JP2713714B2 - Fe-based magnetic alloy - Google Patents

Fe-based magnetic alloy

Info

Publication number
JP2713714B2
JP2713714B2 JP62313645A JP31364587A JP2713714B2 JP 2713714 B2 JP2713714 B2 JP 2713714B2 JP 62313645 A JP62313645 A JP 62313645A JP 31364587 A JP31364587 A JP 31364587A JP 2713714 B2 JP2713714 B2 JP 2713714B2
Authority
JP
Japan
Prior art keywords
atomic
alloy
less
magnetic
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62313645A
Other languages
Japanese (ja)
Other versions
JPH01156452A (en
Inventor
克仁 吉沢
明敏 平木
清隆 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62313645A priority Critical patent/JP2713714B2/en
Publication of JPH01156452A publication Critical patent/JPH01156452A/en
Application granted granted Critical
Publication of JP2713714B2 publication Critical patent/JP2713714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、優れた磁気特性を有し、磁歪が小さいFe基
磁性合金、特に組織の大半が微細な結晶粒からなるFe基
磁性合金に関する。 従来、高周波トランス,磁気ヘッド,可飽和リアクト
ル,チョークコイル等の磁心材料として、うず電流損が
少ない等の利点を有するフェライトが主に用いられてい
た。しかしフェライトは飽和磁束密度が低く、温度特性
も悪いため、高周波トランスやチョークコイルに用いる
場合磁心を小形化することが困難であるという欠点があ
った。 近年、従来の磁心材料に対抗するものとして高い飽和
磁束密度を有する非晶質磁性合金が有望視されており、
種々の組成のものが開発されている。非晶質合金は主と
してFe系とCo系に大別され、Fe系の非晶質合金は材料コ
ストがCo系に比べ安くつくという利点がある反面一般的
に高周波においてCo系非晶質合金よりコア損失が大き
く、透磁率も低いという問題がある。これに対しCo系の
非晶質合金は高周波のコア損失が小さく、透磁率も高い
がコア損失や透磁率の経時変化が大きい。さらに高価な
Coを主原料とするため価格的な不利は免れない。 このような状況下でFe基非晶質磁性合金について種々
の提案がなされた。 特公昭60−17019号は、74〜84原子%のFeと、8〜24
原料%のBと、16原子%以下のSi及び3原子%以下のC
の内の少なくとも1つ、とからなる組成を有し、その構
造の少なくとも85%が非晶質金属素地の形を有し、かつ
非晶質金属素地の全体にわたって不連続に分布された合
金成分の結晶質粒子群の析出物を有しており、結晶質粒
子群は0.05〜1μmの平均粒度及び1〜10μmの平均粒
子間距離を有しており、粒子群は全体の0.01〜0.3の平
均容積分率を占めていることを特徴とする鉄基含硼素磁
性非晶質合金を開示している。この合金の結晶質粒子群
は磁壁のピンニング点として作用する不連続な分布のα
−(Fe,Si)粒子群であるとされている。 また特開昭60−52557号はFeaCubBcSid(ただし75≦a
≦85,0≦b≦1.5,10≦c≦20,d≦10かつc+d≦30)か
らなる低損失非晶質磁性合金を開示している。この非晶
質磁性合金は結晶化温度以下でかつキュリー温度以上で
熱処理される。 〔発明が解決しようとする問題点〕 特公昭60−17019号のFe基軟磁性合金は不連続な結晶
粒子群の存在によりコア損失が減少しているが、経時変
化が大きく高周波トランスやチョークの磁心用材料とし
ては満足でない。 一方、特開昭60−52557号のFe基非晶質合金はCuを含
有しているためにコア損失が著しく低下しているが、上
記結晶質粒子含有Fe基非晶質合金と同様に満足ではな
い。さらにコア損失の経時変化、透磁率等に関しても十
分ではないという問題がある。また、磁歪が大きく磁気
特性のばらつきも大きく、キュリー温度がFe−Si−Al合
金やFe−Si合金より低く磁気特性の安定性も劣る。 従って、本発明の目的は磁歪が小さくコア損失、コア
損失の経時変化、透磁率その他の磁気特性の安定性に優
れた新規なFe基軟磁性合金を提供することである。 〔問題点を解決するための手段〕 上記目的に鑑み鋭意研究の結果、本発明者等は下記の
(a)ないし(e)のいずれかの組成の合金において、
組織の少なくとも50%が微細な結晶粒からなり、前記結
晶粒の最大寸法で測定した粒径の平均が1000Å以下の平
均粒径を有する場合、優れた軟磁性が得られることを見
出し本発明に想到した。 (a)Siを4〜30原子%、Bを2〜9原子%、残部Feか
らなる組成。 (b)Siを4〜30原子%、Bを2〜9原子%、M′を20
原子%以下(M′はNb,W,Ta,Zr,Hf,Ti,Mo,V,Cr,Mn,白金
属元素,Sc,Y,希土類元素,Au,Zn,Sn,Reからなる群から選
ばれた少なくとも1種の元素)、残部Feからなる組成。 (c)Siを4〜30原子%、Bを2〜9原子%、M′を20
原子%以下(M′はNb,W,Ta,Zr,Hf,Ti,Mo,V,Cr,Mn,白金
属元素,Sc,Y,希土類元素,Au,Zn,Sn,Reからなる群から選
ばれた少なくとも1種の元素)、Xを20原子%以下(X
はC,Ge,Ga,Al,Beからなる群から選ばれた少なくとも1
種の元素)、残部Feからなる組成。 (d)Siを4〜30原子%、Bを2〜9原子%、M′を20
原子%以下(M′はNb,W,Ta,Zr,Hf,Ti,Mo,V,Cr,Mn,白金
属元素,Sc,Y,希土類元素,Au,Zn,Sn,Reからなる群から選
ばれた少なくとも1種の元素)、Yを20原子%以下(Y
はP,Sb,In,As,Li,Mg,Ca,Sr,Ba,Cd,Pb,Bi,N,O,S,Se及びT
eからなる群から選ばれた少なくとも1種の元素)、残
部Feからなる組成。 (e)Siを4〜30原子%、Bを2〜9原子%、M′を20
原子%以下(M′はNb,W,Ta,Zr,Hf,Ti,Mo,V,Cr,Mn,白金
属元素,Sc,Y,希土類元素,Au,Zn,Sn,Reからなる群から選
ばれた少なくとも1種の元素)、Xを20原子%以下(X
はC,Ge,Ga,Al,Beからなる群から選ばれた少なくとも1
種の元素)、残部FeおよびFeの50原子%以下をCoおよび
/またはNi(ただし、Niの置換量は20原子%未満とす
る)で置換した組成。 本発明においてSi,Bは必須の元素であり、合金の結晶
粒微細化および磁歪調整軟磁気特性の改善に有用な元素
である。 本発明の合金は、好ましくは、一旦Si,B添加により非
晶質合金とした後で、熱処理により微細結晶粒を形成す
ることにより得られる。 Si含有量の限定理由は30原料%を超えると軟磁気特性
の良好な条件では磁歪が大きくなってしまい好ましくな
く、4原子%未満では軟磁気特性が著しく劣化するため
好ましくないためである。Bの含有量の限定理由は、2
原子%未満では均一な結晶粒組織が得にくく軟磁気特性
が劣化し好ましくなく、9原子%を超えると軟磁気特性
の良好な熱処理条件では磁歪が大きくなってしまい好ま
しくないためである。 XはC,Ge,Ga,Al,Beからなる群から選ばれた少なくと
も1種の元素であり、これらの元素は非晶質化や磁歪、
キュリー温度調整等に効果がある。 Xの含有量の限定理由は20原子%を超えると著しく軟
磁気特性が劣化し、飽和磁束密度の低下するためであ
る。 Si,B,Xの総和量の値に関しては、10原子%未満では非
晶質化が困難になり磁気特性が劣化し好ましくなく、一
方35原子%を超えると飽和磁束密度の著しい低下および
軟磁気特性の劣化がある。より好ましいSi,B含有量の範
囲はSi10〜25原子%、B4〜7原子%である。この範囲で
特に優れた軟磁性が得られ、磁歪も小さいものが得やす
い。 本発明に係る合金においてM′はNb,W,Ta,Zr,Hf,Ti,M
o,V,Cr,Mn,白金属元素,Sc,Y,希土類元素,Au,Zn,Sn,Reか
らなる群から選ばれた少なくとも1種の元素であり、結
晶粒を微細化したり、耐食性を改善したりする効果を有
しており、20原子%以下含むことができる。この理由
は、M′の含有量が20原子%を超えた場合は飽和磁束密
度の著しい低下を示すためである。特に好ましいM′含
有量は1〜10原子%であり、この範囲で優れた軟磁性を
得ることができる。特にM′としてはNb,W,TaおよびMo
が軟磁性特性の面で好ましい。 添加元素YはP,Sb,In,As,Li,Mg,Ca,Sr,Ba,Cd,Pb,Bi,
N,O,S,Se及びTeからなる群から選ばれた少なくとも1種
の元素であり、2原子%以下含んでもよい。 残部は不純物を除いて実質的にFeが主体であるが、Fe
の一部はNiおよび/またはCoにより置換されていても良
い。Niの置換量は20原子%未満であるが、これは20原子
%を超えると軟磁性が著しく劣化するためであり、特に
好ましい範囲は10原子%以下である。この範囲で特に良
好な軟磁性が得られる。 Coの置換量は50原子%未満であり、NiとCoの含有量と
の総和は50原子%未満である。特に好ましいCoの含有量
は10原子%以下、CoとNiの含有量の総和は10原子%以下
である。 本発明合金は微細なbcc Fe固溶体を主体とする合金で
組織の少なくとも50%が微細な結晶粒からなり、前記結
晶粒の最大寸法で測定した粒径の平均が1000Å以下の平
均粒径を有する合金である。 通常は単ロール法,双ロール法等の液体急冷法やスパ
ッター法,蒸着法等による気相急冷法等により非晶質合
金を作製後これを加熱し結晶化させることにより作製さ
れる。 特に最大寸法で測定した粒径の平均が500Å以下の平
均粒径を有する場合、特に優れた軟磁気特性を得ること
ができる。 前記結晶粒の残部は主に非晶質であるが、本発明合金
は実質的に100%結晶質であっても十分優れた軟磁気特
性を得ることができる。 また本発明合金はbcc Fe固溶体を主体とする合金であ
り、飽和磁歪λが−5×10-6〜5×10-6の範囲にある
ものが得られ、Fe基アモルファス合金より著しく磁歪が
小さい。また、磁歪がほぼ零の合金も得ることができ
る。 本発明のFe基磁性合金は、前述のように単ロール法,
双ロール法,遠心急冷法等により非晶質薄帯を作製後熱
処理を行ない微細な結晶粒を形成する方法,蒸着法,ス
パッター法やイオンプレーティング等により非晶質膜を
作製後熱処理し結晶化させる方法,アトマイズ法やキャ
ビテーション法により非晶質粉を得た後熱処理し結晶化
させる方法や回転液中紡糸法やガラス被覆紡糸法によ
り、非晶質線を得た後熱処理し結晶化させる方法等いろ
いろな方法で作製することができる。したがって、本発
明合金は粉末,線,薄帯,膜などいろいろな形状のもの
ができ、圧接等を行なえばバルク体も得ることができ
る。 本合金を得る際行われる熱処理は内部歪を小さくする
ことと、微細結晶粒組織とし軟磁気特性を向上させると
ともに磁歪を小さくする目的で行われる。 熱処理は通常真空中または水素ガス,窒素ガス,アル
ゴンガス等の不活性ガス雰囲気中において行なわれる。
しかし場合によっては大気中で行っても良い。 熱処理温度及び時間は非晶質合金リボンからなる磁心
の形状,サイズ,組成により異なるが一般的に450℃〜7
00℃で5分から24時間程度が望ましい。 熱処理の際の昇温や冷却の条件は状況に応じて任意に
変えることができる。また同一温度または異なる温度で
複数回にわけ熱処理を行ったり、多段の熱処理パターン
で熱処理を行なうこともできる。更には、本合金は熱処
理を直流あるいは交流の磁場中で行なうこともできる。
磁場中熱処理により本合金に磁気異方性を生じさせるこ
とができる。本合金からなる磁心の磁路方向に磁場を印
加し熱処理した場合は、B−Hカーブの角形性が良いも
のが得られ、可飽和リアクトル,磁気スイッチ,パルス
圧縮用コア,スパイク電圧防止用リアクトル等に好適な
特性が得られ、一方磁路と直角方向に磁場を印加し熱処
理した場合は、B−Hカーブが傾斜し、低角形比で恒透
磁率性に優れた特性が得られ、トランスやノイズフィル
ター,チョークコイル等に好適となる。 磁場は熱処理の間中かける必要はなく、合金のキュリ
ー温度Tcより低い温度でかければ十分効果がある。本発
明合金のキュリー温度は非晶質の場合より主相のキュリ
ー温度が上昇しており、非晶質合金のキュリー温度より
高い温度でも磁場中熱処理が適用できる。また回転磁場
中熱処理を行ない軟磁気特性を更に改善することもでき
る。また、熱処理の際合金に電流を流したり、高周波磁
界を印加し合金を発熱させることにより合金を熱処理す
ることもできる。 また応力下で熱処理し磁気特性を調整することもでき
る。特に本発明の合金は低磁歪の特徴を有するため、合
金表面に絶縁層を形成したり、含浸やコーティングを行
っても磁気特性の劣化が小さい特徴があり、優れた特性
のモールドコアやカットコア,コーティングコア,磁気
ヘッド等を作製できる。 〔実 施 例〕 本発明を以下の実施例によりさらに詳細に説明する
が、本発明はこれらに限定されるものではない。 実施例1 原子%でSi17.5at%,B5at%,Nb3at%及び残部実質的
にFeからなる組成の溶湯から、単ロール法により合金薄
帯を作製した。板厚は18μm幅は3mmであった。 この合金のX線回折を行ったところ非晶質合金特有の
ハローパターンが得られた。透過電子顕微鏡による組織
観察の結果でも結晶相は認められなかった。この合金の
結晶化温度は541℃であった。 次にこの合金を外径19mm,内径15mmのトロイダル状に
巻き巻磁心を作製した。次にこの巻磁心を530℃に保持
したAr雰囲気の炉に装入し、1時間保持後、5℃/minの
冷却速度で室温まで冷却した。 第1図(a)にX線回折パターン、第1図(b)に透
過電子顕微鏡で観察したミクロ組織の模式図を示す。 X線回折および透過電子顕微鏡による組織観察の結果
より本発明合金は組織の大部分が50〜500Aの粒径の微細
なbcc Fe固溶体粒からなことが確認された。 磁気特性は、飽和磁束密度Bsが12.4KG,1KHzにおける
実効透磁率が14300,2KG100KHzにおけるコア損失W2/100K
が630mW/ccであり優れた軟磁性を示すことが確認され
た。また飽和磁歪λは+2.5×10-6でありFe基アモル
ファス合金に比べ著しく小さいことが確認された。 実施例2 原子%でSi17.8at%,B5.0at%,Nb3.1at%及び残部実
質的にFeからなる組成の溶湯から、板厚18μm幅5mmの
合金薄帯を単ロール法により作製した。この合金はX線
回折の結果非晶質合金特有のハローパターンを示し、透
過電子顕微鏡による組織観察の結果でも結晶相は認めら
れず、非晶質単相であることが確認された。 次にこの合金薄帯を外径19mm内径15mmのトロイダル状
に巻回しトロイダル磁心とし窒素ガス雰囲気中で熱処理
を行った。保持時間は1時間とした。熱処理中試料には
5000Oeの磁場を印加し試料を回転させた。冷却は5℃/m
inの冷却速度で行った。 熱処理温度と磁気特性の関係および結晶相の割合を第
1表に示す。 結晶相の比率が50%を越えると飽和磁歪定数λが著
しく小さくなり、かつ軟磁気特性も良好な特性を示すこ
とがわかる。結晶相の比率が0%の非晶質状態の合金よ
り1KHzの実効透磁率がやや低い場合もあるが、実用的に
問題ない値であり、λが著しく小さい特徴であるため
含浸等による歪による磁気特性の劣化が小さくモールド
コア等に用いる場合有利となる。 実施例3 第2表に示す組成の厚さ15μm,幅5mmの合金薄帯を単
ロール法により作製した。 次に、この合金薄帯を外径19mm,内径15mmに巻回しト
ロイダル磁心を作製し、N2ガス雰囲気中で結晶化温度以
上で熱処理後100KHz,0.2Tにおけるコア損失、飽和磁歪
λS120℃に1000時間保持した後のコア損失の増加率を測
定した。得られた結果を第2表に示す。 W0:初期のコア損失 W1000:1000時間後のコア損失 なお、透過電子顕微鏡による組織観察の結果ミクロ組
織は実施例1とほぼ同様であることが確認された。 表からわかるように本発明合金は従来のFe基アモルフ
ァス合金より飽和磁歪λが著しく小さく、コア損失も
小さい。またFe基およびCo基アモルファス合金に比べ著
しくコア損失の経時変化率が小さく安定である。このた
め高信頼性の磁心を作製することができる。 実施例4 第3表に示す組成の厚さ3μmの合金膜をフォトセラ
ム基板上にマグネトロンスパッタ法により作製した。X
線回折の結果得られた合金膜はほぼ非晶質単相であるこ
とが確認された。 次にこの合金をN2ガス雰囲気中で結晶化温度以上に加
熱し熱処理した。得られた合金膜の組織は実施例1とほ
ぼ同様であった。次に、この合金膜の1MHzの実効透磁率
μe1Mを測定し、次に120℃1000時間保持後の1MHzの実効
透磁率▲μe1000 1M▼を測定した。1MHzの実効透磁率の
変化率△μ1Mを第3表に示す。 表からわかるように本発明合金膜は従来のアモルファ
ス合金膜に比べ経時変化が著しく小さく優れている。 〔発明の効果〕 本発明によれば優れた軟磁気特性を有し、磁歪が小さ
く熱安定性にも優れたFe基磁性合金を得ることができる
ため、その効果は著しいものがある。
The present invention relates to an Fe-based magnetic alloy having excellent magnetic properties and small magnetostriction, and particularly to an Fe-based magnetic alloy in which most of the structure is composed of fine crystal grains. . Conventionally, ferrite, which has advantages such as low eddy current loss, has been mainly used as a magnetic core material for high-frequency transformers, magnetic heads, saturable reactors, choke coils, and the like. However, since ferrite has low saturation magnetic flux density and poor temperature characteristics, it has a drawback that it is difficult to reduce the size of a magnetic core when used in a high-frequency transformer or a choke coil. In recent years, amorphous magnetic alloys having a high saturation magnetic flux density as a countermeasure to conventional magnetic core materials are promising,
Various compositions have been developed. Amorphous alloys are mainly classified into Fe-based and Co-based.Fe-based amorphous alloys have the advantage that the material cost is lower than that of Co-based alloys. There is a problem that the core loss is large and the magnetic permeability is low. On the other hand, the Co-based amorphous alloy has a small high-frequency core loss and a high magnetic permeability, but has a large change with time in the core loss and the magnetic permeability. More expensive
Since Co is the main raw material, price disadvantages are inevitable. Under such circumstances, various proposals have been made for Fe-based amorphous magnetic alloys. JP-B-60-17019 discloses that 74 to 84 atomic% of Fe and 8 to 24
Raw material% B, 16 atomic% or less Si and 3 atomic% or less C
Wherein at least 85% of the structure has the shape of an amorphous metal body and is discontinuously distributed throughout the amorphous metal body. Having a precipitate of the crystalline particle group, the crystalline particle group has an average particle size of 0.05 to 1 μm and an average interparticle distance of 1 to 10 μm, and the particle group has an average of 0.01 to 0.3 of the whole. An iron-based boron-containing magnetic amorphous alloy characterized by occupying a volume fraction is disclosed. The crystalline particles of this alloy have a discontinuous distribution of α that acts as a domain wall pinning point.
-(Fe, Si) particles. The JP 60-52557 is Fe a Cu b B c Si d ( provided that 75 ≦ a
≦ 85, 0 ≦ b ≦ 1.5, 10 ≦ c ≦ 20, d ≦ 10 and c + d ≦ 30). This amorphous magnetic alloy is heat-treated at a temperature lower than the crystallization temperature and higher than the Curie temperature. [Problems to be Solved by the Invention] The Fe-based soft magnetic alloy disclosed in JP-B-60-17019 has a reduced core loss due to the presence of discontinuous crystal grains, but has a large time-dependent change in a high-frequency transformer or choke. It is not satisfactory as a material for magnetic cores. On the other hand, the core loss of the Fe-based amorphous alloy disclosed in JP-A-60-52557 is remarkably reduced due to the inclusion of Cu, but is as satisfactory as the Fe-based amorphous alloy containing crystalline particles. is not. Further, there is a problem that the change with time of the core loss and the magnetic permeability are not sufficient. In addition, the magnetostriction is large, the variation in magnetic properties is large, the Curie temperature is lower than that of an Fe-Si-Al alloy or an Fe-Si alloy, and the stability of magnetic properties is poor. Accordingly, an object of the present invention is to provide a novel Fe-based soft magnetic alloy which has a small magnetostriction and is excellent in core loss, change in core loss with time, magnetic permeability and stability of other magnetic properties. [Means for Solving the Problems] In view of the above objects, as a result of intensive studies, the present inventors have found that the following alloys having any one of the following compositions (a) to (e):
According to the present invention, it has been found that excellent soft magnetism can be obtained when at least 50% of the structure is composed of fine crystal grains and the average of the particle diameters measured at the maximum dimension of the crystal grains is 1000 ° or less. I arrived. (A) A composition comprising 4 to 30 atomic% of Si, 2 to 9 atomic% of B, and the balance Fe. (B) 4 to 30 atomic% of Si, 2 to 9 atomic% of B, 20% of M '
Atomic% or less (M 'is selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, Mo, V, Cr, Mn, white metal element, Sc, Y, rare earth element, Au, Zn, Sn, Re At least one element), and the balance being Fe. (C) 4 to 30 atomic% of Si, 2 to 9 atomic% of B, 20% of M '
Atomic% or less (M 'is selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, Mo, V, Cr, Mn, white metal element, Sc, Y, rare earth element, Au, Zn, Sn, Re At least one element), X is not more than 20 atomic% (X
Is at least one selected from the group consisting of C, Ge, Ga, Al, Be
Element) and the balance of Fe. (D) 4 to 30 atomic% of Si, 2 to 9 atomic% of B, 20% of M '
Atomic% or less (M 'is selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, Mo, V, Cr, Mn, white metal element, Sc, Y, rare earth element, Au, Zn, Sn, Re At least one element), Y is not more than 20 atomic% (Y
Are P, Sb, In, As, Li, Mg, Ca, Sr, Ba, Cd, Pb, Bi, N, O, S, Se and T
e) at least one element selected from the group consisting of e) and the balance of Fe. (E) 4 to 30 atomic% of Si, 2 to 9 atomic% of B, 20% of M '
Atomic% or less (M 'is selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, Mo, V, Cr, Mn, white metal element, Sc, Y, rare earth element, Au, Zn, Sn, Re At least one element), X is not more than 20 atomic% (X
Is at least one selected from the group consisting of C, Ge, Ga, Al, Be
A composition in which 50 atomic% or less of Fe and the balance of Fe are replaced with Co and / or Ni (however, the substitution amount of Ni is less than 20 atomic%). In the present invention, Si and B are essential elements, and are useful elements for refining the crystal grains of the alloy and improving the soft magnetic properties for adjusting the magnetostriction. The alloy of the present invention is preferably obtained by once forming an amorphous alloy by adding Si and B, and then forming fine crystal grains by heat treatment. The reason for limiting the Si content is that if the content exceeds 30% by raw material, magnetostriction increases under favorable conditions of soft magnetic characteristics, and if it is less than 4 atomic%, the soft magnetic characteristics are significantly deteriorated, which is not preferable. The reason for limiting the content of B is 2
If the content is less than atomic%, it is difficult to obtain a uniform crystal grain structure and the soft magnetic properties deteriorate, which is not preferable. If the content exceeds 9 atomic%, the magnetostriction increases under heat treatment conditions with good soft magnetic properties, which is not preferable. X is at least one element selected from the group consisting of C, Ge, Ga, Al and Be, and these elements are made amorphous, magnetostrictive,
Effective for Curie temperature adjustment. The reason for limiting the content of X is that if it exceeds 20 atomic%, the soft magnetic properties are significantly deteriorated, and the saturation magnetic flux density is reduced. If the total amount of Si, B, and X is less than 10 atomic%, it becomes difficult to amorphize and the magnetic properties deteriorate, and if it exceeds 35 atomic%, the saturation magnetic flux density decreases significantly and There is deterioration of characteristics. More preferable ranges of the Si and B contents are 10 to 25 atomic% of Si and 4 to 7 atomic% of B. In this range, particularly excellent soft magnetism can be obtained, and those having small magnetostriction can be easily obtained. In the alloy according to the present invention, M ′ is Nb, W, Ta, Zr, Hf, Ti, M
o, V, Cr, Mn, at least one element selected from the group consisting of white metal elements, Sc, Y, rare earth elements, Au, Zn, Sn, and Re to refine crystal grains and improve corrosion resistance It has an effect of improving, and can contain up to 20 atomic%. The reason for this is that when the content of M ′ exceeds 20 atomic%, the saturation magnetic flux density significantly decreases. A particularly preferred M 'content is 1 to 10 at%, and excellent soft magnetism can be obtained in this range. In particular, as M ', Nb, W, Ta and Mo
Is preferred in terms of soft magnetic properties. The additive element Y is P, Sb, In, As, Li, Mg, Ca, Sr, Ba, Cd, Pb, Bi,
At least one element selected from the group consisting of N, O, S, Se and Te, and may contain up to 2 atomic%. The balance is substantially Fe-excluding impurities, but Fe
May be substituted by Ni and / or Co. The substitution amount of Ni is less than 20 atomic%. If it exceeds 20 atomic%, the soft magnetism is remarkably deteriorated, and a particularly preferable range is 10 atomic% or less. Particularly good soft magnetism can be obtained in this range. The substitution amount of Co is less than 50 atomic%, and the sum of the contents of Ni and Co is less than 50 atomic%. Particularly preferred Co content is 10 atomic% or less, and the total content of Co and Ni is 10 atomic% or less. The alloy of the present invention is an alloy mainly composed of fine bcc Fe solid solution, and at least 50% of the structure is composed of fine crystal grains, and the average of the particle diameters measured at the maximum dimension of the crystal grains is 1000 ° or less. Alloy. Usually, an amorphous alloy is prepared by a liquid quenching method such as a single roll method or a twin roll method, or a gas phase quenching method such as a sputtering method or a vapor deposition method, and then is heated and crystallized. Particularly, when the average of the particle diameters measured at the largest dimension has an average particle diameter of 500 ° or less, particularly excellent soft magnetic properties can be obtained. The remainder of the crystal grains is mainly amorphous, but the alloy of the present invention can obtain sufficiently excellent soft magnetic properties even if it is substantially 100% crystalline. The present invention alloy is an alloy mainly comprising bcc Fe solid solution, which saturation magnetostriction lambda S is in the range of -5 × 10 -6 ~5 × 10 -6 is obtained, is significantly magnetostriction than Fe-base amorphous alloy small. Also, an alloy having almost zero magnetostriction can be obtained. As described above, the Fe-based magnetic alloy of the present invention has a single-roll method,
Heat treatment after forming amorphous ribbon by twin roll method, centrifugal quenching method, etc. to form fine crystal grains, amorphous film by vapor deposition method, sputtering method, ion plating, etc. Amorphous powder is obtained by atomizing or cavitation, then heat-treated and crystallized. Amorphous wire is obtained by spinning in a rotating liquid or glass-coated spinning, then heat-treated and crystallized. It can be produced by various methods such as a method. Therefore, the alloy of the present invention can be formed into various shapes such as powder, wire, ribbon, film, and the like, and a bulk body can be obtained by performing pressure welding or the like. The heat treatment performed to obtain the present alloy is performed for the purpose of reducing the internal strain, improving the soft magnetic characteristics with a fine grain structure, and reducing the magnetostriction. The heat treatment is usually performed in a vacuum or in an inert gas atmosphere such as a hydrogen gas, a nitrogen gas, and an argon gas.
However, in some cases, it may be performed in the atmosphere. The heat treatment temperature and time vary depending on the shape, size, and composition of the magnetic core made of the amorphous alloy ribbon, but are generally 450 ° C to 7 ° C.
Desirably, the temperature is about 5 minutes to 24 hours at 00C. Conditions for temperature rise and cooling during the heat treatment can be arbitrarily changed according to the situation. Further, heat treatment may be performed a plurality of times at the same temperature or different temperatures, or heat treatment may be performed in a multi-step heat treatment pattern. Furthermore, the alloy can be heat-treated in a DC or AC magnetic field.
Magnetic anisotropy can be generated in the present alloy by heat treatment in a magnetic field. When a magnetic field is applied in the direction of the magnetic path of the magnetic core made of this alloy and heat treatment is performed, a BH curve having good squareness can be obtained, and a saturable reactor, a magnetic switch, a pulse compression core, and a spike voltage prevention reactor can be obtained. In the case where heat treatment is performed by applying a magnetic field in a direction perpendicular to the magnetic path, the BH curve is inclined, and a characteristic with a low squareness ratio and excellent magnetic permeability is obtained. And a noise filter, a choke coil and the like. The magnetic field does not need to be applied during the heat treatment, and a temperature lower than the Curie temperature Tc of the alloy is sufficiently effective. The Curie temperature of the main phase of the alloy of the present invention is higher than that of the amorphous alloy, and heat treatment in a magnetic field can be applied even at a temperature higher than the Curie temperature of the amorphous alloy. In addition, soft magnetic characteristics can be further improved by performing heat treatment in a rotating magnetic field. Further, it is also possible to heat-treat the alloy by applying a current to the alloy or applying a high-frequency magnetic field to generate heat in the alloy during the heat treatment. The magnetic properties can also be adjusted by heat treatment under stress. In particular, since the alloy of the present invention has a characteristic of low magnetostriction, even if an insulating layer is formed on the surface of the alloy or impregnation or coating is performed, there is a characteristic that the magnetic characteristic is small, and a mold core and a cut core having excellent characteristics are provided. , Coating core, magnetic head, etc. [Examples] The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. Example 1 An alloy ribbon was produced by a single roll method from a molten metal having a composition consisting of 17.5 at% of Si, 5 at% of B, 3 at% of Nb, and the balance being substantially Fe. The plate thickness was 18 μm and the width was 3 mm. When an X-ray diffraction of this alloy was performed, a halo pattern peculiar to the amorphous alloy was obtained. No crystal phase was observed by observation of the structure with a transmission electron microscope. The crystallization temperature of this alloy was 541 ° C. Next, this alloy was wound in a toroidal shape having an outer diameter of 19 mm and an inner diameter of 15 mm to form a wound core. Next, the core was placed in a furnace in an Ar atmosphere maintained at 530 ° C., maintained for 1 hour, and cooled to room temperature at a cooling rate of 5 ° C./min. FIG. 1A shows an X-ray diffraction pattern, and FIG. 1B shows a schematic diagram of a microstructure observed by a transmission electron microscope. X-ray diffraction and observation of the structure by transmission electron microscopy confirmed that most of the structure of the alloy of the present invention was composed of fine bcc Fe solid solution particles having a particle size of 50 to 500 A. Magnetic properties, core losses W 2 / 100K saturation magnetic flux density Bs 12.4 kg, the effective permeability in 14300,2KG100KHz at 1KHz
Was 630 mW / cc, and it was confirmed that the composition exhibited excellent soft magnetism. The saturation magnetostriction λ S was + 2.5 × 10 −6 , which was confirmed to be significantly smaller than that of the Fe-based amorphous alloy. Example 2 An alloy ribbon having a thickness of 18 μm and a width of 5 mm was prepared by a single roll method from a molten metal having a composition of 17.8 at% of Si, 5.0 at% of B, 3.1 at% of Nb, and the balance substantially of Fe in atomic%. This alloy showed a halo pattern peculiar to the amorphous alloy as a result of X-ray diffraction. The structure was observed with a transmission electron microscope, and no crystal phase was observed. Thus, the alloy was confirmed to be an amorphous single phase. Next, this alloy ribbon was wound into a toroidal shape having an outer diameter of 19 mm and an inner diameter of 15 mm to form a toroidal magnetic core, and heat-treated in a nitrogen gas atmosphere. The holding time was 1 hour. Samples during heat treatment
The sample was rotated by applying a magnetic field of 5000 Oe. Cooling is 5 ℃ / m
Performed at a cooling rate of in. Table 1 shows the relationship between the heat treatment temperature and the magnetic properties and the proportion of the crystal phase. The ratio of the crystalline phase exceeds the saturation magnetostriction constant lambda S is significantly reduced 50%, and soft magnetic characteristics it can be seen that good characteristics. Although effective permeability of 1KHz of an alloy of the amorphous state ratio is 0% crystalline phase sometimes slightly lower, a problem no value practically, distortion caused by such impregnation for lambda S is remarkably small features This is advantageous when it is used for a mold core or the like because the deterioration of the magnetic characteristics due to the above is small. Example 3 An alloy ribbon having a composition shown in Table 2 and having a thickness of 15 μm and a width of 5 mm was produced by a single roll method. Next, the outer diameter of 19mm the alloy ribbon, to prepare a winding toroidal core to the inner diameter 15 mm, after heat treatment at the crystallization temperature or higher in an N 2 gas atmosphere 100 KHz, the core loss in the 0.2T, saturation magnetostriction lambda S 120 ° C. Was measured for the increase rate of the core loss after holding for 1000 hours. Table 2 shows the obtained results. W 0 : Initial core loss W 1000 : Core loss after 1000 hours In addition, as a result of observation of the structure by a transmission electron microscope, it was confirmed that the microstructure was almost the same as that in Example 1. The present invention alloy as can be seen from the table saturation magnetostriction lambda S is significantly smaller than a conventional Fe-based amorphous alloy, less core losses. Further, the rate of change of core loss with time is remarkably small and stable as compared with Fe-based and Co-based amorphous alloys. Therefore, a highly reliable magnetic core can be manufactured. Example 4 An alloy film having a composition shown in Table 3 and having a thickness of 3 μm was formed on a photocell substrate by magnetron sputtering. X
It was confirmed that the alloy film obtained as a result of the line diffraction was substantially an amorphous single phase. Next, this alloy was heated to a temperature higher than the crystallization temperature in a N 2 gas atmosphere and heat-treated. The structure of the obtained alloy film was almost the same as in Example 1. Then, the effective permeability μe1M of 1MHz of the alloy film was measured and then 120 ° C. 1000 hours after holding of 1MHz effective permeability ▲ μe 1000 1M ▼ was measured. Table 3 shows the rate of change 実 効 μ 1M of the effective magnetic permeability at 1 MHz. As can be seen from the table, the alloy film of the present invention is superior to the conventional amorphous alloy film in that the change with time is remarkably small. [Effects of the Invention] According to the present invention, an Fe-based magnetic alloy having excellent soft magnetic properties, small magnetostriction, and excellent thermal stability can be obtained, and the effect is remarkable.

【図面の簡単な説明】 第1図(a)は本発明合金のX線回折パターンの一例を
示した図、第1図(b)は本発明合金の透過電子顕微鏡
により観察した組織の模式図を示した図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) shows an example of an X-ray diffraction pattern of the alloy of the present invention, and FIG. 1 (b) is a schematic view of the structure of the alloy of the present invention observed by a transmission electron microscope. FIG.

Claims (1)

(57)【特許請求の範囲】 1.Siを4〜30原子%、Bを2〜9原子%、残部Feから
なる組成を有し、組織の少なくとも50%が微細な結晶粒
からなり、前記結晶粒の最大寸法で測定した粒径の平均
が1000Å以下の平均粒径を有することを特徴とするFe基
磁性合金。 2.Siを4〜30原子%、Bを2〜9原子%、M′を20原
子%以下(M′はNb,W,Ta,Zr,Hf,Ti,Mo,V,Cr,Mn,白金属
元素,Sc,Y,希土類元素,Au,Zn,Sn,Reからなる群から選ば
れた少なくとも1種の元素)、残部Feからなる組成を有
し、組織の少なくとも50%が微細な結晶粒からなり、前
記結晶粒の最大寸法で測定した粒径の平均が1000Å以下
の平均粒径を有することを特徴とするFe基磁性合金。 3.Siを4〜30原子%、Bを2〜9原子%、M′を20原
子%以下(M′はNb,W,Ta,Zr,Hf,Ti,Mo,V,Cr,Mn,白金属
元素,Sc,Y,希土類元素,Au,Zn,Sn,Reからなる群から選ば
れた少なくとも1種の元素)、Xを20原子%以下(Xは
C,Ge,Ga,Al,Beからなる群から選ばれた少なくとも1種
の元素)、残部Feからなる組成を有し、組織の少なくと
も50%が微細な結晶粒からなり、前記結晶粒の最大寸法
で測定した粒径の平均が1000Å以下の平均粒径を有する
ことを特徴とするFe基磁性合金。 4.Siを4〜30原子%、Bを2〜9原子%、M′を20原
子%以下(M′はNb,W,Ta,Zr,Hf,Ti,Mo,V,Cr,Mn,白金属
元素,Sc,Y,希土類元素,Au,Zn,Sn,Reからなる群から選ば
れた少なくとも1種の元素)、Yを2原子%以下(Yは
P,Sb,In,As,Li,Mg,Ca,Sr,Ba,Cd,Pb,Bi,N,O,S,Se及びTe
からなる群から選ばれた少なくとも1種の元素)、残部
Feからなる組成を有し、組織の少なくとも50%が微細な
結晶粒からなり、前記結晶粒の最大寸法で測定した粒径
の平均が1000Å以下の平均粒径を有することを特徴とす
るFe基磁性合金。 5.Siを4〜30原子%、Bを2〜9原子%、M′を20原
子%以下(M′はNb,W,Ta,Zr,Hf,Ti,Mo,V,Cr,Mn,白金属
元素,Sc,Y,希土類元素,Au,Zn,Sn,Reからなる群から選ば
れた少なくとも1種の元素)、Xを20原子%以下(Xは
C,Ge,Ga,Al,Beからなる群から選ばれた少なくとも1種
の元素)、残部FeおよびFeの50原子%以下をCoおよび/
またはNi(ただし、Niの置換量は20原子%未満とする)
で置換した組成を有し、組織の少なくとも50%が微細な
結晶粒からなり、前記結晶粒の最大寸法で測定した粒径
の平均が1000Å以下の平均粒径を有することを特徴とす
るFe基磁性合金。
(57) [Claims] It has a composition of 4 to 30 atomic% of Si, 2 to 9 atomic% of B, and the balance of Fe, and at least 50% of the structure is composed of fine crystal grains. An Fe-based magnetic alloy having an average particle size of 1000 mm or less. 2. Si is 4 to 30 atomic%, B is 2 to 9 atomic%, M 'is 20 atomic% or less (M' is Nb, W, Ta, Zr, Hf, Ti, Mo, V, Cr, Mn, a white metal element , Sc, Y, rare earth elements, at least one element selected from the group consisting of Au, Zn, Sn, Re), and the balance of Fe, and at least 50% of the structure is composed of fine crystal grains. An Fe-based magnetic alloy, wherein the average of the particle diameters measured at the maximum size of the crystal grains is 1000 ° or less. 3. Si is 4 to 30 atomic%, B is 2 to 9 atomic%, M 'is 20 atomic% or less (M' is Nb, W, Ta, Zr, Hf, Ti, Mo, V, Cr, Mn, a white metal element , Sc, Y, a rare earth element, at least one element selected from the group consisting of Au, Zn, Sn, and Re), and X is 20 atom% or less (X is
At least one element selected from the group consisting of C, Ge, Ga, Al, and Be) and the balance of Fe, and at least 50% of the structure is made up of fine crystal grains. An Fe-based magnetic alloy, wherein the average of the particle diameters measured in size has an average particle diameter of 1000 mm or less. 4. Si is 4 to 30 atomic%, B is 2 to 9 atomic%, M 'is 20 atomic% or less (M' is Nb, W, Ta, Zr, Hf, Ti, Mo, V, Cr, Mn, a white metal element , Sc, Y, a rare earth element, at least one element selected from the group consisting of Au, Zn, Sn, Re), and Y in an amount of 2 atomic% or less (Y is
P, Sb, In, As, Li, Mg, Ca, Sr, Ba, Cd, Pb, Bi, N, O, S, Se and Te
At least one element selected from the group consisting of
An Fe-based alloy having a composition of Fe, wherein at least 50% of the structure is composed of fine crystal grains, and the average of the particle diameters measured at the maximum dimension of the crystal grains is 1000 ° or less. Magnetic alloy. 5. Si is 4 to 30 atomic%, B is 2 to 9 atomic%, M 'is 20 atomic% or less (M' is Nb, W, Ta, Zr, Hf, Ti, Mo, V, Cr, Mn, a white metal element , Sc, Y, a rare earth element, at least one element selected from the group consisting of Au, Zn, Sn, and Re), and X is 20 atom% or less (X is
At least one element selected from the group consisting of C, Ge, Ga, Al and Be), and the balance of Fe and 50 atomic% or less of Fe to Co and / or
Or Ni (however, the substitution amount of Ni should be less than 20 atomic%)
Wherein at least 50% of the structure is composed of fine crystal grains, and the average of the particle diameters measured at the maximum dimension of the crystal grains has an average particle diameter of 1000 ° or less. Magnetic alloy.
JP62313645A 1987-12-11 1987-12-11 Fe-based magnetic alloy Expired - Fee Related JP2713714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62313645A JP2713714B2 (en) 1987-12-11 1987-12-11 Fe-based magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62313645A JP2713714B2 (en) 1987-12-11 1987-12-11 Fe-based magnetic alloy

Publications (2)

Publication Number Publication Date
JPH01156452A JPH01156452A (en) 1989-06-20
JP2713714B2 true JP2713714B2 (en) 1998-02-16

Family

ID=18043801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62313645A Expired - Fee Related JP2713714B2 (en) 1987-12-11 1987-12-11 Fe-based magnetic alloy

Country Status (1)

Country Link
JP (1) JP2713714B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258185B1 (en) * 1999-05-25 2001-07-10 Bechtel Bwxt Idaho, Llc Methods of forming steel
JP3442375B2 (en) * 2000-11-29 2003-09-02 アルプス電気株式会社 Amorphous soft magnetic alloy
CN103668006B (en) * 2013-12-19 2015-12-02 南京信息工程大学 Without nickelalloy and preparation method thereof
CN108251753B (en) * 2018-02-08 2020-11-20 东北大学 Fe-Ga-based thin strip with high magnetostriction coefficient and preparation method thereof

Also Published As

Publication number Publication date
JPH01156452A (en) 1989-06-20

Similar Documents

Publication Publication Date Title
KR910003977B1 (en) Fe-base soft magnetic alloy and method of producing same
JPH044393B2 (en)
JP2573606B2 (en) Magnetic core and manufacturing method thereof
JPH06505533A (en) Fe-Ni-based soft magnetic alloy with nanocrystalline structure
JP2672306B2 (en) Fe-based amorphous alloy
JP2710938B2 (en) High saturation magnetic flux density soft magnetic alloy
JPH06322472A (en) Production of fe base soft magnetic alloy
JP2667402B2 (en) Fe-based soft magnetic alloy
JPH0711396A (en) Fe base soft magnetic alloy
JP2713714B2 (en) Fe-based magnetic alloy
JP2713373B2 (en) Magnetic core
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JPH0867911A (en) Method for heat-treating nano-crystalline magnetic alloy
JPH0768604B2 (en) Fe-based magnetic alloy
JP3233289B2 (en) Ultra-microcrystalline alloy ribbon and powder and magnetic core using the same
JP3322407B2 (en) Fe-based soft magnetic alloy
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JPH08948B2 (en) Fe-based magnetic alloy
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JPH0570901A (en) Fe base soft magnetic alloy
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JPH0610105A (en) Fe base soft magnetic alloy
JPH0499253A (en) Iron-based soft magnetic alloy
JPH03197650A (en) Fe-base high transmissible magnetic alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees