2種、M′を0.1〜20原子%(M′はNb,T
a,W,Zr,Hf,Ti,V,Cr,Mn及びMoからなる群から選ばれた少
なくとも1種の元素、Si,BおよびM′の総和は14〜35原
子%)、M″を10原子%以下(M″は白金属元素、Al、
Sc、Y、希土類元素、Au、Zn、Sn及びReからなる群から
選ばれた少なくとも1種の元素)、残部Feからなる組成
を有し、組織の50%未満が粒径1000Å以下の平均粒径を
有するbccFe固溶体結晶粒からなり、かつ前記結晶粒が
1μm以下の平均粒子間距離を有してアモルファス母相
中に分布していることを特徴とするFe基アモルファス合
金。 6.Cuを0.1〜3原子%、Si30原子%以下B25原子%以下
の1種または2種、M′を0.1〜20原子%(M′はNb,T
a,W,Zr,Hf,Ti,V,Cr,Mn及びMoからなる群から選ばれた少
なくとも1種の元素、Si,BおよびM′の総和は14〜35原
子%)、M″を10原子%以下(M″は白金属元素,Al,S
c,Y,希土類元素,Au,Zn,Sn及びReからなる群から選ばれ
た少なくとも1種の元素)、Yを2原子%以下(YはL
i,Mg,Ca,Sr,Ba,Ag,Cd,Pb,Bi,N,O,S,Se及びTeからなる群
から選ばれた少なくとも1種の元素)、残部Feからなる
組成を有し、組織の50%未満が粒径1000Å以下の平均粒
径を有するbccFe固溶体結晶粒からなり、かつ前記結晶
粒が1μm以下の平均粒子間距離を有してアモルファス
母相中に分布していることを特徴とするFe基アモルファ
ス合金。 7.Cuを0.1〜3原子%、Si30原子%以下B25原子%以下
の1種または2種、M′を0.1〜20原子%(M′はNb,T
a,W,Zr,Hf,Ti,V,Cr,Mn及びMoからなる群から選ばれた少
なくとも1種の元素)、M″を10原子%以下(M″は白
金属元素、Al,Sc,Y,希土類元素,Au,Zn,Sn及びReからな
る群から選ばれた少なくとも1種の元素)、Xを20原子
%以下(XはC,Ge,P,Ga,Sb,In,Be及びAsからなる群から
選ばれた少なくとも1種の元素、Si,B,M′およびXの総
和は14〜35原子%)、残部Feからなる組成を有し、組織
の50%未満が粒径1000Å以下の平均粒径を有するbccFe
固溶体結晶粒からなり、かつ前記結晶粒が1μm以下の
平均粒子間距離を有してアモルファス母相中に分布して
いることを特徴とするFe基アモルファス合金。 8.Cuを0.1〜3原子%、Si30原子%以下B25原子%以下
の1種または2種、M′を0.1〜20原子%(M′はNb,T
a,W,Zr,Hf,Ti,V,Cr,Mn及びMoからなる群から選ばれた少
なくとも1種の元素)、M″を10原子%以下(M″は白
金属元素、Al,Sc,Y,希土類元素,Au,Zn,Sn及びReからな
る群から選ばれた少なくとも1種の元素)、Xを20原子
%以下(XはC,Ge,P,Ga,Sb,In,Be及びAsからなる群から
選ばれた少なくとも1種の元素、Si,B,M′およびXの総
和は14〜35原子%)、Yを2原子%以下(YはLi,Mg,C
a,Sr,Ba,Ag,Cd,Pb,Bi,N,O,S,Se及びTeからなる群から選
ばれた少なくとも1種の元素)、残部Feからなる組成を
有し、組織の50%未満が粒径1000Å以下の平均粒径を有
するbccFe固溶体結晶粒からなり、かつ前記結晶粒が1
μm以下の平均粒子間距離を有してアモルファス母相中
に分布していることを特徴とするFe基アモルファス合
金。 9.Cuを0.1〜3原子%、Si30原子%以下B25原子%以下
の1種または2種、M′を0.1〜20原子%(M′はNb,T
a,W,Zr,Hf,Ti,V,Cr,Mn及びMoからなる群から選ばれた少
なくとも1種の元素、Si,BおよびM′の総和は14〜35原
子%)、残部は50原子%未満がM(MはCo及び/又はN
i)で置換されたFeからなる組成を有し、組織の50%未
満が粒径1000Å以下の平均粒径を有するbccFe固溶体結
晶粒からなり、かつ前記結晶粒が1μm以下の平均粒子
間距離を有してアモルファス母相中に分布していること
を特徴とするFe基アモルファス合金。 10.Cuを0.1〜3原子%、Si30原子%以下B25原子%以
下の1種または2種、M′を0.1〜20原子%(M′はNb,
Ta,W,Zr,Hf,Ti,V,Cr,Mn及びMoからなる群から選ばれた
少なくとも1種の元素、Si,BおよびM′の総和は14〜35
原子%)、Yを2原子%以下(YはLi,Mg,Ca,Sr,Ba,Ag,
Cd,Pb,Bi,N,O,S,Se及びTeからなる群から選ばれた少な
くとも1種の元素)、残部は50原子%未満がM(MはCo
及び/又はNi)で置換されたFeからなる組成を有し、組
織の50%未満が粒径1000Å以下の平均粒径を有するbccF
e固溶体結晶粒からなり、かつ前記結晶粒が1μm以下
の平均粒子間距離を有してアモルファス母相中に分布し
ていることを特徴とするFe基アモルファス合金。 11.Cuを0.1〜3原子%、Si30原子%以下B25原子%以
下の1種または2種、M′を0.1〜20原子%(M′はNb,
Ta,W,Zr,Hf,Ti,V,Cr,Mn及びMoからなる群から選ばれた
少なくとも1種の元素)、Xを20原子%以下(XはC,G
e,P,Ga,Sb,In,Be及びAsからなる群から選ばれた少なく
とも1種の元素、Si,B,M′およびXの総和は14〜35原子
%)、残部は50原子%未満がM(MはCo及び/又はNi)
で置換されたFeからなる組成を有し、組織の50%未満が
粒径1000Å以下の平均粒径を有するbccFe固溶体結晶粒
からなり、かつ前記結晶粒が1μm以下の平均粒子間距
離を有してアモルファス母相中に分布していることを特
徴とするFe基アモルファス合金。 12.Cuを0.1〜3原子%、Si30原子%以下B25原子%以
下の1種または2種、M′を0.1〜20原子%(M′はNb,
Ta,W,Zr,Hf,Ti,V,Cr,Mn及びMoからなる群から選ばれた
少なくとも1種の元素)、Xを20原子%以下(XはC,G
e,P,Ga,Sb,In,Be及びAsからなる群から選ばれた少なく
とも1種の元素、Si,B,M′およびXの総和は14〜35原子
%)、Yを2原子%以下(YはLi,Mg,Ca,Sr,Ba,Ag,Cd,P
b,Bi,N,O,S,Se及びTeからなる群から選ばれた少なくと
も1種の元素)、残部は50原子%未満がM(MはCo及び
/又はNi)で置換されたFeからなる組成を有し、組織の
50%未満が粒径1000Å以下の平均粒径を有するbccFe固
溶体結晶粒からなり、かつ前記結晶粒が1μm以下の平
均粒子間距離を有してアモルファス母相中に分布してい
ることを特徴とするFe基アモルファス合金。 13.Cuを0.1〜3原子%、Si30原子%以下B25原子%以
下の1種または2種、M′を0.1〜20原子%(M′はNb,
Ta,W,Zr,Hf,Ti,V,Cr,Mn及びMoからなる群から選ばれた
少なくとも1種の元素、Si,BおよびM′の総和は14〜35
原子%)、M″を10原子%以下(M″は白金属元素、A
l,Sc,Y,希土類元素,Au,Zn,Sn及びReからなる群から選ば
れた少なくとも1種の元素)、残部は50原子%未満がM
(MはCo及び/又はNi)で置換されたFeからなる組成を
有し、組織の50%未満が粒径1000Å以下の平均粒径を有
するbccFe固溶体結晶粒からなり、かつ前記結晶粒が1
μm以下の平均粒子間距離を有してアモルファス母相中
に分布していることを特徴とするFe基アモルファス合
金。 14.Cuを0.1〜3原子%、Si30原子%以下B25原子%以
下の1種または2種、M′を0.1〜20原子%(M′はNb,
Ta,W,Zr,Hf,Ti,V,Cr,Mn及びMoからなる群から選ばれた
少なくとも1種の元素、Si,BおよびM′の総和は14〜35
原子%)、M″を10原子%以下(M″は白金属元素、A
l,Sc,Y,希土類元素,Au,Zn,Sn及びReからなる群から選ば
れた少なくとも1種の元素)、Yを2原子%以下(Yは
Li,Mg,Ca,Sr,Ba,Ag,Cd,Pb,Bi,N,O,S,Se及びTeからなる
群から選ばれた少なくとも1種の元素)、残部は50原子
%未満がM(MはCo及び/又はNi)で置換されたFeから
なる組成を有し、組織の50%未満が粒径1000Å以下の平
均粒径を有するbccFe固溶体結晶粒からなり、かつ前記
結晶粒が1μm以下の平均粒子間距離を有してアモルフ
ァス母相中に分布していることを特徴とするFe基アモル
ファス合金。 15.Cuを0.1〜3原子%、Si30原子%以下B25原子%以
下の1種または2種、M′を0.1〜20原子%(M′はNb,
Ta,W,Zr,Hf,Ti,V,Cr,Mn及びMoからなる群から選ばれた
少なくとも1種の元素)、M″を10原子%以下(M″は
白金属元素、Al,Sc,Y,希土類元素,Au,Zn,Sn及びReから
なる群から選ばれた少なくとも1種の元素)、Xを20原
子%以下(XはC,Ge,P,Ga,Sb,In,Be及びAsからなる群か
ら選ばれた少なくとも1種の元素、Si,B,M′およびXの
総和は14〜35原子%)、残部は50原子%未満がM(Mは
Co及び/又はNi)で置換されたFeからなる組成を有し、
組織の50%未満が粒径1000Å以下の平均粒径を有するbc
cFe固溶体結晶粒からなり、かつ前記結晶粒が1μm以
下の平均粒子間距離を有してアモルファス母相中に分布
していることを特徴とするFe基アモルファス合金。 16.Cuを0.1〜3原子%、Si30原子%以下B25原子%以
下の1種または2種、M′を0.1〜20原子%(M′はNb,
Ta,W,Zr,Hf,Ti,V,Cr,Mn及びMoからなる群から選ばれた
少なくとも1種の元素)、M″を10原子%以下(M″は
白金属元素、Al,Sc,Y,希土類元素,Au,Zn,Sn及びReから
なる群から選ばれた少なくとも1種の元素)、Xを20原
子%以下(XはC,Ge,P,Ga,Sb,In,Be及びAsからなる群か
ら選ばれた少なくとも1種の元素、Si,B,M′およびXの
総和は14〜35原子%)、Yを2原子%以下(YはLi,Mg,
Ca,Sr,Ba,Ag,Cd,Pb,Bi,N,O,S,Se及びTeからなる群から
選ばれた少なくとも1種の元素)、残部は50原子%未満
がM(MはCo及び/又はNi)で置換されたFeからなる組
成を有し、組織の50%未満が粒径1000Å以下の平均粒径
を有するbccFe固溶体結晶粒からなり、かつ前記結晶粒
が1μm以下の平均粒子間距離を有してアモルファス母
相中に分布していることを特徴とするFe基アモルファス
合金。
(57) [Claims] Cu is 0.1 to 3 atomic%, Si is 30 atomic% or less and B25 atomic% or less is one or two, and M ′ is 0.1 to 20 atomic% (M ′ is Nb, T
a, W, Zr, Hf, Ti, V, Cr, Mn, and at least one element selected from the group consisting of Mo, the total of Si, B, and M'is 14 to 35 atomic%), and the balance is Fe. Less than 50% of the structure is composed of bccFe solid solution crystal grains having an average grain size of 1000Å or less, and the grains are distributed in the amorphous matrix with an average interparticle distance of 1 μm or less. Fe-based amorphous alloy characterized by 2. Cu is 0.1 to 3 atomic%, Si is 30 atomic% or less and B25 atomic% or less is one or two, and M ′ is 0.1 to 20 atomic% (M ′ is Nb, T
at least one element selected from the group consisting of a, W, Zr, Hf, Ti, V, Cr, Mn and Mo, the sum of Si, B and M'is 14 to 35 atomic%) and Y is 2 atoms % Or less (Y is Li, Mg, Ca, Sr, Ba, Ag, C
d, Pb, Bi, N, O, S, Se and Te and at least one element selected from the group consisting of) and the balance Fe,
Less than 50% consists of bccFe solid solution crystal grains having an average grain size of 1000 Å or less, and the crystal grains are distributed in an amorphous matrix with an average interparticle distance of 1 μm or less. Fe based amorphous alloy. 3. Cu is 0.1 to 3 atomic%, Si is 30 atomic% or less and B25 atomic% or less is one or two, and M ′ is 0.1 to 20 atomic% (M ′ is Nb, T
a, W, Zr, Hf, Ti, V, Cr, Mn and at least one element selected from the group consisting of Mo), X is 20 atomic% or less (X is C, Ge,
At least one element selected from the group consisting of P, Ga, Sb, In, Be and As, the sum of Si, B, M'and X is 14 to 35 atomic%, and the balance is Fe. , Less than 50% of the structure consists of bccFe solid solution crystal grains having an average grain size of 1000Å or less, and the grains are distributed in the amorphous matrix with an average interparticle distance of 1 μm or less. Fe-based amorphous alloy. 4. Cu is 0.1 to 3 atomic%, Si is 30 atomic% or less and B25 atomic% or less is one or two, and M ′ is 0.1 to 20 atomic% (M ′ is Nb, T
a, W, Zr, Hf, Ti, V, Cr, Mn and at least one element selected from the group consisting of Mo), X is 20 atomic% or less (X is C, Ge,
At least one element selected from the group consisting of P, Ga, Sb, In, Be and As, the total sum of Si, B, M'and X is 14 to 35 atomic%, and Y is 2 atomic% or less (Y Is Li, Mg, Ca, Sr, Ba, Ag, Cd, P
b, Bi, N, O, S, Se and Te), and at least one element selected from the group consisting of
% Is composed of bccFe solid solution crystal grains having an average grain size of 1000 Å or less, and the grains are distributed in an amorphous matrix with an average interparticle distance of 1 μm or less. Fe-based amorphous alloy. 5. Cu is 0.1 to 3 atomic%, Si is 30 atomic% or less and B25 atomic% or less is one or two, and M ′ is 0.1 to 20 atomic% (M ′ is Nb, T
at least one element selected from the group consisting of a, W, Zr, Hf, Ti, V, Cr, Mn and Mo, the sum of Si, B and M'is 14 to 35 atomic%), and M "is 10 Atomic% or less (M ″ is a white metal element, Al,
Sc, Y, a rare earth element, at least one element selected from the group consisting of Au, Zn, Sn and Re), and the balance Fe, and less than 50% of the structure has an average grain size of 1000Å or less An Fe-based amorphous alloy comprising bccFe solid solution crystal grains having a diameter, and the crystal grains having an average interparticle distance of 1 μm or less and distributed in an amorphous matrix. 6. Cu is 0.1 to 3 atomic%, Si is 30 atomic% or less and B25 atomic% or less is one or two, and M ′ is 0.1 to 20 atomic% (M ′ is Nb, T
at least one element selected from the group consisting of a, W, Zr, Hf, Ti, V, Cr, Mn and Mo, the sum of Si, B and M'is 14 to 35 atomic%), and M "is 10 Atomic% or less (M ″ is a white metal element, Al, S
c, Y, at least one element selected from the group consisting of rare earth elements, Au, Zn, Sn, and Re), Y at 2 atomic% or less (Y is L
i, Mg, Ca, Sr, Ba, Ag, Cd, Pb, Bi, N, O, S, Se and Te and at least one element selected from the group consisting of), and a composition comprising the balance Fe, Less than 50% of the structure consists of bccFe solid solution crystal grains having an average grain size of 1000 Å or less, and the grains are distributed in the amorphous matrix with an average interparticle distance of 1 μm or less. Characteristic Fe-based amorphous alloy. 7. Cu is 0.1 to 3 atomic%, Si is 30 atomic% or less and B25 atomic% or less is one or two, and M ′ is 0.1 to 20 atomic% (M ′ is Nb, T
a, W, Zr, Hf, Ti, V, Cr, Mn and at least one element selected from the group consisting of Mo), M ″ is 10 atomic% or less (M ″ is a white metal element, Al, Sc, Y, rare earth element, at least one element selected from the group consisting of Au, Zn, Sn and Re), X is 20 atomic% or less (X is C, Ge, P, Ga, Sb, In, Be and As) At least one element selected from the group consisting of Si, B, M'and X is 14 to 35 atomic%, and the balance is Fe, and less than 50% of the structure has a grain size of 1000Å or less. BccFe with an average particle size of
A Fe-based amorphous alloy comprising solid solution crystal grains, wherein the crystal grains are distributed in an amorphous matrix with an average inter-particle distance of 1 μm or less. 8. Cu is 0.1 to 3 atomic%, Si is 30 atomic% or less and B25 atomic% or less is one or two, and M ′ is 0.1 to 20 atomic% (M ′ is Nb, T
a, W, Zr, Hf, Ti, V, Cr, Mn and at least one element selected from the group consisting of Mo), M ″ is 10 atomic% or less (M ″ is a white metal element, Al, Sc, Y, rare earth element, at least one element selected from the group consisting of Au, Zn, Sn and Re), X is 20 atomic% or less (X is C, Ge, P, Ga, Sb, In, Be and As) The total sum of at least one element selected from the group consisting of Si, B, M'and X is 14 to 35 atomic%, and Y is 2 atomic% or less (Y is Li, Mg, C).
a, Sr, Ba, Ag, Cd, Pb, Bi, N, O, S, Se and Te, and at least one element selected from the group consisting of Fe) and the balance Fe, and having a composition of 50%. Less than bccFe solid solution crystal grains having an average grain size of 1000Å or less, and the crystal grains are 1
An Fe-based amorphous alloy characterized by having an average interparticle distance of not more than μm and being distributed in an amorphous matrix. 9. Cu is 0.1 to 3 atomic%, Si is 30 atomic% or less and B25 atomic% or less is one or two, and M ′ is 0.1 to 20 atomic% (M ′ is Nb, T
a, W, Zr, Hf, Ti, V, Cr, Mn, and at least one element selected from the group consisting of Mo, the total of Si, B, and M'is 14 to 35 atom%, and the balance is 50 atom. Less than% is M (M is Co and / or N
i) has a composition consisting of Fe, and less than 50% of the structure consists of bccFe solid solution crystal grains having an average grain size of 1000 Å or less, and the crystal grains have an average interparticle distance of 1 μm or less. An Fe-based amorphous alloy characterized by having and distributed in an amorphous matrix. 10. Cu of 0.1 to 3 atomic%, Si of 30 atomic% or less and B25 atomic% or less of one or two, M ′ of 0.1 to 20 atomic% (M ′ is Nb,
The sum of at least one element selected from the group consisting of Ta, W, Zr, Hf, Ti, V, Cr, Mn and Mo, Si, B and M'is 14 to 35.
Atomic%), Y is 2 atomic% or less (Y is Li, Mg, Ca, Sr, Ba, Ag,
At least one element selected from the group consisting of Cd, Pb, Bi, N, O, S, Se and Te), the balance being less than 50 atomic% M (M is Co
BccF having a composition consisting of Fe substituted by Ni and / or Ni, and less than 50% of the structure has an average grain size of less than 1000Å
An Fe-based amorphous alloy comprising e-solid solution crystal grains, wherein the crystal grains are distributed in an amorphous matrix with an average interparticle distance of 1 μm or less. 11. Cu of 0.1 to 3 atomic%, Si of 30 atomic% or less and B25 atomic% or less of one or two, M ′ of 0.1 to 20 atomic% (M ′ is Nb,
At least one element selected from the group consisting of Ta, W, Zr, Hf, Ti, V, Cr, Mn and Mo), X is 20 atomic% or less (X is C, G
The sum of at least one element selected from the group consisting of e, P, Ga, Sb, In, Be and As, Si, B, M'and X is 14 to 35 atomic%, and the balance is less than 50 atomic%. Is M (M is Co and / or Ni)
With a composition of Fe replaced by less than 50% of the structure is composed of bccFe solid solution crystal grains having an average grain size of 1000Å or less, and the grains have an average interparticle distance of 1 μm or less. Fe-based amorphous alloy characterized by being distributed in the amorphous matrix. 12. Cu of 0.1 to 3 atomic%, Si of 30 atomic% or less and B25 atomic% or less of one or two, M ′ of 0.1 to 20 atomic% (M ′ is Nb,
At least one element selected from the group consisting of Ta, W, Zr, Hf, Ti, V, Cr, Mn and Mo), X is 20 atomic% or less (X is C, G
e, P, Ga, Sb, In, Be and As, at least one element selected from the group consisting of Si, B, M'and X is 14 to 35 atomic%, and Y is 2 atomic% or less. (Y is Li, Mg, Ca, Sr, Ba, Ag, Cd, P
b, Bi, N, O, S, Se and Te), the balance being Fe replaced by less than 50 atomic% with M (M is Co and / or Ni). Has a composition of
Less than 50% consists of bccFe solid solution crystal grains having an average grain size of 1000 Å or less, and the crystal grains are distributed in an amorphous matrix with an average interparticle distance of 1 μm or less. Fe based amorphous alloy. 13. Cu of 0.1 to 3 atomic%, Si of 30 atomic% or less and B25 atomic% or less of one or two, M ′ of 0.1 to 20 atomic% (M ′ is Nb,
The sum of at least one element selected from the group consisting of Ta, W, Zr, Hf, Ti, V, Cr, Mn and Mo, Si, B and M'is 14 to 35.
Atomic%), M "10 atomic% or less (M" is a white metal element, A
l, Sc, Y, rare earth element, at least one element selected from the group consisting of Au, Zn, Sn and Re), the balance being less than 50 atomic% M
(M is Co and / or Ni) -substituted Fe, and less than 50% of the structure is composed of bccFe solid solution crystal grains having an average grain size of 1000Å or less, and the crystal grains are 1
An Fe-based amorphous alloy characterized by having an average interparticle distance of not more than μm and being distributed in an amorphous matrix. 14. Cu of 0.1 to 3 atomic%, Si of 30 atomic% or less and B25 atomic% or less of one or two, M ′ of 0.1 to 20 atomic% (M ′ is Nb,
The sum of at least one element selected from the group consisting of Ta, W, Zr, Hf, Ti, V, Cr, Mn and Mo, Si, B and M'is 14 to 35.
Atomic%), M "10 atomic% or less (M" is a white metal element, A
l, Sc, Y, at least one element selected from the group consisting of rare earth elements, Au, Zn, Sn and Re), and Y is 2 atomic% or less (Y is
Li, Mg, Ca, Sr, Ba, Ag, Cd, Pb, Bi, N, O, S, Se, and Te), and the balance is less than 50 atomic% M ( M has a composition consisting of Fe substituted with Co and / or Ni), less than 50% of the structure consists of bccFe solid solution crystal grains having an average grain size of 1000Å or less, and said grain size is 1 μm or less Fe-based amorphous alloy characterized by having an average interparticle distance of and distributed in an amorphous matrix. 15. Cu of 0.1 to 3 atomic%, Si of 30 atomic% or less and B25 atomic% or less of one or two, M ′ of 0.1 to 20 atomic% (M ′ is Nb,
Ta, W, Zr, Hf, Ti, V, Cr, Mn and at least one element selected from the group consisting of Mo), M ″ is 10 atomic% or less (M ″ is a white metal element, Al, Sc, Y, rare earth element, at least one element selected from the group consisting of Au, Zn, Sn and Re), X is 20 atomic% or less (X is C, Ge, P, Ga, Sb, In, Be and As) The total of at least one element selected from the group consisting of Si, B, M'and X is 14 to 35 atomic%, and the balance is less than 50 atomic% M (M is
Having a composition consisting of Fe substituted with Co and / or Ni),
Less than 50% of the tissues have an average grain size less than 1000Å grain bc
An Fe-based amorphous alloy comprising cFe solid solution crystal grains, wherein the crystal grains are distributed in an amorphous matrix with an average interparticle distance of 1 μm or less. 16. Cu of 0.1 to 3 atomic%, Si of 30 atomic% or less and B25 atomic% or less of one or two, M ′ of 0.1 to 20 atomic% (M ′ is Nb,
Ta, W, Zr, Hf, Ti, V, Cr, Mn and at least one element selected from the group consisting of Mo), M ″ is 10 atomic% or less (M ″ is a white metal element, Al, Sc, Y, rare earth element, at least one element selected from the group consisting of Au, Zn, Sn and Re), X is 20 atomic% or less (X is C, Ge, P, Ga, Sb, In, Be and As) The total sum of at least one element selected from the group consisting of Si, B, M ′ and X is 14 to 35 atomic%, and Y is 2 atomic% or less (Y is Li, Mg,
At least one element selected from the group consisting of Ca, Sr, Ba, Ag, Cd, Pb, Bi, N, O, S, Se and Te), the balance being less than 50 atomic% M (M is Co and Co And / or Ni) -substituted Fe, and less than 50% of the structure consists of bccFe solid solution crystal grains having an average grain size of 1000 Å or less, and the crystal grains are 1 μm or less between average grains. An Fe-based amorphous alloy characterized by being distributed in an amorphous matrix with a distance.
JP62225884A 1987-09-09 1987-09-09 Fe-based amorphous alloy Expired - Fee Related JP2672306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62225884A JP2672306B2 (en) 1987-09-09 1987-09-09 Fe-based amorphous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62225884A JP2672306B2 (en) 1987-09-09 1987-09-09 Fe-based amorphous alloy

Publications (2)

Publication Number Publication Date
JPS6468446A JPS6468446A (en) 1989-03-14
JP2672306B2 true JP2672306B2 (en) 1997-11-05

Family

ID=16836374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62225884A Expired - Fee Related JP2672306B2 (en) 1987-09-09 1987-09-09 Fe-based amorphous alloy

Country Status (1)

Country Link
JP (1) JP2672306B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445895B (en) * 2007-11-26 2011-01-26 比亚迪股份有限公司 Rare earth-based amorphous alloy and preparation method thereof
US8282745B2 (en) 2009-01-23 2012-10-09 Alps Green Devices Co., Ltd. Fe-based soft magnetic alloy and dust core using fe-based soft magnetic alloy
US8685179B2 (en) 2009-08-07 2014-04-01 Alps Green Devices Co., Ltd. Fe-based amorphous alloy, powder core using the same, and coil encapsulated powder core
JP2019065382A (en) * 2017-09-29 2019-04-25 サムソン エレクトロ−メカニックス カンパニーリミテッド. Fe NANO-SCALE GRAIN ALLOY AND ELECTRONIC COMPONENT INCLUDING THE SAME

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225006A (en) * 1988-05-17 1993-07-06 Kabushiki Kaisha Toshiba Fe-based soft magnetic alloy
JP4716033B2 (en) * 2004-12-17 2011-07-06 日立金属株式会社 Magnetic core for current transformer, current transformer and watt-hour meter
KR100723162B1 (en) * 2005-12-24 2007-05-30 주식회사 포스코 Crystals-amorphous composite alloys with high strength and superior toughness
KR100763495B1 (en) * 2006-05-01 2007-10-04 학교법인연세대학교 High strength fe-based amorphous alloy compositions with excellent glass forming ability
CN102766811A (en) * 2012-08-14 2012-11-07 安庆天瑞新材料科技股份有限公司 Iron-based amorphous-nanocrystalline alloy strip and preparation method thereof
CN103352183B (en) * 2013-05-31 2015-12-02 全椒君鸿软磁材料有限公司 Mo-Zn-In system Fe-based amorphous alloy strip
CN103668006B (en) * 2013-12-19 2015-12-02 南京信息工程大学 Without nickelalloy and preparation method thereof
CN104388822B (en) * 2014-10-31 2016-10-05 青岛玉兰祥商务服务有限公司 A kind of brake block powdered metallurgical material and preparation method thereof
US10316396B2 (en) * 2015-04-30 2019-06-11 Metglas, Inc. Wide iron-based amorphous alloy, precursor to nanocrystalline alloy
CN105568150A (en) * 2016-01-27 2016-05-11 太仓捷公精密金属材料有限公司 Formula of metal material
CN106399813A (en) * 2016-10-18 2017-02-15 河池学院 Alloy for bearing of assembly robot
CN108517474A (en) * 2018-07-19 2018-09-11 芜湖君华材料有限公司 A kind of amorphous alloy material of resistance to TRANSIENT HIGH TEMPERATURE
JP7367310B2 (en) * 2019-02-28 2023-10-24 新東工業株式会社 Iron-based metal glass alloy powder
CN114574784B (en) * 2020-11-30 2023-04-07 松山湖材料实验室 Iron-based amorphous alloy with high Fe content and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445895B (en) * 2007-11-26 2011-01-26 比亚迪股份有限公司 Rare earth-based amorphous alloy and preparation method thereof
US8282745B2 (en) 2009-01-23 2012-10-09 Alps Green Devices Co., Ltd. Fe-based soft magnetic alloy and dust core using fe-based soft magnetic alloy
US8685179B2 (en) 2009-08-07 2014-04-01 Alps Green Devices Co., Ltd. Fe-based amorphous alloy, powder core using the same, and coil encapsulated powder core
US9422614B2 (en) 2009-08-07 2016-08-23 Alps Green Devices Co., Ltd. Fe-based amorphous alloy, powder core using the same, and coil encapsulated powder core
JP2019065382A (en) * 2017-09-29 2019-04-25 サムソン エレクトロ−メカニックス カンパニーリミテッド. Fe NANO-SCALE GRAIN ALLOY AND ELECTRONIC COMPONENT INCLUDING THE SAME
JP7368053B2 (en) 2017-09-29 2023-10-24 サムソン エレクトロ-メカニックス カンパニーリミテッド. Fe-based nanocrystalline alloy and electronic components using the same

Also Published As

Publication number Publication date
JPS6468446A (en) 1989-03-14

Similar Documents

Publication Publication Date Title
JP2672306B2 (en) Fe-based amorphous alloy
JPH044393B2 (en)
EP0271657A2 (en) Fe-base soft magnetic alloy and method of producing same
JP2710938B2 (en) High saturation magnetic flux density soft magnetic alloy
JPH06322472A (en) Production of fe base soft magnetic alloy
EP1001437A1 (en) Fe-based soft magnetic alloy , magnetic core using the same, and method for making the same
JP3231149B2 (en) Noise filter
JP2667402B2 (en) Fe-based soft magnetic alloy
JP2713364B2 (en) Ultra-microcrystalline soft magnetic alloy with excellent heat resistance
JPH0711396A (en) Fe base soft magnetic alloy
JP2006291234A (en) Microcrystalline alloy ribbon
JP2713714B2 (en) Fe-based magnetic alloy
JPH0768604B2 (en) Fe-based magnetic alloy
JPH0867911A (en) Method for heat-treating nano-crystalline magnetic alloy
JP2812574B2 (en) Low frequency transformer
JPH08948B2 (en) Fe-based magnetic alloy
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JPH0570901A (en) Fe base soft magnetic alloy
JPH0610105A (en) Fe base soft magnetic alloy
JPH0578794A (en) Thin strip and powder of hyperfine-grained alloy and magnetic core using the same
JPH0499253A (en) Iron-based soft magnetic alloy
JP3159936B2 (en) High hardness Fe-based soft magnetic alloy
JPH03197651A (en) Fe-base high transmissible magnetic alloy
JPH04272159A (en) Ferrous magnetic alloy
JPH03197650A (en) Fe-base high transmissible magnetic alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees