JP4310738B2 - Soft magnetic alloys and magnetic parts - Google Patents

Soft magnetic alloys and magnetic parts Download PDF

Info

Publication number
JP4310738B2
JP4310738B2 JP2003433244A JP2003433244A JP4310738B2 JP 4310738 B2 JP4310738 B2 JP 4310738B2 JP 2003433244 A JP2003433244 A JP 2003433244A JP 2003433244 A JP2003433244 A JP 2003433244A JP 4310738 B2 JP4310738 B2 JP 4310738B2
Authority
JP
Japan
Prior art keywords
alloy
magnetic
soft magnetic
atomic
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003433244A
Other languages
Japanese (ja)
Other versions
JP2005187917A (en
Inventor
克仁 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003433244A priority Critical patent/JP4310738B2/en
Publication of JP2005187917A publication Critical patent/JP2005187917A/en
Application granted granted Critical
Publication of JP4310738B2 publication Critical patent/JP4310738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Description

本発明は、各種トランス、各種リアクトル、アクティブフィルタ用チョ−クコイル、平滑チョークコイル、コモンモードチョークコイルや電磁シールドなどのノイズ対策部品、レーザ電源、加速器用パルスパワー磁性部品、モータ、発電機等に用いられる量産性に優れたナノスケールの微細な結晶粒を含む軟磁性合金ならびにそれを用いた磁性部品に関する。   The present invention is applicable to various transformers, various reactors, choke coils for active filters, smooth choke coils, common mode choke coils, electromagnetic shields and other noise countermeasure components, laser power supplies, accelerator pulse power magnetic components, motors, generators, etc. The present invention relates to a soft magnetic alloy including nanoscale fine crystal grains excellent in mass productivity and a magnetic component using the same.

各種トランス、各種リアクトル、アクティブフィルタ用チョ−クコイル、平滑チョークコイル、コモンモードチョークコイルや電磁シールドなどのノイズ対策部品、レーザ電源、加速器用パルスパワー磁性部品、モータ、発電機等に用いられる高飽和磁束密度で低磁心損失を示す磁性合金としては珪素鋼、アモルファス合金やFeCuNbSiB系、FeZrB系やFeNbB系などのFe基ナノ結晶合金材料等が知られている。珪素鋼板は、材料が安価で磁束密度が高いが、高周波の用途に対しては磁心損失が大きいという問題がある。Fe基アモルファス合金は、磁歪が大きく応力により特性が劣化する問題や、可聴周波数帯の電流が重畳するような用途では騒音が大きいという問題がある。一方、Co基アモルファス合金は、飽和磁束密度が実用的な材料では1T以下と低く、熱的に不安定という問題がある。このため、ハイパワーの用途に使用した場合、部品が大きくなる問題や経時変化のために磁心損失が増加する問題がある。   High saturation used for various transformers, various reactors, choke coils for active filters, smooth choke coils, noise suppression parts such as common mode choke coils and electromagnetic shields, laser power supplies, pulse power magnetic parts for accelerators, motors, generators, etc. Known magnetic alloys exhibiting low magnetic core loss at magnetic flux density include silicon steel, amorphous alloys, FeCuNbSiB-based, FeZrB-based, FeNbB-based Fe-based nanocrystalline alloy materials, and the like. A silicon steel sheet is inexpensive and has a high magnetic flux density, but has a problem of high magnetic core loss for high frequency applications. The Fe-based amorphous alloy has a problem that its magnetostriction is large and its characteristics are deteriorated by stress, and there is a problem that noise is high in applications where currents in an audible frequency band are superimposed. On the other hand, the Co-based amorphous alloy has a problem that the saturation magnetic flux density is as low as 1 T or less in a practical material and is thermally unstable. For this reason, when used for high power applications, there are problems that the parts become large and that the magnetic core loss increases due to aging.

Fe基ナノ結晶合金は優れた軟磁気特性を示すため、コモンモ−ドチョ−クコイル、高周波トランス、パルストランス等の磁心に使用されている。代表的組成系は特許文献1(特公平4-4393号公報)や特許文献2(特開平1-242755号公報)に記載のFe-Cu-(Nb,Ti,Zr,Hf,Mo,W,Ta)-Si-B系合金やFe-Cu-(Nb,Ti,Zr,Hf,Mo,W,Ta)-B系合金等が知られている。これらのFe基ナノ結晶合金は、通常液相や気相から急冷し非晶質合金とした後、これを熱処理により微結晶化することにより作製されている。液相から急冷する方法としては単ロ−ル法、双ロ−ル法、遠心急冷法、回転液中紡糸法、アトマイズ法やキャビテーション法等が知られている。また、気相から急冷する方法としては、スパッタ法、蒸着法、イオンプレ−ティング法等が知られている。Fe基ナノ結晶合金はこれらの方法により作製した非晶質合金を微結晶化したもので、非晶質合金にみられるような熱的不安定性がほとんどなく、Fe系アモルファス合金と同程度の高い飽和磁束密度と低磁歪で優れた軟磁気特性を示すことが知られている。更にナノ結晶合金は経時変化が小さく、温度特性にも優れていることが知られている。
また、これらのFe基ナノ結晶合金にCoを添加することも検討されている。
Fe-based nanocrystalline alloys exhibit excellent soft magnetic properties, and are therefore used in magnetic cores such as common mode choke coils, high frequency transformers, and pulse transformers. Typical composition systems are Fe-Cu- (Nb, Ti, Zr, Hf, Mo, W, and the like described in Patent Document 1 (Japanese Patent Publication No. 4-4393) and Patent Document 2 (Japanese Patent Laid-Open No. 1-242755). Ta) -Si-B based alloys and Fe-Cu- (Nb, Ti, Zr, Hf, Mo, W, Ta) -B based alloys are known. These Fe-based nanocrystalline alloys are usually produced by rapidly cooling from a liquid phase or a gas phase to form an amorphous alloy and then microcrystallizing it by heat treatment. As a method of quenching from the liquid phase, a single roll method, a twin roll method, a centrifugal quench method, a spinning in spinning solution, an atomizing method, a cavitation method, and the like are known. Further, as a method of quenching from the gas phase, a sputtering method, a vapor deposition method, an ion plating method and the like are known. Fe-based nanocrystalline alloy is a microcrystallized amorphous alloy produced by these methods, has almost no thermal instability as found in amorphous alloys, and is as high as Fe-based amorphous alloys. It is known to exhibit excellent soft magnetic characteristics at a saturation magnetic flux density and low magnetostriction. Furthermore, nanocrystalline alloys are known to have little change over time and excellent temperature characteristics.
It has also been studied to add Co to these Fe-based nanocrystalline alloys.

特公平4-4393号公報Japanese Patent Publication No. 4-4393 特開平1-242755号公報JP-A-1-242755

しかし、ナノ結晶FeCuNbSiB系合金やナノ結晶FeNbB合金は、Nbが高価であること、アモルファス合金を作製する際のノズルや溶解ルツボと反応しやすいことや材料が脆化し易い等の問題を抱えており、大量に材料を製造する場合にルツボ寿命、ノズル寿命や合金が脆化しやすいなどの点で問題がある。また、ZrやHfを含むFeZrB系合金やFeHfB系合金は大気中での製造が困難で、ノズル寿命も短く生産性に劣る問題がある。
これらのことより、高飽和磁束密度でかつ低磁心損失かつ製造時に製造がより容易な材料の出現が強く望まれていた。
However, nanocrystalline FeCuNbSiB-based alloys and nanocrystalline FeNbB alloys have problems such as high Nb, easy reaction with nozzles and melting crucibles when producing amorphous alloys, and material embrittlement. When manufacturing a large amount of material, there are problems in that the crucible life, the nozzle life and the alloy tend to become brittle. In addition, FeZrB-based alloys and FeHfB-based alloys containing Zr and Hf are difficult to manufacture in the atmosphere and have a problem that the nozzle life is short and the productivity is poor.
For these reasons, there has been a strong demand for the appearance of a material having a high saturation magnetic flux density, a low magnetic core loss, and easier manufacturing.

上記問題点を解決するために本発明者らは、鋭意検討の結果、一般式:(Fe1−aCo100−y−b−cMoBbC(原子%)で表され、式中a,y,bおよびcはそれぞれ0.2≦a≦0.9≦y≦15、2≦b≦15、2≦c≦15を満足し、かつ7≦y+b+c≦30を満足する組成であり、組織の一部または全部が粒径50nm以下の体心立方構造の結晶粒からなることを特徴とする軟磁性合金が、高飽和磁束密度で低磁心損失の特性を示すことを見出し本発明に想到した。 In order to solve the above-mentioned problems, the present inventors have intensively studied and expressed by the general formula: (Fe 1-a Co a ) 100-y-b-c Mo y B b C c (atomic%). In the formula, a, y, b, and c satisfy 0.2 ≦ a ≦ 0.9 , 5 ≦ y ≦ 15, 2 ≦ b ≦ 15, 2 ≦ c ≦ 15, and 7 ≦ y + b + c ≦ 30, respectively. A soft magnetic alloy having a satisfactory composition and having a part or all of a structure made of body-centered cubic crystal grains having a grain size of 50 nm or less exhibits a high saturation magnetic flux density and a low core loss characteristic. And the present invention has been conceived.

本発明の軟磁性合金は、前記組成の溶湯を単ロ−ル法等の超急冷法により急冷し、一旦アモルファス合金を作製後、これを加工し結晶化温度以上に昇温して熱処理を行い平均粒径50nm以下の微結晶を形成することにより作製する。熱処理前のアモルファス合金は結晶相を含まない方が望ましいが一部に結晶相を含んでも良い。単ロール法などの超急冷法によるアモルファス合金作製は大気中,Ar,Heあるいは減圧中で行う。また、窒素ガス、一酸化炭素あるいは二酸化炭素ガスを含む雰囲気で製造する場合もある。熱処理は通常はアルゴンガス、窒素ガス、ヘリウム等の不活性ガス中あるいは真空中で行う。場合によっては大気中で行っても良い。熱処理期間の少なくとも一部の期間合金が飽和するのに十分な強さの磁界を印加して磁界中熱処理を行い、誘導磁気異方性を付与した場合、高角形比や低角形比の磁化ループが実現でき、特に低角形比の磁化ループとした場合は磁心損失を更に低減可能である。合金磁心の形状にも依存するが一般には薄帯の幅方向(巻磁心の場合は磁心の高さ方向)に印加する場合は8kAm−1以上の磁界を印加する。印加する磁界は、直流、交流、繰り返しのパルス磁界のいずれを用いても良い。磁界は200℃以上の温度領域で通常20分以上印加し、昇温中、一定温度に保持中および冷却中も印加した方が磁心損失を低くかつ角形比を小さくでき、より好ましい結果が得られる。角形比Bs -1が25%以下に調整した場合に特に低い磁心損失が得られ、応用上も好ましい結果が得られる。ここで、Bsは飽和磁束密度である。 The soft magnetic alloy of the present invention is obtained by quenching a molten metal having the above composition by a super rapid quenching method such as a single roll method, once producing an amorphous alloy, processing it, raising the temperature to a temperature higher than the crystallization temperature, and performing a heat treatment. It is produced by forming microcrystals having an average particle size of 50 nm or less. Although it is desirable that the amorphous alloy before the heat treatment does not contain a crystalline phase, it may contain a crystalline phase in part. Amorphous alloy production by a rapid quenching method such as a single roll method is performed in the atmosphere, Ar, He, or under reduced pressure. Moreover, it may manufacture in the atmosphere containing nitrogen gas, carbon monoxide, or a carbon dioxide gas. The heat treatment is usually performed in an inert gas such as argon gas, nitrogen gas, helium, or in vacuum. In some cases, it may be performed in the atmosphere. Magnetization loop with high or low squareness ratio when induced magnetic anisotropy is applied by applying a magnetic field strong enough to saturate the alloy for at least part of the heat treatment period In particular, when the magnetization loop has a low squareness ratio, the core loss can be further reduced. Although depending on the shape of the alloy magnetic core, in general, a magnetic field of 8 kAm −1 or more is applied when applied in the width direction of the ribbon (in the case of a wound core, the height direction of the magnetic core). As the magnetic field to be applied, any of direct current, alternating current, and a repetitive pulse magnetic field may be used. A magnetic field is usually applied for 20 minutes or more in a temperature range of 200 ° C. or higher, and when the temperature is raised, kept at a constant temperature and during cooling, the magnetic core loss can be reduced and the squareness ratio can be reduced, and a more preferable result can be obtained. . When the squareness ratio B r B s -1 is adjusted to 25% or less, a particularly low magnetic core loss is obtained, and a favorable result is obtained in application. Here, B s is the saturation magnetic flux density.

熱処理は通常露点が−30℃以下の不活性ガス雰囲気中で行うことが望ましく、露点が−60℃以下の不活性ガス雰囲気中で熱処理を行うと、ばらつきが小さくより好ましい結果が得られる。熱処理の際の最高到達温度は結晶化温度以上であり、通常350℃から650℃の範囲である。一定温度に保持する熱処理パターンの場合は、一定温度での保持時間は通常は量産性の観点から24時間以下であり、好ましくは4時間以下である。熱処理の際の平均昇温速度は好ましくは0.1℃/minから200℃/min、より好ましくは0.1℃/minから100℃/min、平均冷却速度は好ましくは0.1℃/minから3000℃/min、より好ましくは0.1℃/minから100℃/minであり、この範囲で特に低磁心損失の合金が得られる。熱処理は1段ではなく多段の熱処理や複数回の熱処理を行うこともできる。更には合金に直流、交流あるいはパルス電流を流して合金を発熱させ熱処理することもできる。また、応力下で熱処理し異方性を生じさせることもできる。
また、本発明軟磁性合金は典型的なナノ結晶合金であるFeCuNbSiB系合金に比べてアモルファス化する際に脆化しにくい特徴を有する。このため、板厚が厚い材料や広幅材料の製造に適する。更に溶解時のルツボ寿命やアモルファス合金作製の際のノズル寿命が、FeCuNbSiB系合金などにくらべて長いため量産性に優れている。
Usually, the heat treatment is desirably performed in an inert gas atmosphere having a dew point of −30 ° C. or lower. When the heat treatment is performed in an inert gas atmosphere having a dew point of −60 ° C. or lower, a more favorable result can be obtained with less variation. The highest temperature reached during the heat treatment is equal to or higher than the crystallization temperature, and is usually in the range of 350 ° C to 650 ° C. In the case of the heat treatment pattern held at a constant temperature, the holding time at the constant temperature is usually 24 hours or less, preferably 4 hours or less from the viewpoint of mass productivity. The average heating rate during the heat treatment is preferably from 0.1 ° C / min to 200 ° C / min, more preferably from 0.1 ° C / min to 100 ° C / min, and the average cooling rate is preferably 0.1 ° C / min. To 3000 ° C./min, more preferably 0.1 ° C./min to 100 ° C./min. In this range, an alloy having a particularly low magnetic core loss can be obtained. The heat treatment is not limited to a single step, and a multi-step heat treatment or a plurality of heat treatments can be performed. Furthermore, the alloy can be heated and heat-treated by applying a direct current, an alternating current or a pulsed current to the alloy. Moreover, it can also heat-process under stress and can produce anisotropy.
In addition, the soft magnetic alloy of the present invention has a feature that it is less likely to be embrittled when it is made amorphous than an FeCuNbSiB alloy which is a typical nanocrystalline alloy. For this reason, it is suitable for manufacturing a thick plate material or a wide material. Furthermore, since the crucible life at the time of melting and the nozzle life at the time of producing an amorphous alloy are longer than those of an FeCuNbSiB alloy or the like, it is excellent in mass productivity.

本発明において、Co量比aは0.2≦a≦0.9である必要がある。aが0.2未満は磁心損失の増加を招くため好ましくない。より好ましいCo量比aの範囲は0.2≦a≦0.6である。この範囲で磁心損失が低く、飽和磁束密度も高くより好ましい結果が得られる。特に好ましいCo量比aの範囲は、0.3≦a≦0.5である。この範囲で特に磁心損失が低く飽和磁束密度が高いため、更に好ましい結果が得られる。
Moは、結晶粒径を微細化する効果と結晶化温度を上昇させ、急冷の際にアモルファス形成を容易にする効果があり、Mo量yは2原子%以上15原子%以下である必要がある。Mo量yが5原子%未満では結晶粒が粗大となり好ましくなく、15原子%を超えると飽和磁束密度の著しい増加を招き好ましくない。より好ましいMo量yは5原子%以上12原子%以下である。この範囲で特に低い磁心損失が得られる。
B含有量bは2原子%以上15原子%以下である必要がある。これは、B量bが2原子%未満では組織の微細化が困難で十分な軟磁気特性が得られず好ましくなく、B量bが15原子%を超えると著しい磁束密度の低下を招き好ましくないためである。特にB量bは4原子%以上12原子%以下が望ましい。この範囲で特に低い磁心損失が得られる。
C量cは2原子%以上15原子%以下である必要がある。これは、C量cが2原子%未満では組織の微細化が困難で十分な軟磁気特性が得られず好ましくなく、C量cが15原子%を超えると著しい磁束密度の低下や軟磁気特性の劣化を招き好ましくないためである。
Mo、BとCの総和y+b+cは、10原子%以上30原子%以下である必要がある。10原子%未満では超急冷法によりアモルファス化が困難なため、不均一な結晶ができやすく、結晶粒が熱処理を行っても十分な軟磁気特性が得られない問題がある。30原子%を超えると磁束密度の著しい減少を招き好ましくない。
In the present invention, the Co amount ratio a needs to satisfy 0.2 ≦ a ≦ 0.9. If a is less than 0.2, it causes an increase in magnetic core loss, which is not preferable. A more preferable range of the Co amount ratio a is 0.2 ≦ a ≦ 0.6. Within this range, the core loss is low, the saturation magnetic flux density is high, and more preferable results are obtained. A particularly preferable range of the Co amount ratio a is 0.3 ≦ a ≦ 0.5. In this range, since the magnetic core loss is particularly low and the saturation magnetic flux density is high, more preferable results can be obtained.
Mo has the effect of refining the crystal grain size and the crystallization temperature, and has the effect of facilitating the formation of amorphous during quenching, and the Mo amount y needs to be 2 atomic% or more and 15 atomic% or less. . If the Mo amount y is less than 5 atomic%, the crystal grains become coarse, which is not preferable. If it exceeds 15 atomic%, the saturation magnetic flux density is significantly increased, which is not preferable. A more preferable amount of Mo is 5 atom% or more and 12 atom% or less. A particularly low core loss is obtained in this range.
The B content b needs to be 2 atomic% or more and 15 atomic% or less. This is not preferable if the amount of B is less than 2 atomic%, and it is not preferable because it is difficult to make the structure fine and sufficient soft magnetic properties cannot be obtained. If the amount of B exceeds 15 atomic%, the magnetic flux density is remarkably lowered. Because. In particular, the B amount b is desirably 4 atomic% or more and 12 atomic% or less. A particularly low core loss is obtained in this range.
The C amount c needs to be 2 atomic% or more and 15 atomic% or less. This is not preferable if the amount of C is less than 2 atomic%, and it is not preferable because the structure is difficult to be refined and sufficient soft magnetic characteristics cannot be obtained. If the amount of C exceeds 15 atomic%, the magnetic flux density is significantly reduced and the soft magnetic characteristics are not preferable. This is because it is not preferable.
The sum y + b + c of Mo, B and C needs to be 10 atom% or more and 30 atom% or less. If it is less than 10 atomic%, since it is difficult to make it amorphous by the ultra-quenching method, non-uniform crystals are likely to be formed, and there is a problem that sufficient soft magnetic properties cannot be obtained even if the crystal grains are subjected to heat treatment. If it exceeds 30 atomic%, the magnetic flux density is significantly reduced, which is not preferable.

本発明において、FeとCoの総量の2原子%以下をCu、Auから選ばれた少なくとも一種の元素で置換すると更に磁心損失が低減し好ましい結果が得られるが、2原子%を超えて置換すると脆化しやすくなり好ましくない。
また、Moの一部をNi,Cr,Mn,V,Nb,Ta,Ti,Zr,Hf,W, Sn,Zn,In,Ag,Sc,白金属元素,Mg,Ca,Sr,Y,希土類元素,N,OおよびSから選ばれた少なくとも一種の元素で置換すると、耐食性の改善、熱処理温度範囲の拡大や組織の微細化が期待できる。
また、Cの一部をSi, Ge,Ga,Al,BeおよびPから選ばれた少なくとも一種の元素で置換した場合、磁歪の調整や高周波特性の改善ができる。
In the present invention, substituting 2 atomic percent or less of the total amount of Fe and Co with at least one element selected from Cu and Au can further reduce the magnetic core loss and obtain a preferable result. This is not preferable because it becomes brittle.
Further, a part of Mo is Ni, Cr, Mn, V, Nb, Ta, Ti, Zr, Hf, W, Sn, Zn, In, Ag, Sc, white metal element, Mg, Ca, Sr, Y, rare earth Substitution with at least one element selected from the elements N, O and S can be expected to improve corrosion resistance, expand the heat treatment temperature range, and refine the structure.
When a part of C is replaced with at least one element selected from Si, Ge, Ga, Al, Be and P, magnetostriction can be adjusted and high frequency characteristics can be improved.

本発明において、体心立方構造の結晶粒以外の残部の少なくとも一部又は全部がアモルファス相である場合、高い抵抗率と微細な結晶粒が実現でき、高周波に於ける磁心損失が低減されるため、より好ましい結果が得られる。体心立方構造の結晶粒の平均結晶粒径は50nm以下である必要がある。これは、体心立方構造の結晶粒の平均粒径が50nmを超えると軟磁気特性が著しく劣化するためである。   In the present invention, when at least part or all of the remainder other than the body-centered cubic structure crystal grains is in an amorphous phase, high resistivity and fine crystal grains can be realized, and magnetic core loss at high frequencies is reduced. More favorable results are obtained. The average crystal grain size of the body-centered cubic crystal grains needs to be 50 nm or less. This is because if the average grain size of the body-centered cubic crystal grains exceeds 50 nm, the soft magnetic characteristics are significantly deteriorated.

本発明の軟磁性合金は、必要に応じてSiO、MgO、Al等の粉末あるいは膜で合金薄帯表面を被覆する、化成処理により表面処理し絶縁層を形成する、アノード酸化処理により表面に酸化物絶縁層を形成し層間絶縁を行う等の処理を行うとより好ましい結果が得られる。これは、特に層間を渡る高周波における渦電流の影響を低減し、高周波における磁心損失を改善する効果があるためである。この効果は表面状態が良好でかつ広幅の薄帯から構成された磁心に使用した場合に特に著しい。更に、本発明合金から磁心を作製する際に必要に応じて含浸やコーティング等を行うことも可能である。
本発明の軟磁性合金は、高周波の用途に最も性能を発揮するが、センサや低周波の磁性部品の用途にも使用可能である。特に、磁気飽和が問題となる用途に優れた特性を発揮できる。使用時に磁化する方向とほぼ垂直な方向に磁界を印加しながら熱処理した本発明合金は、従来の高飽和磁束密度の薄帯材料よりも低い磁心損失が得られる。本発明合金は薄膜や粉末でも優れた特性を得ることができる。
本発明軟磁性合金は、大きな磁界が印加されても材料が磁気的に飽和し難くなり、比較的容量の大きいパワーエレクトロニクスの用途に適する。
The soft magnetic alloy of the present invention is formed by coating the surface of the alloy ribbon with a powder or a film of SiO 2 , MgO, Al 2 O 3 or the like as necessary, forming a surface treatment by chemical conversion treatment, and forming an insulating layer. More preferable results can be obtained by performing a process such as forming an oxide insulating layer on the surface and performing interlayer insulation. This is because, in particular, the effect of eddy currents at high frequencies across the layers is reduced, and the magnetic core loss at high frequencies is improved. This effect is particularly remarkable when used in a magnetic core having a good surface state and a wide ribbon. Furthermore, impregnation and coating can be performed as necessary when producing a magnetic core from the alloy of the present invention.
The soft magnetic alloy of the present invention exhibits the best performance for high frequency applications, but can also be used for applications of sensors and low frequency magnetic components. In particular, it can exhibit excellent characteristics in applications where magnetic saturation is a problem. The alloy of the present invention, which is heat-treated while applying a magnetic field in a direction substantially perpendicular to the direction of magnetization when in use, has a lower core loss than a conventional ribbon material having a high saturation magnetic flux density. The alloy of the present invention can obtain excellent characteristics even in a thin film or powder.
The soft magnetic alloy of the present invention is less likely to be magnetically saturated even when a large magnetic field is applied, and is suitable for use in power electronics having a relatively large capacity.

本発明の軟磁性合金の少なくとも一部または全部には平均粒径50nm以下の結晶粒が形成している。前記結晶粒は好ましくは組織の30%以上の割合であることが望ましく、より好ましくは50%以上、特に好ましくは60%以上である。特に望ましい平均結晶粒径は5nmから30nmであり、この範囲において特に低い磁心損失が得られる。
前述の本発明軟磁性合金中に形成する結晶粒は主にFeCoを主体とする体心立方構造(bcc)の結晶相であり、Si,B,Al,Ge,C,Mo等を固溶しても良い。また、規則格子を含んでも良い。前記結晶相以外の残部は主にアモルファス相であるが、実質的に結晶相だけからなる合金も本発明に含まれる。CuやAuを含む合金の場合は、一部にCuやAuを含む面心立方構造の相(fcc相)が存在する場合がある。
本発明軟磁性合金において化合物相が存在しない場合に、より低い磁心損失を示すが、化合物相を一部に含んでいても良い。
Crystal grains having an average grain size of 50 nm or less are formed on at least part or all of the soft magnetic alloy of the present invention. The crystal grains preferably have a ratio of 30% or more of the structure, more preferably 50% or more, and particularly preferably 60% or more. A particularly desirable average crystal grain size is 5 nm to 30 nm, and a particularly low magnetic core loss is obtained in this range.
The crystal grains formed in the above-described soft magnetic alloy of the present invention have a body-centered cubic (bcc) crystal phase mainly composed of FeCo, and dissolve Si, B, Al, Ge, C, Mo, etc. May be. Further, a regular lattice may be included. The balance other than the crystalline phase is mainly an amorphous phase, but an alloy consisting essentially of the crystalline phase is also included in the present invention. In the case of an alloy containing Cu or Au, there may be a face-centered cubic phase (fcc phase) partially containing Cu or Au.
When the compound phase is not present in the soft magnetic alloy of the present invention, the magnetic core loss is lower, but the compound phase may be partially included.

Figure 0004310738
Figure 0004310738

本発明によれば、大電流用の各種リアクトル、アクティブフィルタ用チョ−クコイル、平滑チョークコイル、各種トランス、電磁シールド材料などのノイズ対策部品、レーザ電源、加速器用パルスパワー磁性部品、モータ、発電機等に用いられる高飽和磁束密度でかつ低磁心損失かつ製造時に製造がより容易なナノスケールの微細な結晶粒を含む軟磁性磁性合金およびそれを用いた高性能磁性部品を実現することができるため、その効果は著しいものがある。   According to the present invention, various types of reactors for large currents, choke coils for active filters, smooth choke coils, various transformers, noise shielding parts such as electromagnetic shield materials, laser power supplies, pulse power magnetic parts for accelerators, motors, generators Soft magnetic magnetic alloy containing nanoscale fine crystal grains with high saturation magnetic flux density, low magnetic core loss, and easier manufacturing during manufacturing, and high-performance magnetic parts using the same can be realized The effect is remarkable.

以下本発明を実施例にしたがって説明するが本発明はこれらに限定されるものではない。   The present invention will be described below with reference to examples, but the present invention is not limited thereto.

(Fe0.6Co0.4bal.Mo(原子%)の合金溶湯を単ロ−ル法により急冷し、幅5mm厚さ18μmのアモルファス合金薄帯を得た。このアモルファス合金薄帯を外径19mm、内径15mmに巻回し、トロイダル磁心を作製した。
作製した磁心を窒素ガス雰囲気の熱処理炉に挿入し、図1に示す熱処理パタ−ンで熱処理を行った。熱処理の際、合金磁心の磁路と垂直方向(合金薄帯の幅方向)、すなわち磁心の高さ方向に280kAm−1の磁界を印加した。熱処理後の合金は結晶化しており、電子顕微鏡観察の結果組織のほとんどが粒径10〜20nm程度の微細な体心立方構造の結晶粒からなっており、結晶粒の割合は72%程度と見積もられた。残部のマトリックス相は主にアモルファス相であった。図2にX線回折パターンを示す。比較のため本発明外のCoを含まないFebal.Mo(原子%)の合金に同様の熱処理を行った後のX線回折パターンを示す。本発明合金は体心立方構造のFeCo相を示す結晶ピークが認められ、化合物相を示すピークはほとんど認められなかった。これに対して、本発明外のCoを含まないFebal.Mo(原子%)の合金は、体心立方構造のFeCo相以外に化合物相の存在を示す結晶ピークが多数認められた。
A molten alloy of (Fe 0.6 Co 0.4 ) bal. Mo 7 B 9 C 9 (atomic%) was rapidly cooled by a single roll method to obtain an amorphous alloy ribbon having a width of 5 mm and a thickness of 18 μm. The amorphous alloy ribbon was wound around an outer diameter of 19 mm and an inner diameter of 15 mm to produce a toroidal magnetic core.
The produced magnetic core was inserted into a heat treatment furnace in a nitrogen gas atmosphere, and heat treatment was performed with the heat treatment pattern shown in FIG. During the heat treatment, a magnetic field of 280 kAm −1 was applied in a direction perpendicular to the magnetic path of the alloy magnetic core (in the width direction of the alloy ribbon), that is, in the height direction of the magnetic core. The alloy after the heat treatment is crystallized, and as a result of electron microscope observation, most of the structure is composed of fine body-centered cubic crystal grains having a grain size of about 10 to 20 nm, and the proportion of crystal grains is estimated to be about 72%. It was lost. The remaining matrix phase was mainly an amorphous phase. FIG. 2 shows an X-ray diffraction pattern. For comparison, an X-ray diffraction pattern after a similar heat treatment is performed on an alloy of Fe bal. Mo 5 B 9 C 9 (atomic%) that does not contain Co outside of the present invention. In the alloy of the present invention, a crystal peak indicating a FeCo phase having a body-centered cubic structure was observed, and a peak indicating a compound phase was hardly observed. In contrast, the Fe bal. Mo 5 B 9 C 9 (atomic%) alloy that does not contain Co outside of the present invention has many crystal peaks indicating the presence of a compound phase in addition to the FeCo phase having a body-centered cubic structure. It was.

次に、この合金磁心の直流B−Hループ、100kHz、0.2Tにおける磁心損失Pcvを測定した。図3に直流B−Hループ、表1に得られた結果を示す。比較のため本発明外のCoを含まないFebal.Mo(原子%)の合金に同様の熱処理を行った後の磁気特性を表1に示す。本発明合金磁心のBは、1.4Tを超えている。一方、本発明合金のPcvは300kWm−3でありCoを含まないFebal.Mo(原子%)の合金のPcv=12600kWm−3よりも著しく低い値が得られた。保磁力Hcも磁心損失同様に本発明合金の方が著しく低い値を示した。 Then, the DC B-H loop of the alloy magnetic core, 100kHz, was measured core loss P cv at 0.2T. FIG. 3 shows the direct current B-H loop, and Table 1 shows the results obtained. For comparison, Table 1 shows the magnetic properties of the Fe bal. Mo 5 B 9 C 9 (atomic%) alloy that does not contain Co and is not subjected to the same heat treatment. B s of the present invention the alloy magnetic core is beyond the 1.4 T. On the other hand, P cv of the alloy of the present invention was 300 kWm −3 , which was significantly lower than P cv = 12600 kWm −3 of the Fe bal. Mo 5 B 9 C 9 (atomic%) alloy containing no Co. The coercive force Hc, as well as the core loss, showed a significantly lower value for the alloy of the present invention.

Figure 0004310738
Figure 0004310738

一般式:(Fe1−aCobal.Mo(原子%)で表される組成の合金溶湯を単ロ−ル法により急冷し、幅5mm厚さ18μmのアモルファス合金薄帯を得た。このアモルファス合金薄帯を外径19mm、内径15mmに巻回し、トロイダル磁心を作製した。この合金磁心を実施例1と同様な熱処理パタ−ンで熱処理し磁気測定を行った。熱処理後の合金の組織中には結晶粒が形成したが、Co量aが0.1以上になると平均の結晶粒径は減少し50nm以下の結晶粒が形成した。図4に飽和磁束密度B、角形比B/Bs、100kHz,0.2Tにおける単位体積当たりの磁心損失PcvのCo量a依存性を示す。飽和磁束密度Bは0.1≦a≦0.6で高い値が得られる。特に高いBsは0.2≦a≦0.5で得られた。角形比B8000 −1はCo量比が0.2以上で40%以下の低い値を示す。PcvはCo量比aが0.1以上で減少する。0.2以上で著しく減少しより好ましいことが分かる。 A molten alloy having a composition represented by the general formula: (Fe 1-a Co a ) bal. Mo 5 B 9 C 9 (atomic%) is rapidly cooled by a single roll method to form an amorphous alloy thin film having a width of 5 mm and a thickness of 18 μm. I got a belt. The amorphous alloy ribbon was wound around an outer diameter of 19 mm and an inner diameter of 15 mm to produce a toroidal magnetic core. This alloy magnetic core was heat-treated with the same heat-treatment pattern as in Example 1 and subjected to magnetic measurements. Crystal grains were formed in the structure of the alloy after the heat treatment, but when the Co amount a was 0.1 or more, the average crystal grain size was reduced and crystal grains of 50 nm or less were formed. FIG. 4 shows the Co amount a dependence of the core loss P cv per unit volume at saturation magnetic flux density B s , squareness ratio B r / B s , 100 kHz, 0.2 T. The saturation magnetic flux density B s is high at 0.1 ≦ a ≦ 0.6. Particularly high Bs was obtained with 0.2 ≦ a ≦ 0.5. The squareness ratio B r B 8000 −1 indicates a low value of Co amount ratio of 0.2 to 40%. P cv decreases when the Co amount ratio a is 0.1 or more. It can be seen that it is significantly more preferable at 0.2 or more, which is more preferable.

表2に示す組成の合金溶湯を単ロ−ル法により急冷し、幅25mm、厚さ18μmのアモルファス合金薄帯を作製した。このアモルファス合金薄帯を外径19mm、内径15mmに巻回し、トロイダル磁心を作製した。この合金磁心を図1に示す熱処理パタ−ンで熱処理した。熱処理中の磁界印加方向は磁心の磁路と垂直方向(合金薄帯幅方向)に印加した。熱処理後の合金中には粒径50nm以下の極微細なbcc相などからなる結晶粒が形成していた。熱処理後の合金磁心の直流B−Hループ、100kHz、0.2Tにおける磁心損失Pcvを測定した。表2に得られた結果を示す。本発明合金は、高飽和磁束密度で磁心損失が低いため、ハイパワー用途の高周波用チョークコイルやトランス用の磁心材料やパルスパワー用コア材料などに好適である。一方、本発明外のCoを含むナノ結晶合金は磁心損失が大きく高周波領域の特性に劣っている。 The molten alloy having the composition shown in Table 2 was rapidly cooled by a single roll method to produce an amorphous alloy ribbon having a width of 25 mm and a thickness of 18 μm. The amorphous alloy ribbon was wound around an outer diameter of 19 mm and an inner diameter of 15 mm to produce a toroidal magnetic core. The alloy magnetic core was heat-treated with the heat treatment pattern shown in FIG. The magnetic field application direction during the heat treatment was applied in a direction perpendicular to the magnetic path of the magnetic core (alloy ribbon width direction). In the alloy after the heat treatment, crystal grains composed of an extremely fine bcc phase having a grain size of 50 nm or less were formed. DC B-H loop of the alloy magnetic core after heat treatment, 100kHz, was measured core loss P cv at 0.2T. Table 2 shows the results obtained. Since the alloy of the present invention has a high saturation magnetic flux density and low magnetic core loss, it is suitable for a high frequency choke coil for high power applications, a magnetic core material for transformers, a core material for pulse power, and the like. On the other hand, the nanocrystalline alloy containing Co outside of the present invention has a large magnetic core loss and inferior characteristics in the high frequency region.

Figure 0004310738
Figure 0004310738

25μm板厚の表3に示す組成のアモルファス合金薄帯を製造し、脆化部分の割合を求めた。200mm長さに切断し、20箇所アモルファス合金薄帯を引き裂き、脆性的に破壊した箇所の割合を求め脆化率とした。結果を表3に示す。また、表3に示す組成のアモルファス合金薄帯を繰り返し作製し、ノズルが使用できなくなる直前までの回数を求め、ノズル寿命を求めた。結果を同じく表3に示す。
本発明合金に使用するアモルファス合金薄帯の脆化率は従来のナノ結晶合金に使用されているアモルファス合金よりも低く、部品への加工が容易で優れている。また、ノズル寿命が長くでき量産性に優れる。
An amorphous alloy ribbon having the composition shown in Table 3 having a thickness of 25 μm was produced, and the ratio of the embrittled portion was determined. It cut | disconnected to 200 mm length, torn 20 amorphous alloy ribbons, and calculated | required the ratio of the location broken brittlely, and made it the brittleness rate. The results are shown in Table 3. In addition, an amorphous alloy ribbon having the composition shown in Table 3 was repeatedly produced, and the number of times until immediately before the nozzle could not be used was determined to determine the nozzle life. The results are also shown in Table 3.
The brittleness rate of the amorphous alloy ribbon used in the alloy of the present invention is lower than that of the amorphous alloy used in the conventional nanocrystalline alloy, and it is easy to process into parts and is excellent. In addition, the nozzle life can be extended and the mass productivity is excellent.

Figure 0004310738
Figure 0004310738

(Fe0.6Co0.4bal.CuMoC(原子%)の合金溶湯を単ロ−ル法により急冷し、幅25mm厚さ18μmのアモルファス合金薄帯を得た。このアモルファス合金薄帯を巻回し、トロイダル磁心を作製した。この合金磁心を磁心の高さ方向(合金薄帯幅方向)に磁界を印加しながら磁界中熱処理を行った。熱処理は実施例1と同様なパターンで行い磁界は全期間印加した。この合金は粒径10〜20nmの体心立方構造の結晶粒が形成していることを透過電子顕微鏡とX線回折により確認した。また、直流磁気特性と100kHz,0.2Tにおける磁心損失Pcvを測定した。角形比Bs −1は2%、Pcvは310kWm−3であった。次に、この磁心に一次巻線と二次巻線を行い、インバータ用トランスを構成した。比較のために、珪素鋼により同形状のインバータ用トランスを作製し、温度上昇を測定した。本発明合金から作製したトランスの温度上昇は36℃、珪素鋼から作製したトランスの温度上昇は45℃となり、本発明合金から構成した本発明磁性部品の方が損失が低く、温度上昇が低く優れている。同じ材料を用いて平滑チョークコイルを作製し、珪素鋼のチョークコイルと比較し評価したところ、本発明チョークコイルの方が6℃温度上昇が低くなった。 A molten alloy of (Fe 0.6 Co 0.4 ) bal. Cu 1 Mo 5 B 9 C 9 (atomic%) was rapidly cooled by a single roll method to obtain an amorphous alloy ribbon having a width of 25 mm and a thickness of 18 μm. . The amorphous alloy ribbon was wound to produce a toroidal magnetic core. This alloy magnetic core was heat-treated in a magnetic field while applying a magnetic field in the height direction of the magnetic core (alloy ribbon width direction). The heat treatment was performed in the same pattern as in Example 1, and the magnetic field was applied for the entire period. This alloy was confirmed by transmission electron microscopy and X-ray diffraction to form body-centered cubic crystal grains having a particle diameter of 10 to 20 nm. Also, the DC magnetic properties and 100kHz, was measured core loss P cv at 0.2T. The squareness ratio B r B s −1 was 2%, and P cv was 310 kWm −3 . Next, a primary winding and a secondary winding were provided on this magnetic core to constitute an inverter transformer. For comparison, an inverter transformer having the same shape was made of silicon steel, and the temperature rise was measured. The temperature rise of the transformer made from the alloy of the present invention is 36 ° C., the temperature rise of the transformer made of silicon steel is 45 ° C., and the magnetic part of the present invention constructed from the alloy of the present invention has lower loss, lower temperature rise, and excellent ing. A smooth choke coil was produced using the same material and evaluated by comparing with a choke coil made of silicon steel. As a result, the temperature increase of 6 ° C. was lower in the choke coil of the present invention.

本発明によれば、大電流用の各種リアクトル、アクティブフィルタ用チョ−クコイル、平滑チョークコイル、各種トランス、電磁シールド材料などのノイズ対策部品、レーザ電源、加速器用パルスパワー磁性部品、モータ、発電機等に用いられる高飽和磁束密度でかつ低磁心損失かつ製造時に製造がより容易なナノスケールの微細な結晶粒を含む軟磁性磁性合金およびそれを用いた高性能磁性部品を実現することができるため、その効果は著しいものがある。   According to the present invention, various types of reactors for large currents, choke coils for active filters, smooth choke coils, various transformers, noise shielding parts such as electromagnetic shield materials, laser power supplies, pulse power magnetic parts for accelerators, motors, generators Soft magnetic magnetic alloy containing nanoscale fine crystal grains with high saturation magnetic flux density, low magnetic core loss, and easier manufacturing during manufacturing, and high-performance magnetic parts using the same can be realized The effect is remarkable.

本発明に係わる熱処理パタ−ンの一例を示した図である。It is the figure which showed an example of the heat processing pattern concerning this invention. 本発明に係わる合金のX線回折パターンの一例を示した図である。It is the figure which showed an example of the X-ray-diffraction pattern of the alloy concerning this invention. 本発明に係わる合金の直流B−Hループの一例を示した図である。It is the figure which showed an example of the direct current | flow BH loop of the alloy concerning this invention. 本発明に係わる合金の飽和磁束密度B、角形比B/Bs、100kHz,0.2Tにおける単位体積当たりの磁心損失PcvのCo量a依存性を示した図である。Saturation magnetic flux density B s of the alloy according to the present invention and shows squareness ratio B r / B s, 100kHz, the Co amount a dependence of the core loss P cv per unit volume in the 0.2T.

Claims (7)

一般式:(Fe1−aCo100−y−b−cMob(原子%)で表され、式中a、y、bおよびcはそれぞれ0.2≦a≦0.9≦y≦15、2≦b≦15、2≦c≦15を満足し、かつ10≦y+b+c≦30を満足する組成であり、組織の一部または全部が平均粒径50nm以下の体心立方構造の結晶粒からなることを特徴とする軟磁性合金。 General formula: (Fe 1-a Co a ) 100-y-b-c Mo y B b C c (atomic%), where a, y, b, and c are 0.2 ≦ a ≦ 0, respectively. .9 , 5 ≦ y ≦ 15, 2 ≦ b ≦ 15, 2 ≦ c ≦ 15, and 10 ≦ y + b + c ≦ 30, and part or all of the structure has an average particle size of 50 nm or less A soft magnetic alloy comprising crystal grains having a body-centered cubic structure. B含有量が4原子%以上12原子%以下であることを特徴とする請求項1に記載の軟磁性合金。 The soft magnetic alloy according to claim 1, wherein the B content is 4 atomic% or more and 12 atomic% or less. 体心立方構造の結晶粒以外の残部の少なくとも一部又は全部がアモルファス相であることを特徴とする請求項1または請求項2のいずれかに記載の軟磁性合金。 3. The soft magnetic alloy according to claim 1, wherein at least a part or all of the remainder other than the body-centered cubic crystal grains is an amorphous phase. 4. FeとCoの総量の2原子%以下をCu、Auから選ばれた少なくとも一種の元素で置換したことを特徴とする請求項1乃至請求項のいずれかに記載の軟磁性合金。 The soft magnetic alloy according to any one of claims 1 to 3 , wherein 2 atomic percent or less of the total amount of Fe and Co is substituted with at least one element selected from Cu and Au. Moの一部をNi,Cr,Mn,V,Nb,Ta,Ti,Zr,Hf,W,Sn,Zn,In,Ag,Sc,白金属元素,Mg,Ca,Sr,Y,希土類元素,N,およびOから選ばれた少なくとも一種の元素で置換したことを特徴とする請求項1乃至請求項のいずれかに記載の軟磁性合金。 Part of Mo is Ni, Cr, Mn, V, Nb, Ta, Ti, Zr, Hf, W, Sn, Zn, In, Ag, Sc, white metal element, Mg, Ca, Sr, Y, rare earth element, The soft magnetic alloy according to any one of claims 1 to 4 , wherein the soft magnetic alloy is substituted with at least one element selected from N and O. Cの一部をSi,Ge,Ga,Al,BeおよびPから選ばれた少なくとも一種の元素で置換したことを特徴とする請求項1乃至請求項のいずれかに記載の軟磁性合金。 A part of C Si, Ge, Ga, Al , soft magnetic alloy according to any one of claims 1 to 5, characterized in that substituted with at least one element selected from Be and P. 請求項1乃至請求項のいずれかに記載の軟磁性合金から構成されていることを特徴とする磁性部品。 A magnetic component comprising the soft magnetic alloy according to any one of claims 1 to 6 .
JP2003433244A 2003-12-26 2003-12-26 Soft magnetic alloys and magnetic parts Expired - Fee Related JP4310738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003433244A JP4310738B2 (en) 2003-12-26 2003-12-26 Soft magnetic alloys and magnetic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003433244A JP4310738B2 (en) 2003-12-26 2003-12-26 Soft magnetic alloys and magnetic parts

Publications (2)

Publication Number Publication Date
JP2005187917A JP2005187917A (en) 2005-07-14
JP4310738B2 true JP4310738B2 (en) 2009-08-12

Family

ID=34790690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003433244A Expired - Fee Related JP4310738B2 (en) 2003-12-26 2003-12-26 Soft magnetic alloys and magnetic parts

Country Status (1)

Country Link
JP (1) JP4310738B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024831B2 (en) * 2013-09-27 2016-11-16 日立金属株式会社 Method for producing Fe-based nanocrystalline alloy and method for producing Fe-based nanocrystalline alloy magnetic core
EP3321382B1 (en) * 2016-11-11 2020-01-01 The Swatch Group Research and Development Ltd Co-based high-strength amorphous alloy and use thereof
JP7099035B2 (en) * 2018-04-27 2022-07-12 セイコーエプソン株式会社 Soft magnetic powder, powder magnetic core, magnetic element and electronic equipment
JP7459873B2 (en) * 2019-05-31 2024-04-02 Tdk株式会社 Soft magnetic alloys and magnetic components
CN114921686B (en) * 2022-01-14 2023-02-14 阳江翌川金属科技有限公司 Nickel-based alloy with high corrosion resistance and preparation method thereof

Also Published As

Publication number Publication date
JP2005187917A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
US6648990B2 (en) Co-based magnetic alloy and magnetic members made of the same
JP5316921B2 (en) Fe-based soft magnetic alloy and magnetic component using the same
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
JP5445890B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP3233313B2 (en) Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
JP4547671B2 (en) High saturation magnetic flux density low loss magnetic alloy and magnetic parts using the same
JP5429613B2 (en) Nanocrystalline soft magnetic alloys and magnetic cores
US20100108196A1 (en) Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
JP2008196006A (en) Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY THIN STRIP, METHOD FOR PRODUCING Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AND MAGNETIC COMPONENT
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JP2710938B2 (en) High saturation magnetic flux density soft magnetic alloy
JPH07278764A (en) Nano-crystal alloy and its production and magnetic core using the same
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JP4437563B2 (en) Magnetic alloy with excellent surface properties and magnetic core using the same
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP2000119825A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP AND Fe BASE NANOCRYSTAL SOFT MAGNETIC ALLOY THIN STRIP USING THE SAME AND MAGNETIC CORE
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JPH0867911A (en) Method for heat-treating nano-crystalline magnetic alloy
JP4003166B2 (en) Co-based magnetic alloy and magnetic component using the same
JP3374981B2 (en) Nanocrystalline soft magnetic alloy and magnetic core with excellent short pulse characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees