JP2894561B2 - Soft magnetic alloy - Google Patents

Soft magnetic alloy

Info

Publication number
JP2894561B2
JP2894561B2 JP63123910A JP12391088A JP2894561B2 JP 2894561 B2 JP2894561 B2 JP 2894561B2 JP 63123910 A JP63123910 A JP 63123910A JP 12391088 A JP12391088 A JP 12391088A JP 2894561 B2 JP2894561 B2 JP 2894561B2
Authority
JP
Japan
Prior art keywords
magnetic
alloy
soft magnetic
present
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63123910A
Other languages
Japanese (ja)
Other versions
JPH01294847A (en
Inventor
孝雄 沢
正巳 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14872370&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2894561(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63123910A priority Critical patent/JP2894561B2/en
Publication of JPH01294847A publication Critical patent/JPH01294847A/en
Application granted granted Critical
Publication of JP2894561B2 publication Critical patent/JP2894561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、軟磁性合金に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a soft magnetic alloy.

(従来技術) 従来より、スイッチングレギュレータなどの高周波で
使用する磁心としては、パーマロイ、フェライトなどの
結晶質材料が使用されている。
(Prior Art) Conventionally, crystalline materials such as permalloy and ferrite have been used as magnetic cores used at high frequencies such as switching regulators.

しかしながら、パーマロイは比抵抗が小さいので高周
波での鉄損が大きくなる。また、フェライトは高周波で
の鉄損は小さいが、磁束密度もせいぜい5000Gと小さ
く、そのため、大きな動作磁束密度での使用時にあって
は、飽和に近くなりその結果鉄損が増大する。近時、ス
イッチングレギュレータに使用される電源トランス、平
滑チョークコイル、コモンモードチョークコイルなどの
高周波で使用される磁心においては、形状の小形化が望
まれているが、この場合、動作磁束密度の増大が必要と
なるため、フェライトの鉄損の増大は実用上大きな問題
となる。
However, since permalloy has a low specific resistance, iron loss at a high frequency increases. Ferrite has a small iron loss at high frequencies, but also has a small magnetic flux density of at most 5000 G. Therefore, when used with a large operating magnetic flux density, the ferrite is close to saturation and as a result, the iron loss increases. Recently, it has been desired to reduce the size of magnetic cores used at high frequencies such as power transformers, smoothing choke coils, and common mode choke coils used in switching regulators. Therefore, an increase in iron loss of ferrite is a serious problem in practical use.

このため、結晶構造を持たない非晶質磁性合金が、高
透磁率、低保磁力など優れた軟磁気特性を示すので最近
注目を集め一部実用化されている。これらの非晶質合金
は、Fe、Co、Niなどを基本とし、これに非晶質化元素
(メタロイド)としてSi、P、B、C、Al、Geなどを包
含するものである。
For this reason, amorphous magnetic alloys having no crystalline structure have recently attracted attention and have been put to practical use because they exhibit excellent soft magnetic properties such as high magnetic permeability and low coercive force. These amorphous alloys are based on Fe, Co, Ni, etc., and include Si, P, B, C, Al, Ge, etc. as an amorphizing element (metalloid).

しかしながら、これらの非晶質磁性合金の全てが高周
波領域で鉄損が小さいというわけではない。例えば、Fe
基非晶質合金は安価であり、50〜60Hzの低周波領域では
ケイ素鋼の約1/4という非常に小さい鉄損を示すが、10
〜50kHzという高周波領域にあっては著しく大きな鉄損
を示し、とてもスイッチングレギュレータ等の高周波領
域での使用に適合するものではない。これを改善するた
めに、Feの一部をNb、Mo、Cr等の非磁性金属で置換する
ことにより低磁歪化し、低鉄損、高透磁率を図っている
が、例えば、樹脂モールド時の樹脂の硬化収縮等による
磁気特性の劣化も比較的大きく、高周波領域で用いられ
る軟磁性材料としては十分な特性を得られるに至ってい
ない。
However, not all of these amorphous magnetic alloys have low iron loss in the high frequency range. For example, Fe
The base amorphous alloy is inexpensive and exhibits a very small iron loss of about 1/4 that of silicon steel in the low frequency range of 50-60 Hz, but 10
In the high frequency range of ~ 50kHz, it shows a remarkably large iron loss and is not very suitable for use in a high frequency range such as a switching regulator. In order to improve this, low magnetostriction is achieved by replacing a part of Fe with a non-magnetic metal such as Nb, Mo, Cr, etc., aiming at low iron loss and high magnetic permeability. Deterioration of magnetic characteristics due to curing shrinkage of the resin is relatively large, and sufficient characteristics have not yet been obtained as a soft magnetic material used in a high frequency range.

一方、Co基非晶質合金は、高周波領域で低鉄損、高角
形比が得られるため可飽和リアクトルなどの電子機器用
磁性部品に実用化されているが、コストが比較的高いも
のである。
On the other hand, Co-based amorphous alloys have been put to practical use in magnetic components for electronic devices such as saturable reactors because of their low iron loss and high squareness in the high frequency range, but their cost is relatively high. .

(発明が解決しようとする課題) 以上述べたように。Fe基非晶質合金は安価な軟磁性材
料でありながら磁歪が比較的大きく、Co基非晶質合金に
比べ鉄損、透磁率とも劣っており、高周波領域における
用途には問題があった。一方、Co基非晶質合金は磁気特
性は良好であるものの、素材の値段が高いため工業上有
利ではなかった。
(Problems to be solved by the invention) As described above. Although an Fe-based amorphous alloy is an inexpensive soft magnetic material, it has a relatively large magnetostriction, and is inferior in both iron loss and magnetic permeability as compared with a Co-based amorphous alloy. On the other hand, although the Co-based amorphous alloy has good magnetic properties, it is not industrially advantageous due to the high price of the material.

したがって本発明は、上記問題点に鑑み、高周波領域
において高飽和磁束密度で優れた磁気特性を有する軟磁
性合金を提供することを目的とする。
Therefore, an object of the present invention is to provide a soft magnetic alloy having high saturation magnetic flux density and excellent magnetic properties in a high frequency region in view of the above problems.

[発明の概要] (課題を解決するための手段と作用) 上記目的を達成するために種々の合金について検討を
重ねた結果、一般式、 TaMbM′cM″dYe T;Fe、Co、Niから選ばれる少なくとも1種以上 M;Cu、Ag、Au、Zn、Sn、Pb、Sb、Biから選ばれる少なく
とも1種以上 M′;Zr、Hf、Nbから選ばれる少なくとも1種以上 M″;Ti、V、Ta、Cr、Mo、W、Mn、Alから選ばれる少
なくとも1種以上 Y;Si、P、B、Cから選ばれる少なくとも1種以上 a+b+c+d+e=100(原子%) 0.01≦b≦5 3≦c≦18 0≦d≦50 ≦e≦15 ただし、SiとBの合計量が5at%以上を除く、 で表され、微細結晶粒を有する合金が、軟磁性材料と
して優れた特性を有することを初めて見出し、本発明に
至ったものである。
SUMMARY OF THE INVENTION (action a means for solving the problems) As a result of extensive investigations on various alloys in order to achieve the above object, the general formula, T a M b M 'c M "d Y e T; At least one or more selected from Fe, Co and Ni M; at least one or more selected from Cu, Ag, Au, Zn, Sn, Pb, Sb and Bi M '; at least one selected from Zr, Hf and Nb M "; at least one kind selected from Ti, V, Ta, Cr, Mo, W, Mn, and Al Y; at least one kind selected from Si, P, B, C a + b + c + d + e = 100 (atomic%) 0.01 ≦ b ≦ 5 3 ≦ c ≦ 18 0 ≦ d ≦ 5 0 ≦ e ≦ 15 provided that the total amount of Si and B excluding more than 5at%, in expressed, alloy having fine crystal grains, as a soft magnetic material It has been found for the first time that it has excellent characteristics, and has led to the present invention.

本発明は、上記組成を有する合金中に微細結晶粒を有
することを特徴とする。
The present invention is characterized in that the alloy having the above composition has fine crystal grains.

具体的には、微細結晶粒は合金中に面積比で30%以上
存在し、その中で結晶粒径50〜300Åの結晶が80%以上
存在するものである。
Specifically, the fine crystal grains are present in the alloy in an area ratio of 30% or more, and among them, 80% or more of crystals having a crystal grain size of 50 to 300 ° are present.

以下、本発明合金の組成限定理由および微細結晶粒の
限定理由について説明する。
Hereinafter, the reasons for limiting the composition of the alloy of the present invention and the reasons for limiting the fine crystal grains will be described.

まず組成限定理由について説明する。 First, the reasons for limiting the composition will be described.

Mは耐食性を高め、結晶粒の粗大化を防ぐと共に、鉄
損、透磁率など軟磁気特性を改善するのに有効な元素で
あるが、あまり少ないと添加の効果が得られず、逆にあ
まり多いと磁気特性の劣化を生じるために、その量を0.
01〜5原子%とした。好ましくは0.02〜4.5原子%とし
た。好ましくは0.5〜4原子%である。特にMの中でもC
u、Agが軟磁気特性改善のために好ましい。
M is an element effective in improving corrosion resistance and preventing crystal grains from coarsening, and improving soft magnetic properties such as iron loss and magnetic permeability. However, if the content is too small, the effect of addition cannot be obtained. If the amount is too large, the magnetic properties will deteriorate.
01 to 5 atomic%. Preferably, it is 0.02 to 4.5 atomic%. Preferably it is 0.5 to 4 atomic%. Especially C in M
u and Ag are preferred for improving soft magnetic properties.

M′は超急冷による非結晶質化および結晶粒径の均一
化に有効であると共に、磁歪および磁気異方性を低減さ
せ軟磁性特性の改善、および温度変化に対する磁気特性
の改善に有効な元素であるが、その量があまり少ないと
非結晶質化がなされず添加の効果が得られない。逆にそ
の量があまり多いと同様に非結晶質化がなされず、さら
に飽和磁束密度が低くなるため、その量を3〜18原子%
とした。好ましくは7〜12原子%である。
M 'is an element effective for non-crystallinity and uniform crystal grain size by ultra-quenching, and is effective for reducing magnetostriction and magnetic anisotropy to improve soft magnetic properties and improving magnetic properties against temperature change. However, if the amount is too small, non-crystallinity is not obtained and the effect of addition cannot be obtained. Conversely, if the amount is too large, non-crystallinity will not be achieved, and the saturation magnetic flux density will be further reduced.
And Preferably it is 7 to 12 atomic%.

M″はM′と同様に結晶粒径の均一化に有効であると
共に、磁歪および磁気異方性を低減させ軟磁気特性の改
善および温度変化に対する磁気特性の改善に有効な元素
であり、その量があまり多いと非結晶質化がなされずさ
らに飽和磁束密度が低くなるため、その量を5原子%以
下とした。好ましくは4原子%である。ここで、M″に
おける各添加元素は上記効果と共にさらにそれぞれ、ま
ずTiは最適磁気特性を得るための熱処理条件の範囲の拡
大、V、Ta、Mnは耐脆化性の向上および切断等の加工性
の向上、Cr、Mo、Wは耐食性の向上および表面性状の向
上、Alは結晶粒の微細化と共に磁気異方性の低減に有効
であり、これにより磁歪、軟磁気特性の改善等の効果を
有している。特に低鉄損化にはV、Ta、Cr、Mo、W、Mn
が好ましい。
M ″ is an element that is effective in uniformizing the crystal grain size similarly to M ′, and is effective in reducing magnetostriction and magnetic anisotropy to improve soft magnetic properties and magnetic properties against temperature change. If the amount is too large, the amorphous magnetic material is not formed and the saturation magnetic flux density is further lowered, so the amount is set to 5 atomic% or less, preferably 4 atomic%. In addition to the effects, Ti first expands the range of heat treatment conditions to obtain optimum magnetic properties, V, Ta, and Mn improve embrittlement resistance and workability such as cutting, and Cr, Mo, and W show corrosion resistance. Al is effective in improving magnetic properties and surface properties, and in reducing the magnetic anisotropy as well as in refining crystal grains, thereby having effects such as improvement in magnetostriction and soft magnetic properties. In particular, V, Ta, Cr, Mo, W, Mn
Is preferred.

Yは製造時における合金の非結晶化を助長する元素で
あり、結晶化温度の改善ができ、磁気特性向上のための
熱処理に対して有効であるが、その量があまり多いと飽
和磁束密度の低下をまねくため、その量を15原子%以下
とした。ただし、SiとBの合計量が5at%以上を除くこ
ととする。
Y is an element that promotes the non-crystallization of the alloy at the time of production, can improve the crystallization temperature, and is effective for heat treatment for improving the magnetic properties. To reduce the amount, the amount was set to 15 atomic% or less. However, it is assumed that the total amount of Si and B does not exceed 5 at%.

つまり、本発明の軟磁性合金は、Yは元素としてSiま
たはBを選択する場合、その含有量を5原子%未満にし
た合金であると言える。
In other words, the soft magnetic alloy of the present invention can be said to be an alloy in which the content of Y is less than 5 atomic% when Si or B is selected as an element.

上記本発明の軟磁性合金の製造方法は、例えば液体急
冷法により非晶質合金薄帯を得た後あるいはアトマイズ
法などにより急冷粉末を得た後、前記非晶質合金の結晶
化温度に対し−50〜+120℃、好ましくは−30〜+100℃
の温度で1分〜10時間、好ましくは10分〜5時間の熱処
理を行い、意図する微細結晶粒を析出させる方法などに
より得ることが可能となる。
The method for producing a soft magnetic alloy of the present invention is, for example, after obtaining an amorphous alloy ribbon by a liquid quenching method or after obtaining a quenched powder by an atomizing method or the like, with respect to the crystallization temperature of the amorphous alloy. -50 to + 120 ° C, preferably -30 to + 100 ° C
At a temperature of from 1 minute to 10 hours, preferably from 10 minutes to 5 hours to precipitate the intended fine crystal grains.

次に、本発明の軟磁性合金の微細結晶粒について述べ
る。
Next, the fine crystal grains of the soft magnetic alloy of the present invention will be described.

本発明の合金中において、あまり微細結晶粒が少ない
と、すなわち非晶質相があまり多いと鉄損が大きく、透
磁率が低く、磁歪が大きく、樹脂モールドによる磁気特
性の劣化が増大するため、合金中の微細結晶粒は面積比
30%以上存在することが好ましい。より好ましくは40%
以上、さらに好ましくは50%以上である。
In the alloy of the present invention, if there are too few fine crystal grains, that is, if there are too many amorphous phases, the iron loss is large, the magnetic permeability is low, the magnetostriction is large, and the deterioration of the magnetic properties due to the resin mold increases, Fine grains in alloy are area ratio
Preferably, it is present in an amount of 30% or more. More preferably 40%
It is more preferably 50% or more.

さらに、上記微細結晶粒中においても結晶粒径があま
り小さいと磁気の改善が図れず、逆にあまり大きいと磁
気特性の劣化が発生するために、上記微細結晶粒中にお
いても、結晶粒径50〜300Åの結晶が80%以上存在する
ことが好ましい。
Further, even if the crystal grain size is too small in the fine crystal grains, the magnetic properties cannot be improved, and if the crystal grain size is too large, the magnetic properties deteriorate. Preferably, 80% or more of crystals having a size of about 300 ° are present.

本発明の軟磁性合金は高周波での軟磁気特性に優れて
いるため、例えば磁気ヘッド、薄膜ヘッド、大電力用を
含む高周波トランス、可飽和リアクトル、コモンモード
チョークコイル、ノーマルオードチョークコイル、高電
圧パルス用ノイズフィルタ、レーザ電源等に用いられる
磁心、電流センサー、方位センサー、セキュリティセン
サー等の各種センサー用の磁性材料等、磁性部品の合金
として優れた特性を有している。
Since the soft magnetic alloy of the present invention has excellent soft magnetic properties at high frequencies, for example, magnetic heads, thin film heads, high frequency transformers including those for high power, saturable reactors, common mode choke coils, normal choke coils, high voltage It has excellent characteristics as an alloy of magnetic parts, such as a magnetic core used for a pulse noise filter, a laser power supply and the like, a magnetic material for various sensors such as a current sensor, a direction sensor, and a security sensor.

(実施例) 第1表に示した各合金より単ロール法によって約15μ
mの非晶質合金薄帯を得た。その後この薄帯を巻回し、
外径18mm、内径12mm、高さ4.5mmのトロイダル磁心に成
形した後、各材料の結晶化温度(昇温速度10deg/minで
測定)の40℃上で約50分間の熱処理を行い、測定に供し
た。
(Example) Approximately 15μ from each alloy shown in Table 1 by the single roll method
m of amorphous alloy ribbon was obtained. Then wind this ribbon,
After forming into a toroidal core with an outer diameter of 18 mm, inner diameter of 12 mm, and height of 4.5 mm, heat-treat for about 50 minutes at 40 ° C above the crystallization temperature (measured at a heating rate of 10 deg / min) for each material. Provided.

また比較として前記巻回後の磁心に各結晶化温度(昇
温速度10deg/minで測定)より約70℃低い温度で約50分
間の熱処理を行った非晶質状態の磁心を作成した。
As a comparison, an amorphous state magnetic core was prepared by performing a heat treatment on the magnetic core after the winding at a temperature lower by about 70 ° C. than each crystallization temperature (measured at a heating rate of 10 deg / min) for about 50 minutes.

得られた磁心を構成する薄帯中の微細結晶粒の割合
と、その中での50〜300Åの微細結晶粒の割合をそれぞ
れA、B(%)とし併せて第1表に示す。
Table 1 shows the ratio of fine crystal grains in the ribbon constituting the obtained magnetic core and the ratio of fine crystal grains of 50 to 300 ° therein as A and B (%), respectively.

さらに、本発明の微細結晶が存在する磁心と比較して
示した微細結晶粒が存在しない磁心についてそれぞれ5
個づつ用い、B=3kG、f=50kHzでの熱処理後の鉄損
と、磁歪、1kHz、2mOeでの透磁率、飽和磁束密度を併せ
て第1表に示す。
Further, each of the magnetic cores having no fine crystal grains shown in comparison with the magnetic core having the fine crystals of the present invention was 5%.
Table 1 shows the iron loss after heat treatment at B = 3 kG and f = 50 kHz, magnetostriction, permeability at 1 kHz and 2 mOe, and saturation magnetic flux density.

また、さらに比較としてパーマロイとセンダストを用
いた磁心についても同様の試験を行った結果も併せて第
1表に示す。(試料4、5 上記第1表より明らかなように、本願発明の合金は、
微細結晶粒を設けることにより同組成の非晶質合金より
なる磁心または他の合金よりなる磁心に比べ、鉄損が低
く、低磁歪で高透磁率であり、高周波において優れた軟
磁気特性を有している。
Table 1 also shows the results of similar tests performed on magnetic cores using Permalloy and Sendust for comparison. (Samples 4 and 5 ) As is clear from Table 1 above, the alloy of the present invention is:
By providing fine crystal grains, iron loss is low, low magnetostriction, high permeability, and excellent soft magnetic characteristics at high frequencies compared to a core made of an amorphous alloy of the same composition or a core made of another alloy. doing.

また、これらの磁心をエポキシ系樹脂により含浸硬化
を行ったところ、本発明の微細結晶粒を有する磁心の鉄
損の増大はいずれも5%以下であり、良好な磁気特性を
保持しているが、比較として示した合金および非晶質合
金薄帯を用いた磁心の鉄損の増大は3倍程度となり、本
発明との差が一層顕著となった。
When these magnetic cores were impregnated and cured with an epoxy resin, the core of the present invention having fine crystal grains had an increase in iron loss of 5% or less in each case, and maintained good magnetic properties. The increase in iron loss of the magnetic core using the alloy and the amorphous alloy ribbon shown as a comparison was about three times, and the difference from the present invention became more remarkable.

[発明の効果] 本発明の合金は、所望の金属組成において、微結晶粒
を設けることにより、高周波領域において高飽和磁束密
度で、優れた軟磁気特性を有する軟磁性合金を提供する
ことができる。
[Effects of the Invention] The alloy of the present invention can provide a soft magnetic alloy having a high saturation magnetic flux density in a high frequency region and excellent soft magnetic properties by providing fine crystal grains in a desired metal composition. .

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式;TaMbM′cM″dYe T;Fe、Co、Niから選ばれる少なくとも1種以上 M;Cu、Ag、Au、Zn、Sn、Pb、Sb、Biから選ばれる少なく
とも1種以上 M′;Zr、Hf、Nbから選ばれる少なくとも1種以上 M″;Ti、V、Ta、Cr、Mo、W、Mn、Alから選ばれる少
なくとも1種以上 Y;Si、P、B、Cから選ばれる少なくとも1種以上 a+b+c+d+e=100(原子%) 0.01≦b≦5 3≦c≦18 0≦d≦50 ≦e≦15 ただし、SiとBの合計量が5at%以上を除く、 で表され、微細結晶粒を有し、該微細結晶粒は合金中に
面積比で30%以上存在し、その中で結晶粒径50〜300Å
の結晶が80%以上存在する高飽和磁束密度で優れた軟磁
気特性を有する軟磁性合金を用いてなることを特徴とす
る軟磁性合金。
1. A general formula; T a M b M 'c M "d Y e T; Fe, Co, at least one selected from Ni M; Cu, Ag, Au , Zn, Sn, Pb, Sb, At least one or more selected from Bi; M '; at least one or more selected from Zr, Hf, Nb; M "; at least one or more selected from Ti, V, Ta, Cr, Mo, W, Mn, and Al; Si, P, B, at least one selected from C a + b + c + d + e = 100 ( atomic%) 0.01 ≦ b ≦ 5 3 ≦ c ≦ 18 0 ≦ d ≦ 5 0 ≦ e ≦ 15 provided that the total amount of Si and B is Excluding 5 at% or more, represented by: and having fine crystal grains, wherein the fine crystal grains are present in the alloy in an area ratio of 30% or more, in which the crystal grain size is 50 to 300 mm.
A soft magnetic alloy characterized by using a soft magnetic alloy having high saturation magnetic flux density and excellent soft magnetic properties in which crystals of 80% or more are present.
JP63123910A 1988-05-23 1988-05-23 Soft magnetic alloy Expired - Lifetime JP2894561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63123910A JP2894561B2 (en) 1988-05-23 1988-05-23 Soft magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63123910A JP2894561B2 (en) 1988-05-23 1988-05-23 Soft magnetic alloy

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP7167840A Division JPH0853739A (en) 1995-06-12 1995-06-12 Soft magnetic alloy
JP8311174A Division JP2704157B2 (en) 1996-11-08 1996-11-08 Magnetic parts

Publications (2)

Publication Number Publication Date
JPH01294847A JPH01294847A (en) 1989-11-28
JP2894561B2 true JP2894561B2 (en) 1999-05-24

Family

ID=14872370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63123910A Expired - Lifetime JP2894561B2 (en) 1988-05-23 1988-05-23 Soft magnetic alloy

Country Status (1)

Country Link
JP (1) JP2894561B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190039867A (en) * 2017-10-06 2019-04-16 티디케이가부시기가이샤 Soft magnetic alloy and magnetic device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3884491T2 (en) * 1987-07-14 1994-02-17 Hitachi Metals Ltd Magnetic core and manufacturing method.
JPH0686646B2 (en) * 1990-03-05 1994-11-02 新日本製鐵株式会社 Soft magnetic alloy ribbon
JPH04272104A (en) * 1990-09-13 1992-09-28 Alps Electric Co Ltd Manufacture of ferrous soft magnetic alloy green compact and ferrous soft magnetic alloy powder
JP2812569B2 (en) * 1991-03-18 1998-10-22 アルプス電気株式会社 Low frequency transformer
JPH04289152A (en) * 1991-03-18 1992-10-14 Alps Electric Co Ltd Manufacture of ferrous soft magnetic alloy green compact and ferrous soft magnetic alloy powder
JPH0853739A (en) * 1995-06-12 1996-02-27 Toshiba Corp Soft magnetic alloy
JP4979657B2 (en) * 2008-08-25 2012-07-18 株式会社タイホーコーザイ Temperature-sensitive magnetic particles, production method thereof, and temperature-sensitive magnetic fluid
US11482355B2 (en) * 2016-07-11 2022-10-25 Daido Steel Co., Ltd. Soft magnetic alloy
JP6256647B1 (en) * 2016-10-31 2018-01-10 Tdk株式会社 Soft magnetic alloys and magnetic parts
JP6160759B1 (en) * 2016-10-31 2017-07-12 Tdk株式会社 Soft magnetic alloys and magnetic parts
CN113192716B (en) * 2021-04-29 2022-09-06 深圳顺络电子股份有限公司 Soft magnetic alloy material and preparation method thereof
CN113414383B (en) * 2021-06-28 2022-04-19 广东精密龙电子科技有限公司 High-frequency high-saturation composite material, preparation method and common-mode inductor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479342A (en) * 1986-12-15 1989-03-24 Hitachi Metals Ltd Fe-base soft magnetic alloy and its production
JPH0768604B2 (en) * 1987-12-04 1995-07-26 日立金属株式会社 Fe-based magnetic alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190039867A (en) * 2017-10-06 2019-04-16 티디케이가부시기가이샤 Soft magnetic alloy and magnetic device
KR102170660B1 (en) 2017-10-06 2020-10-27 티디케이가부시기가이샤 Soft magnetic alloy and magnetic device

Also Published As

Publication number Publication date
JPH01294847A (en) 1989-11-28

Similar Documents

Publication Publication Date Title
US4268325A (en) Magnetic glassy metal alloy sheets with improved soft magnetic properties
US4881989A (en) Fe-base soft magnetic alloy and method of producing same
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
US5340413A (en) Fe-NI based soft magnetic alloys having nanocrystalline structure
JPH044393B2 (en)
JP2894561B2 (en) Soft magnetic alloy
JP3231149B2 (en) Noise filter
JP2823203B2 (en) Fe-based soft magnetic alloy
EP0342923B1 (en) Fe-based soft magnetic alloy
JP2710949B2 (en) Manufacturing method of ultra-microcrystalline soft magnetic alloy
US5225006A (en) Fe-based soft magnetic alloy
JP2778697B2 (en) Fe-based soft magnetic alloy
JP2848667B2 (en) Method for manufacturing ultra-thin soft magnetic alloy ribbon
EP0342922B1 (en) Fe-based soft magnetic alloy and dust core made therefrom
JP2823204B2 (en) Soft magnetic alloy
JP2919886B2 (en) Fe-based soft magnetic alloy
US4834814A (en) Metallic glasses having a combination of high permeability, low coercivity, low AC core loss, low exciting power and high thermal stability
JPH08153614A (en) Magnetic core
JP2704157B2 (en) Magnetic parts
JP2713980B2 (en) Fe-based soft magnetic alloy
JP2760539B2 (en) Fe-based soft magnetic alloy
JP2777161B2 (en) Fe-based soft magnetic alloy
JPH0853739A (en) Soft magnetic alloy
JPH02138444A (en) Fe-base soft-magnetic alloy and fe-base dust core
JP2815926B2 (en) Magnetic core